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This paper attempts to develop a philosophy for empirical time series analysis, involving
the routine use of four data handling procedures (covariance estimation, spectral estimation,
autoregressive model fitting and spectral estimation, and trend elimination and estimation)

embodied in a computer program.

The cross-spectral analysis of a pair of time series, each consisting of 4000 observations,

requires approximately 10 minutes on a 7090, including computation of covariances.

Several

examples of empirical time series analysis are given.

1. Introduction

The probabilistic theory of time series is now
extensively developed, built on the pioneering work
of Wiener, Khintchine, Kolmogorov, Cramér, Lodve,
and Karhunen in the 1930’s and 1940’s. The
statistical theory also enjoys an extensive literature
and a fair share of beautiful results. While the
probabilistic theory can be pursued for the sake of
its great beauty, it would be a mistake if the statisti-
cal theory were to be developed only for its elegance.
The ultimate aim of the statistical theory must be
to provide data handling procedures for achieving
the aim of time series analysis: synthesis of stochastic
models which can be used to describe, and perhaps
to control, the mechanisms generating each time
series and relating various time series.

For this reason, one may define a field, which
may be called empirical time series analysis, with
aims such as the following:

(1) to develop efficient computer programs for the
statistical treatment of empirical time series, paying
especial attention to flexibility of input and output,

(i1) to develop a philosophy, based on statistical
theory, for judging and interpreting the statistical
data reduction provided by the computer output,

(iii) to provide experience in the small sample
applicability of statistical procedures derived from
asymptotic theory,

(iv) to focus attention on the theoretical questions
requiring further investigation, such as the problem
of how to transform observed data to put them into
a form where they satisfy the assumptions required
to apply various statistical data reduction routines.

1 Paper presented at the Symposium on Signal Statistics in Seattle, Wash.,
Dec. 6-7, 1963, under the title ‘‘Statistical Methods for Stochastic Processes.””
Prepared under the auspices of National Science Foundation Grant GP-82.
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The goal of empirical time analysis is precisely that
enunciated by Richard Hamming [1962] for numerical
analysis: the seeking of insight rather than numbers.
One should not expect empirical time series analysis
to be a mere matter of grinding out answers. Rather
one desires to obtain a wealth of answers which
can be tempered by imagination and judgement to
achieve models for time series.

My aim in this paper is to sketch an approach to
empirical time series analysis whose basic attitude
is: one should analyze the data in a number of ways,
each corresponding essentially to a different possible
model for the observed time series. Kach analysis
provides estimates of the parameters (or incompletely
specified probability law characteristics) involved
in the model. Comparing the analyses provides
rough tests of hypotheses concerning which model
provides a better fit to the data.

2. Standard Models

The standard model adopted for the analysis of
a time series { X;(¢), t=1, 2, ...} is to write it as
¢ ) /) ) J

the sum

X =m,t)+ Y@ (2.1)
of its mean value function
m; () =E[X,(@)] (2.2)
and the residuals or fluctuations
Y () =Xi() —m.(2). (2.3)

In order to have the possibility of statistical
inference from a single finite sample of a time series,
one assumes that the residuals are covariance sta-



tionary [Parzen, 1962] in the sense that (for 7, j=1, 2)
there exist functions R;(») of integers »=0, +1, . ..
such that

’i(z,‘)Y,-(t—l—v)]:]?ij(v).

(2.4)

Cov [X,(t), X;t+v)|=E]

We call 72;;(v) the covariance functions of the time
series, and

S R; )
PO = (R 0) 1,0 7 20

the correlation functions.

The covariance functions £2;;(v) always possess
representations as Fourier-Stieltjes integrals. It is
next assumed that they are Fourier transforms of
spectral density functions f;;(w):

Roy(r)= f T vl (@)de,  i=V—1. (2.6)

The (auto) spectral density function f;(w) is a
nonnegative even function of w:

Ji(—w)=fu(w) >0,

The cross-spectral density function f;; (w) is in general
complex valued; its real and imaginary palts are
called respectl\'ely the co-spectral density, denoted
¢,(w), and quadrature spectral density, denoted ¢;;(w).
These functions possess the following properties
(writing Zz to denote the complex conjugate of z)

lo| <. 2.7

fu'(—w) :fij(w) :f]‘i(w) s
Cij(—w)=cy(w),
qij(—w) =—¢;(w). 2.8)

One can define for two jointly covariance station-
ary time series X,;(.) a variety of spectral quantities,
as follows:

| fis () ? _ ¢ij(@) +4i5(w)
Jii(w)f15(w) Ju(w)fi5(w)
called the coherency between X,(-) and X,(-) at
frequency w;

I fu (w) |

ll]( )4 f](w)

called the gain at frequency w of the predictor of
Xi(-) given X;(-);

2.9)

wy;(w)=

(2.10)

|7[w<“’)‘
ngz(w)* /(w)

(2.11)

called the gain at frequency w of the predictor of
X;(+) given Xy(-);

qi(w)

¢ (@) &2

¢o(w)=arc tan

called the phase difference between the two series
at frequency w;

Jii(w) :fjj (w) {1 —Wi(w) } ;

called the error spectrum of the predictor of X,(.)
given X,(-).

In the sequel we shall discuss the question of
estimating the mean value functions and spectral
functions associated with time series. In terms of
the spectrum, one can devise various physical
mechanisms (espeuallv filters) which might have
generated the time series and which mlgrht be used
to simulate them.

(2.13)

3. Sample Covariance and Correlation
Functions

A basic step in empirical time series analysis is
to form estimates of the covariance, correlation, and
spectral functions. 1T believe it correct to say that
these estimation problems do not as yet have
generally accepted solutions. One of the aims of
this paper is to stress the points at issue.

The first point I desire to raise is that for the sake
of developing a modular computer program we should
adopt the following definitions for the sample
covariance functions £2;;(-) and R,(-), and sample
cross-covariance functions £,(-) and R, (.): for

Dy =1y B,
OB A;il”‘ XX, (t+v), 0=0,1,...,N—1L
_ (3.1)
For negative values of » we defne
Rij(—v)=R;;(v). (3.2)

For the sake of distinguishing the estimates from
the population quantities they are estimating one
should write F%(») instead of R;(») to indicate
that it is an estimate. For ease of writing we omit
such asterisks. However, they should be inserted
by the reader when discussing the properties of the
estimates.

Computing the sample covariance and ecross-
covariance functions will be one of the most time
consuming aspects of a time series analysis of real
data. It turns out that one can choose a convenient
number V.. less than /N, such that one need
compute only

2=, o o o Wiapee

R;(),
One rarely chooses V.. to be greater than 40 percent
of the sample size N, and often it will be 0.25 N.
Some considerations on how to choose V.. are
discussed below. We call V.. the covariance
truncation point.
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From the sample covariance and cross-covariance
functions, one forms sample correlation and cross-
correlation functions, defined by

pi;(0) =Ri;(0)[{ R:i(0) R;;(0) }'72 (3.3)
for 2=0,1,..., Vi As an example of the
meaning of (3.3) note that

N—v . .
X)X (t+0)
pu() =" . »=0,1,..., N—L.
> X3 (1)
=1
(3.4)

It should be noted that some writers would esti-
mate p,;(») by the ordinary correlation coefficient
between the two series

{X:(@®),t=1,2,...,N—v}and

{(X;t+v),t=1,2,.. ,N—v} (3.5)
which is given by
N—v
Z‘T, (X () — X% o) (X;(t+0)—XF,)
N-o N-v TR L
{g_l‘, (A\i(i)*A\Tko)"’; (Xj(t+v)—X ?“,v)"}
h (3.6)
defining
TS 25 40 3.7)
< "’04“]\’7_17 r‘:__ll‘ i ) .
1 VA
Xt=nr— 2 X,(). (3.8)
N—v .53

The next two sections discuss the motivations for
and implications of definitions (3.1) and (3.3), and
why we oppose definition (3.6).

4. Mean Subtraction

It seems odd that we do not use in the sample
covariance function the deviations X(#)—X of the
observations from the sample mean

L

X=5 21X ()

rather than X(f) itself. To explain our position on
this point we introduce the notion of detrending.

In analyzing a time series { X(¢),t=1,2,. . . , N, }
one usually adopts a model for X(-) of the form,

X(t)=m(t)+e(®),

where m(-) is the mean value function, sometimes
called the trend, and () is the fluctuation or residual

series about the trend assumed to be covariance
stationary.

One is interested in the trend for two purposes:

(i) to estimate it, as an important part of the
model one is fitting to the time series,

(i) to eliminate it in such a way as to obtain esti-
mated values of the residual series e(-) so that its
covariance and spectral structure can be estimated.

The optimum procedure for estimating the trend
depends on the covariance structure of the residuals.
Consequently, in a sense, the problem of trend elim-
ination needs to be solved before one can solve the
problem of trend estimation.

Detrending refers to subtracting an estimated mean
value function M (t) from a time series X(?) to pro-
duce a new time series Xq(t) =Xt —m(t). We call
Xu(-) a detrended version of X(-) about its mean
value function. Detrending methods differ only in
the way in which the estimated mean value function
is formed. Two important ways in which one at-
tempts to eliminate trend (or detrend) are mean
detrending and linear detrending.

Mean detrending. 'The estimated mean value func-
tion is the arithmetic average of the time series
observations:

A N -_—
m(t) ;,‘\—f;‘\'(.\-):‘\x' fort=1,2,..,N (&1)

The detrended time series is

> > . ¢ T
X:(t)=X(t)—X, =il By o o o N (4.2)

Linear detrending. The estimated mean value
function is a regression line fitted to the time series
by the method of least squares:

mt)=X~+b(—1t) fort=1,2,..., N (4.3)
where
XLy
b N; (), (4.4)
- 1 WXy
1= 22 t=(V+1)/2, (4.5)
=1
N - N N -
SUXO)—t> X)) StX(t)—NtX
b= =Nz 49
S 12— N(1)?
t=1
The detrended time series is
X,)=X(@t)—[X+bt—1)], t=1,2,... N.
(4.7)

We now see why in forming sample covariances
one should not necessarily subtract out the mean of
a time series. We believe that one should assume
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that the time series either have zero means or rep-
resent residuals after detrending. Kurther, there
will be occasions when automatically subtracting out
the mean limits our ability to compute interesting
estimates. We will often desire to consider a con-
stant time series

X(t)=1, all ¢, (4.8)
which we do not desire automatically to replace by
the zero time series.

5. The Divisor Question: N—v or N

In the definitions given by (3.1) for 22;;(») we have
chosen to divide by N (the number of terms in the
series) rather than N—» (the number of terms being
summed to form 2,,(»)). Many researchers seem to
prefer to divide by N—v» on the grounds that it leads
to an wunbiased estimate of the true covariance
R,,(») (in the case of time series X;(-) with zero
mean):

T—v N—v
P [Jw 5 4\’i<r>4\3<t+a>} L S R0 =Ry
N— N—vi=

Vi=1

The suggestion that it is preferable to use the
divisor NV, rather than N—», which is adopted in this
work, is motivated by the following two considera-
tions. Let us call 2.,(») with a divisor of N—» the
unbiased estimate and £;,(») with a divisor of N
the biased estimate.

One may show that

(i) The unbiased estimate regarded as a function
of » is not a positive definite function while the
biased estimate is. This property is desirable for
two reasons; first, because we are estinmting a p()si-
tive definite function, and second, because it ulti-
mately leads to nonnegative estimates of the spec-
tral density function.

(ii) One may show that in many cases the biased
estimate has a smaller mean square error than the
unbiased estimate. While this seems to be true in
general, a rigorous proof has not as yet been found
[see Schaerf, 1963, for proofs in various special cases|.

In her Stanford Ph. D. thesis, Mirella Casini
Schaerf [1963] shows that while the unbiased sample
covariance function usually has a greater mean square
error than the biased sample covariance function,
neither seems to provide a really satisfactory esti-
mate of the true covariance function. The sample
covariance functions never damp out to zero, which
we assume is the case for the true covariance func-
tion. Schaerf examines various ways of modifying
the sample covariance function to improve its prop-
erties, with somewhat pessimistic results.

Nevertheless it seems that when properly trans-
formed the biased sample covariance function (in
spite of failing to give a reasonable picture of the
true covariance function) does yield estimates of the
spectrum which provide a reasonable picture of it.
It possesses the essential property which the sample
covariance function must have (in order for its

Fourier transform to be interpretable as a spectral
density function), namely positive definiteness.
The definition of the sample correlation function
given by (3.6) is not positive definite. There seems
to be no reason to use such an estimate. In what
way is it relevant to our aims in time series analysis?

6. Estimates of the Spectrum and Cross
Spectrum

The theory of estimation of the spectrum and
cross spectrum is too extensive to be conveniently
summarized here. We can only state the estimates
which present theory seem to indicate should be
formed as the first step to understanding the spec-
trum (I have tried to summarize this theory in
Parzen [1961 and 1964]).

Three methods of computing spectra seem to be
available for consideration:

(1) the indirect or transform method, which Fourier
transforms weighted covariances to estimate spectra,

(i1) the direct or filter bank method, which esti-
mates spectra as the variance and covariance of
various filtered time series,

(ii1) the method of autoregressive spectral estima-
tion.

We discuss method (i) in this section and method
(iii) in section 8. We do not discuss method (ii);
see Ormsby [1961], Welch [1961], and Brillinger
[1963].

Let R;;(v) denote either the sample cross covariance
or the sample cross-correlation function. While in
our opinion one should use the latter for ease of
interpretation, the graphs one obtains have exactly
the same shape in either case since they differ by
constant factors (assuming (3.3) is used).

As an estimate of the true cross-spectral density
function f;;(w) one forms the estimate

(6.1)

fz-j(w) :‘% ‘

ivw ﬁ ) (s
5, k<M>1m<L>

™ |l

which depend on a choice of two quantities:

(1) an integer M, called the truncation point of the
spectral estimate (we usually choose several trunca-
tion points in practice),

(i) a kernel £(.) known as the lag window of the
spectral estimate; its Fourier transform

©

K@=y [ ek 62)

—©

is the spectral window generator of the estimate while

1 ’
Ky (w) ~or ‘v;Mew“’ ke (%,) (6.3)

is called the spectral window of the estimate; it may
be shown that approximately

Ky (w) =MK (Muw). (6.4)
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There is a third choice to be made in forming the
estimate f;;(w), and this is the number of points on
the interval 0 to 7= at which it will be computed.
?’Ve adopt the attitude that f;(w) should be computed

or

w=0, %2’{) o (6.5)

where ¢ is an integer to be chosen. We call @
the spectral computation number.

Spectral window generators. In this work, we
use only the following spectral window generator:

ke (w) =1—6u*+6u?, 0<u<0.5
=2(1—wu)?, 0.5<u<l1
=(0), a2
=k(—wu), u<0. (6.6)

A theory of spectral window generators is developed
in Parzen [1964]. It is shown that the kernel (6.6)
always leads to nonnegative spectral estimates whose
variance (when properly normalized for comparison)
is slightly less than the variance of various other
estimates considered. In particular a comparison
is made with certain other kernels which have been
widely used; see Blackman and Tukey [1958], p. 98.
One such kernel is

1
k(u) =5 (1+4-cos Tu), |u| <1
0, otherwise. (6.7)
Statistical significance of spectral estimates.  Assum-

ing normality of the observed time series, it may be
shown that the variance of the estimated spectral
density

(6.8)

% () — > pk(ﬁ Ro()

‘)ﬂ-i

depends on the sample size N, the kernel k(.), the
truncation point M, and the true spectral density
Fi(w) as follows:

Var [f2 (@)= ”(w){f kZ(u)(Zu}lf 0w <n
—5 f“(w){ me(u)du}

if =0 or w=w. (6.9)
It should be noted that the equality in (6.9) is only
approximate; from a rigorous point of view it
should be written as a relation that holds in the
limit.

Note that the variance in (6.9) increases
truncation point M increases. Therefore

as the
one is
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tempted to make M small. However the smaller
M the larger is the bias of fi(w) as an estimate of
Thus arises the crux of the spectral estima-
tion problem—how to choose the truncation point
so as to optimally compromise between a number of
conflicting objectives.

If instead of f#(w) one plots its logarithm log,
#(w) one achieves two advantages:

(i) one magnifies the graph of the estimated
density in regions \xhow it is small, enabling one to
more easily study the behavior of the spectrum at
these frequencies,

(ii) one achieves an estimate whose sampling
properties are the same for all frequencies since by
large sample statistical theory (6.9) implies

“{{ fmﬂ-f<zz)(/zl,\f e e
N1J)- y
\\fri [ ’(u)(]u} if w=0 or w=m.

(6.10)

Var [log,f# (w)]=

Whereas a confidence band about the estimated
spectral density has a width which varies with the
height of the density, a confidence band about the
loudnthm of the density has a constant width:

2

[log, f# (w) —log, fi:(w)| <2 “[f L(?/)(Zu}
(6.11)

can be considered to be a confidence band for each
w in 0< o< of approximate coniidence 95 percent.

For the kernel (6.6), [ k?(u)du=0.54. Therefore

the right-hand side of (6.11), hereafter denoted A,
is 0.33 for M/N=0.05 and 0.46 for M/N=0.10.
The value of A for other ratios M/N is then easily
approximated (thus, A is 0.46 V4=0.92 for M/|N=
0.40).

From (6.11) it follows that for each » in 0<<w<,
with approximate confidence 95 percent,

@) —ful®) s
fulw) =

—A_1< =1l (6.12)

It is worth noting how quickly the limits in (6.12)
increase as M/N increases; thus

M/N =1l =1l
0. 05 =(0). &3 0. 4
.10 = & .6
. 20 — 1) .9
.40 .6 | 1.5



Only for M/N less than 10 percent is the percentage
error of the estimated spectrum of reasonable size.

The statistical significance of cross spectral esti-
mates is discussed by Jenkins [1963], and Goodman
[1963].

Choice of truncation point. It seems to be in-
creasingly accepted among workers in statistical
spectral analysis that the spectrum should be
computed for several choices of truncation point M.
As yet we do not have routine quantitative (or even
qualitative) procedures for interpreting the spectra
obtained from several choices of M. Such procedures
are still under development. My experience has
led me to feel that a good picture of the spectrum
can be obtained by taking three truncation points
M, < M,< M, 1 choose M, to be an even number
between 5 percent and 10 percent of the sample
size N. 1 then choose M,=2M, and M,=2M,. In
section 9 we give examples of spectra computed with
several truncation points.

Choice of spectral computation number. The spec-
tral computation point ¢ has in the past frequently
been chosen to be equal to the truncation point M.
One can prove a sampling theorem to the effect that
the estimated spectrum (which is a function of w,
measured in cycles per unit of observation time,
in the interval 0 <w<0.5) can be recovered from its
ralue at M equally spaced points. However, this
recovery cannot necessarily be done by linear
interpolation. If the graph of the estimated spec-
trum is to be obtained by merely drawing line
segments connecting the computed values, one needs
to compute the spectrum at ) equispaced frequencies,
where ) should be at least 2M and perhaps should
be 4M.

If one uses 3 truncation points M,<M,<M,, it
has seemed reasonable to me to compute each
spectrum at Q=DM, points. However, one should
choose @ (approximately equal to A.) such that the
frequencies which are multiples of 7/@ are of physical
interest. For economic time series of monthly data
we usually choose ¢ to be a multiple of 12.

7. Computation Formulas for Cross-Spectral
Estimates by the Transform Method

The time series X;(:) and X,(-) whose cross spectra
one is estimating are usually not the directly observed
time series but rather the result of various detrending
and filtering operations. Assuming that we are
dealing with two time series ready for cross-spectral
analysis, the following computations are performed.

Step 1. Let N be the number of observations in
the two series. Choose an integer V... <N and
compute, for »=0, 1, 2 the cross

- ’ ) o ‘max)
covarwances

)

Rii(v), Roy(v), R1x(v), Ry (v) (7.1)
and the cross correlations which we denote by the

notation _ _ _ —
R, (v), Ry(v), Ri2(v), Ry (v). (7.2)

1

Step 2. Choose three truncation points M;, M,,
M. For each truncation point, carry out steps 3
to 5.

Step 3. Choose an integer . Then for each
frequency

w=0, (1Y WP (7.3)
Q@

compute the quantities described in steps 4 and 5.
Step 4. We prefer to compute normalized cross
spectra (the transforms of cross correlations rather
than of cross covariances) since they seem to be
easier to graph and to compare.
The normalized spectral density functions, co-
spectrum, and quadrature spectrum

fn (w), f2z(°~’> y 012(“’), (112(@)

at frequency w could be computed by the formulas

(7.4)

Ffii(w) :%{%1—312(0) +l§ COs (z}w)k<;‘%>ﬁii<v) }’

(7.5)
1 (1 1N
(@) :;{»2- Ris0)+5 35 cos k(37
(B +Ba®] (7.6)

Gi() =5 33 sin k(7)) R~ (72)

where M denotes the truncation point.

These spectral quantities are most efficiently com-
puted not by using the explicit formulas above but
by using an efficient procedure for evaluation of
finite Fourier transforms due to Goertzel [1960].

Step 5. We next compute the following spectral
quantities:
Amplitude, Ay2(w)=|f1z(w) [={|c12(w) "+ [qr2(w) [* }'*
Phase, enz(w) =tan™" { g1z(w)/er2 (@) }
Coherence, Wis(w)=|/f12(w)|*+ /11 (w)fo2(w)
Gain 1/2,  Gya(w)=A5(w) =+ fr(w)
Gain 2/1, Gy (w)=Ap(w) = i1(w).

Computation time. It may be worth explicitly
noting two ways which we have found for reducing
the computation time required.

In computing covariances we call upon an external
procedure for computing inner products which exe-
cutes faster than the equivalent coding in program-
ming language. Figure 7a lists our covariance
computation routine.

In computing spectra and cross spectra we use
the Goertzel procedure mentioned after (7.7). Fig-
ure 7b lists this computation routine.
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TIONS s

[=M+1,

THE ARRAY Y()s

'SUM=060,

PROCEDURE COVARIANCE(NsMoL1sl 2sX()
COMMENT THIS PROCEDURE COMPUTES THE AUTO AND CROSS CORRELATION FUNC=-
RI(I)sR2(I)sCI(I) AND CT(
AT LAG ZERO IS STORED AT I=1, TH

$ R1()sR2()osCI()sCT{)eD1+D25sD3218

I)e FOR I=1920ce0oMtle THE FUNCTIONe
E FUNCTION AT LAG M IS STORED AT

THE TIME SERIES ARE OF EQUAL LENGTH N AND BOTH ARE STORED IN

ONE BEGINNING AT L1y THE OTHER AT L2es THE AUTO-CORR
FUNCTIONS ARE NORMALIZED TO HAVE A VALUE 1 AT THE ORIGIN AND THE

CROSS CORRELATIONS ARE ALSO CONSISTENTLY NORMALIZEDe THE NORMAL-

IZING FACTORS ARE D1,D2 AND D3,
ARRAYS R1()sR2()sCI() AND CT() TO ALLOW POOLING OF COVARIANCESe SUM=
INPROD(K oL oNsA()sB()) IS AN EXTE
FOR I1=(0s19eN=1)s

THE FUNCTIONS ARE ADDED INTO THE

RNAL FUNCTION EQUIVALENT TO

SUM=SUM+A(K+1)eB(L+I) §

BEGIN
INTEGER I.OO'J..!.KOOO’L...OMOOOQNQOQ $
DI = INPROD(LIsLIsNoX()sX())$
D2 INPROD(L2sL2sNoX()sX())$
D3 SQRT(D1,D2) %
FOR KK = (1s1sM+1) §

nou

BEGIN
RI(KK)=RI1(KK)+INPROD(L1pLI1+KK=T1yN-KK+1sX()oX())/D1$%
R2 (KK)=R2(KK)+INPROD(L2yL2+KK=19N=KK+1sX()sX())/D2%
CI(KK)=CI(KK)+INPROD(LY ,L2+KK=-14N=KK+14X()sX())/D3%
CT(KK)=CT(KK)+INPROD(L2,L1+KK=1ygN-KK+1,X()yX())/D3$

NORNRBONNANRNONNDNMN NSRRI A DR N NN N M

RETURN END $

Ficure 7a. Procedure covariance.

The computation time 7" of the covariances of a 8. Autoregressive Spectral Estimation

pair of time series is approximately the product of M

(the length of the time series) and M (the truncation Given autoregression coefficients ai, . . .
A

point). Some typical values (on a 7090) are:
time series X(-), by the formula

e e e e ———————

,r:
N M { T

one

can form a new time series, denoted X (-), from a given

A
XO)=a; Xt—1)+ ... +a, X{t—m). (8.1)
200 80 | 4 sec. . 2 . o n

1000 200 | 1 min. We say that X(-) is obtained by autoregressive filter-

4000 500 | 8 min. ing from X(-). The residuals

A =
e(t)=X@)—X() (8.2)
The computation time 7 of a cross-spectral analy- )

sis is approximately the product of M (the truncation | are said to be autoregressive residuals. They are

point) and @ (the spectrum computation number).

Some typical values (on a 7090) are:

A
examined to determine how good a predictor X(?)
1s of X(1).
The autoregressive coefficients a;, . . ., a, may

J either be specified a priori or may be estimated from

% { @ w the data by a procedure known as stagewise auto-

— [ regressive estimation (see fig. 8a for the computation

40 40 | 1 sec. routine). In this case, one may be able to estimate

80 80 | 4 sec. the unknown spectral density function of the time

)88 1)88 - gl series X(-) by a method called autoregressive spectral

500 200 | 1 min. estimation. 'T'o describe this method we discuss some
relations between transfer functions.
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2 PROCEDURE TRANSFORM(MoNsW()sR1()IsRE()SRO()4R2(IEF1I()eF2()+COL)sQU())S

2 BEGIN

2 COMMENTY THIS PROCEDURE COMPUTES N+1 POINTS OF TWO ESTIMATED SPECTRAL

AND R21()}
WHICH ARE THE EVEN AND

FROM R1()
AND RO()
FUNCTION OF TwD TIME SERIES
ING KERNAL USED IS Wil),

RECURSIVELY.,

INTEGER
Pl
C=NS
D& = C2 =
P1=0e5.R1(1) 9
FOR [=(2y1sM+1) $

Keeod Loosr

PIV
Cl
SIN(PLI/CH S

l...’ J...,

2 341415927
= C3
D6 =

DENSITY FUNCTIONS AND OF TME CO-
WHICH ARE THE AUTO-CORRELATION FUNCTIONS AND RE()

THE TRUNCATION POINT

Meoes

P230.5.RE(1) &

SPECTRUM AND QUADRATURE-SPECTRUM

ODD PARTS OF THE CROSS-CORRELATION
IS My THE WEIGHT

THE SINES AND COSINES NEEDED AKE COMPUTED
REFERENCES 1¢)HAMMINGsRowWes» *NUMERICAL METHODS FOR
SCIENTISTS AND ENGINEERS ' yMCORAW-HILL 1962+PAGES - 71-74 %

N... “

= 031830989 %
= D1

= COS(PI/C) §
2.C1 &
P4=0e5eR2(1) $

2
2
2
2
2
2
2
2
2
2
2
2
2
2 BEGIN
2 A= w(l) ¢
2 P1=P1+R1(I)eAS P2=P2+RE(IDVA® P4zP4+R2(]1).AS
2 END %
2 F1(l) = Pl.,PIV $ F2(1) = P4.PIV $
2 CO(1) = P2.,PIV $ QU(1) = 0.0 $
2 FOR I = (1s1sN)$
2 BEGIN
2 Ull = Ul2 = Ul3 = Ulé = U2]1 = U22 = U23 = U24 = 0.0 %
2 FOR J = (M+1y-152)¢
2 BEGIN
2 A= W(J) ¢
2 U3]l = D6eU21-U11+R1(J)eA $
2 U32 = D6.U22-UL24RE(J)eA $
2 U33 = D6,U23-U13+RO(J)eA $
2 U34 = D6eU24=-UL4+R2(J)eA §
2 Ul)] = U2l $ U21 = U3l § ul2 = U22 $ Ue2 = U322 %
2 ull = U23 Uu23 = U33 % Ul4 = U24 9 U24 = U364 3
2 END ¢
2 FI1(I+1) =(D1leU21 = Ull + R1(1)e0e5)ePIV §
2 CO(I+]) =(DLeU22 = U12 + RE(1)e0e5)ePIV $
2 QU(I+1) = D4,U23.PIV $
2 F2(I+]1) =(D1,U2& - Ulb4 + R2(1)eCe5)ePIlV §
2 Pl = Cl1eC3-C2.06 3 D4 = D&eCl+C3.C2 §
2 3 = D1 § D6 = 2.D01 $
2 END $
2 RETURN END S
Ficure 7b.  Procedure transform.

If the given time series X(-) actually was a white
noise process, with spectral density function

(8.3)

then the time series e(-), defined by (8.2) would have
as its spectral density

fe(w) =fx(w)-|A(w)[* (8.4)
where A(w) 1s the frequency transfer function
Alw)=1—ae t*— . . . —ae ™, (8.5)

representing (up to a factor ¢*«*) the output of the
operation defining e () when the inputis e’“*. There-
fore

. 1 .
Te(w):ﬁ{U*al COS w— . .. —(y, COS Mw)®

4(ay sin w+ . . . +a, sin mw)®}. (8.6)
Given autoregressive coefficients ay, . . ., a, we

denote the right-hand side of (8.6) by TRW (w), and
call it the white noise transfer function of the scheme.
We desire to normalize the white noise transfer

function to have unit area (over the interval |w| <).
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PROCEDURE SELECT( R()s Ks L SCOF()sIN()
COMMENT
WITH
OF TRUNCATION POINT Ko L
CCMPUTING DEGREFS OF FREEDOM.
ARE RETURNED IN COF() WITH THEIR
EFROYMSON Mo Ae s *MULTIPLE REGRESSION
METHODS FOR DIGITAL
WILEY, 1962 $
GLOBAL Al(y) %
INTEGER Teees Jeases
ARRAY CB(72) $
ARRAY CHIZ2(52) =(6e63s 9621y 113y 13,3
2302y 244Ty 2662y 27Ty 29¢1y 32066y
3869y 40439 41eby 43009 U443y USebHy
53659 54,89 56019 57639 58Bebs 5969
67655 68¢7s T0aly Tle2s T2l T3s7,
TOL = 0s001 & N = K+1 % F2 = €
COMMENT PLACING THF COVARIANCE FUNCTION

Koocy L.oo’ M-.o!

IS THE LENGTH OF THE TIME SERIES»

COMPUTERS'sEDITED BY RALSTONyA,

[47¢OO
61e2,

sy NC )% BEGIN

THIS PROCEDURE COMPUTES THE BEST FITTING AUTO-REGRESSIVE

SAMPLE CORRELATION FUNCTION R()
USED FOR

THE NC SIGNIFICANT COEFFICIENTS
INDICES

IN INC)a
ANALYSTIS!', IN

REFERENCES 1)
'MATHEMATICAL
AND WILFsHoS ey

NO" S

s 1561,
3200

1668y 1845,
3304y 3448,
48'39 49.60
626l 6347y
7409y 76029y TTaby
e635 % KP = 0 §
IN THE MATRIX $

20els 21670
36-2’ 37o6’
50699 5242
656Ny 6662
7846 ) 3

FOR I=(1,1sN) $
BEGIN
AlTIsI) = 1.0 ¢
FOR J=(1s1y1-1)¢% AlTleJ) = A(Jsl) = R(I-U+1)%
FEND $
FIVEs s
F1 = CHI2(K - kKP ) % PHI = L - KP -1 % RTOT = 00 %
VMIN = 2%#30 % VMAX = Ce0 % NMIN = NMAX = 0 §
FOR I=(1515K) % IF (A(I,sI) GTR TOL )%
BEGIN
V =(A(TsN)sAINsT))/A(TsI) $
IF V GTR 0,0 ¢ RTOT=RTOT+V % COMMENT I NOT IN MODEL %
EITHER IF (V LSS 060) $ COMMENT I IS IN MODEL $
BEGIN
CB(I)=A(IsN) &
IF (ABS(V) LSS ABS(VMIN) )% (VMIN= V% NMIN= [3 )%
END %
OR IF (Vv GTR VMAX)$ (VMAX= V$ NMAX=1% CB(I)= 0.0%)9%
OTHERWISE $ CB(I) = 0.0 &
END®
EITHER IF ABS(VMIN) LSS F2sA(NsN)/PHI $ (K1=NMIN $ KP=KP-1% )%
OR IF RTOT GTR Fle(A(NsN)/PHI)S (K1 = NMAX $ KP=KP+1 % )%
OTHERWISES GO TO ALM %
COMMENT WE COMPUTE THE NEW MATRIXe IF K1 = NMIN THEN WE ARE DELETING A

VARIABLE. IF K1 =
COMPUTATIONS ARE THE SAME $

NMAX WE ARE ADDING A VARIABLE.

IN EITHER CASE THE

A(K1sJ)ePIVOT $ COMMENT CHANGE PIVOTROWS$

(NC=NC+1% COF(NC)=CBI(I)$ IN(NC)=K=1+1%)%

PIVOT = 10/ A(K1sK1l) $

FOR J=(1s1sN)% A(K1,yJ) =

FOR T=(1s1sN)$ IF I NEQ K1 %
BEGIN
TEMP = A(I,K1)$
FOR J3(151sN)$ A(IsJ)= A(IyJ)— TEMPLA(K1»J)S
AT 9sK1)=-TEMP.PIVOT $
ENDS

A(K1sKl) = PIVOT $

GO TO FIVE %

AlLMeo
NC =0 %
FOR I=(Ky-151)%
IF (CB(I) NEQ 0.0)%
IF NC GTR 20 % NC = 20 %

RETURN END $

Ficure 8a.
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One may verify that

f " TRW (@)dw=1-+a+ ... +at.  (8.7)

Therefore the normalized white noise transfer function,
denoted by TRWN (w), is given by

TRW (w)

TRWN (w) == m

(8.8)

Note that this transfer function is normalized to
have unit area over the interval —7 <w <.

If X(-) 1s in fact an autoregressive scheme satis-
fying the model

Xt)=a, X(t—1)+ ... +a,X({E—m)+e®), (8.9)

where €(-) is white noise, then from (8.4) its spectral
density function is given by

Jx(w)=fe(u)+|A(w)[?
=[27{ (1—a, cos w— .

+(a, sin w+ . .. +a, sin mw)?}|7

.. =y, COS Mw)?
(8.10)

We denote the right-hand side of (8.10) by
TRAR (w), and call it the autoregressive transfer func-
tion of the scheme of coefficients ay, op e
Note that

TRAR (w)={4r TRW ()}~ (8.11)

We have not been able as yet to find a formula
(convenient for computation) for the integral

f TRAR (w)dw.  Since we prefer to compute nor-

malized transfer functions, in practice we approxi-
mately evaluate this integral by a crude method of
numerical integration and thus compute the normal-
1zed autoregressive transfer function, denoted by

TRARN (w) and given by
{47 TRW (w) }71
" {4x TRW () }~'dw

TRARN (w)=

(8.12)

We can describe the method of autoregressive
spectral estimation. It consists of (i) determining
autoregressive coeflicients a,, . an by stagewise
autoregressive estimation, (ii) estimating the spectral
density function f.(w) of the autoregressive residuals,
(iii) if fe(w) is approximately the spectrum of white
noise, we take the normalized autoregressive transfer
function, defined by (8.12), as the estimated spec-
trum of the original time series X (¢).

The statistical theory of stagewise autoregressive
model fitting is considered by Schaerf [1963].

9. Some Examples of Empirical Time Series
Analysis

One of the major aims of empirical time series
analysis is to provide a modern solution to what
classically has been called “the search for hidden
periodicities.” Classical approaches to this problem
have been discredited because they seemed to pro-
vide evidence for the existence of “‘spurious cycles.”
One way to avoid seeing cycles in data where they
are not present is to compare estimated spectra from
this data with the estimates formed under the same
sample size and truncation point from data of known
properties.

As an example of the above method, an analysis
of an economic time series will be carried through.
The radio case would be essentially the same, apart
perhaps from changes in length and time scale in the
series, and the economic material has already been
analyzed by our method.

Given a series of length 180 (as many economic time series
are) one might choose a minimum truncation point of 16; the
other truncation points would then be 32 and 64.

To obtain some idea of the resolution of our spectral win-

dows, it is instructive to first perform a spectral analysis of a

constant time series
Xi(t)=1, t=1,2,... N. (9.1)

No mean subtraction is performed.

function is given by

The sample covariance

T=v
Ie(v)=iT > X)X (t40) =1~ (9.2)
=

The resulting estimated spectral density functions are given
in figure 9a. The curves corresponding to different truncation
points are easily distinguished since at zero frequency the
curves increase in amplitude with increasing truncation point.
The spectral density function corresponding to M =16 has a
local maximum of 0.175 which might be construed as a
“spurious’” eycle.

Series of stock price indexes have been extensively analyzed
(see Granger and Morgenstern [1963]). We consider a
monthly series of such an index, denoted X,(¢), for the 180
monthsin 1948-1962, taking logarithms and mean detrending.
The estimated spectra, given in figure 9b, are exactly as in
figure 9a, except for a little additional power at high fre-
quencies.

Similarly we estimated the spectra of the linear series

A\’ﬂ(t):tr

1=1,2, ..., 180 (9.3)

with no detrending. The estimated spectra were again
exactly as in figure 9a.

The conclusion to be drawn is that for both the stock price
index series and the linear series, the spectrum consists essen-
tially of a single line (or spike) at zero frequency; a more pre-
cise statement of this assertion might perhaps be made using
techniques of mixed spectral analysis such as those currently
being investigated by George Hext [1964].

To characterize more clearly the mechanism generating the
stock price index series and the linear series, other than to
say they have a spectrum concentrated at zero frequency, one
fits these series by autoregressive schemes using stagewise
autoregressive estimation. For the stock price index series
one finds the scheme

Xo(£)=0.986X,(t—1)+ €x(t) (9.4)
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Ficure 9a. Log of estimaled spectral density functions, constant series.
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Fraure 9b.  Log of estimaled spectral density functions, stock price index 4,862, mean detrend.
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Ficure 9c.  Log of estimaled spectral densily functions, stock price stageauto.
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Fraure 9d.  Log of estimaled spectral density functions, Fed. cash from public 48-62 mean delrend.
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while for the linear series

X5(t)=0.992X,(t—1)+ €5(¢). (9.5)

We then estimate the spectra of the residual time series
e(f) and e(f).

The estimated spectral density functions of the stock price
index residuals are given in figure 9¢; they are well within the
confidence limits of white noise spectra. The true spectrum
of white noise on the logarithmic plot used in the figure is a
horizontal line at

loge<1000;>=5.07. (9.6)
21

From the foregoing analysis we have essentially obtained
the often found random walk model for the logarithms of
stock market prices Xo():

X,(t) =X2(t—1) +ex(¢) (9.7)
where €;(f) is a white noise series. It would be interesting to
investigate whether the models (9.4) and (9.7) are significantly
different.

The estimated spectral density functions of the linear series
residuals are again exactly as in figure 9a. Examination of
the printed residuals e;(?) shows that they are given by a
linear series

t

X3(t) =1+ (t—1)0.00831, 1,2,.... (9.8)
Performing a stagewise autoregression on this series disclosed
that it approximately satisfies the model €;3() =0.994€5(t—1);
one would conclude that the original series Xj(f) satisfies
X3(t) —2X3(—1)+ X3(t—2)=0 and thus is a straight line.
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Log of estimated spectral densily functions, Fed. cash stageauto.

Our last example is intended to illustrate how autore
gressive spectral estimation is used to check the results of
the transform method of spectral estimation. Let Xy(f)
denote a monthly series of logarithms of cash payments re-
ceived by the Federal Government from the public. Its
spectra are graphed in figure 9d. There are prominent peaks
at =0 and »=0.33. There are questionable peaks at
0.083, 0.167, 0.25, 0.42 (for the interpretation of these fre-
quencies in terms of periods sce the table below).

Fitting an autoregressive scheme to Xy(f) by stagewise
autoregressive estimation one finds the scheme

X,(t)=0.732X,(t—3) 1+ 0.825X ,(t—12)
—0.611X,(t—15)+ €;(®). (9.9)
The spectra of the residuals €,(), given in figure 9e, are not
quite white; there is a slight predominance of power at low
frequency which should be investigated. Nevertheless, it
is white enough for us to feel justified in taking the normalized
autoregressive transfer function as an estimate of the spectrum
of X4(¢). This transfer function is given in the 1I/TRANSFER
column of figure 9f. All the peaks previously found are
still present, with their relative size clearly indicated. The
model given by (9.9) lends itself readily to prediction. The
relative mean square prediction error is defined to be

Var [es(t)]
Var [X.(1)]

These variances are routinely computed in our program. Their
ratio turns out to be about 0.1; the predictor is thus rather
reliable.

Associating frequencies and periods. Consider a time series
observed at monthly intervals. The following table shows
the frequencies corresponding to several important periods.



AUTOREGRESSION COEFFICIENTS USED IN DETRENDING ARE

FREQ.

.0000
.0104
.0208
.0312
«0417
.0521
<0625
.0729
.0833
.0937
«1042
<1146
.1250
«1354
«1458
.1563
<1667
21771
.1875
«1979
.2083
.2188
02292
22396
«2500
«2604
2708
2813
<2917
.3021
+3125
3229
«3333
3438
3542
3646
«3750
«3854
3958
<4063
<4167
«4271
<4375
«4479
«4583
«4688
«4192
+4896
«5000

TRANSFER

.0002
.0030
.0185
.0553
.1025
.1271
.1018
0401
.0028
.0571
<2165
<4123
«5285
<4841
2998
.0941
. 0054
.0941
2998
<4841
5285
<4123
2165
0571
.0028
.0401
.1018
1271
.1025
.0553
.0185
.0030
.0002
.0030
.0185
.0553
.1025
<1271
.1018
.0401
.0028
.0571
<2165
<4123
«528%
<4841
<2998
.0941
.0054

1/TRA

Fiaure 9f.

NSFER

3.8218
2214
.C362
L0121
. 0065
. 0053
. 0066
L0167
+2403
L0117
.0031
0016
.0013
.0014
. 0022
. 0071
«1241
.0071
. 0022
.0014
.0013
. 0016
.0031
.0117
2403
. 0167
. C066
. 0053
. 0065
.0121
- 0362
.2214

3.8218
<2214
.0362
.0121
. 0065
.C053
. 0066
.0167
+2403
.0117
.0031
.0016
.0013
.0014
.0022
.0071
. 1241

Transfer functions.
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«1322 X(T- 3)
«8252 X(T-12)
—.6108 X(T-15)

LOC (TRANS)

-8.6503
-5.3020
=SB 06
-2.8949
=2.2117
-2.062%
-2.2851
-3.2163
-5.8840
-2.8636
-1.5299
-.8860
=ls 6311
-.7254
1.2046
2.3629
5.2228
2.3629
1.2046
~. 7254
-.63717
«8860
5299
«8636
«8840
«2163
.2851
.0625
27717
«8949
<9906
.8020
«6503
8020
.9906
-8949
L2777
.0625
.2851
.2163
-8839
«8636
5299
.8860
<6377
-«7254
~-1.2046
-2.3629
-5.2228

!
=N OMWNANNNNWADIVMWNNNNRNW N -

LOG(1/TRANS)

1.3407
-1.5076
-3.3190
~4.4147
-5.0319
~5.2471
-5.0245%
-4.0933
~1.4257
~4.4461
-5.7797
-6.4236
~6.61720
=-6.5843
-6.1050
~4.9467
-2.0869
=4.9467
-6.1050
-6.5843
-6.6720
-6.4236
=-5.7797
~4.4461
=-1.4257
-4.0933
-5.0245
-5.2471
-5.0319
~4.4147
-3.3190
-1.5076

1.3407
-1.5077
-3.3190
=4.4147
=51 08I
=5.2471
-5.0245
-4.0933
-1.4257
~4.4461
-5.7797
-6.4236
-6.6720
-6.5843
-6.1050
~4.946T7
~2.0869



Frequency =1/

Period @, length
cycles per month

of a cycle

1 0. 000
2 . 500
3 . 333
4 . 250
6 . 167
12 . 083
24 . 042
48 . 021

It is a pleasure to thank Howard Taylor who
contributed the bulk of the computer program that
we use for empirical time series analysis. I desire
to express my appreciation for the great intelligence,
ingenuity, persistence, and patience that he brought
to bear on this work.

(Paper 68D9-394)
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