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Abstract

To evaluate the phylogenetic relationships between Hylotelephium and Orostachys, and to

provide important information for further studies, we analyzed the complete chloroplast

genomes of six Hylotelephium species and compared the sequences to those of published

chloroplast genomes of congeneric species and species of the closely related genus, Oros-

tachys. The total chloroplast genome length of nineteen species, including the six Hylotele-

phium species analyzed in this study and the thirteen Hylotelephium and Orostachys

species analyzed in previous studies, ranged from 150,369 bp (O. minuta) to 151,739 bp (H.

spectabile). Their overall GC contents were almost identical (37.7–37.8%). The chloroplast

genomes of the nineteen species contained 113 unique genes comprising 79 protein-coding

genes (PCGs), 30 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs).

Among the annotated genes, fourteen genes contained one intron, and two genes contained

two introns. The chloroplast genomes of the nineteen Hylotelephium and Orostachys spe-

cies had identical structures. Additionally, the large single copy (LSC), inverted repeat (IR),

and small single copy (SSC) junction regions were conserved in the Hylotelephium and

Orostachys species. The nucleotide diversity between the Hylotelephium chloroplast

genomes was extremely low in all regions, and only one region showed a high Pi value

(>0.03). In all nineteen chloroplast genomes, six regions had a high Pi value (>0.03). The

phylogenetic analysis showed that the genus delimitation could not be clearly observed

even in this study because Hylotelephium formed a paraphyly with subsect. Orostachys of

the genus Orostachys. Additionally, the data supported the taxonomic position of Sedum

taqeutii, which was treated as a synonym for H. viridescens in previous studies, as an inde-

pendent taxon.
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Introduction

The family Crassulaceae DC. consists of approximately 1500 species in 35 genera that are

mainly distributed throughout the Northern Hemisphere [1–3]. Among these, the genusHylo-
telephumH. Ohba includes approximately 28 taxa that are distributed in Asia, Europe, and

North America [3].

The taxa belonging to this genus are perennial herbaceous plants that are usually succulent.

The morphological characteristics of this genus are as follows: the roots are fibrous or tuberous

and often carrot shaped. The rhizomes are short and fleshy or woody. The stems are erect or

decumbent and green or red. The young branches are not covered with scales. The stem leaves

are alternate, opposite or 3-5-verticillate, and lanceolate, ovate, orbicular, or oblong; the blade is

flat and glabrous, and the margin is serrate. The inflorescence is terminal and sometimes also

subterminal and paniculate, cyme, often corymbiform, and sometimes umbel-like. The flowers

are bisexual (rarely unisexual), subsessile or pedicellate, and pentamerous. The sepals are usu-

ally shorter than the petals. The petals are subconnate at the base and are purple, red, pink,

white, occasionally yellowish, or greenish. The seeds are elliptical and have narrow wings [4, 5].

This genus was initially described as Sedum L. by Linne [6], and then Miller [7] and Hill [8]

proposed the classification ofHylotelephium within the genera Anacampseros L. and genus Tel-
ephium L, respectively. Gray [9] recognized this genus as a section of Sedum, and many taxon-

omists [2, 10–12] agreed with Gray’s opinions, but Clausen [13] disagreed with this and

classified it as a subgenus of Sedum. In addition, Ohba [14] recognized it as an independent

genus becauseHylotelephium differs from the other species of Sedum by having stipitate or

attenuated ovaries, flat broad leaves, compound corymbose inflorescences, and nonyellow pet-

als. However, Chung & Kim [15] proposed the classification of this genus as a section within

Sedum.

Since then, various molecular phylogenetic studies [16–23] have been performed and

revealed a large phylogenetic distance between the two genera; Hylotelephium formed a clade

with Sinocrassula A. Berger, Orostachys, andMeterostachysNakai (Telephium clade), and

Sedum was in the Acre clade. However, in most studies, including studies using ITS of nuclear

DNA [16, 18] and some marker regions of the chloroplast genome [19], as well as whole chlo-

roplast genome sequences [23], the taxonomic position ofHylotelephium as an independent

genus was not supported because it formed a paraphyletic clade with Orostachys species.

Therefore, studies are needed to evaluate an accurate taxonomic position by identifying the

exact phylogenetic relationship between two genera.

Furthermore, it is known as a very difficult group to classify [15, 24] because members of

Hylotelephium have very similar external morphological characteristics between species, and

each taxon has wide variation in external morphological characteristics. Because of this, the

identities of many taxa are unclear, and scientific names have been repeatedly mixed and

misused.

With the development of next-generation sequencing (NGS) technology that has reduced

the time and cost required for sequencing, many studies have performed whole chloroplast

genome sequencing. These studies have provided much information about plant systematics

and evolution. The rapidly evolving loci identified by these studies are very important for

resolving unclear phylogenetic relationships because they have higher resolution than tradi-

tional molecular markers [25, 26]. Therefore, many studies have focused on finding genetic

regions among specific families or genera to provide useful information about molecular

markers for further studies [25–32].

We obtained the whole chloroplast genome sequences of six Hylotelephium species (H. pal-
lescens (Freyn) H. Ohba,H. spectabile (Boreau) H. Ohba,H. ussuriense (Kom.) H. Ohba,
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H. viridenscens (Nakai) H. Ohba,H. viviparum (Maxim.) H. Ohba and S. taquetii Praeger, and

compared the sequence to those of thirteen published congeneric and closely related genera

(Orostachys) chloroplast genomes, i.e., those fromH. erythrostictum (Miq.) H. Ohba,H. ewersii
(Ledebour) H. Ohba, H. verticillatum (L.) H. Ohba, O. chongsunensis Y.N. Lee, O. iwarenge
(Makino) H. Hara, O. iwarenge f. magnus Y.N. Lee, O. japonica (Maxim.) A. Berger, O. japon-
ica f. polycephala (Makino) H. Ohba, O. latielliptica Y.N. Lee, O.malacophylla (Pall.) Fisch, O.

margaritifolia Y.N. Lee, O.minuta (Kom.) Berger. and O. ramosa Y.N. Lee. Our main goal was

(1) to evaluate the phylogenetic relationships betweenHylotelephium and Orostachys at the

whole chloroplast genome level and (2) to identify the taxonomic position of S. taquetii, which

was treated as a synonym ofH. viridescens by Ohba. Furthermore, we also aimed (3) to provide

important information about the most suitable chloroplast molecular markers for further stud-

ies to solve unclear phylogenetic relationships ofHylotelephium.

Materials and methods

Taxon sampling, DNA extraction, and sequencing

Since the sixHylotelephium taxa examined in this study were not endangered or protected spe-

cies, plant materials were collected without permission. The plant materials for this study were

collected from the native habitats of each taxon, and the voucher specimens were deposited in

the Sangji University Herbarium (SJUH) (S1 Table). Total DNA was extracted from approxi-

mately 100 mg of fresh leaves using a DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA,

USA), and LabChip GXII (PerkinElmer, Inc., MA, USA) was used to quantify the DNA con-

centration and quality. Genomic libraries were prepared using a TruSeq DNA Sample Prepa-

ration Kit (Illumina Inc., San Diego, CA, USA) and paired-end sequencing was performed on

a MiSeq platform at LabGenomics, (Seongnam, Korea). The DNA of the Hylotelephium taxa

was sequenced to produce 3,750,814–4,573,271 raw reads with lengths of 301 bp (S1 Table).

Assembly and annotation

Low-quality sequences (Phred score < 20) were trimmed using CLC Genomics Workbench

(version 6.04; CLC Inc., Arhus, Denmark). Then, de novo assembly was implemented using

the Geneious assembler with a medium sensitivity option via Geneious Prime v.2022.1.1 (Bio-

matters Ltd., Auckland, New Zealand). A total of 124,975–421,454 reads were aligned (S1

Table) and selected from chloroplast contigs using Geneious Prime v.2022.1.1. The draft

genome contigs were merged into a single contig by joining the overlapping terminal

sequences of each contig. The protein-coding genes (PCGs), transfer RNAs (tRNAs), and ribo-

somal RNAs (rRNAs) in the chloroplast genome were predicted and annotated using Geneious

Prime v.2022.1.1 and manually edited by comparison with the published chloroplast genome

sequences ofHylotelephium. The tRNAs were confirmed using tRNAscan-SE [33]. A circular

chloroplast genome map was drawn using the OGDRAW program [34].

Comparative analyses in Hylotelephium and allied genera

The newly complete chloroplast genome sequences of six Hylotelephium taxa were used along

with the following chloroplast genome sequences from GenBank of NCBI for comparative

analysis: three publishedHylotelephium,H. ewersii (MN794014), H. erythrostictum
(MZ519882), andH. verticillatum (MT558730); and ten Orostachys, O. choungsunensis
(ON979333), O. iwarenge (ON979332), O. iwarenge f. magnus (MW851201), O. japonica
(MW579549), O. japonica f. polycephala (ON979327), O. latielliptica (ON979328),
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O.malacophylla (ON979331), O.margaritifolia (ON979329), O.minuta (OK094425) and O.

ramose (ON979330).

Relative synonymous codon usage (RSCU) and amino acid frequency in the protein coding

gene region were determined by DnaSP 6 [35]. The genome structures of the nine species were

compared using the MAUVE program [36]. Additionally, the program mVISTA was used to

compare similarities between the nine species using the shuffle-LAGAN mode [37]. The anno-

tatedH. verticillatum chloroplast genome was used as a reference. The large single copy/

inverted repeat (LSC/IR) and inverted repeat/small single copy (IR/SSC) boundaries of these

species were also compared and analyzed.

Nucleotide diversity and repeat analysis

To assess the nucleotide diversity (Pi) between the nineteen chloroplast genomes, including

nineHylotelephium and ten Orostachys genomes, the complete chloroplast genome sequences

were aligned using the MAFFT [38] aligner tool and manually adjusted with BioEdit [39]. We

then performed sliding window analysis to calculate the nucleotide variability (Pi) values using

DnaSP 6 [35] with a window length of 600 bp and a step size of 200 bp [40].

The REPuter program [41] was used to identify repeats: forward, reverse, palindrome, and

complement sequences. The following settings for repeat identification were used: (1) Ham-

ming distance equal to 3; (2) minimal repeat size set to 30 bp; and (3) maximum computed

repeats set to 90 bp. The simple sequence repeats (SSRs) were identified by MISA software

(http://pgrc.ipk-gatersleben.de/misa/) with the parameters set as follows: 10 for mono-, 5 for

di-, 4 for tri-, and 3 for tetra-, penta-, and hexanucleotides [42].

Phylogenetic analysis

The whole chloroplast genome sequences from 41 Crassulaceae species were compiled into a

single file of size 165,758 bp and aligned using MAFFT [37]. Thirty-nine Telephium clade [19]

species were selected as the ingroups, and two species from subfam. Kalachoideae (Cotyledon
tomentosaHarv. and Kalanchoe delagoensis Eckl. & Zeyh.) were chosen as the outgroups (S2

Table). Maximum likelihood (ML) analyses were performed using raxmlGUI v.2.0.6 with 1000

bootstrap replicates and the GTR+I+Γ model [43]. Bayesian inference (ngen = 1,000,000, sam-

plefreq = 200, burninfrac = 0.25) was carried out using MrBayes v3.0b3 [44], and the best sub-

stitution model (GTR+I+Γ) was determined by the Akaike information criterion (AIC) in

jModeltest version 2.1.10 [45].

Results

Chloroplast genome features

The chloroplast genomes of sixHylotelephium species have been submitted to GenBank of the

National Center for Biotechnology Information (NCBI) (Table 1 and S1 Table). The total

length of the chloroplast genomes of the nineteen species, i.e., the sixHylotelephium species

analyzed in this study and the thirteen species analyzed in previous studies, ranged from

150,369 bp (O.minuta) to 151,739 bp (H. spectabile). Among theHylotelephium species, H.

viviparum was the smallest (150,430 bp) (Table 1 and Fig 1). All nineteen chloroplast genomes

exhibited a typical quadripartite structure, including a large single copy (LSC) region, a small

single copy (SSC) region and a pair of inverted repeat (IR) regions. The length of the LSC

region ranged between 81,991–83,252 bp, and the GC content of the LSC regions was similar

in nineteen species, ranging from 35.7–35.9%. The length of the SSC region was distributed

between 16,702 and 17,808 bp, with a GC content of 31.5–31.8%. The length range of the IR
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region of nineteen species was 25,285–25984 bp, which contained 42.8–43.0% GC content.

The chloroplast genomes of the nineteen species contained 113 unique genes comprising 79

PCGs, 30 tRNAs, and four rRNAs (Table 1 and S3 Table). In addition, nineteen genes, includ-

ing eight protein-coding genes (rpl23, ycf2, ndhB, rps7, 3’-end rps12, and part of rps19 and

ycf1), seven tRNAs (trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU, trnA-UGC, trnR-ACG and

trnN-GUU) and four rRNAs (16S rRNA, 23S rRNA, 4.5S rRNA and 5S rRNA), were duplicated

in IR regions. The rps12 gene had trans-splicing, and its 3’-end was duplicated in the IR region,

while its 5’-end was present in the LSC region (Fig 1). Among the annotated genes, fourteen

genes (atpF, ndhA, ndhB, petB, petD, rpl2, rps12, rpl16, rpoC1, trnA-UGC, trnI-GAU,

trnK-UUU, trnL-UAA, and trnV-UAC) contained one intron, and two genes (clpP and ycf3)

contained two introns (S3 Table).

A total of 23,968–26,063 codons were identified in nineHylotelephium species (S4 Table).

Among them, AUU (4.1–4.2%, isoleucine), AAA (4.1%, lysine), and GAA (3.9%, glutamic

acid) were the most frequently used codons, while CGC (0.4–0.5, arginine) and UGC (0.3%,

cysteine) had the lowest usage rates. There were 29 codons with relative synonymous codon

usage (RSCU) values greater than 1, 2 of which were equal to 1, and 30 were less than 1. In

addition, the codons containing A or T at the 3’-end mostly had RSCU > 1 (26 out of 29

codons), and most of the codons containing G or C at the 3’-end were less than 1 or equal to 1

(28 out of 30 codons).

The results of the chloroplast genome structure comparison between the nineteen Hylotele-
phium and Orostachys species using MAUVE [35] showed that all chloroplast genomes were

the same (S1 Fig). The pairwise cp genomic alignments between all 19Hylotelephium and

Orostachys species showed very high similarity in all sequences (Fig 2). The LSC and SSC

regions were more variable than the IR regions, and noncoding regions were more susceptible

to mutations than coding regions. In addition, clpP, ndhA and ycf1 were the most different

Table 1. Comparison of chloroplast genome features of Hylotelephium and Orostachys.

Taxa Length (bp) %GC No. of genes Accession No.

Total LSC SSC IR Total PCG tRNA rRNA

H. erythrostictum 151,707 83,037 16,702 25,984 37.8 113 79 30 4 MZ519882

H. ewersii 151,699 83,253 16,838 25,804 37.7 113 79 30 4 MN794014

H. pallescens 151,717 83,236 16,879 25,801 37.8 113 79 30 4 OP537241

H. spectabile 151,793 83,105 17,080 25,804 37.8 113 79 30 4 OP537242

H. ussuriense 151,329 82,929 16,808 25,796 37.8 113 79 30 4 OP537243

H. verticillatum 151,398 82,951 16,839 25,804 37,8 113 79 30 4 MT558730

H. viridescens 151,650 83,175 16,873 25,801 37.8 113 79 30 4 OK094424

H. viviparum 150,430 81,991 16,833 25,803 37.8 113 79 30 4 OK094424

S. taquetii 151,650 83,175 16,873 25,801 37.8 113 79 30 4 OP537245

O. chongsunensis 151,399 82,898 16,875 25,813 37.8 113 79 30 4 ON979333

O. iwarenge 151,431 82,924 16,881 25,813 37.8 113 79 30 4 ON979332

O. iwarenge f. magnus 151,276 82,784 16,868 25,812 37.8 113 79 30 4 MW851201

O. japonica 150,464 83,035 16,859 25,285 37.7 113 79 30 4 MW579549

O. japonica f. polycephala 150,464 83,035 16,859 25,285 37.7 113 79 30 4 ON979327

O. latielliptica 151,462 83,004 16,866 25,796 37.7 113 79 30 4 ON979328

O. malacophylla 151,374 82,872 16,876 25,813 37.8 113 79 30 4 ON979331

O. margaritifolia 151,112 82,562 16,842 25,854 37.8 113 79 30 4 ON979329

O. minuta 150,369 82,795 16,854 25,360 37.7 113 79 30 4 OK094425

O. ramosa 151,424 82,924 16,874 25,813 37.8 113 79 30 4 ON979330

https://doi.org/10.1371/journal.pone.0292056.t001
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from each other among the coding regions, and in the noncoding regions, rps16-trnQ(UUG),
atpH-atpI, trnE(UUC)-trnT(GGU), psbZ-trnG(UCC), ycf4-cemA and ycf2-trnL(CAA) of were

quite different from each other.

The border regions and adjacent genes of chloroplast genomes were compared to analyze

the expansion and contraction variation in junction regions, which are common phenomena

in the evolutionary history of terrestrial plants [46]. A comparison of the LSC/IR and IR/SSC

boundaries in the nineteen species is shown in Fig 3. The rps19, ndhF and ycf1 genes of all

Fig 1. Map of the newly analyzed chloroplast genome of six Hylotelephium species. Genes inside the circle are transcribed clockwise, and genes

outside are transcribed counterclockwise. The dark gray inner circle corresponds to the GC content, and the light gray circle corresponds to the AT

content.

https://doi.org/10.1371/journal.pone.0292056.g001
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nineteen species spanned the LSC and IRb, IRb and SSC, and SSC and IRa regions, respec-

tively. At the junction of IRa/LSC (JLA), trnH-GUG and part of the rps19 genes were in the

LCS and IRa regions, respectively. The junctions of LSC/IRb (JLB), IRb/SSC (JSB) and JLA

were highly conserved with no contraction or expansion, whereas a small length change was

identified in the SSC/IRa (JSA) junction. The length of ycf1 in the IRa region was the same, but

ycf1 in the SSC region varied from 4065 to 4074 bp.

Repeats and SSR analyses

The four types of repeat structures, including forward, reverse, complement and palindromic

repeats, were identified using REPuter software [41] in the nineHylotelephium chloroplast

genomes. Overall, 18 (H. ewersii,H. verticillatum andH. viviparum) to 22 (H. pallescens) repeat

sequences were identified in each chloroplast genome, of which 7 to 8 were forward repeats

and 10 to 12 were palindromic repeats. Additionally, reverse and complement repeats were

present only inH. ewersii (1 repeat) andH. pallescens (2 repeats), respectively (Fig 4A). The

length of repeats ranged from 30 to 48 bp, and a repeat with a length of 41 bp was the most

abundant, followed by those with lengths of 31, 37 and 30 bp (Fig 4B).

Fig 2. Visualization of the alignment of nineteen chloroplast genomes using H. verticilatum as a reference. The vertical

scale indicates the percent identity, ranging from 50% to 100%. Coding genes, RNAs, and noncoding regions are marked in

purple, sky blue, and red, respectively.

https://doi.org/10.1371/journal.pone.0292056.g002
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A total of 41 (H. erythrostictum,H. pallescens,H. viridescens and S. taquetii) to 57 (H. specta-
bile) SSRs (also called microsatellites) were examined for theHylotelephium species and ranged

in size from 10 to 16 bp. All nine chloroplast genomes had no hexanucleotide repeats, and four

species (H. erythrostictum,H. spectabile,H. ussuriense, andH. verticillatum) had five types of

SSRs, i.e., mono-, di-, tri-, tetra- and pentanucleotides. Mononucleotide repeats ranged from

27 (H. erythrostictum) to 42 (H. spectabile) and were the most abundant in the nine Hylotele-
phium chloroplast genomes, with A/T repeats being the only represented repeats (Fig 4C).

Sequence divergence and mutational hotspots

The nucleotide diversity (Pi) between the nineHylotelephium species and all nineteen species

is shown in Fig 5. The Pi values in the IR regions were much lower than those in the LSC and

SSC regions. The average Pi values were estimated to be 0.003 and 0.007. Among theHylotele-
phium species, the Pi values were extremely low in all regions, and only one region (rpl32-ccsA)

Fig 3. Comparison of the LSC, IR, and SSC junction positions in the nineteen Hylotelephium and Orostachys chloroplast genomes.

https://doi.org/10.1371/journal.pone.0292056.g003

PLOS ONE Chloroplast genomes of six Hylotelephium

PLOS ONE | https://doi.org/10.1371/journal.pone.0292056 October 10, 2023 8 / 17

https://doi.org/10.1371/journal.pone.0292056.g003
https://doi.org/10.1371/journal.pone.0292056


Fig 4. Analyses of repeated sequences in the nine Hylotelephium chloroplast genomes. (A) Types and number of repeats in the nine chloroplast

genomes, (B) frequency by length of repeats in the nine chloroplast genomes, (C) frequency by type of SSRs in the nine chloroplast genomes.

https://doi.org/10.1371/journal.pone.0292056.g004

Fig 5. Sliding window analysis of nineteen Hylotelephium and Orostachys chloroplast genomes. (A) Pi values of nineHylotelephium species and (B)

Pi values of all nineteen species.

https://doi.org/10.1371/journal.pone.0292056.g005
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showed relatively high Pi value (>0.03). In all nineteen species, six regions had a high Pi value

(>0.03). Among these, four (rps16-trnQ, trnC-petN, ycf4-cemA, and cemA) and two

(rpl32-ccsA and ycf1) were in the LSC and SSC regions, respectively. Moreover, corebarcode

regions, rbcL andmatK, and molecular markers used in previous studies, rps16, and trnL-trnF
[17–20], of nineHylotelephium species and all nineteen Hylotelephium and Orostachys species

pad very low Pi values of 0.0074 and 0.0176 or less, respectively (S5 Table).

Phylogenetic analyses

The ML tree constructed with whole chloroplast genome sequences was well supported at the

genus level, except for those ofHylotelephium and Orostachys. The ML tree was divided into

two subclades. In the first clade, the genera Rhodiola L. and Phedimus Raf. were clustered into

a well-supported, monophyletic clade with high bootstrap (BP) and Bayesian posterior proba-

bility (PP) values. The second clade consisted ofHylotelephium, Orostachys,Meterostachys,
Sinocrassula A. Berger and UmbilicusDC. Umbilicus was the earliest-diverging lineage, and

Sinocrassula was sister toHylotelephium, Orostachys andMeterostachys.Hylotelephium was

paraphyletic and formed a clade with subsect. Orostachys of Orostachys (Fig 6).

Discussion

Comparison of the chloroplast genomes

In this study, we collected six species ofHylotelephium and obtained their complete chloroplast

genome sequences. The chloroplast genome of terrestrial plants is highly conserved in its

nucleotide sequence and its gene content and order [47–52]. However, the gene orders of the

chloroplast genome are sometimes rearranged in independent plant groups [26, 49, 50, 53, 54],

and its structural rearrangements provide important systematic data. We found that the

genome structure, gene content and gene order of nineHylotelephium species, including the

six species analyzed in this study and three published species, were identical, and the sequence

identity was also very similar between species in most of the chloroplast regions (Fig 2 and S1

Fig). Therefore, we believe that the chloroplast genomes of this group are very conserved. In

theHylotelephium species, the genome size differed by less than 500 bp except forH. viviparum
(Table 1). The chloroplast genome ofH. viviparum was approximately 1000 bp shorter than

that of other Hylotelephium species (Table 1), which was confirmed because most of the

sequences of the intergenic spacer between rps16-trnQ(UUG) were deleted. It is considered a

relatively large event in the highly conservedHylotelephium chloroplast genome, and it is spec-

ulated that it can be used as a specific marker region that distinguishes H. viviparum from

other species.

In many previous studies analyzing codon usage bias, it was confirmed that isoleucine and

cysteine are the most common and the least common codons, respectively [55–58], and most

codons showed higher A/T preference in the third codon [55, 59–62], probably because of the

A or T abundance in the IR region [63]. As a result of this study, it was confirmed that the

chloroplast genomes ofHylotelephium species had the same characteristics as those of general

higher land plants.

The contraction and expansion of IR regions during evolution is a relatively common

occurrence and has been employed as an evolutionary locus for phylogenetic studies [64–66].

In the chloroplast genome ofHylotelephium and Orostachys, however, there is little change in

the IR regions (Figs 2 and 5B), so it will not be suitable for phylogenetic studies.

The number of repeats in the nineHylotelephium species ranged from 18 (H. ewersii,H. ver-
ticillatum andH. viviparum) to 22 (H. pallescens), and the number of repeats according to type

and length showed slight differences between species (Fig 5A and 5B). The presence and
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abundance of repetitive sequences in the chloroplast or nuclear genome are likely to involve

many phylogenetic signals [67–69], and may, therefore, provide additional evolutionary infor-

mation. In addition, the SSRs identified in this study may provide various markers for popula-

tion genetic studies ofHylotelephium species because SSRs are considered to play an

important role in population genetics [58, 70].

Selection of useful molecular marker regions for phylogeny

Hylotelephium is known to be a very difficult group to classify due to the high external mor-

phological variation of each taxon and the very similar morphological characteristics between

species [15, 24]. According to these findings, many morphological and molecular phylogenetic

studies have been conducted, but the delimitation of this genus and phylogenetic relationships

between its species remain insufficiently resolved [16–23, 71].

Fig 6. The ML tree from 39 Telephium clade species and two out groups. Bootstrap (BP) values greater than 50% are below the clades, and Bayesian

posterior probabilities (PP) are shown above the clades.

https://doi.org/10.1371/journal.pone.0292056.g006
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Previous studies have mostly used the ITS region of nuclear DNA andmatK, rps16, psbA-
trnH and trnL-trnF of the regions in the chloroplast genome for phylogenetic analyses [16–

20]. Additionally, the CBOL Plant Working Group has recommended matK and rbcL genes as

core plant barcodes [72]. The Pi values of these regions were calculated in this study, and all

showed a very low Pi of 0.0074 (matK) or less inHylotelephium chloroplast genomes and

0.0176 (matK) or less inHylotelephium and Orostachys species. Therefore, the low phyloge-

netic resolution of the previous studies was due to the selection of molecular marker regions

with very low Pi values. Additionally, it may be challenging to obtain high resolution even in

the core barcode regions (matK and rbcL).

The results of this study showed that only one region (rpl32-ccsA) had a high Pi value

(>0.03) inHylotelephium species, and three regions (rps16-trnQ, accD and ycf1) had relatively

high Pi values (>0.015) (Fig 5A). Therefore, it is considered the most suitable region to evalu-

ate the phylogenetic relationships between Hylotelephium species. Furthermore, six regions

(rps16-trnQ, trnC-petN, ycf4-cemA, cemA, rpl32-ccsA and ycf1) were the most suitable chloro-

plast regions for resolving the unclear phylogenetic relationships betweenHylotelephium and

Orostachys due to their high Pi values (Fig 5B).

Assessment of phylogenetic relationships

Ohba [14] recognized two sections, HylotelephiumH. Ohba and Populisedum (A. Berger) H.

Ohba, in the genusHylotelephium based mainly on the insertion point of the flowering stem.

He then divided the genus into three sections by treating Sieboldia, which was classified as a

series of sect.Hylotelephium, as its own section [73].Hylotelephium formed a polytomy or was

polyphyletic with subsect. Orostachys of the genus Orostachys in many previous phylogenetic

studies based on nrITS [16, 18] and some chloroplast markers [19]. Unfortunately, the genus

delimitation could not be clearly observed even in this study because Hylotelephium formed a

paraphyly with subsect. Orostachys of the genus Orostachys. We do not believe these results

can be interpreted as a conclusion that the two genera should be combined into one genus

because the morphological characteristics such as radical leaves and inflorescences, between

the two genera greatly differ. Further studies are needed that include various species and

nuclear DNA to clarify the delimitation of the genus. Additionally, the classification system

below the genus level ofHylotelephium will also need to be reconsidered in future studies

because the taxa belonging to sect.Hylotelephium were polyphyletic, andH. ewersii, which is

considered in sect. Populisedum [18], did not form an independent clade (Fig 6).

Moreover, Sedum taquetii, a Korean endemic species that is distributed only on Jeju-do

Island, was first described by Praeger [74] because of its larger flowers (especially carpels and

petals reaching approximately 10 mm and 9 mm, respectively) compared to the taxa belonging

to the same section. Since then, this species has been treated as a synonym for H. viridescens
without taxonomic studies [13, 75], and Ohba [14] also accepted these opinions when first

describing the genusHylotelephium and treated it as a synonym. However, Chung and Kim

[15] argued that S. taquetii should be recognized as an independent species because it is distin-

guished fromH. viridescens in that the anther is purple. The results of this study showed that

H. viridescens had the closest relationship withH. pallescens, and S. taquetii was the sister to

the two species mentioned above. Therefore, we strongly agree with Chung and Kim [15] that

S. taquetii should be treated as an independent taxon.

Conclusion

In this study, we assembled the chloroplast genomes of six Hylotelephium species, which had a

total length ranging from 150,430 to 151,717 bp. The chloroplast genomes ofHylotelephium
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had identical structures and were highly conserved. TheHylotelephium species are not easy to

classify because the morphological variations of each taxon are very high and there are remark-

ably similar morphological characteristics between species. Therefore, the four regions

(rpl32-ccsA, rps16-trnQ, accD and ycf1) and six regions (rps16-trnQ, trnC-petN, ycf4-cemA,

cemA, rpl32-ccsA and ycf1) presented in this study will presumably be useful for resolving the

many unclear phylogenetic relationships betweenHylotelephium species and between Hylote-
lephium and Orostachys, respectively. The results of the phylogenetic analysis of this study do

not resolve the unclear relationships of the Hylotelephium species, so additional studies are

needed. Furthermore, the results supported the taxonomic position of S. taquetii, which was

treated as a synonym ofH. viridescens in previous studies, as an independent taxon.
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