

## HAND-B00K

0 O

## A $\mathrm{S} T \mathrm{R} 0 \mathrm{~N} 0 \mathrm{M} \mathrm{Y}$.

$1 \% Y$

## DIONYSIUS LARDNER, D.C.L.

fohbhaly proressor of natural philosofity año asthonony in unifebaitr collega, London.

Witif tilirty-geven plates and upwareds of two hundred h.LUSTRATIONS ON WOOD.


LONDON:
WALTON AND MABERLY UPPER GOWER STRLET, AND .VY I.ANE, PATERNO

$$
1853--1856 .
$$

$$
\begin{aligned}
& \text { God } \\
& 520 \\
& \mathrm{Lar} / \mathrm{Haln} \\
& 52061
\end{aligned}
$$

## |||||||||||||||||||| 00052061

## PREFACE.

To supply the means of acquiring a competent knowledge of the methods and results of the physical sciences, without any unusual acquaintance with mathematics, has been the purpose of the Author in the composition of the series of treatises of which the present volumes form a part. The methods of demonstration and illustration have been adopted with this view. It is, however, neither possible nor desirable invariably to exclude the use of mathematical symbols.

Some of these, expressing mere arithnetical operations effected upon numbers, are easily understood by all persons to whom such a work as the present is addressed; and, as they express in many cases the relations of quantities and the laws which govern them with greater brevity and clearness than ordinary language, to exclude the use of them altogether would be to deprive the reader of one of the most powerful aids to the comprehension of the laws of nature.

Novertheless such symbols are used sparingly, and never without ample explanation of their siguification. The principles of the sciences are in the main developed and demonstrated in ordinary and popular language. The series has been compiled with the view of affording that amount of information on the several subjects comprised in it which is demanded by the student in law and in medicine, by the engineer and artisan, by the superior classes in schools, and by those who having already entered on the active business of life are still desirous to sustain and extend their knowledge of the general truths of physics and of those laws by
which the order and stability of the material world are maintained.

It is well known that many students who enter the Universities pass through them without acquiring even so much as a superficial knowledge of geometry and algebra. 'To all such persons mathematical treatises on physics and astro nomy must be sealed books. They may, however, by these volumes acquire with great facility a considerable acquaint ance with these sciences; and although such knowledge b not in all cases based on rigorous mathematical demonstr tion, it is founded on reasoning sufficiently satisfactory al conclusive.

Great pains have been taken to render the present se... complete in all respects, and as nearly co-extensive with th actual state of the sciences as the objects to which it is rected admit. Each of the classes of readers for whose mor especial use it is designed will doubtless. find in it somethin. which, for their purpose, is superfluous; but it must be con sidered that the parts which are thus superfluous for one as precisely those which are most essential for another. It if hoped that no student will find that anything important for his objects has been omitted.

The rapid succession of discoveries by which astronomy has of late years been extended has rendered elementary works in that science previously published to a certain extent obsolete, while the increasing taste for its cultivation and the multiplication of private observatories and amateur observers, have created a demand for treatises upon it which, without being less elementary in their style, shall comprise a greater amount of that vast mass of knowledge which has hitherto been shut up in the transactions of learned societies and other forms of publication equally inaccessible to the istudent and aspirant.

A large space has therefore been assigned to this science in the .present series. The results of the researches of ' original inquirers and of the labour of observers have been carefully reviewed and large selections made from them are
now for the first time presented to the student in an elementary form. In cases where the subject required for its better elucidation graphic illustrations, and where such representations could be obtained from original and authentic sources, they have been unsparingly supplied.
. As examples of this, we may refer among the planetary objects to the beautiful delineations of the Moon and Mars by MM. Beer and Mädler, those of Jupiter by Min. Mädler and Herschel, and those of Saturn by MM. Dawes and 'Schmidt; among cometary objects to the magnificent drawolgs. of Encke's comet by Struve, and those of Halley's momet by MM. Struve, Maclear, and Smith; and among pitellar objects to the splendid selection of stellar clusters and nebulx which are reproduced from the originals of the ${ }_{1}$ Earl of Rosse and Sir John Herschel. In fine, among the vilustrations now produced for the first time in an elemensary work, the remarkable drawings of solar spots by sPastorff and Capocci ought not to be passed without notice. : To bave entered into the details of the business of the (jbservatory, beyond those explanations which are necessary and sufficient to give the reader a general notion of the processes by which the principal astronomical data are obtained, would not have been compatible with the popular character and limited dimensions of such a treatise as the present.

It has, nevertheless, been thought advisable to append to this work a short notice of the most remarkable instruments of observation, accompanied by well executed drawings of them, the originals for some of which have been either supplied by or made under the superintendence of the eminent astronomers under whose direction the instruments are placed.

In the composition of the work it has been the good fortune of the Author to detect several errors of considerable importance which have been hitherto almost universally disseminated in elementary books, and under the authority of the most eminent names. Several examples of this will be noticed by the reader, anong which we may refer more
particularly to the Uranography of Saturn, a subject which has been hitherto completely misapprehended, phenomena being described as manifested on that planet which are demonstrably impossible.* The correction of other errors less striking, though of great scientific importance, will, be found in the chapter on Perturbations, and in other parts of the treatise.

[^0]
# TABLE OF CONTENTS. 

## BOOK I.

## Meteorology.

## CHAP. I.

## TEGREGTRIAE BEAT

Scct.
2!co. Insulliciency of tharmal obserra
Page

## 21fi. Local variations of tomperature

2162. Diurnal thermometric period

- 31

2163. Annual thermonetric period : io

21G1, Mean dharual temperature -
2165 . Menn temperature of the month
Yi66. Itean temperature of the year
216. Month of inean temperature
2164. Temperature of the place - -
2169. Isothermal lines - - . . ib
2170. Isothermal zones - . . -
2171. The first thermal or torrid zome
2172. Hhermal equator -
2173. The - - ib
217.1. The thira shermal zone $=$ it
2175. The fourth thermal zone - - ib
2176. The fifth and sixels thermal zones ib.
2177. The polar regipus - - -
2178. Climate varies on the same isothermal line
2179. Constant, variablo, and extremo climates
2180. Examplea of the classification of climates
2181. Climatological condition - -
2182. Table of Diaris temperatures - ith
2183. Extreme temperature in torrid
2184. Extreme temperature in polar regions -
2185. The variation of the temperature elepending on thic elevation of the observer above level of sea.
Elevation of tha lizat of perpetial shlow served -
2188. Further resuits, of Humboldt's and Ponilnad's rescarches
2189. Thermal phenomena bolow the surface - invariable temperature
2190. Stratung of invariable temperature 12
2191. Its depth varies with the latitude - ib. 2192. Its deptitand temperature at Paris ib.
4198. its form

## Scet.

Pago
2194. Thermal phenomena between the surface and the stratum of in. variable temperature13
2195. Thermal phenomena betow the stratum of uniform tempernture
2196. Temperature of springs

14
2197. Thermal condition of sens and lakes - -
2198. Thermai condition of a frozen sea 16
2199. Process of thawing - - - ic
2200. Depth of stratum of constant temperature in oceans and seas
2201. Eifect of superficial agitation of the sea extends to only a small depth
2202. Bestructive effects which would be produced if water had not n point of maximum dersity above its point of congelation
2203. Variations of the temperature at sea and on laud -
220.4. Interchinge of equatorial and polar waters
2205. Polar ice - . . - ib
2906. Extent aund chnmeter of the tee flilds - or icc-berge by
2207. Production of ice-bergs by their orsetura
2208. Their forms and magnitude - - it.
2209. Sunkeu lec-bergs - . . it
2210. Singular effects of their superficial fusion
2211. Depth of polar seas - - ". ib.
2212. Cold of the polar regions - - ib.
2213. Soldr and celestial heat . . 22
2214. Quantity of heat cmitted by tho
2215. Solar heat at the enrth wouk melt a shelt of tee 100 feet thick in a year -
2236. Calculation of the actual quantity of lieat emitted by the sun
2217. Heat at sun's surface seron times as intenco as that of a blast furnace -
2918. Temperature of the eelestial spaces ib. 2219. Heat reccired brearth from celestial space would melt in a year 85 fert thick of ice

## CHAP. 11.

TIR Alf ASD ATMOSPIIBRIC VADOULSA.
Sect.
2g21. Periolical changes in the atmo-
epheric pressure - - 2
Page
2222. Mean annual height of barometer ib.
2223. Effect of winds on the barometric column
2224. Bitarmal variations of the baro. meter
an95. - $\quad-\quad$ - th.
2226. Winds by compression and rarefraction
2227. Effect of sutden condensation of vapour.
2228. Hurricanes -

30
2220. The probsble eauses exjolained.
2230. Witer spouts and land spouts
2231. Evaporation from the surface. of water
ib.
31
2232. Air may be snturated with vapour
2233. If the temperature of saturated air fall, condensation will take place 2234. Atimosphero rarely saturated 2235. Nay become so by reduced tem. perature or intermingling strata 2236. Air and vapour intermingle though of different specific gravities 2237. The pressure of air retards but does not diminish evaporation -
2335. When vapour intermixes with air tit readers it specifically lighter

## CHAP. III.

## IYGROMETRY.

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



CHAP. IV. athosphinic blectricity.
2259. The air generally charged with. positive electricity - -
2260. Wils state subject to variations nnd excoptions - ${ }^{-}$-
2261. Diurnal variations of electrical. intensity - - - ib
2262. Observations of Quetelot - - ib.
2263. Irregular and local variations and exceptions -
2264. Methods of observing atmosplonic electricity -
ib.
2265. Methods of aseertaining the electrical condition of the higher strata ib.
22G6. Remarkable experiments of Romas, 1757 -
2297. Electrical charge of clouds varies ib.
2268. Thunder and lightning - . . 52
2269. Form and extent of the lask of lightning -
ib:
2270. Canses of ine rolling of thunder - 53
2271. Amected by the zigzag farm of tho
2272. Affected by the varying distance of diferent parts of the flash -
22i3. Aftected by echo and interforence ib.
2274. Inductive agtion of elouds on the carth
37.
2275. Formation of fulgurites explained 66
2276. Accidents of the surface whiels nttract lightuing -
2277. Lightning follows conductors by
preforence.-Its effects on build-preforence...-its effects on buildIngs - $-{ }^{-}$- ${ }^{-}$ the protection of buiklings -
2279. Effects of lightning on bodics
2280. The Aurora 3orenlis.-The phenomenon unexplained - 60
2231. General eharnoter of the metcor - ib.

2\%32. Description of aurora seen in the polar regions by M. Lottin - 61

## BOOK II.

## Astronomy.

## :CHAP. I.

methods of investigatton and mbans of obsethation.


Sect.
Page
2286. It treats of imacecsaible objects - 69
2255. Hence arise peculint methods of investigation nad peculiar in. struments of obsorvation -
2288. Direction and bearing of visible ohjects
16.
2289. They sup, ly the means of aseertaining the distances and positions of inaccessible objects

| Sect. |  |
| :---: | :---: |
|  |  |
|  |  |
| 2292. Relmeive maguitutle of ares of 10 $\mathbf{Y}^{\prime \prime} \mathrm{I}^{\prime \prime}$ and tite ratiliss. |  |
| 2293. The Hicar and migular value of an arc - |  |
| 2294. | Of the thres following quantlities. - Athe lifuear value of an iarc, its. anguline saluc, and the length of the radius.- Aus two being giv- |
| 5. Th |  |
| 2206; | Inaecessible atject from two accessible stntions. |
| 2297. | Case in which the distance of anolbjeet is grent relatively to the distance between 'the s̀taions |
| 2298. | Given, the npparent distance toctween two Alstant objects, such distance being at right angies, or |
|  | timns, and their distance from the observer, to, find the actual distauce betweer them |
|  | Given, the mpparent diameter of a splierical object, indilit distance from the obsetver, to find its seal dianteter - . . . |
| 2300. | Methois of aseertaining the dit tion of a visible and distant ject |
| $\begin{aligned} & 2301 . \\ & 2302 . \end{aligned}$ | Use of sights |
|  | Applicatiou of the tekescope dieate tive visual direction. |
| $230 .$ |  |
|  | Application of the telese graduated instrument - |
|  |  |
| $\begin{aligned} & 2306 . \\ & 2307 . \end{aligned}$ | y a Vernior |
|  | By a comploumad mieros micrometric screy |
|  | Ohsorvation mad measurement of minute angies |
|  |  |
|  | eter of an object |

CHALT H.
tule gemerat notukdity did binitastons OF THE EARTA.

23il. The earth a station from whilish the universe is observed - -
2312. Necesxary to ascortain its form, dimeasians, and motions - . 82
2313. Form globular

231-1. This couclusion corroborated by circumnavigation | 82 |
| :--- |
| 4. |
| 1 |

2313. Corrotworated by lumar celipses -
2314. Varinus affecks indieating the carth's rotundity.
2315. Bimeusions of the carth.- Methad of measaring a-tiegrec - .
2316. Length of a degree of :ine carth:

Sect.
2320. Change of ditection of the pilumb. tine ln passing over a given dis. tance

81
2321. To find the earth's diamacter:. - Hb
\$322. Superficial hequalitics of the earth sciatively insofgnificant
is.
2323. Telative dimensions of the atmospitiere -
2324. If tho carth moved, how could its motion be perceived? ${ }_{4}$ - $=$ it
2325. Parillax $\quad . \quad$ - -92
2326. Apparent and true phece of an olt-ject.- Biurnal parallax. -
2327. Horizontal patallax - - 94
2328. Given the horizontat parallax and The earth's semi-diaineter. to egmpute.the distance of the ob. ject
ib.

## CHAP. ift.

ATPARENT PORSH ANR stotion of THE
pIMAASEEST.
2329. Aspect of the firmanent - - 95
2330. Whe colestinl diemisphere - . it.
2331. Horizon ant zehith - - ib
2332. Apparcit sotation of the frma. nemt $\qquad$
2333. The polo star 96
2334. Rotation proved by Instrumental observationt -
2335. Exact dircction of the axis and
poaition of the pole $\cdot$ - ib.
2336. Equatoriat lisstrument - 97
2537. Rotation of firmameat proved by
entatorinal
2338. Sildercat time - - - 101
2300. The same spparent motion obs: serred by diny . - -
2340. Certain fixed points gued circles neerssary to express the position. of abjects opithe henvens - - -
2311. Wertien circles, zenith, and nadir ib. 2312. The cotestiad nurfilian and peime versleal $-\quad-\quad-102$
2313. Carsinat points - - - ib.
234. The aximuth . - - - 203
2335. TKasith distaneo and altitucke - - ib.
334. Celestini equator - - ib.
2347. Appareat motion of the colestial
" sphere . - : - 104

CH:NP. WV.
munkal notation op tha eantif.
2318. Apparnnt dhurnat rotation of tho lienvens-its positible enuses -105
2319. Supposition of the real motion of the univorse inadmissible - -
2350. Simplleity and inerinasic protablJity of the rotation of the earth - 106
2351. Dircet proofs of the enrtio's roti-
$i b$.
2352. Prouf by the elescent of a botly from a great height

107
2363. 31. Eeon Fodicaule's mote of ale. inonstration
ib.
2354. Analogy supplies cridenee of the eartil's rotalion.

| Sect. 2355. | Figure of the earth supplies another proof . |
| :---: | :---: |
|  | How this rotation |
|  | plains the diurnal pisemomena - it. |
| 5. | The carth's axis - - - 169 |
| 2348 | The terrestrial equator, poles, and |
|  |  |
|  | Latitudo and tongitude - $=$ th. |
| 2360. | Fixed meridinns, those of Greenwich atid Panis - - - 110 |
| 23 | Row the durnal phenomena vary with intitude - - - ib. |
|  | Method of fuding the latitude of the place - . - . 112 |
| 3. | Position of ectestial cquator and poles varies with tho thtitude. |
| ar. | Parallet sphere seen at the poles - it. |
| 2365. | Right splicereseen at the equitor |
| 23666. | Oblique sphacre seen at intermedisto latitualics - - - 76. |
| 2367. | Oljects an celestinl equator equal cimes above and beiow the hori- |
|  | 7, |
| 2369. | Method of determining the longi- |
|  | cude of places - - - ib. |
| 2369. 1 | Lunar method of finding the lon- |
|  | gitude - - - - 116 |
|  | Method by electric telegeaph - 117 |
|  |  |

## CHAP. V.

sparmoldal form, mass and density of .. The eanth.
2372. Progress of physical investigation approximative - -
2373. Figure of the earth an example of
$i b$.
2374. Glubular agure incompntible with rotation
2075. Rotation cannot bo modificd-sup. posed form may -
2376. How rotation would aftect the superfictal gravity on, a globe - -11
2377. Amount of the dimbution of weight produced at the equator by centrifugal forco

120
2378. I, oss of weight at other latitudes . 122.
2379. Effect of centrifengal force on the beographical conditions of the surface of the globe
2380. Such effects now extsting, the earth canuot be an exaet glolie . -122
2381. The figure must therefore be some sort of ohlate sphicroid
2382. Its ellipticity must depend on gravity and centrifugnl foree
2383. Ellfpticity may be calculated and measured, nul the results oom. pared
2394. Ellipticity caiculated
2385. Ellipticlty of torrestind spheroid by obscrvation and measurement
23s6. Variation of giavity by observation - - - -
2397. Accordance of these rosults with tiveory -
238s. Diminution of weight due to ellipticity linear dimensions of the
2389. Actun linear dimensions of the
2389. Actun linear dimensions of the
2390. Dimensions of the spheroidal equatorial jexcess
128

Sect.
2391. Bensity and mass of the carth by
2392. Dr. Maskelyne's solution by the

Pago attraction of Schehallien - 129
2393. Cavenulishi's solution - . 132
2394. Volume aud weight of the carth.. 135

CHAP. VI.

## THE ODSERVATORY.

2395. Knowledge of the instruments of obscrvation nucestary - - $\quad$ ib.
2396. Astronomical clock . . - 136
2397. Transit instrument - - . 137
2398. Its akjustments - - - 139
2399. To make the axis lerel - - il.
2400. Ta make the line of eollimation perpendicular to the axis - -
2401. To ronder thedirection of the sup-
ports due east and west - 1.1
2402. Alicrometer wires - method of observing tmansit
2403. Apparent motion of objects in fivld. of view
2404. Circles of declination, or hour circles - il.
2405. Right ascension :- $\quad-141$
2406. Sidereal clock indicates right ascension
2.107. The maral circlo - - - ib.
2407. Method of observing with it - -147
2408. Compound microscopes - their
 strument
2409. Methed of ascertaining the loori- ib.
2410. Method of observing albitudes and zenith distanecs
2411. All cirofes of declmation represented by the sircle -
2412. Decilination and polar distance of an object
2413. Position of an onject defined by its declination and right ascension - ib,

## CHAP. vis.

## AThosphenio repraction.

2417. Apparent position of celestial of jects arfected by refraction -
2A18. Law of atmospheric refraetion - 154
2418. Qunntity of refraction - - - ib. .
2419. Tables of refraction - - - 155
2420. A verage gquatity at mean altitudes 156
2421. Effuct on risidg and seteing - - ib.
2422. Gencral effect of the barometer on refraction $\qquad$
2423. Effect of the thermometor - - ib.e
2424. 'f wilight eaused by the ceflection of the atmosptiere $\qquad$
2425. Oral form of disks of sun and moon explaityed - - - 137

CHAB. V4H1.
ANNUAL mothon op the eanti.
2427. Apparent, motion of the sun in the heavens

158

|  | Ascertained by the transit instru- ${ }^{\text {age }}$ | 2474. Rotation on its axis |
| :---: | :---: | :---: |
|  | Ascertained by the transit instru- <br> ment and mural circle -158 | 2473. Inclination of axis of rotation - 189 |
|  | the ecijp | 2476. Libration in latitude - - |
|  | - | 24 |
|  | the vernal and a | 2478. Diturnal libration - . . . ib. |
| 2432 | Thexes | 2480. Synodic period or common month 191 |
| 33, | the | 2481. Mass and density - - - 193 |
| 243. | le zod |  |
| 2435 | he signs of the | 24 |
| 2436 | ce ts |  |
| 2437. | leatial hati ude and longltude | 2484. Moonlight not sensibly calorific - 196 |
| 2438 | Annual motion of tje earth - - ib | 2485. No liquids on the moon |
|  | Motion of light pr vis the ennual motion of the e.rth - - 163 | 2 180. Alspace of air deprives solar light and heat of their utility $\quad 198$ |
|  | Averration of light - - - il. | 2487. As seen from the moon, appearance |
|  | Argument from abalogy . - - 166 | the earth and the firmament - 199 |
|  | numi parallax | 2488. Why the full disk of the moon |
|  | Its effeets upon the bodies of the solar system apparent - 168 | faintly visible at new moon - 200 <br> 2489. Physical condition of the moon's |
|  | But erroneously explained by the | surface |
| 24.45 | Coperniedn sys.em - - ib. | surface |
|  | Effucts of annual parnilax of the | 2491. Observation of Herschel - 200 |
|  | stars | 2492. Obserrations of the Earl of Rosse ib. |
|  | Close resemblance of these to abersation | 2493. Supnosed influence of the moon on the weather - . - . ib. |
|  | Yet aberration cannot arise from | 2494. Other supposed luarr infuences - 212 |
|  | arallax | 2495. The red moon - - iid. |
|  | neral absence of parallax | 2496. Supposeid fntuence on timber |
|  | ained by great distane | 2497. Supp osed lumar it |
|  | The diurnal and annual phenomena explained by the two motions of the earth | 2498. Supposed lunar infuence on winemaking |
|  | Mean solar or civil time - - 173 | 2499. Supposed lunar infuence on the |
|  | vil day - noon and midnight | b. |
|  | Difference between mean sotar and sidereal time :- - it. | 2500. Supposed hinat influence on putreinction - supposed lunar influ- |
|  |  | ence on shell-fish |
|  | and mean noon | 2501. Supposed lunar |
|  | Mcan solar tille-rquation of time ib. | marrow of nuimals - |
| 2.156 | Distance of the sun - - ib. | 2502. Supposed lunar inflatence on |
|  | Linear value of $1^{\prime \prime}$ at the sun's dis. <br> tance - - . . . . 176 | welght of the human body - <br> 2503. Supiosed lunar finluence on tirths 216 |
|  | Daily atid hourly apparent motion of the sun and real motion of the | 2604. Sugposed lumar influence on inculyation - |
|  | earth - - - - ib. | 2505. Suprosed lunar influence on men- |
|  | Orbit of the earth elliplicat.- - 177 | angement and other human |
|  | Mcthod o ${ }^{*}$ describing an ellips its focf, axes, and eccentrielty |  |
|  | Eccentricty of the earth'e orbit - 179 | Ra |
|  | Perthellou and aphelion of the earth - - - - - ib | 2507. Eximples of Vallisniert and 18 - 218 |
|  | Variations of temperature through | 2508. Supposed fufluence on cutaneous |
|  | Why the lon | 2i09. Remarkable case adduced by I |
|  |  | 2:10. Cases of nervnus diseases - - ib. |
|  | P. IX. | 2311. Observations of Dr. Olbers on insane patients <br> 2512. Influence not to be hastliy rejected - 220 |

CIIAP. X.
THE TIDES AND TRADE WINDS.
2513. Correspondence between the recurrence of the titles, and the diurual appearance of the moon - 22
2514. Erroncots notions of the lunar influence -
2515. The moon's attraction alone will not explain the tides.
Sect.
2516. Tides caused by the difference of the attractions on different parts of the earth -
222
2517. Effects of sun's attraction - - 29.4
2518. Cause of. spring and neap tides - 2:3
2519. Whly the tides are nut produced directly under moon
2520. Priming and lagting of the tides - 226
252l. Researches of Whetwell and Lub. bock
it.
2522. Vulgar and corrected establishment - - - - 207
2523. Diurnal incqunlity - - . ib.
2521. I, ocal cffects of the land upon the tides
-. 8.
2525. Velocity of tidal wave - . - 2:8
2526. Range of the theles - - iib.
2397. Tides affected'uy tho atmosphere - 225
2525. 'He trade witids

- tb.


## chap. XI.

T越 SUR.
2529. Apparent and real magnitude - 232

2h30. Magnitude of the sha illustrated - 233
2531. Sirface and volume - - ib.
2532. lts mass and donsity . . . . 234
2633. Form aved rotation-axis of rotaston
ib.
2n34. Spots $\quad=\quad-\quad-\quad 236$
2635. Cause of the spots-physical state of the sun's surface

236
2536. Sun invested by 6 wo ntmospheres, one haminaus and the othor nonInminions

237
2337. Spots may not be black - - . 238
2533. Spots variable - . . is
2539. Provall genernily fin two patallel zones -
is.
2510. Olsservations nne edrawings of at. Capocei

239
2541. Observations and drawiugs of Dr. Pastorflín 1826 . - - -
3612. Observations and drawings of Pastorff in 1825 .
2543. Obscrvations of Sie John Herschel in 1837 -
2544 . Bownmary of fringes distinetiy defincd
2515. Solar facules and liteules - - il.
2316. Frienntescent costing of sun gaseons
2517. Test of this proposed by Arago - ib.
2548. Its resuit

- 244

2549. The suln probably inrested with a doublic gaseous conting . -
2550. A third gaseous atmosphere probable - - $-{ }^{-}{ }^{-}$
2551. Its existence indicated by solar ealipses
2552. Sir Johen turscluel's l:ypothesis to explain the totar apats
2553. Calorific power of solar rays - -248

205s. Probable plissjeal causc of solar heat

CHAP. XIL,

## Ting solat \$ysTax,

20isis. Perception of the motion and posi. thom of surroutiding onjects depoide upon the station of tho obseryer

Sect.
Page
2536. Peculiar dificulties presented by the solar system -

250
2557. Two methouls of exposition - - ib.

2503 . Gencral arrangement of bodics complosing the selar system

251
2559. Planets primary sud scoondary; - it.
2860. Primary earry with them the secondary romid the sun
ib.
25G1. Phanctary motions to be first rcgarded as eircular, uniforn, and in a common plano
ib.
2562. This method follows the order of discorery

252
2:63. Inferior and stiperior planets; - ib.
2561. P'eriods

- il.

2565. Synndic motion - - - ib.
2566. Geosentric anta heliocentric motions
ib.
2567. Holiocentric motiondechucible from grocentric -

203
2568. Relation between tho daily helio. centrie protion and the pleriod - ib.
2569. Brily symotic motion

- ib.

2670. Redation between the synodie metion and the period -- $\quad 28$ t
2671. Jlongation - - - . it.

25i2. Conjunction - . . . ib.
2573. Opposition - . . . . ib.

2:74. Quadraturc - - - 235
2553. Synodic period - - - ib.
2576. Inferiof mudisuperior conjunction - ib.

25:7. Redation between the periodic time antle the synadic period
ib.
2578. The apparent motion of an inferior planct -
2579. Direet and :etrograte mplion - 260

2SSO. Apparent motiph as projected on the celiptic' -
2551. Origin of the term "e planet" - 26 i
2682. Apparont motion of a-superior phanet -
2583. Bircet aut retrograde motion * 262
2584. Appatrent motion projected on the ecintie.
25s5. Conditions under which a planet is Fisible in the absence of the 5418 - 205
2586. Morning and cevening state - - ib
2587. Appearance of suprrior platvets at vartous clongations $\quad$ - ib
25ss. To Gind the periodic time of the planet - - 265
2589 10. By means of the synodic period. fib.
2590. 20. By obsorving thesrausithrough the notes $\qquad$
2691. $3^{\circ}$. By companing oppositions of conjunctiolis having the same sidereal planc - - 267
2592. 10. By the daily angular motion - it.
2503. To findithe distances of the planets from the sun

268
2594. Phases of a planct - - - il
2394. Phases of an inferior planet - . 270
2596. Phases of a superior planet - ib.

2507 . The planets are subject to at een. tral attractlon
ib.
2595. What is the centre to whioh this
attraction is difected?
2599. Geueral prineiples of the eontre of cqual areas themonstraicd -
2600. Linear, anftilar, andineal velecity- 273
2601. Helation between angular and areal volocitics
27.4
2602. Cave of the motion of the enrth - ib.
2603. Casc of the planets - 275
3604. Orbits of the planets ellipses - ib.
2603. Perikelion, aphelion, mean listance - ib.

| 2606. Mlajor ard minor axis and eecen- |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 2610. |  |
| 2011. The orbie migit te a paraboin or hyperivola |  |
| 2012. Conditions which determine the species of the orbit- |  |
| 2614. Method of caloulating the central force by the velocipy and curvaturo |  |
|  |  |
| 2015. Law of gravitation shown in the case of the moon - - 250 |  |
| 2616. Sun's attraction on pinneks com-pared-law of gravitation fulfilled it. |  |
| 2617. The law of gravitation universal - 281 |  |
|  | lis analogy to the general law of radjating influences ... - . it. |
|  | Not, however, to be idenificd with them |
|  | The harmonic law |
| 2621. Fulfilled by the planeks.-Nethod. of computing the distance of a phanet from the sun, when fis periodic time is known |  |
| 2622. Harmonic lass deduced |  |
|  |  |
| 2623. Kepler's laws - - - 254 |  |
| 2624. Inclination of the orbits-nodes - ib,2625 . Noies ascending nud descending - 285 |  |
|  |  |
| 2626. The zodiae ${ }^{-}$- $*$ |  |
| 2027. Methodice from the sung a pland it |  |
| 2628. $1^{10}$. By the elongation and synodic motion |  |
| 2629. $2^{\circ}$. By the greatest alongation for ant inforior planet |  |
| 2030. 30. By the greatest and least apparent magnitules |  |
| 2631. A\%. By the harmonic law inmeters and volumes of the bodies of the system |  |
|  |  |
|  |  |
| 2623. Mellinds of detormin |  |
| 2634. Mothod of estimating central |  |
| 2635. Metofhave |  |
| 2636. To determine the ratio of the mass of the earth to that of the sun - |  |
| 2637. Todetermine the masses of planets which have no satellites - -290 |  |
| 2638. Mass of Mars estimated by ils netraction unon the eath - - ib: |  |
| 2639. Masses of Yenus and deretury - 291 |  |
| 2640. Methods of determining the mass of the moon - . . ib. |  |
| 2631. $1^{10}$. 3 y mutation - - - 232 |  |
| 2012. 20. By the tides - - - ib. |  |
| 2643. $3^{\circ}$. By the common centre of grarity of the moon and the carth - . . - is |  |
| 2644. 40. By terrestrial gravity - 203 |  |
| 26-15. T'o Untermine the masses of the satellites - - - - ib. |  |
| 26-16. To determine the densities of the bodies of the system ${ }^{\circ}$ - - 82 . |  |

Scet.
Page
$26-17$. The method of determining the sujuerficial gravity on a body
2048. Superficial gravity of the sun - is.
2649. Superfieinl gravity of the moon - 296
2650. Classifteation of the plancts in three groups. - first group, the terrestrial planets
ib.
2651. Second group, tho planetoids - ib.
2052. Third group, the major plancts - ib.

## CHAP. X111.

THE TERAESTABAL PLANETS.

## 1. Mencury.

2653. Period --

206
265. Hdliocentric and synodic motions il. 2655: Distance determined by greatest clongation
ith.
265fi. By the harmonic haw - - 297
2657. Mean and extreme distnnces from the earth

- 36. 

2658. Seale of the orbit relatively to that of the earth - - - it
2659. Apparent motion of the planet $=$ is.
2660. Conditions which frvour the observation of an inferior planet - 200
2661. Apparent diameter-its mean and extreme values
2662. Real diameter • . - ib.
2663. Volume - - . - ib.
2664. Mass and äensty - - - - zol

266\%. Superficial gravity - - - ib.
2060. solar light atnd heat - - ib.
2067. Method of ascertaining the diumal rotation of the planets

303
2668. Difliculty of this question in the case of Mercury
30.4
2669. Alleged discovery of mountains - ib.

## II. Vexis.

2670. Period
2671. Hellacentric and synodic motions ib.
2672. Distance ly greatest elongation - 30.5

26if3. Hy the harmonic law - - -86
2G74. Aican and extreme distances from the sun
2675. Scale of the orbit relailve to that
2077. of the earth - ib.
ib.
2677. Stations and retrogrestion - - 300
2678. Contditions which favour the observation of Venus - - ib
2679. Evening ankl morning star.-Luclfer and liexperus
2080. Apparent diameter $\quad$ - ib.
2681. Dillicuties attending the tele. scopic observations of Vemis - $i b$.
2682. Meal diameter . . 308
2683. Mhass and density - - - ib.
2684. Superficial gravity - - ib.
2085. Solar Hght and heat - ib.
2686. Rotation-probable mountains - ith
2687. Oluservations of Crissinh, Horsehot, and Schröter of Mm. Becr and Mfidler-time of rotation - 310
2689. Beer and Mididor's dingrams of Venus
2000. More recent observatiows of Do Vico

311
2601. Direction of the axis of rotation unascertained
ib.
2092. Twilight an Venus and Mercurs - 26.
2693. Spheroidal form unascertahedsuspected satellite

2716. Position of arcographic meridians determined

321
27.17. Possible satellite of Mars - - ib.

## CH: XPN.

## TII PLANPTOIDS.

2718. A vaeant place in the phanctary series

322
2719. Discovery of Ceres - - - 343
2720. Discovery of Pallas - - - 324
2721. Olber's hypothesis of a fractured planet.
ib.
2722. Discovery of June - $\quad+325$
2723. Diseovery of Vesta - - -. ib.
2724. 1)iscovery of the other planetods 326
2723. Tiable showing the mumber of phanetoids discovered before 1st Jitn. 1863, the names eonferred unon them, ilwir discoverers, and the dintes of their sliscovery
2726. The aliscorery of these mainisy due to nmateder ast follomers
2727. I'heir remarkulise accordance withDr. Olber's inypothesis ib.
2t28. Force of gravity on-the phanctoids, it.

CHAP. XV.

## THIE MASOU PGARATS.

## F. Jupiter.

2729. Jovinn system - . . - 329
2730. Pertod - - - ib.
2731. Heliocentric and synodie motions it.

2742, Distande - - - 330
2333: Ifelaive seale of the orbits of Ju. piter math the earth

- 86. 

2734. Ahmuat paralhix of Jupiter - - ib

2i36. Variation of distanoe from the cartir - . - -
2726. 1ts forodigious orbtal yelocity
2737. Jnterpais between opposition, conjunction, and quadraturo. .

Sect
Pace 2i38. Jupiter lias no sonsible phases - 333
2739. dppearance in the Remameat at niglat化 2740. Stations and retrogression - - it. 27.41. Apmarent apd reai dhameters - 33d
27.12. Jupiter a conspicuons ofjeect in the firuament - relative spleadour of Jupiter and Mars
ib.
2543. Surface and voltoune - . 330
2744. Sular light and heat . . . 336

2idts. Hotation aud direction of the axts ith.
2746. Jovian years - . - . 337
27.17. Seasons - . . . . . $\$ 3$.
2748. Teilescopic appearmee of 3 upiter - 338
27.19. Magnolying potrers mecessary to show the fentures of the disk
ib.
2750. Belts - tinelr aryangemont avd ap-
pearance - $\quad-\quad-339$
2751. Those near the poles more faint - ib.
2752. Disappeat near the limib - - is.
2753. Belts wot zenogriyhicat features, Inte atmospheric. -
2351. Theletcopic drawings of Juplter by Miadler and Herschel - - 340
2755. Observations nul conclusions of Natller
it. 2756. Splacroidal form of the plamet - 312 2757. Juplter's satellitps * - il
2758. Rapid change and great variety of phases -

248
27.0. Elongation of the satellites - . 344
2760. Distance fromt Jupiter \& - 346

27G1. Harmonic taw olserved in the Joviaur system
2762. Singniar relation between the motions of the first three satel- 346
2763. Corresjronding refation between thoir mean tongitudes - - it.
2ifas. Grbits of sntellitics . . 3.8
2765. Apparcut and real magnitudes - ib.
2766. Apparent maguitudes as seen fromJapiter
27fin. Parnllinx of tite satelifies $\quad+\quad 3160$
2768. Apparent magnitules of Jupiter scen from the satellites - - ib
2769. Satellites invisible from a circum- io. 2:70. Inotntion on their axes - . 361
2771. Minss of Jipiter - - 362
2772. Their matual perturbations - - anas
2773. Bensity - - . . . it.
2774. Masses and densities of the satel. Hes
2775. Superfbial gravity on Jupiter. - 364

27i6. Ecntrifugril force it Jupiter's equator - . . . . ib.

2777. Varintion of superficial gravity
from- equintor to poite
2778. Dossity inust fincrease from sarface to cellere
2779. Usiltity of the Jovinn systom as nut illustration of bhe solne system +3.5
2780. Saturx.
2781. Saturnian systom + . \& - 358
2782. Periad • - - - ib.
2783. Heligeentric \&
2784. Sgnodic motion - - - . ib.
2785. Distance * \& - - 359
2786. Helative scale of orbit and distance from the tarth - - - - ib.
2787. Annuni paralliax of Saturn - ib. 2787. Gireat scaic of the orbical motion - 360 278s. Division of synodie perion : - i5.

Sect.
2789. No phases $\quad-\quad 260$
2790. Variation of the planot's distanee from thice earth

- 161

2791. Stations and retrogressions - - is.
2792. Apparent and real digneter - - ib.
2793. Surface and volume

- 362

2794. Diurnal rotation - - - - ib.
2795. Luclination of the nxis to the orbit 363

2796 . Snturnian days mad nights-year ib.
2797. Belts and atmosjhere - - - ib.
2798. Solar light and heat - - - ib.
2799. Aings - - - - 3 -

2sivo. Position of nodes of rings, and inclimation to ectiptic - $\quad 360$
2801. Oblifquity of ting to the planet's orbí
36.
2802. Conditions which determine the phases of the ring

367
2803. Apparent and neat dimensions of the rings

370
2804. Thickness of the rings - - -372

2so5. IHumination of the rings-heliocentric phases - . . ib.
2806. Shadow projected on the planet by the rings
2807. Shadow projected by the planct on the rings - $\quad 374$
2808. The shatows partially visible from the earth : $=-376$
2809. Conditions ander which the ring becomes invisible from the earth 376
2810. Schmide's obsorrations aupl drawings ot Saturn, whth the ring seen edgeways

380
2811. Olservations of Herschel - 381
2812. Supposed matijultity of rings - ib.
2813. Ethag prokathly tripic. - Observations of 1 M1. Lassell aud Dawes
2Ri4. Rescarches of 13essel corroborate these comjuetures

382
2815. Alleged discovery of abscure tings by MM. Inssell atul Bond ti.
2816. Brawing of the phanct and rings, as they may be expected to up. pear in 1856

383
2817. Lessel's calculation of the mass of the rings

381
2818. Stability of the rings - - ib.
2819. Cause nasigued for this stability $=\mathbf{3 4 5}$
2820. Rotation of the rings - - - 386
2521. Lieccatricity of the rings - - ib.
2822. Arguments for the stabitity founded on the eccentricily

- ib.

2823. Satellites $\because$ - - 388
2824. Their nomenchature - - . ib.
2825. Order of their discovery - - tb.
2826. 'Eheir distances and periods - 389
2827. Harmonic law oldserved - - ib.
2828. Elongations and relative distahces $i b$.
2829. Various phases nat appearances of the satellites to obscrvers on the plantet.
2830. Magaitudes of the satellites - - ib.
2831. Apuarent maguitudes as scen from Saturn-

391
2932. Horizonital parallax of the satellites 392
2833. Apparent magnitudes of Saturn soen from the snteliltes
2834. Satellites not visible in the circumpolar regions of the planet -
2835. Lemarkable relation between the perinds
2836. Rotation on their axes -
2837. Mass of Saturn - - - 343
2838. Density - - . ${ }^{\circ}$ - - ib.
2839. Superficial gravity . .. . 394

Spet.
Page
2810. Contrifugnt force at Saturn's cqua. tor

394
2811. Variation of gravity from equator 10 polle
ib.
28.12. Prevailing orrors rerpecting the

Urauograpiry of Saturt - 3
2843. Views of Sir John Herschel - ib
28.14. Tircory of Miather - . 856
2845. Corrcetion of the preceding views 397
2846. Phenomena presented to an observer ztationed at Saturn's equator. $\rightarrow$ Zone of the firmament covered by the ring -
2947. Solar eclipses nt Saturn's equator 399
2848. Eelipses of the satellites
2819. Phenomena presented to an obser. ver at ocher Saturnian Infitudes - ib.
2850. Edges of the rings seen at rartiable distances from celcstial equator 401
2851. Parallels of declination therofore intersect tirm
it.
2852. Fidges placed symmetrically in re. lation to meridian and horizon - it.
28:3. Form of the projection at dififerent $\qquad$
2354. Rings invisible nbove Int. $63^{\circ} 20^{\circ}$ $38^{\circ}-\quad-10$
2555. Appearance nt Int. $59^{\circ} 20^{\prime} 2^{\prime \prime \prime}$
2856. Alperarance nt lat. $5 \operatorname{sio}^{2} 82^{\prime} 20^{\prime \prime}$

2858. Appearance at lower Intitudics - ib
2859. Occultations of ectostial qbjects by the rings
2860. Zovie visible between the rings - 406
2861. Effect of the thickness of the rings on this zone
i3.
2862. Solaneclipses by the rings :-404
2863. Eeclipses of the satellites - - 10
2864. Saturnian scasons - - . ib.

## III. Unanus,

2865. Discovery - - . . 411
2866. 1'eriod by synorite motion in i ib.
2867. By the apparent motion in quaxh rabara -
ib.
2868. Heliocentric motions - . -412

2nc6. Synodic motivit - - - ib.
2s70. Distance - . . 413
2871. Itelative orbit and distance from the earth - - - ib.
2772. Annuni partullax - $=$ ib.
2373. Vast scale of the os bital motion - ib.
2874. Apparent and real diameters - 414.
2875. Sarface mad volume - - - ib.
2876. Diurnut rotation aud physical character of surface unascertained - is.
2577. Solar light and heat - - .il.
2573. Suspected riugs - - . . 41.5
2879. Sntetites - - - id.
2880. Anomatous inclination of their orbits
is.
2881. Apparent motion and phases as
seca from Urauus
2882. Mass and density of Uranus = - fb.

## 1V. Neptusf.

28s3. Discovery of Neptime ..... $\cdot 417$
2884. Unexplained distorbances observedin the motion of Urames - 41
2885. A planet extorior to Uranus wouldproduce a like effect - $\quad 420$
2886. Mescarehes of MiM. Lee Verrier and Adnys. ..... 422
2887. Elements of the sought planet as-signed by these geometers123
Sect.
2588. Its actual discovery by Dr. Galle a
424of Berlin - - -
2859. Its predicted antl observed places
1o near proximity ..... ib.
2550. Corrected elements of the planct's orbit - $i b$
2891. Discrepancies between the netualand predicted clements cx.plained425
2992. Comparison of the effects of thereal and predicted planets -426
2893. No part of the merit of this dis- eovery nscribable to chance ..... 128
2894. Period ..... it.
2395. Bistance ..... 129.
25J6. Relative orbits and distanecs of Neptune and the earth ..... ib.
2597. Appirent and real diametor - - ib.
2898. Satollite of Neptuno ..... 430
2899. Mims and deusity ..... ib.
2900. Apparent magnitude of the sun at.431
Neptune
2001. Suspected ring of Neptune ..... 432

## CHAP. XVI.

eglipges, thanstts, and occultations.
2002. Interposition of celestial objects - 433
2903. General comditions whirh vetetermine the plienomena of interpo. sition when one of the extreme objects is the earth
2001. Condition of mo interposition. Externsl contact -
2905. Wartial internosition :- - it.
2906. Juternal contact of interposiug disk
2907. Centrical lutorposition of lesser clisk - - - ib.
2903. Complete interposition - - - ib.

## I. Solar Eccipses.

2909. Solar eclipses
2910. Yartial solar celipse : - ith.
2911. Mitgnitude of celipses expressed by dights
${ }^{16}$.
2912. Total solar eclipse = $\quad . \quad 436$
2913. Annular eclipses - - - ik.
2914. Solar eclipses can only occur at and near the epoch of new
moons.
2915. Effects of parallax - - - ib.
2916. Sindaw produced by an opaque
2917. Method of aletermining the form and dimonsinna of the shatow - ib.
2918. Method of determiniug the limits of the phenumbra -
2919. Total and parthal solar eclipyes explained by the lunar shatiow -442
2920. Anumhar eclipses explained by shadow - - 443
2921. Povsibility of annular eclipses proved - - - ib.
2922. Solar celiptic limits 446
2923. Extreme nid mean valuus of semidlameters and horizontal parallyxes of sun and moon . 446
2924. Limits for total and annalar celipses - - 447
2925. Appearances attending total solar eclipses - . . - 488
2926. Baily's weads - - - - 449

Scet.
2927. Produced by lunar mountains projected on the sun's disk - 4.19
2925. Flame. like protuluerainces - - 151
2929. Solar eclipice of 1851 - . 152
2930. Obsrrastigus of the AstronomerRoyal.
$-86$.
2931. Obscrvalions of MM. Dunkiu and Humpireys -
2932. Observations of W, Gray, at Tune, near Sarpsbork - -
2033. Ohservations of Mar. Stephenson and Andrews at Erederiksvanva - 455
2034. Observations of Mfr. Lassell at Trollinattan Falls
ib.
2935. Obsorvations of atr, Thind at Ravelsborg, near Engelholm -
2936. Observations of Mr. Baye Encar 450
2937. Efects of total obscuration on surrounding objects and scencry 158
2038. Pvidence of a solar atmosphere - 459
2939. Probsable causes of the red eman. ations in total solar eclipses $\quad 460$

## II. Iunar Eclipses.

2940. Cnuses of hunar eelipses. - 461
2941. Dimensions of the earth's shadow ib.
2942. Conditions which determine lunar celipses $\qquad$
2943. Fanar ecliptle limits - - 463
2944. Limits for a total celipse -164
2945. Greatest durition of total eclipse ${ }^{2}$. 65
2946. Relative number of solar and lunar eclipses
ib.
2947. Effects of the earth's penumbra - ib.
2948. Eflects of refraction of the carth's ntmosphere in total celipse.-
2949. Tho tumar disk visible during total
olescuration -

1tt. Eclipges, Transits, and Oecultatlons of the Jovian Sxstem.
2950. Thn motions of Jupiter and his satellites cxhibit all the effects of interposhion
2951. Effects of interposition - -169
2952. $1^{\circ}$. Eiclipses of the satellites. - ib.
2953. P. Velipses of the platet by the satellites
2954. $3^{\circ}$. Occultations of the satellites by the planet
2055. 40. Transits of the satellites over the planet - - $\quad 170$
2956. All these phenomena manifested at quadrature - - $\quad$ - ib
2057. Effects modified nt othor elonga- 4 ..
2958. Plenomena predicted in Nantical Almanack predicted in Natical 472
2959. Motion of light discovered and its velocity measured by menns of these ecllipses
2960. Eclipses of Siturn's satellites not observable
iV. Transits op thr Intefion Planets.
2961. Conditions which determine a transit - -
2962. Intervals of the" occirrence of transits - - - -476
2963. The sun's distamee determined by the transit of Vours - - 477

## V. Oculltations.


2967. Occaltations indicate the presence or absence of min atmospherc aroturt the occuleing boily -
2968. Shagular visibility of a star attef the commencoment of aceultation 48.4
2969. Suggested nppisication of tumis aecaltations to restolve douple stars ib.
2970. Oceultations by Saturi'strags - it.

## CEAN. ※VH:

 2971. Planctany data $+486$

1. Fata whicis ditammine ${ }^{\text {ritige }}$ Fonsa, Mignatudh and position of the .Onmis of this Planemts.
2. Sorm of the orbit determined by the cecentricity
3. Magnituic eletormined by semis. anis major
4. Mosition of the plane of the orbit - ib.
5. Inelinations of the orbit - - ib.
6. LAue of nodes - - ath.
7. Lougitude of ascouding node - 187
8. Jongitede of perihorion - - ib.
9. Fivo elemonts wisicla determine the orbit
10. Eloments subject to slow variation - Epoch
is.
11. Trabic of the olements of the orbits 48
12. Bata to detimation the Place of THE PBANET.
13. By the efroch and the mean dnily motion.

190
2983. The equation of the centre - - 191
2984. Tablo of data necessary to detor. mine place of planct - - -
2085. Trable of extroine and mean distances froint sun and earth - -/i99
2986. Perihetion and aphelion distanees

3H. Coninftions afhetetinc mats physicale amp mechanical State of thli Planat taperpmbintlyy of its Onatt.
2967. Nethods of computing guanelitics ind magnitendes in Tratole IV.
2989. Metivods of computing extremio and mean ayparent diameters - '2 inble of Alstanees from the sta aud earth in mitlions of miles
2991. The densitics - - - 158
2092. Certain data not exactly ascor. trined -
2993. Examples of the masses and don. sitics of somen planets
ib.
2994. Intensity of solay light and heat - 199
2095. Simperficiai gravity
2950. Orbltal velocitics .
2997. Simpurferat vilocits on

4

## 1W. Tabulatmd Elfinhets op the SamclMITES. <br> Sect. <br> Page

2y9y. Ekements of the Jovian, the Satur. tidan, and the Uranina systems

501

## CHAP. XVIU.

conets.

## 1. Conbpaity Onpits.

3000. Prescience of the astronomer

503
3001. Strikingly illustrated by conetary discorery

505
3002. Motiop of comets explainediby gravitation
ib.
3003. Conditians imposed on the orbits of bodies which are subject to tho attraction of gravhation - - ib
3004. Elliptic orbit - - . . 306
3005. Parabolic orbits - - - 509
3006. Hyperbolic orbits - - - $\$ 10$
2007. Planets observe in their motions order not exacted by the law of gravitation
300s. Comets observeno such order in thoir motions - . - $\because 613$
3000. Ther move in conie sections with tho sinl for the focus -
3010. Ditictiley of ascortaifing in what species of conic zection a coturet moves - - -
3011. Hyperbolic anal parabolle comets not periodie periolie nise the planets
3012. Elliptic comets perioaic bike the
3013. Biflicultics attending the anplysts of cometary motions 617
301. Periadicity alonn proves the elliptic cludracter $\qquad$
301s. Poriodielty combined pith tho fdentits of the paths while visible establishes identits:

3016. Ming comets recorded - few ob
sarved - ${ }^{-}$-
3017. Classification of the cometary orbits - $\qquad$

## W. Elampic Conits nivolivige tituin the Ondit of Satuns.

3018. Encke's comat - - 349
3019. I'nble or the clements offtic orbit. 521
3020. Inilications of the eflects of a ro. sistiag medium.

322
3021. The luminferous ether pould
protuec such an cfiect - - ib.
3022. Comets would ultimately fall into
3023. Why like effects are +102 manifested in the mation of the plancts of
3024. Correeted cstimate of the mass of Mercurf
3025. Bicla's comot $\quad \therefore \quad-\quad 16$.
3036. Possibility of the collision of Bicha's eomet with the earth $=$ ib
3027. Resolutiven of Bjein's comet into two - - - - 526
3028. Chauges of appearonce attending the separation - . . 527
3029 . Faye's comet - - - 528
3030. Heappearance in 1850.1 calculated by MI. Le Verrier
ib.
3n31. De Vico's comet . - . 529
3032. Brotsen's comet - . . . ib.

Sect.
3033. D'Arrest's comet -
2034. EHiptic comet of 47.43
2035. Elliptic comet of 1760
3036. Fexcll's eomet
3037. Analysis or Laplaco applied to Lexeli's comet
2039. Its orbit berore 1767 and aftex 1770 calculated by his formule -
2039. Revision of these rescarches by M. Le Verrier .
3010. Process by which the identification of periodie comets may bedecided. 533
3041: Application of this process by al. Lo Verrier to the comets of Paye, Do Vico, and Brorsen, and that of Lexell-their diversity proved 534
3042. Probable jalentity of De Vico's comet with the comet of 1678

- 334

3013. Biainplan's comet of 1819.535
3014. Yons's comet of 1823

- ib.

3045. Pigott's comet of 1783 - - ib.
3046. Peters's coinct of 1846 - - il.
3047. Taimular synopsis of the orbits of the comets which revelve within Saturn's orbit
ib.
3048. Diagram of the orbits - 536
3049. 3 Pnnetary character of theif or-
3050.3 bits - - . . - ib
III. Fleiptic Comets, vinose Mean Disgances athb neatley equal to that op Vibanus.
3050. Comets of long periods, first recognised as periodic -
3051. Newton's conjectures as to the existence of comets of tong privieds - - - 540
3052. Ifalle's's researches - - - ib.
3053. Halley predicts its re-appearance in 175s.9
-541
3054. Greal advance of mathematical and physical sciences between 1682 atrd 1759

342
3056. Exict path of the comet on its return, nad timo of its perihelion, calculated and predfesed by Clatrant and Jalande
30.57. Remarkable antitipntion of the discovery of Uranus

- 544

3058. Prediction of Halles and Clairaut fulfilled by re-appearance of the coinction 17:8-9
3059. Disturbing action of a planot on a comot explatined
3060. Effect of the perturbing action of Jupiter and Satarn on Halley's comet bet ween 1032 and 1758
3061. Caletatitions of hes return hu 1835.0
3062. Predictions fallilied
3063. Trabular synopsis of the motion of Halics's comet
ib.
it.
$3465^{\circ}$ Owers's comet of $1813^{\circ}-$ iib.
3u65. ©ibers's comet of 1815 - - ith.
3agi. De Vico's compet of 1846 - - it.
3064. 13rorsen's comet of 18.17 . - 349
3065. Westphal's comet of 1852 - - ib.

30594 1 inbular synopsis of the motions of these six comets - - - ib.
3070. Disgrnm of their orbits $-\quad$ - ib.
3071. Plametary characters are nearly effaced in these arbits - - 550
IV. Ellititic Conets. whose Mfenn Distances hetceed the Liatits of the Solar System.
Seet.
Page
3072. Tabular synopsis of twenty-one elliptic comets of great cecentrieity and long neriod.
3073. Plan of the form and refative magnitude of the orbits * $\quad \mathbf{5 5 1}$
V. ETrenuolic Comets.
307. Tabular synopsis of hyperbolic comets
ib.

## VI. Paranoetc Comits.

3075. Tabuiar synopsis of the panabolic comets

## V11. Bistminetion of Cometaley Omits in Space.

3076. Distribution of the cometary orbits in space
30i7. Relative numbers of direct and retrograde conits $=$ - - is.
3077. Inclination of the orbits - - 559
3078. Directions of the wotles and perihelin - - 6 60
3079. Distribution of the points of peri-: hetion

## Vha. Piysical Constitufion or Conerfs.

3081. Apparont form - head and tail - 562

3002 Nucleus - - - - ib.
3083. Coma - - - - - 563

303:. Origin of the name - - - ib.
3035. Magaitude of the isend - - il.
3086. Masnitude of the nuelens - - ib.
3087. The tail - - - 564
3029. Mass, density, and volume of comets - - - - 506
3089. Light of comets - - - $\mathbf{8 , 6 7}$.
3090. Eulargement of magnitude on departing from the suil $-\frac{1}{-}$
3001. Professor Struve's drawings of Izncke's comet - -
3092. Remarkable physical phenomena
manfested by Halley's comet - 570
3093. Struve's drawings of the comet approaching the sun in 1835

372
3n94. Its appearmace on the 29th-of Sept. ib.
3u55. Appearance on Oct. 3. . -573

3097. Apucarance on Oet. 9. - - - ib.

319 s . Appearance on Oet. 10. $\because \quad$ it.
3in9. Apuchratuce on Oct. $12 . \quad-\quad 5 \overline{1}$
3100. Appearance on Oet. 14. - ib.
8101. Appearance on Oct. 20. - - ib.
3102. Appearauce on Nov. K. - - 575
3103. Sir 3. Herschel's deductions from theas phenomena - - ib.
310\%. Appearatice of the comet after perificilion - -5
3105. Observations and drawings of
MM. Maclear and Smith - of ib.
3106. Appearance on 3 an. 24 . - - ib.
3107. Appearauce on Jan. $25 . \quad-\quad 577$
3103. Appearance on Jant 26. - - ib.
3109. Appearnnce oa Jan. 27. - - ib.
3110. Appearance on Jan. $23 . \quad-\quad$ ib.
3111. Appearaner on Jan. 30. - - il.
all\% Appearapec on Feb. 1. . - - ib.

Sect.
3113. Appearance on Feb. 7.

Page
3114. Appearance on Fro. 10:

- 877

3115. Appearance on Fcb. 16. and 23.
3116. Number of comots
$-i b$.
3117. Duration of the appearance of comets - $-{ }^{-}$- ${ }^{-}$
3118. Near approach of comets to the

## CHAP. XIX.

theony of vailable ohbits.
3119. Conditions under which elliptic orthits are described
3120. Forces other than the central at. traction would destroy the elliptic form
3121. But when these' forces are fecble compared with the central attraction, the elliptic form is only slightly affected
3122. Thits is the case in the system of the universe
3123. Hence proceed great facilities of inrestigation and calculation
3124. Perturbations and disturbing
3125. Merces of variable clements.-The instintaneous ellipse - -
3126. Feebleness of the disturbing fotces in the cases presented in the so. lar system explained - -
3127. Order of exposition Resturbing forces

S12s. Resolution of the disturbing forces 583
3149. Iterolution of the disturbing force with relatioin to the radius rector and the plane of the orbit -
3130. Orthogonal component - - - ib
3131. Iladial and tratasversial components 586

3!32. 'J'angential and normal compo. neats
8133. Oxthogonal component affects the fuclination and the noders
3134. Radial and transversal components affect the central attraction and angular motion
3135. T'angential and normal components affect the lingar velocity and curvature -
3136. Positive and negative components
3137. In slighty ciliptic orbits the normal and radial components and the tangential and transpersal coincide
ib.

1. Eppacts op the Ridial Componbit of the Distulbing Force.
2. Equable description of areas not disturbed by it
3. Its effect on the mean distance and period -
4. If the radial component vary according to any conditions which depend solely on the distance, it will not change the form or mag. nitude of the instantancous ellipse.
5. Effect of a gradunlly increasing or decreasing radial component - 59
3id2. Effects on the period and mean

Sect. motion more sensible than those on the mean distance - . -
3143. Its effect on the position of the apsides-

Page

## ib.

3144. It diminishes or increases the -591
under the radius vector and taagent according as it is positive or negative
3145. It raises or depresses the empty focus of the elliptic orbit abole or below the axis according to the position of the disturbed body in its elliptie orbit
3146. Effects of a positive radial component on the apsides
3147. Effects of a radial negative component on the position of the axis - 59
31-18. Diagram fndicating these effects - ith.
3148. This motion of the apsides bears a very minute proportion to that of the disturbed body -
3149. Diagram illustrating the motion
3150. of the apsides - 595
$\qquad$
3151. This motion of the apsides increases as the eccemtricity of the orbit diminishes, other things being the same
3152. Fiffect of the radial component on the eccentricity
3153. Epphcts of the thanversal. Component of the Dietuabing Funce.
3154. It accelerates or retards the orbital motion

508
3154. It increases or decreases the major axis according as it ls positive or It produces progression of the ap-
3155. It produces progression of the apsides from perihelion to nphelion and regression from aphelion to peribelion when positive, and the contrary when negative
3156. Its effect on the eecentricity" - $\quad-600$
3167. Its eflects on the major axis at the apsides -
III. Epfects of the orthogonal Component of the Disturding Force.
3158. It changes the plane of the orbit -
plane of reference - 603
3159. Nodes of disturbed orbit on plane
of reference-
3160. Effect of orthogonal component varies with distance from node - ib.
3161. Nodes progress or regress according as the component is positive or negative - - - - 005
3162. Effect upon the inclination - - it.
IV. General Summary of Thr Eppects
op a Distulaing lorce.
3163. Tabular synopsis of the effects of the several components of the disturbing force -- 606

CIIAP. XX.
promley of tande bodies,
3164. Attraction independent of the mass of the attracted body $\quad-607$

Sect.
3165. Henee the denomination, "aceele-

a16f. Accelerating force of gravltation
31G7. Problem of two bodics
3!6s. Problem of shrec bodies
3169. Sianplified by the comparative feebleness of the forces exerted by the third body
3170. Attracting force of third bouly not wholly disturbing
3171. Attracting force whith would prodince no disturbing effect -
3172. This would be the case if the third body were enormously distant compared yith the second
8173. Txample of a force supposed to act on the solar system
3174. Case if thich the distaneo of the third body is not comparativety great -
3175. To determine the ratio of the dis. turbing to the central force,
3176. How the direction of the disturbting force varles with the relative distances of the disturbed and disturbing from the central body
317\%. First Case. The component of the disturbing force th the plane of the orbit when the disturbing body is outside the orbit of tho disturbed body e aign of cach of
3178. To determine the sign of each of
the components of the disturbing
foree in ench successive point of
the components of the disturbing
foree in each successive point of the orble
3170. Diagram illustrating these changes of directions
3180. Spcond Case, th which the disturb-
ing trody is within the disturbed
3180. Sacond Case, in which the disturb.
ing body is whin the disturbed orbit
2181. Chakges of sign of the eomponents
2181. Chatuges of sign of the eomponents
in this case -
3182. Geucrat summary of the changes of direction of the radial and transversal eomponents of tho disturblug force during as ruodic perion of the alsturbeti body
3183. Varying effects of the orthigenal component during ansynodic rovolution
3184. Periedic and secular perturbations 623

## CHAP. XX.

## conan theony.

8185. Lunar theory an important case of the problam of three bodics
8186. It supphies striking proof of tho truth of the theory of pravitation 620
8187. The star alone sensibly disturbs the moon
8188. Lines of syzyey and quadrature - 627
8189. Direction of the disturbing force of the sun - ${ }^{-}$- ${ }^{-}$-
8190. Points whare the disturbing forco is wholly radial and wholly tangontial
3191, Intensifies of the disturbing forces
8191. The suin's disturblug force at equal angles with syzygy varies in the direct ratho of she moon's distance from the earth variations of sign
$i b$. - is.

615

616 36
619
Page 608 is. 610 ib.
$\qquad$
Sect. Page of the components of the disturb- ing force during a syuodic period 633
the moon's motion-tive anuual equation ..... 636
2195. Acceleration of the moon's mean motion ${ }^{-}$- ${ }^{-}{ }^{*}$. ${ }^{-}$ Moon's variation ..... G. 10
3197. Moon's variation - - - G:
3199. Inequalities deponding on the el- liptic form of the lunar orbit - ib.
3200. Equation of the centre ..... : $b$
tions of che elliptic clements of the limar orbit ..... GH3
3202. Moon's mean distance not stbject to secular variation ..... i3.
Finst Cash.
wimn periger is in conjunction.
3203. Motfon of the apsides ..... -646
3:04. Effects on eceentricity ..... - 617
Second Case.
wirn periger is in opposipion.
3205. Motion of the aptides - - 6.49

3206. Effects on eccentricity - $\mathbf{G} 49$

## Third Case.

wilen tite apsides arbin quadrature.
3207. Motion of the apsides - - 680
3208. Effect on tho eceentricity - - ib.

3:09. The motion of the apsides greater in syzygies bland in,quadrature - 651

Fountil Case.

## WHEN THE Apstors ate onltqua to the LINE OF syzygies.

3210. Motion of the apsides - - 653
3211. When monn's perigee is $54^{\circ} 4,1 / 7^{\prime \prime}$ before tho point of conjunction 651
3212. When the moon's perigee is $540.44^{\prime}$ $7^{\prime \prime}$ belind tive point of opposition 655
3213. When perigee is $34^{\circ}+4^{\prime} \gamma^{\prime \prime}$ before the point of opposition -6
3214. When perigee is $54^{\circ} 14^{\prime} 7^{\prime \prime}$ behind
conjunecion - 637
3215. Summary of the motions of the ib.

32:6. Efliects of the disturbing force upon the eccentricity - - 65
3217. When perigee is $5.1^{\circ} \mathrm{fl}^{\prime} 7^{\prime \prime}$ before the point of conjunction - 659
3218. When porigeo $\$ 8549$ 4.1 $7^{\prime \prime \prime}$ behind opposition - $5{ }^{-10} 44^{\circ} 7^{\prime \prime}$ before -6
3210. When perigee is 640 44 $7^{\prime \prime}$ before ib.
3220. When porigee is $54^{\circ} 44^{\prime} 7^{\prime \prime}$. bohind conjunction $-\quad-\quad-6$
3221, Extreme and mean values of ec. centricity - - - . ib.

Eyfects of the misturminc porce oron tha honar nodes and inelination.

## Fuust Casb.

3222. When the tine of syzsgies is in the line of nedes


## Fourtit Casb.

3225. When the line of syzzgies is more than 900 before the lime of mades G65
3226. Gcueral summary of the lunar inequalittes - - 606
3227. Other lessor inequalitics - - 667

CHAP. XXİ.
fingonf op tue jovian gistey.
3228. Anflogy of the Jovian "to the terrestrial system

668
3229. Why the same inequalities are not manifested
3230. Mutual perturmations of tho sateilites - - - -
3231. Retrogression of the lines of con. junction of the first tbree satel-
8232. Elhange of dircetion of line of
ib.
669
cunjunction in each synodic revolution Applleztion to the threo miner strellites - -
3234. Regression of the lines of conjtunction of lise threc satellites equal
3235. Line of conjunction of the first and second in opposition to that of the second und third

671
672
ib.
3236. Effects of their mutual perturbations upon the forms of their oribes
36.
323. Motion of the apsides equal to that of the lines of conjunction
3238. The limes of npsides coiscide with the tivines of conjunetiott -
2230. Positions of the perijores and apo. joves of the three orbits - b fb .
3210. Value of the eceoutricity $\quad .674$ 3241. Romarkable precision the the fulfitment of these laws -675
3242. Eflects of tho eccentrieity of 1 he undisturbed orbit of the third satedlite
3243 Terturbations of the fourth satel. lite
3244. Compliented prrturbations of this systedn

## CHAP. XXH.

## Tneony of manktany pekturbations.

3245. The theory simpliged by those of the mopn and Jovian system
3246. Porturbations of the terrestrial by
3247. Cases in which the disturbiag is in
3248. Cases in which the disturbiag is in closer proximity with the dis. thrbed planet
3249. Caso in which the disturbing is within the orbit of the disturbed planet.
3250. Perturbation affected by the posi-

Sect.
tinn of tho apsides and notes $\mathrm{in}^{\mathbf{P}}$ relation to the line of conjunction 682
3250. Method of determining the elange of direction of the line of con. function
3261. Cundition under which the diree-- tion of the lisse of conjunction is invariabia *

088
3252. To aletermine tho eondition under which the line of conjunctions shatl have a limited number of invarinble posi, ions
3253. Effeets of the disturbing force in cases of commensurable poriods $\mathbf{6} 90$
325.4. Plavets present to caso of commensurable periods, but some nenrly so
601.
3255. Long inequalities $=-\quad-i b$.
3256. Long inequality of Jupiter and Saturn $-\quad$ - 850
3257. Pestod of this inequality nbout 850 lis effect upon the major axis and
3259. Ifs effect upon the major axis and

694
3259. If efiect upon the cecentricities 695
3260. Lflect on the direction of the apsides

- ib.

3261. Loug thequality of Venits - - 696

321i2. Other long inequalitics - 097
3263. Loug inaqualtites of the nodes and incimations
3204. Secular inequalities - - - 098
32.as. Scectar cozstrancy of major axis = ib,
3266. Sceular variation of apstiles.- 702

3:67. Secular variation of eccentricity - 703
3:69. Sectular variation of medination: ib.
3270. Laplace's theorems of the relatious between the eceentriciay and inclinations of the planetary orbits
ib.
3271. Conservative infuence erroneously ascribed to these theorems.

## CHAP. XXIV.

theony of spurnoidal perturnations.
3272. Attraction of planets would be central tit their forms wore exnetly spherical
3273. Disturbing forecs consequent on spicerodial forms -
3274. Eitheets which would be produced if a satellite were atheched to tho surficice of the earth at the equatar
3275. Like effects would be prodneed by aty wimbler of such satellites, or what woufd be equivatent, by the spheroidal form
3276. Precession of the equinoxes - 710
3277. The sun returns to the equinoctial point before completing its revoIution -
3278. Equinoctial and sidereal year - ib.
3279. Period of the precession - 711

3:80. Its efliect npon the longitude of calestial objects -
sb.
3281. Preoession of equinoxes praduces a rotation of the pole of the equater round that of the celiptic-
3282. Distance of pole of equator from pole of ecliptic varics with the obliquity


- CHAP. XXV.
tig fixen starg, -stecifar parallax and distance.

2204. Cration not circumseribed by solar system
2205. The solar system surmounded by $\boldsymbol{n}^{-}$ vast but limited void - beyomi
2206. The stars must be placed beyond the athromuding void-absence of sensible paraliax - - 7
2207. Anmual prifallax-paralactic elEcecntricity of maralactic ellipse
2208. Eceentricity of paralactic cllipso dependi on star $^{2}$ s mititude one -
2209. Ditliculty of determining the pa-
rallax arises from its minute How the distave is inferred from

721 the parallax-
8300. How the distance is inferred from

728
3301. Motion of light supplies a convenient unit for the stellar distance -
ib.
3302. Methods of ascertaining the parallax and consequently the distance -
3303. Professor Hendersen's discavery of the parallax of $\&$ Centauri - it
2304. Difr.rontial method -7

330\%. Postion micrometer, its application ta this problem . 734
3306. Calse of two stars having equal parallax - - - -
3307. Case in which they have unequal parallax - -

$$
736
$$

2308. Parallax of nine stars ascortained - 738

## - CHap. XXVI.

## magnitude and lustre of the stars.

33 $\mathrm{NO}_{4}$ Orders of magnitude of the stars - 739 3310. These varieties of magnitude caused chichly by difierence of distance
3311. Stars as distant from earh other generally as they are from the sinn
332. Wuy stars increase in nutnber as they decrease in magnitude

740
3812.

Sect.
Page
3313. What are the fixed stars?
$-711$
3314. Teleseopes to not magnify them like the planets .

742,
3315. The absence of a disk proved by their accaltation by the moon. ib
3316. Arcaning of the term magnitude as applied to stars.
ib.
3317. Why stars may be renilered ims" perceptibic by their aistance -743
3318. Classification of stars by magnitude arbitrary and insumictent - - 7
3319. Importance of more exact astrometric expedients ${ }^{-}$
3320. Astrometer contrivod and applied by Str J. Herschel

- ib.

3321. Principle on winich the sutecessive orders of stellar magnitude sheuldit be based - - - 7
3322 Comparative lastre of $a$ Centauri with that of the fill moon - $=748$
3322. Comparison of the lustre of the full moonstith that of the stin - ib.
3323. Comparison of the sun's light with that of $a$ Centauri
3324. Comparison of the intrinsie splendoatr of the stur and a fixed star - 779
3325. Astrometor suggested by Dr. Lardnor - - - B
3326. Comparison of the sun and $\&$ Cen- 734
3327. Comparison or tise sun and Sirius 732
3328. Astrometric table of 190 prinelpal stars
3329. Use of the telescope in stellar oivservations - - - $\quad 754^{\circ}$
3330. Sprce penetrating powor - - 758

8:32. Telescopic stars : - - 760
3333. Stellar nomenclature - - 761

3334 . Use of pointers - - - 763
3335. Use of spar mapss - - - it.

3a36. Use of the cetestial globe - - il.
3337. To find the place of an oliject on the globe when its right ascension and declimation are known - - 76t:

CHAP. XXVII.
PEAIONIC, MILLTIPLS, AND TEMPORARY STARS, - propelt motion oy stams. - mopton of phe solan systemp.
3338. Telescopic observatious on individeal sturs

766

## F. Periopic Stats.

33.39. Stars of variable lusíre .
3440. Hemarkable stars of this class in the eonistellations of Oetus and Perseus
3341. Table of the periodic stars - - 768

3342 Hypotheses proposed to explain these phenomena. - - 770

## II. Temporary Stars.

3343. Temporafy stars seen in ancient
times - - - $=7$
3344. Temporary atar obsorved by Mr.

Hinut - $-\quad-\quad$ ib.
3345. Misting stars - - - - 776


## IV. Proper Motion of tur Stars.

3361. The sun mint a fixed centre - $\mathbf{7 8 6}$
3362. Eifect of the sun's supposed motion on tho apparent planes of the stars

787
3366. Distion of the sum infurred from the proper motion of the stars - 788
3367. Volocity of the sun - - - 799
3368. Probable centre of its motion - 790

## CHAP. XXVIII.

THE FOns AND HMENSIONS OP THR ANAS OF STARS WIISCII COSAPOSR THE FIRAASHENT.

3:.69. Distribution of stars on the Grmat ment - - - - 791
3370. Galactic efrele and potes - - 792
337. Variation of tho stellar dessity in relation to this circle - . .
3372. Struve's analysis of Herschel's observations
3773. Milky way . - . . 793

3474 . It eonsisis of innumerable stars crowaled tagether

794
3375. The prohable form of the stratum of stars in which the sun is plaeed 795

## CHAP. XXIX.

## STELLAK CLUSTEAS ANB NEBULAE.

Sect. Tho Page
3376. Tho stars which form the firmament a stellar cluster. - Analogy suggests the probable existenco of others

$$
797
$$

77 - - 797
Such elusters innumeraule - -793
3378. Distribution of clusters und ne- binc
3379. Constellation of the clusters and nebutix - - - . b.
3780. Nejular hypothesas $\quad-801$

33 s 1 . Forms apparent and real of thit elusters - $\quad$ - ib.
3382. Forms apparent and real of nebula - - . - - 80
3343. Double nicibula $\quad-\quad-\quad 808$

33ks. Planetary nebulae - - - - ib.
3385. Annular nelontor - $\quad-\quad-804$
3386. Spiral neluise - - - ib.
3387. Xumber of nebulas - - 805

33s6. Remarkable nebuita, with numerotk drawings of them by tive Finrl of Rosse and Sir J. Herschel ib.
3389. Large and irregular nebular - 812
$\mathbf{3 5 9 0}$. Kich cluster in the Centatur, with dirawing
ib.
3391. Great nebula in Orion, with dratring $=813$
3392. Grent nchala in Argo, with drawing 814 3393. Magellanile clouds
it.

CHAP. XXX.
NOTICES OF RBYARKABLE ASTKONOMICAL : INSTREStENTS.
3394. Classification of the instruments of observation - - -
3306. Sir William Harschel's 400 a. telescope, with drawing .- 818
3396. The lesser Rinsse telescope, with 819
3397. The greater Rosse telescope, with drawing
ib.
3398. The 0xford hellonicter, with draw. $\mathrm{in}_{\mathrm{g}}-{ }^{-} \quad-82$
3359. The transit circle by Troughton, With drawing Grecuwich transit circlo, witi)
3400. The Grecuwich transit circlo, with
3401. The Pultowa prime vertical íystrument. with drawing - $\quad 82$
3402 Troughton's altitute and azimuth circle, with drawing - -83
3108. The Greenwich altazimuth instrument, with drawing - - 838
3104. The Northumbertand telescopeCambridge observatory, with drawing - - - 836

## L I S T

of
THE PRINCIPAL ILLUSTRATIONS.

METEOROLOGY.

Page
Relative apparent magnitudes of the Sun at Venus aud the Earth ..... 308
Phuses of Venus ..... 310
Relative orbits of Mars and the Earth ..... 315
Relative apparent magnitudes of the Sun at the Earth and Mars ..... 318
Plate VLI. Telescopic views of Mars, by Beer and Mädler ..... 320
Plate IX. Telescopic projection of the two hemispheres of Mars, by Mädler ..... ib.
Relative orbits of Jupiter and the Darth ..... 331
Relative volumes of Jupiter and the Earth. ..... 835
Relative apparent magnitudes of the Sun at Jupiter and the Darth ..... 336
Plate X. Telescopic views of Jupiter, by Mädler and Herschel - ..... 340
Jupiter and his satellites ..... 345
Relative orbits of the Earth and Saturn ..... 359
Relative volumes of the Earth and Saturn ..... 362
Relative apparent magnitudes of the Sun at the Earth and Suturn ..... 364
Phases of Saturn and his ring ..... 369-70
Plan of Saturn and his ring ..... 371
Shadows of the ring on Saturn ..... 373-4
Shadows of Saturn on the ring ..... 375
Plate XI. Telescopic views of.Satarn, by Schmidt ..... 380
Plate XII. Telescopic view of Saturn and his ring, by Mr. Dawes ..... 384
Saturn, his ring and satellites
403
403
Section of Saturn and his ring
Section of Saturn and his ring ..... 405-6-7
Relative orbits of the Earth and Uranus ..... 413
Relative apparent magnitudes of the Sun at the Barth and Uranus ..... 414
Illustration of the discovery of Neptune ..... 420
Relative positions of the planets predicted by Le Verrier and Adams, and of Neptune ..... 424
Relative orbits of the predicted and real planets ..... 426
Relative orbits of Neptune and the Earth - ..... 429
Relative apparent magnitudes of the Sun at Neptune and the Earth ..... 431
Baily's beads ..... 450-1
Plate XIII. Total solar eclipse in 1851, by MM. Airy, Grey, Stcphenson, Lassell, Hind, and Dawes ..... 459
Telipse of Jupiter's satellites - . . - . . . ..... 468
The relative distances of the plancts - . . - ..... 491
Eliptic; parabolic, and hyperbolic orbits ..... 506
Place of the orbits of thirteen comets included within the orbit of Suturn - ..... 537
Disturbing force of a planet on a comet ..... 545
Plan of the orbits of six elliptic comets, having a mean distance nearly equal to that of Uranus ..... 550
Plan of the most eceentric of the elliptic orbits of comets ..... 555
Plate XIV. Struve's drawing of Enckés comet ..... 570
Piate XV. Struve's drawings of Hallicy's comet approaching the Sun, in September and Oetober, 1835 ..... 574
Plate XVI. Ditto Dito ..... ib.
Plate XVII. Ditto Ditto, in Oct. and Nov., 1835 ..... iU.
Plates XVII, and XIX. Drawings of Halley's comet, receding from the Sun, in 1836, by MM. Macletar and Smith ..... 577
Disturbing action of an exterior upon an interior planet ..... 615
Disturbiug action of an interior upon an exterior planet ..... 619
Luaw perturbations ..... 633
Plate XX. Telescopic drawings of nebula and clusters, by the Earl of Rosce and Sir John Herschel ..... 806
Plate XXI. Ditto Ditto ..... ib.
Piate XXII. Ditto Ditto ..... ib.
Plate XXII. Ditto Ditto
807
807
Plate XXIV. Dito Ditto ..... 813
Plate XXV. Ditto Ditto ..... 814
Plate XXVI. Drawing of the cluster which contains the Sun ..... ib.
Plate XXVIL. Sir Willimm Herschel's great telescope, focal length 40 feet, aperture 4 feet ..... 818
Phate XXVIII. The lesser Rosse telescope, focal length 27 feet, aperture 3 fect ..... 819
Plate XXIX. The great Rosse telescope, focal length 53 feet,
Plate XXIX. The great Rosse telescope, focal length 53 feet, aperture 6 feet, north side - - $\quad$ - $\quad$ - $i b$.
Plate XXX. Ditto Ditto, south side ..... ib.
Plate XXXI. The Oxford heliometer ..... 820
Plate XXXII. Troughton's transit circlo ..... 824
Plate XXXII. The great Greenwich transit circle ..... 825
Plate XXXIV. The Pultowa prime vertical instrument ..... 827
Plate XXXV. Troughton's altitude and azimuth circle ..... 881
Plate XXXVI. The great Greenwich altazimuth instrument ..... 834
Plate XXXVII. The Northumberland equatorial, Cambridge ..... 836

# METEOROLOGY <br> AND ASTR 0 N 0 MY . 

## NOTICE.

In these volumes of the Astronomy the refercnces to the numbered paragraphs of the "Handbook of Natural Philosophy" are made to the first edition of that work. A second edition of the Natural Philosophy having been published in four volumes, the following table has been drawn up to shew the corresponding paragraphs in both editions.

In the second edition the volume of Mechanics is referred to by the letter M. ; that of Hydrostatics, Pneumatics, and Heat, by H.; that of Optics, by O.; and that of Electricity, Magnetisar, and Acoustics, by E.

| First Edition: | Second Edition. | First Edition. | Second Edition. |
| :---: | :---: | :---: | :---: |
| 38 | M. ...... 38 | 1028 | O. ...... 143 |
| 46 | M. ...... 46 | 1034 | O. ...... 149 |
| 144 | M....... 141 | 1059 | O. ...... 185 |
| 170 | M. ...... 166 | 1100 | O. ..... 329 |
| 173. | M. ...... 169 | 1116 | O. .....' ${ }^{\prime} 349$ |
| 176 | M....... 172 | 1117 | O. ...... 350 |
| 184 | M. ...... 180 | 1118 | O. ...... 351 |
| 220 | M. ...... 217 | 1129 | O. ...... 362 |
| 234 | M....... 231 | 1131 | O. ...... 364 |
| 247 | M....... 245 | 1132 | O. ...... 364 |
| 309 | M. ...... 309 | 1143 | O. ...... 374 |
| 313 | M....... 313 | 1168 | O. ...... 423 |
| 314 | M. ...... 314 | 1170 | O....... 425 |
| 317 | M....... 317 | 1212 | O....... 501 |
| 542 | M. ...... 505 | 1215 | O....... 504 |
| 543 | M. ...... 506 | 1225 | O....... 216 |
| 552 | M. ...... 505 | 1290 | O....... 285 |
| 719 | H. ...... 223 | 1395 | H. ...... 388 |
| 787 | H. ...... 91 | 1494 | H. ...... 323 |
| 836 | E. ..... 653 | 1495 | H. ...... 499 |
| 844 | E....... 660 | 1496 | H. ...... 500 |
| 923 | O...... 36 | 1584 | H. ...... 597 |
| 924 | O...... 37 | 1776 | E....... 86 |
| 978 | O. ..... 92 | 1792 | E. ...... 104 |
| 980 | O....... 94 | 1794 | E. ..... 106 |
| 1006 | O....... 120 |  |  |

## HAND-B00K

OF

## A S T R 0 N 0 M Y.

## B00K THE FIRST.

METEOROLOGY.


## CHAPTER I.

terrestrial heat.
2160. Insufficiency of thermal observations. - To ascertain the laws which regulate the distribution of heat and the periodical vicissitudes of temperature on and below the surface of the earth and in the superior strata of the atmosphere, is a problem of which the complete solution would require a collection of exact thermal observations, made not only in every part of the earth, but for a long series of years, not to say ages. Experimental research has not yet supplied such data. Observations on temperature made at periods even so recent as those within which physical science has been-cultivated with more or less ardour and success, were in general scattered and unconnected, and marked neither by system nor precision. It was only since the commencement of the present century that observations on terrestrial heat were accumulated in sufficient quantity, and directed with the skill and precision indispensable to render them the source from which the laws of temperature
could be evolved. The experiments and observations of Humboldt, and the profound theoretical researches of Fourier and Laplace, supplied at once the nucleus of our present knowledge in this department of physics, and gave an impulse to inquiry, by which others have been carried forward and guided; so'that if we do not yet possess all the data which sufficiently extended and long-continued observation and experiment might afford, enough has at least been done to establish with certainty some general laws which prevail in the physics of heat, and to shadow forth others which future inquirers will confirm or modify:
2161. Local pariations of temperature:-The superficial temperature of the earth varies with the latitude, gradually decreasing in praceeding from the equator towards the poles.

It also varies with the elevation of the point of observation, decreasing in proceeding to heights above the level of the sea, and varying according to certain conditions below that level, but in all cases increasing gradually for all depths below a certain stratum, at which the temperature is invariable.

At a given latitude and a given elevation the temperature varies with the character if the surface, according as the place of observation is on sea or land; and if on land, according to the nature, productions, or condition of the soil, and the accidents of the surface, such as its inclination or aspect.
2162. Diurnal thermometric period.-At a given place the temperature undergoes two principal periodic variations, diurnal and armual. ${ }^{-}$

The temperature falling to a minimum at a certain moment near sunrise, augments until it attains a maximum, at a certain moment after the sun has passed the meridian. The temperature then gradually falls until it, returns 'to the minimum in the morning.

This diurnal thermometric period varies with the latitude, the elevation of the place, the character of the surface, and with a great variety of local, conditions, which not only affect the hours of the maximum, minimum, and mean temperatures, but also the difference between the maximum and minimum, or the extent of the pariation.
2163. Annual therformetric period. - The annual thermometric period also varies with the latifude, and with all the 'other conditions that affect the thermal phenomena.

In order to be enabled to evolve the general thermal laws from phenomena so complicated and shifting, it is above all things necessary to define and ascertain those mean conditions or states, round which the thermometric oscillations take place.
2164. The mean diurnal temperature.-This is a temperature so taken between the extremes, that all those temperatures which are superior to it shall exceed it by exactly as much as those which are inferior to it shall fall short of it:

To render this more clear, let us suppose that the temperature is observed every second in twenty-four hours. This would give 86,400 observed temperatures: Suppose, that of these 43,000 are above, and 43,400 below the mean temperature. If, then, the mean temperature be subtractèd from each of those above it, and if each of those below it be subtracted from it, the sum of the remainders in the one case must be equal to the sum of the remainders in the other.

This is equivalent to stating that the mean temperature, multiplied by $86,400_{2}$ will give the same result as would be obtained by adding together all the 86,400 observed temperatures.

But the thermonretric column is not surfjêt. to such rapid changes as to show any observable-difference of elevation from second to second, nor"even from minute to minute. If its height be observed every houp, the mean diurnal temperature will be obtained by adding, bogether the twelve horary temperatures, and dividing their gam by i2. But even this is not necessary, and the samoresult is more easily obtaffed, either by taking the sum of the temperatures at sunrise, at 2 r. m., and at sunset, and dividing the result by 3 , or mote simply still by adding toggether the maximum and minimum temperatures, and taking half their sum. Whicheyer of these methods be adopted, the same result very nearly will be obtained.
2165. The mean temperature of the month. - This is found by dividing the sum of the mean diurnal temperatures by the number of days. a
2166. The *inean tewperature the the. Year. - This may be found by dividing the sum of the mean monthly temperatures by 12 .
2167. Atonth of mean temperatitre. - It is found that in each climate there is a certain month of which. the mean temperature is identical with the mean toniperature of the year, or very nearly so. This circumstance, wleen the month is known,
supplies an easy method of observing the mean temperature of the year.

In our climate this month is October.
2168. The temperature of the place. - The mean annual temperature being observed in a given place for a series of years, the comparison of these means, one with another, will show whether the mean annual temperature is subject to variation, and, if so, whether the variation is periodic or progressive. All observations hitherto made and recorded tend to support the conclusion, that the variations of the mean annual temperature are, like all other cosmical phenomena, periodic, and that the oscillations are made within definite limits and definite intervals. There exists, therefore, another mean temperature superior to the annual, and which is called the temperature of the place. This is obtained by adding together the mean annual temperatures of all the years which constitute the thermometric period, and dividing the sum thus obtained by the number of years.

But even though the period of the variation of the mean annual temperature be not known, a near approximation to the mean temperature of the place may be obtained by adding together any attainable number of mean annual temperatures and dividing their sum by their number. The probable accuracy of the result will be greater, the less the difference between the temperatures computed.

Thus it was found by a comparison of thirty mean annual temperatures at Paris, that the mean was $51^{\circ} \cdot 44$, and that the difference between the greatest and least of the mean annual temperatures was only $5^{\circ} 4$. It may therefore be assumed that $51^{\circ} \cdot 44$ does not differ'by so much as two-tenths of a degree from the true mean tempenature of that place.

Observation, however, has been hitherto so limited, both as to extent and duration, that this thermal character has been determined for a very limited number of places. Indications, nevertheless, have been obtained sufficiently clear and satisfactory to enable Humboldt to arrive at some general conclusions, which we shall now briefly state.
2169. Isothermal lines.-In proceeding successively along the same meridian from the equator towards the pole, the mean temperature decreases generally, but not regularly nor uniformly. At some points it even happens that the mean
"temperature augments, instead of decreasing. These irregularities are caused partly by the varying character of the surface, over which the meridian passes, and partly by the atmospheric effects produced by adjacent regions, and a multitude of other causes, local and accidental. As these causes of irregularity in the rate of decrease of the mean temperature, proceeding from the equator to the poles, are different upon different meridians, it is evident that the points of the meridians which surround the globe, at which the mean temperatures are equal, do not lie upon a parallel of latitude, as they would if the causes which affect the distribution of heat were free from all such irregularities and accidental influences.

If, then, a series of points be taken upon all the meridians surrounding the globe, having the same mean temperature, the line upon which such points are placed is called an isothermal line.

Each isothermal line is therefore characterized by the uniform mean temperature, which prevails upon every part of it.
2170. Isothermal zones.-The space included between two isothermal lines of given temperatures is called an isothermal zone.

The northern hemisphrere has been distributed in relation to its thermal condition into six zones, limited by the six isothermal lines, characterized by the mean temperatures, $86^{\circ}$, $74^{\circ}, 68^{\circ}, 59^{\circ}, 50^{\circ}, 41^{\circ}$ and $32^{\circ}$.
2171. The first thermal or torrid zone.-This zone is a space surrounding the globe, included between the equator and the isothermal line, whose temperature is $74^{\circ}$.

The mean temperature of the terrestrial equator is subject to very little variation, and it may thejefore be considered as very nearly an isothermal line. Its imean temperature varies between the narrow limits of $81 \frac{1}{2}{ }^{\circ 0}$ and $82 \frac{1}{2}^{\circ}$.
2172. Thermal equator.-If, upon each meridian, the point of greatest mean temperature be taken, the series of such points will follow a certain course round the globe, which has been designated as the thermal equator. This line departs from the terrestrial equator, to the extent of ten or twelre degrees on the north and about eight degrees on the south side, following a sinuous and irregular course, intersecting the terrestrial equator at about $100^{\circ}$, and $160^{\circ}$ east longitude. - It
attains its greatest distances north at Jamaica, and at a point in Central Africa, having a latitude of $15^{\circ}$, and east longitude $10^{\circ}$ or $12^{\circ}$. The greatest mean temperature of the thermal equator is $86^{\circ}$.

The isothermal line having the temperature of $74^{\circ}$ is not very sinuous in its course, and does not much depart from the tropics.
2173. The second thermal zone. - This zone, whicli is included between the isothermal parallels characterized by the mean temperatures of $74^{\circ}$ and $68^{\circ}$ is much more sinuous, and includes very various latitudes. At the points where it intersects the meridians of Europe, it is convex towards the north, and attains its greatest latitude in Algeria.
2174. The third thermal zone. - This zone, included between the isothermal parallels which have the mean temperatures of $68^{\circ}$ and $59^{\circ}$, passes over the coasts of France upon the Mediterranean, about the latitude $43^{\circ}$, and from thence bends southwards, both east and west, on the east towards Nangasaki and the coasts of Japan, and on the west to Natchez on the Mississippi.
2175. The fourth thermal zone. - This zone is included between the parallels of mean temperatures $59^{\circ}$ and $50^{\circ}$. It is convex to the north in Europe, including the chief part of Firance, and thence falls to the south on both sides, including Pekin on the east, and Philadelphia, New York, and Cincinnati on the west. It is evident from this arrangement of the fourth thermal zone, that the climate of Europe is warmer than that of those parts of the eastern and western continents which have the same latitude.
2176. The fifth and sixth thermal zones. - The sixth zone, included between the mean temperatures of $50^{\circ}$ and $41^{\circ}$, is more sinuous, and includes latitudes more various even than the preceding. The thermometric observations, however, which have been hitherto made in these retrions, are too limited to supply ground for any general inferences respeoting it.
2177. The polar regions. - The circle whose area is comprised within the isothermal parallel whose mean temperature is $32^{\circ}$, is still less known. Nevertheless, the results of the ob, servations made by arctic voyagers withirf the last twenty years, afford ground for inferring that the mean temperature of the pole itself must be somewhere from $13^{\circ}$ to $35^{\circ}$ below the zero
of Falrenheit, or $45^{\circ}$ to $67^{\circ}$ below the temperature of melting ice.
2178. Climate varies on the same isothernal line. - When it is considered how different are the vegetable productions of places situate upon the same isothermal line, it will be evident that other thermal conditions besides the mean temperature must be ascertained before the climate of a place can be known. Thus London, New York, and'Pekin are nearly on the same isothermal line, yet their climates and vegetable productions are extremely different.
2179. Constant, variable, and extreme climates. - One of the circumstances which produce the most marked difference in the climates of places having the same mean temperature is the difference between the extreme temperatures. In this respect climates are classed as constant, variable, and extreme.

Constant climates are those in which the maximum and minimum monthly temperatures differ but little; variable climates are those in which the difference between these extremes is more considerable, and extreme climates are those in which this difference is very great.

Constant climates are sometimes called insular, because the effect of the ocean in equalising the temperature of the air is such as to give this character to the climates of islands.
2180. Examples of the classification of climates. - The following examples will illustrate this classification of climates:-

| Places. | Mean Temperature. | Hiphest mean Monthly Temperaturc. | I, orest mean Montils Tempera. ture. | Difference. |
| :---: | :---: | :---: | :---: | :---: |
| Funchal - - | $\stackrel{0}{69}$ | $\stackrel{0}{75.56}$ | $\begin{gathered} \circ \\ 62.96 \end{gathered}$ | $\begin{gathered} \circ \\ 12 \cdot 60 \end{gathered}$ |
| London - * | 50.36 | 66.92 | $41 \cdot 72$ | 25.20 |
| Paris - - | 51.08 | 6. 6.30 | 36.14 | 29.16 |
| St. Malo - - | 54.14 | 6.40 | 37.76 | 26.64 |
| New York | 53.78 | 80.78 | 25.34 | 55.14 |
| Pekin | $53 \cdot 36$ | $84 \cdot 38$ | 24.62 | 49.76 |

Funchal offers the example of a constant or insular climate; London, Paris, and St. Malo, of a variable; and New York and Pekin of an extreme climate.
2181. Climatological conditions. - A complete analysis of those conditions on which climate depends, requires also that the epochs of the extreme temperature, and, in a word, the general distribution of heat through the seasons should be stated. For this purpose we should have an exact record, not only of the extreme temperatures and the mean annual and monthly temperatures, but also the mean diurnal. The importance of such data in any climatological inquiries will be perceived when it is considered that a few degrees difference in the lowest temperature, will decide the question of the possibility of certain vegetable productions continuing to live, and the difference of a few degrees in the highest temperature will render it possible or not for certain fruits to ripen.
2182. Table of Paris temperatures. - The following table, published by M. Arago, shows the extremes of the temperature of the air in Paris for more than a century : -

| Greatest Heat. |  |  | Greatest Codd. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year. | Month. | Temperature, Fahrenheit. | Year. | Month. | Temperature, Fahrenheit. |
|  | August 8. | ${ }_{90}{ }^{-}$ |  |  | $\bigcirc$ |
| 1763 | August 8. | 96.1 | 1716 |  | - $\begin{array}{r}1.6 \\ -1.7\end{array}$ |
| 1754 | "14. | $95 \cdot 0$ | 1754 |  | $\pm 6.6$ |
| 175s | " 14. | 94.5 | 1755 | $\because 8$. | +3.9 |
| 1793 | " 8. | $101 \cdot 1$ | 1768 | " 8 . | +1.2 |
| 1793 | " 16. | $99 \cdot 1$ | 1776 | " 29. | $-2.4$ |
| 1800 | August 18. | $95 \cdot 9$ | 1783 | December 30. | -2.4 |
| 1802 | " 8. | $97 \cdot 5$ | 1788 | " 31. | - $8 \cdot 1$ |
| 1803 | * 8. | 98.1 | 1795 | January 25. | $-10.3$ |
| 1808 1818 | July 15. | $97 \cdot 2$ 94.1 | 1798 1823 | December 26. | $+0.3$ |
| 1818 | " 24. | $94 \cdot 1$ | 1823 | January 14. | +5.9 |

2183. Extreme temperature in torrid zone. - The highest temperature of the air which has been observed within the torrid zone is $130^{\circ}$, which was observed by MM. Lyon and Ritchie, in the Oasis of Mourzouk. This, howerer, is an extreme and exceptional case, the temperature, even in this zone, rarely exceeding $120^{\circ}$.
2184. Extreme temperature in polar regions. -The lowest temperatures observed by arctic voyagers in the polar regions range from $40^{\circ}$ to $60^{\circ}$ below zero of Fahrenheit, which is from $70^{\circ}$ to $90^{\circ}$ below the temperature of melting ice. Thus it appears that the air at the surface of the earth ranges between $-60^{\circ}$ and $+120^{\circ}$, the extremes differing by $180^{\circ}$.
2185. The variation of temperature depending on the elcvation of the olserver above the level of the sea. -Innumerable. phenomena show that the temperature of the air falls as the elevation increases. The presence of eternal snow on the elevated parts of mountain ranges, in every part of the globe, not excepting even the toritid zone, is a striking evidence of this.

Numerous observations have been made on the slopes of mountains, and by means of balloons and kites, to ascertain the law according to which the temperature falls as the height increases. Captain Parry raised a self-registering thermometer to the height of about 400 feet, by means of a kite, at Ingloolick, latitude $69^{\circ} 21^{\prime}$. At this elevation the temperature was $55^{\circ}$ below zero, being the same temperature as at the surface. At the equator Humboldt made an extensive series of observations, the general results of which are as follows:-

| Elevation in Feet. | Mean Temperature. | Difference. |
| :---: | :---: | :---: |
|  | 0 | 0 |
| 0 | 81 | 0 |
| 3250 | 71 | 10 |
| 6500 | 65 | 6 |
| 9750 | 58 | 7 |
| 13,000 | 44. | 134 |
| 16,250 | 34 | 94 |

It appears from these observations, which were made upon the declivities of the vast mountain ranges which traverse the equatorial regions, that the decrease of temperature is neither uniform nor regular. The rate of decrease is least between the elevation of 3000 and 6000 feet. This is explained by the fact, that this stratum of the atmosphere at the Line is the habitual region of clouds. It is there that the vapours ascending from the surface, being more or less condensed, absorb a large portion of the solar heat, and it is not therefore surprising that this stratum should be cooled in a less degree than the strata consisting of air less charged with vapour.

The observations made in temperate climates give results equally irregular. Gay-Lussac found ascending in a balloon, that the thermometric column fell one degree for an elevation of about 320 feet. On the Alps the height which produces a fall of one degree is from 260 to 280 feet, and on the Pyrenees from 220 to 430 feet. It may therefore be assumed, that in the tropical regions an elevation of 300 feet, and in our latitudes
from 300 to 330 fect, corresponds to a fall of one degree of temperature on an average, subject, however, to considerable local viryiation.
2185. Elevation of the limit of perpetual snow. - It might appéar that in those clevations at which the temperature falls to $32^{\circ}$, water cannot exist in the liquid state, and we might expect that above this limit we should find the surface invested with perpetual snow. Observation nevertheless shows such an inference to be erroneous. Humboldt in the equatorial regions, and M. Leopold de Buch in Norway and Lapland, have shown that the snow-Line does not correspond with a mean temperature of $32^{\circ}$ for the superficial atmosphere, but that on the contrary, within the tropics, it is marked by a mean temperature of about $35^{\circ}$, while in the northern regions, in latitudes of from $60^{\circ}$ to $70^{\circ}$, the mean temperature is $26 \frac{1_{2}^{\circ}}{}{ }^{\circ}$.
2186. Conditions which affect it. - It appears that the snowline is determined not so much by the mean annual temperature of the air as by the temperature of the hottest month. The higher this temperature is, the more elevated will be the limit of perpetual suow. But the temperature of the hottest month depends on a great variety of local conditions, such as the cloudy state of the atmosphere, the nature of the soil, the inclination and aspect of the surface, the prevailing winds, \&c.
2187. Table of heights of snow-line observed. - In the following table are collected and arranged, the results of the most important and accurate observations on the snow-line.

2188. Further resultis of Humboldt's and Pentland's re-searches.-To these general results may be added the following observations of M. Humboldt* : -
" 1 . The snow-line on the Andes does not vary more than 70 to 100 feet in its elevation.
"The plains of Antisana, at an elevation of 13,800 feet, clothed with a rich vegetation of aromatic herb, are covered with a depth of three or four feet of snow for five or six weeks.
"In Quito, mean temperature $48^{\circ}$, snow is never seen below the elevation of 12,000 fect.
"Hail falls in the tropical regions at elevations of from 2000 to 3000 feet, but is never witnessed on the lower plateaux. It falls once in five or six years.
"No mountains have been observed in tropical Africa which rise to the snow-line.
"2. Pentland found that from $14^{\circ}$ to $19^{\circ}$ lat. S. the snow-line is higher than upon the Line. This might probably be explained by the nature and configuration of the surface.
"3. Between the Line and $20^{\circ}$ lat. N. the snow-line falls only 700 feet. The variation of the height of the snow-line increases with the latitude.
"The summit of Mowna Roa (Owhyhee), Sandwich Islands, whose height exceeds 16,000 feet, is sometimes divested of snow.
"4. The elevation of the snow-line on the southern declivity of the Himalaya agrees with observations made in Mexico ; but the northern declivity presents a singular anomaly, the snowline rising to 16,000 feet, a greater elevation than upon the Line.
" 5 . The snow-line on the Caucasus is higher by 1300 feet. than on the Pyrenees, which are, nevertheless, in the same latitude.
" 6 . The snow-line on the chain of mountains which extend along Norway, from $58^{\circ}$ to $70^{\circ}$ lat., is at an elevation of 5000 feet. This great elevation in latitudes so high is probably explicable by local atmospheric phenomena, and the proximity of the sea."
2189. Thermal phenomena below the surface. - At a given place the surface of the ground undergoes a periodical variation of temperature, attaining a certain maximum in summer, and a

[^1]minimum in winter, and gradually, but not regularly or uniformly, augmenting from the minimum to the maximum, and decreasing from the maximum to the minimum.

The question then arises as to whether this periodic variation of temperature is propagated downwards through the crust of the earth, and if so, whether in its descent it undergoes any and what modifications?

To explain the phenomena which have been ascertained by observation, let us express the mean temperature by m , and let the maximum and minimum temperatures be $\tau$ and $t$.

If we penetrate to depths more or less considerable, we shall find that the mean temperature $m$ of the strata will be very nearly the same as at the surface. The extreme temperatures T and $t$, will, however, undergo a considerable change, t decreasing, and $t$ increasing. Thus the extremes gradually approach each other as the depth increases, the mean m remaining nearly unaltered.
2190. Stratum of invariable temperature. - A certain depth will therefore be attained at length, when the maximum temperature T , by its continual decrease, and the minimum temperature $t$, by its continual increase, will become respectively equal to the mean temperature m. At this depth, therefore, the periodical variations at the surface disappear; and the mean temperature m is maintained permanently without the least change.

This mean temperature, however, though nearly is not precisely equal to the mean temperature at the surface. In descending ar undergoes a slight increase, and at the depth where T and $t$ become equal to m , and the variation disappears, the - mean temperature is a little higher than the mean temperature of the surface.
2191. Its depth varies with the latitude. - The depth at which the superficial vicissitudes of temperature disappear varies with the latitude, with the nature of the surface, and other circumstances. In our climates it varies from 80 to 100 feet. It diminishes in proceeding towards the equator, and increases towards the pole. The excess of the permanent temperature at this depth above the mean temperature at the surface, increases with the latitude.
2192. Its depth and temperature at Paris. - The same thermometer which has been kept for sixty years in the vaults of
the Observatory at Paris, at the depth of eighty-eight feet below the surface, has shown, during that interval, the temperature of $11^{\circ} .82$ Cent., which is equal to $534^{\circ}$ Fahr., without varying more than half a degree of Fahr., and even this variation, small as it is, has been explained by the effects of currents of air produced by the quarrying operations in the neighbourhood of the Observatory.
2193. Its form. - We must therefore infer, that within the surface of the earth there exists a stratum of which the temperature is invariable, and so placed that all strata superior to it are more or less affected by the thermal vicissitudes of the surface, more so the nearer they are to the surface, and that this stratum of invariable temperature has an irregular form, approaching nearer to the surface at some places, and receding further from it at others, the nature and character of the surface, mountains, valleys, and plains, seas, lakes, and rivers, the greater or less distance from the equator or poles, and a thousand other circumstances, imparting to it variations of form, which it will require observations and experiments much more long continued and extensive than have hitherto been made, to render manifest.
2194. Thermal phenomena between the surface and the stratum of invariable temperature. - The thermometric observations on the periodical changes which take place above the stratum of invariable temperature are not so numerous as could be desired : nevertheless, the following general conditions have been ascertained, especially in the middle latitudes of the northern hemisphere:-

1. The diurnal variations of temperature are not sensible to a greater depth than $3 \frac{1}{2}$ feet.
2. The difference $\mathbf{T}-t$ between the extreme temperatures of the strata decreases in geometrical progression for depths measured in arithmetical progression, or nearly so.
3. At the depth of 25 feet, $\mathrm{T}-\boldsymbol{t}=2^{\circ}$. At 50 feet $\mathrm{t}-\boldsymbol{t}$ $=0.2$; and at 60 to 80 fect, $\mathrm{T}-t=0^{\circ} \cdot 02$.
4. Since the effects of the superficial variation must require a certain time to penetrate the strata, it is evident that the epoch at which each stratum attains its maximum and minimum temperatures will be different from those at which the other strata and the surface attain them. The lower the strata the greater will be the difference between the times of
attaining those limits, as compared with the surface. Thus, it is found, that at the depth of twenty-five feet the maximum is not attained until the surface has attained its minimum. The seasons, therefore, at this depth are reversed; the temperature of July being manifested in January, and vice versâ.
5. Thermal phenomena below the stratum of 'uniform temperature. - The same uniformity of temperature which prevails in the invariable stratum is also observed at all greater depths; but the temperature increases with the depth. Thus, each successive stratum, in descending, has a characteristic temperature, which never changes. The rate at which this temperature augments with the depth below the invariable stratum is extremely different in different localities. In some there is an increase of one degree for every thirty feet, while in others the same increase corresponds to a depth of 100 feet. It may be assumed, in general, that an increase of one degree of temperature will take place for every fifty or sixty feet of depth.
6. Temperature of springs. - The permanency of the temperatures of the inferior strata is rendered manifest by the uniformity of the temperature of springs, of which the water rises from any considerable depths. At all seasons of the year the water of such springs maintains the same uniform temperature.

It may be assumed that the temperature of the water proceeding from such springs is that of the strata from which they rise. In these latitudes it is found in general to be a little above the mean temperature of the air for ordinary springs, that is from those which probably rise from strata not below the invariable stratum. In higher latitudes the excess of temperature is greater, a fact which is in accordance with what has been already explained.

It has not been certainly ascertained whether the hot springs, some of which rise to a temperature little less than that of boiling water, derive their heat from the great depth of the strata from which they rise, or from local conditions affecting the strata. The uniformity of the temperature of many of them appears to favour the former hypothesis; but it must not be forgotten that other geological conditions besides mere depth may operate with the same permanency and regularity.
2197. Thermal conditions of seas and lakes. - The anomalous quality manifested in the dilatation of water when its
temperature falls below $38^{\circ} .8$ Fuhr. (1395), and its consequent maximum density at that temperature, is attended with most remarkable and important consequences in the phenomena of the waters of the globe, and in the economy of the tribes of organised creatures which inhabit them. It is easy to show that, but for this provision, exceptional and anomalous as it seems, disturbances would take place, and changes ensue, which would be attended with effects of the most injurious description in the economy of nature.

If a large collection of water, such as an occan, a sea, or a lake, be exposed to continued cold, so that its superficial stratum shall have its temperature constantly reduced, the following effects will be manifested.

The superficial stratum falling in temperature, will become heavier, volume for volume, than the strata below it, and will therefore sink, the inferior strata rising and taking its place. These in their turn being cooled will sink, and in this manner a continual system of downward and upward currents will be maintained, by means of which the temperature of the entire mass of liquid will be continually equalized and rendered uniform from the surface to the bottom. This will continue so long as the superficial stratum is rendered heavicr, volume for volume, than those below it, by being lowered in temperature. But the superficial stratum, and all the inferior strata, will at length be reduced to the uniform temperature of $38^{\circ} \cdot 8$. After this the system of currents upwards and downwards will cease. The several strata will assume a state of repose. When the superficial stratum is reduced to a temperature lower than $38^{\circ} \cdot 8$ (which is that of the maximum density of water), it will become lighter, volume for volume, instead of being heavier than the inferior strata. It will therefore float upon them. The stratum immediately below it, and in contact with it, will be reduced in temperature, but in a less degree; and in like manner a succession of strata, one below the other, to a certain depth, will be lowered in temperature by the cold of those above them, but each stratum being lighter than those below, will remain at rest, and no interchange by currents will take place between stratum and stratum. If water were a good conductor of heat, the cooling effect of the surface would extend downwards to a considerable depth. But water being, on the
contrary, an extremely imperfect conductor, the effect of the superficial temperature will extend only to a very limited depth; and at and below that limit, the uniform temperature of $38^{\circ} \cdot 8$, that of the greatest density, will be maintained.

This state of repose will continue until the superficial stratum falls to $32^{\circ}$, after which it will be congealed. When its surface is solidified, if it be still exposed to a cold lower than $32^{\circ}$, the temperature of the surface of the ice will continue to fall, and this reduced temperature will be propagated downward, diminishing, however, in degree, so as to reduce the temperature of the stratum on which the ice rests to $32^{\circ}$, and therefore to continue the process of congelation, and to thicken the ice.

If ice were a good conductor of heat, this downward process of congelation would be coutinued indefinitely, and it would not be impossible that the entire mass of water from the surface to the bottom, whatever be the depth, might be solidified. Ice, however, is nearly as bad a conductor of heat as water, so that the superficial temperature can be propagated only to a very inconsiderable depth, and it is found accordingly, that the crust of ice formed even on the surface of the polar seas, does not exceed the average thickness of twenty feet.
2198. Thermal condition of a frozen sea. - The thermal condition, therefore, of a frozen sea, is a state of molecular repose, as absolute as if the whole mass of liquid were solid. The temperature at the surface of the ice being below the freezing point, increases in descending until it rises to the freezing point, at the stratum where the ice ceases, and the liquid water commences. Below this the temperature still augments until it reaches $38^{\circ} 8$, the temperature of maximum density of water, and this temperature is continued uniform to the bottom.
2199. Process of thawing. - Let us now consider what effects will be produced, if the superficial strata be exposed to an increase of temperature. After the fusion of the ice, the temperature of the surface will gradually rise from $32^{\circ}$ to $38^{\circ} .8$, the temperature of greatest density. When the superficial stratum rises above $32^{\circ}$, it will become heavier than the stratum under it, and an interchange by currents, and a con-

[^2]sequent equalization of temperature, will take place, and this will continue until the superficial stratum attain the temperature of $38^{\circ} \cdot 8$, when the temperature of the whole mass of water from the surface to the bottom will become uniform.

After this a further elevation of the temperature of the superficial stratum will render it lighter than those below it, and no currents will be produced, the liquid remaining at rest; and this state of repose will continue so long as the temperature continues to rise.

Every fall of the superficial temperature, so long as it continues above $38^{\circ} \cdot 8$, will be attended with an interchange of currents between the superficial and those inferior strata whose temperature is above $38^{\circ} 8$, and a consequent equalization of temperature.
2200. Depth of stratum of constant temperature in occans and seas.-It appears, therefore, to result as a necessary consequence from what has been explained, and this inference is fully confirmed by experiment and observations, that there exists in oceans, seas, and other large and deep collections of water, a certain stratum, which retains permanently, and without the slightest variation, the temperature of $38^{\circ} 8$, which characterizes the state of greatest density, and that all the inferior strata equally share this temperature. At the lower latitudes, the superior strata have a higher, at the higher latitudes a lower temperature, and at a certain mean latitude the stratum of invariable temperature coincides with the surface.

In accordance with this, it has been found by observation that in the torrid zone, where the superficial temperature of the sea is about $83^{\circ}$, the temperature decreases with the depth until we attain the stratum of invariable temperature, the depth of which, upon the Line, is estimated at about 7000 feet. The depth of this stratum gradually diminishes as the latitude increases, and the limit at which it coincides with the surface is somewhere between $55^{\circ}$ and $60^{\circ}$. Above this the temperature of the sea increases as the depth of the stratum increases, until we sink to the stratum of invariable temperature, the depth of which at the highest latitudes (at which observations have been made) is estimated at about 4500 feet.
2201. Effect of superficial agitation of the sea extends to only a small depth.--It might be imagined that the temperar
ture of the surface would be propagated downwards, and that a thermal equalization might therefore be produced by the intermixture of the superior with the inferior strata, arising from the agitation of the surface of the waters by atmospheric commotions. It is found, however, that these effects, even in the case of the most violent storms and hurricanes, extend to no great depth, and that while the surface of the ocean is furrowed by waves of the greatest height and extent, the inferior strata are in the most absolute repose.
2202. Destructive effects which would be produced if water had not a point of maximum density above its point of congelation. - If water followed the general law, in virtue of which all bodies become more dense as their temperature is lowered, a continued frost might congeal the ocean from its surface to the bottom, and certainly would do so in the polar regions; for in that case the system of vertical currents, passing upwards and downwards and producing an equalization of temperature, which has been shown to prevail above $38^{\circ} 8$, would equally prevail below that point, and consequently the same equalization of temperature would be continued, until the entire mass of water, from the surface to the bottom, would be reduced to the point of congelation, and would consequently be converted into a solid mass, all the organized tribes inbabiting the waters being destroyed.

The existence of a temperature of maximum density at a point of the thermometric scale above the point of congelation of water, combined with the very feeble conducting power of water, whether in the liquid or solid state, renders such a catastrophe impossible.
2203. Variations of the temperature of the air at sea and on land.-The air is subject to less extreme changes of temperature at sea than on land. Thus, in the torrid zone, while the temperature on land suffers a diurnal variation amounting to $10^{\circ}$, the extreme diurnal variation at sea does not exceed $31^{\circ}$. In the temperate zone the diurnal variation at sea is limited generally to about $5 \frac{1}{2}^{\circ}$, while on continents it is very various and everywhere considerable. In different parts of Europe it varies from $20^{\circ}$ to $25^{\circ}$.

At sea as on land the time of lowest temperature is that of , suncise, but the time of greatest heat is about noon, while on land it is at two or three hours after noon.

On compariing the temperature of the air at sea with the superficial temperature of the water, it has been found that betreen the tropics the air, when at its highest temperature, is warmer than the water, but that its mean diurnal temperature is lower than that of the water.

In latitudes between $25^{\circ}$ and $50^{\circ}$ the temperature of the air is very rarely higher than that of the water, and in the polar regions the air is never found as warm as the surface of the water. It is, on the contrary, in general at a very much lower temperature.
2204. Interchange of equatorial and polar waters.- Much uncertainty prevails as to the thermal phenomena manifested in the vast collections of water which cover the greater part of the surface of the globe. It appears, however, to be admitted that the currents caused by the difference of the pressures of strata at the same level in the polar and equatorial seas, produce an interchange of waters, which contributes in a great degree to moderate the extreme thermal effects of these regions, the current from the pole reducing the temperature of the equatorial waters, and that from the line raising the temperature of the polar waters and contributing to the fusion of the ice. A superficial current directed from the line towards the poles carries to the colder regions the heated waters of the tropics, while a counter current in the inferior strata carries from the poles towards the line the colder waters. Although the prevalence of these currents may be regarded as established, they are nevertheless modified, both in their intensity and direction, by a multitude of causes connected with the depth and form of the bottom, and the local influence of winds and tides.
2205. Polar ice. - The stupendous mass of water in the solid state which forms an eternal crust encasing the regions of the globe immediately around the poles, presents one of the grandest and most imposing classes of natural phenomena. The observations and researches of Captain Scoresby have supplied a great mass of valuable information in this department of physical geography.
2206. Extent and character of the ice fields.-Upon the coasts of Spitzbergen and Greenland vast fields of ice are found, the extent of which amounts to not less than twelve to fifteen hundred square miles, the thickness varying from twenty to twentyfive fect. The surface is sometimes so eren that a sledge can
run without difficulty for an hundred miles in the same direction. It is, however, in some piaces, on the contrary, as uneven as the surface of land, the masses of ice collecting in $r$ Jumns and eminences of a rariety of forms, rising to heights of from twenty to thirty feet, and presenting the most striking ond pictüresque appearances. These prodigious crystals ometimes exhibit gorgeous tints of greenish blue, resembling $f$, e topaz, and sometimes this is varied by a thick covering of snow upon their summits, which are marked by an endless variety of form and outline.
2207. Production of icebergis by their fracture. - These vast ice fields are sometimes suddenly broken, by the pressure of the subjacent waters, into fragments presenting a surface of from 100 to 200 square yards. These being disperisd, are carried in various directions by currents, and sometimes by the effect of intersecting currents they are brought into collision with a fearful crash. A ship, which might chance in such a case to be found between them could no more resist their force than could a glass vessel the effect of a cannon ball. 'Terrible disasters occur from time to time from this cause. It is by the effects of these currents upon the floating masses of broken ice that these seas are opened to the polar navigators. It is thus that whalers are enabled to reach the parallels from $70^{\circ}$ to $80^{\circ}$, which are the favourite resort of those monsters of the deep which they pursue.
2208. Their forms, and magnitude. - Sometimes after such collisions new icebergs arise from the fragments which are heaped one upon another, "Pelion on Ossa," more stupendous still than those which have been broken. In such cases the masses which result assume forms infinitely various, rising often to an elevation of thirty to fifty feet above the surface of the water; and since the weight of ice is about four-fifths of the weight of its own bulk of water (787), it follows that the magnitude of these masses submerged is four times as great as that which is above the surface. The total height of these floating icebergs, therefore, including the part submerged, must be from 150 to 250 feet.
2209. Sunken icebergs. - It happens sometimes that two such icebergs resting on the extremities of a fragment of ice 1100 or 120 feet in length, keep it sunk at a certain depth below the surface of the water. A ressel in such cases may
sail between the icebergs and over the sunken ice; but such a course is attended with the greatest danger, for if any accidental cause should detach either of the icebergs which keep down the intermediate mass while the ship is passing, the latter by its buoyancy will rise above the surface, and will throw up the ship with irresistible force.
2210. Singular effects of their superficial fusion. - Icebergs are observed in Baffin's Bay of much greater magnitude than off the coast of Greenland. They rise there frequently to the height of 100 to 130 feet above the surface, and their total height, including the part immersed, must therefore amount to 500 or 650 feet. These masses appear generally of a beautiful blue colour, and having all the transparency of crystals. During the sumnier months, when the sun in these high latitudes never sets, a superficial fusion is produced, which causes immense cascades, which, descending from their summit and increasing in volume as they descend, are precipitated into the sea in parabolic curves. Sometimes, on the approach of the cold season, these liquid arches are seized and solidified by the intensity of the cold without losing their form, and seem as if caught in their flight between the brink from which they were projected and the surface, and suddenly congealed. These stupendous arches, however, do not always possess cohesion in proportion to their weight, and after augmenting in volume to a certain limit, sink under their weight, and, breaking with a terrific crash, fall into the sea,
2211. Depth of polar seas. - The depth of the seas off the coast of Greenland is not considerable. Whales, being harpooned, often plunge in their agony to the bottom, carrying with them the harpoon and line attached to it. When they float they bear upon their bodies evidence of having reached the bottom by the impression they retain of it , and the length of line they carry with them in such cases shows that depth does not exceed 3000 or 4000 feet. About the middle of the space between Spitzbergen and Greenland the soundings have reached 8000 feet without finding bottom.
2212. Cold of the polar regions. - The degree of cold of the polar regions, like the temperature of all other parts of the globe, depends on the extent and depth of the seas. If there be extensive tracts of surface not covered by water, or covered
only by a small depth, the influence of the water in moderating and equalizing the temperature is greatly diminished. Hence it is that the temperature of the south polar regions is more moderate than that of the north. After passing the latitude of the New Orcades and the New Shetlands, which form a barrier of ice, the navigator enters an open sea, which, according to all appearance, extends to the pole. Much, however, still remains to be discovered respecting the physical condition of these regions.
2213. Solar and celestial heat. - Whatever may be the sources of internal heat, the globe of the earth would, after a certain time, be reduced to a state of absolute cold, if it did not receive from external sources the quantity of heat necessary to repair its losses. If the globe were suspended in space, all other bodies from which heat could be supplied to it being remored, the heat which now pervades the earth and its surrounding atmosphere would be necessarily dissipated by radiation, and. would thus escape into the infinite depths of space. The temperature of the atmosphere, and those of the successive strata, extending from the surface to the centre of the globe, would thus be continually and indefinitely diminished.

As no such fall of temperature takes place, and as, on the contrary, the mean temperature of the globe is maintained at an invariable standard, the variations incidental to season and climate being all periodical, and producing in their ultimate result a mutual compensation, it remains to be shown from what sources the heat is derived which maintains the mean temperature of the globe at this invariable standard, notwithstanding the large amount of heat which it loses by radiation into the surrounding space.

All the bodies of the material universe, which are distributed in countless numbers throughout the infinitude of space, are sources of heat, and centres from which that physical agent is radiated in all directions. The effect produced by the radiation of each of these diminishes in the same proportion as the square of its distance increases. The fixed stars are bodies analogous to our sun, and at distances so enormous that the effect of the radiation of any individual star is altogether insensible. When, however, it is considered that the multitude of these stars spread over the firmament is so prodigious that in some
places many thousand are crowded together within a space no greater than that occupied by the disc of the full moon, it will not be matter of surprise that the feebleness of thermal inAuence, due to.their immense distances, is compensated to a great extent by their countless number; and that, consequently, their calorific effects in those regions of space through which the earth passes in its annual course is, as will presently appear, not only far from being insensible, but is very little inferior to the calorific power of the sun itself.

We are, then, to consider the waste of heat which the earth suffers by radiation as repaired by the heat which it receives from two sources, the sun and the stellar universe; and it remains to explain what is the actual quantity of heat thus supplied to the earth, and what proportion of it is due to each of these causes.
2214. Quantity of heat emitted by the sun. - An elaborate series of experiments were made by M. Pouillet, and concluded in 1838, with the view of obtaining, by means independent of all hypothesis as to the physical character of the sun, an estimate of the actual calorific power of that luminary. A detailed report of these observations and experiments, and an elaborate amalysis of the results. derived from them, appeared in the Transactions of the Academy of Sciences of Paris for that year.

It would be incompatible with the elementary nature and the consequent limits of this work, to enter into the details of these researches. We shall, therefore, confine ourselves here briefly to state their results.

When the firmament is quite unclouded, the atmosphere absorbs about one-fourth of the heat of those solar rays, which enter it vertically. A greater absorption takes place for rays which enter it obliquely, and the absorption is augmented in a certain ascertained proportion, with the increase of obliquity. It results from the analysis of the results obtained in the researches of M. Pouillet, that about forty per cent. of all the heat transmitted by the sun to the earth, is absorbed by the atmosphere, and that consequently only sisty per cent. of this heat reaches the surface. It must, however, be observed that a part of the radiant heat, intercepted by the atmosphere, raising the temperature of the air, is afterwards transmitted, as well by radiation as by contact, from the atmosphere to the earth.

By means of direct observation and experiment made with instruments contrived by him, called pyrheliometers, by means of which the heat of the solar radiation was made to affect $a$ known weight of water at a known temperature, M. Pouillet ascertained the actual quantity of heat which the solar rays would impart per minute to a surface of a given magnitude, on which they would fall vertically. This being determined, it was easy to calculate the quantity of heat imparted by the sun in a minute to the hemisphere of the earth which is presented to it, for that quantity is the same which would be imparted to the surface of the great circle which forms the base of that hemisphere, if the solar rays were incident perpendicularly upon it.
2215. Solar heat at the eartly would melt a shell of ice 100 feet thich in a year. - In this manner it was ascertained by M. Pouillet, that if the total quantity of heat which the earth receives from the sun in a year were uniformly diffused over all parts of the surface, and were completely absorbed in the fusion of a shell of ice encrusting the globe, it would be sufficient to liquefy a depth of 100 feet of such shell.

Since a cubic foot of ice weighs 54 lbs., it follows that the average annual supply of heat.received from the sun per square foot of the earth's surface would be sufficient to dissolve 5400 lbs . weight of ice.
2216. Calculation of the actual quantity of heat emitted by the sun. - This fact being ascertained supplies the means of calculating the quantity of heat emitted from the surface of the sun, independently of any hypothesis respecting its physical constitution.

It is evident from the uniform calorific effects produced by the solar rays at the earth, while the sun revolves on its axis exposing successively every side to the earth in the course of about twenty-five days, that the calorific emanation from all parts of the solar surface is the same. Assuming this, then, it will follow, that the heat which the surface of a sphere surrounding the sun at the distance of the earth would receive would be so many times moret tian the heat received by the earth as the entire surface of such sphere would be greater than that part of it which the earth would occupy. The calculation of this is a simple problem of elementary geometry.

But such a spherical surface surrounding the sun and con-
centrical with it, would necessarily receive all the heat radiated by that luminary, and the result of the calculation proves that the quantity of heat emitted by the sun per minute is such as would suffice to dissolve a shell of ice enveloping the sun, and. having a thickness of $38 \frac{{ }_{1}}{10}$ feet; and that the heat emitted per day would dissolve such a shell, having a thickness of 55748 feet, or about $10 \frac{1}{2}$ miles.
2217. Heat at sun's surface seven times as intense as that of a blast furnace. - The most powerful blast furnaces do not emit for a given extent of fire surface more than the seventh part of this quantity of heat. It must therefore be inferred that each square foot of the surface of the sun emits about seven times as much heat as is issued by a square foot of the fire surface of the fiercest blast furnace.
2218. Temperature of the celestial spaces.-When the surface of the earth during the night is exposed to an unclouded sky, an interchange of heat takes place by radiation. It radiates a certain part of the heat which pervades it, and it receives, on the other hand, the heat radiated from two sources, 1st, from the strata of atmosphere, extending from the surface of the earth to the summit of the atmospheric column, and 2 d , from the celestial spaces, which lie outside this limit, and which receive their heat from the radiation of the countless numbers of suns which compose the stellar universe. M. Pouillet, by a series of ingeniously contrived experiments and observations, made with the aid of an apparatus contrived by him, called an actinometer, has been enabled to obtain an approximate estimate of the proportion of the heat received by the earth which is due to each of these two sources, and thereby to determine the actual temperature of the region of space through which the earth and planets move. The objects and limits of this work do not permit us to give the details of these researches, and we must therefore confine ourselves here to the statement of their results.

It appears from the observations, that the actual temperature of space is included betwee the minor limit of $315^{\circ}$, and the major limit of $207^{\circ}$ below the temperature of melting ice, or between $-283^{\circ}$ and $-175^{\circ}$ Fahr. At what point between these limits the real temperature lies, is not yet satisfactorily ascertained, but M. Pouillet thinks that it cannot differ much from $-224^{\circ}$ Fahr.
2219. Heat received by earth from celestial space would melt; in a year, eighty-five feet thich of ice.—It is proved from these results, that the quantity of heat imparted to the earth in a year, by the radiation of the celestial space, is such as would liquefy a spherical shell of ice, covering the entire surface of the earth, the thickness of which would be eighty-five feet, and that forty per cent. of this quantity is absorbed by the atmosphere.

Thus the total quantity of heat received annually by the earth is such as would liquefy a spherical shell of ice 185 feet thick, of which 100 feet are due to the sun, and 85 feet to the heat which emanates from the stellar universe.

The fact that the celestial spaces supply very little less heat to the earth andually than the sun, may appear strange, when the very low temperature of these spaces is considered, a temperature $180^{\circ}$ lower than the cold of the pole during the presence of the sun. It must,- however, be remembered that while the space from which the solar radiation emanates, is only that part of the firmament occupied by. the disc of the sun, that from which the celestial radiation proceeds is the entire celestial sphere, the area of which is about five million times greater than the solar disc. It will therefore cease to create surprise, that the collective effect of an area so extensive should be little short of that of the sun. ',

The calorific effect due to the solar radiation, according to the calculations and observations of M. Pouillet, exceeds that which resulted from the formule of Poisson. These formula were obtained from the consideration of the variation of the temperature of the strata of the earth at different depths below the surface. M. Pouillet thinks that the results proceeding from the two methods would be brought into accordance if the influence of the atmosphere on solar heat, which, as appears from what has been explained, is very considerable, could be introduced in a more direct manner into Poisson's formula.
2220. Summary of the thermal effects.-In fine, therefore, the researches of M. Pouillet give the following results, which must be received as mere approximations subject to correction by future observation :

1st. 'That the sun supplies the earth annually with as much heat as would liquefy 100 feet thick of ice covering the entire globe.

2d. That the celestial spaces supply as much as would liquefy 85 feet thick.

3d. That 40 per cent. of the one and the other supply is absorbed by the atmosphere, and 60 per cent. received by the earth.

4 th. That of the heat radiated by the earth, 90 per cent. is intercepted by the atmosphere, and 10 per cent. dispersed in space.

5th. That the heat evolved on the surface of the sun in a day would liquefy a shell of ice $10 \frac{1}{2}$ miles thick, enveloping the sum, and the intensity of the solar fire is. seven times greater than that of the fiercest blast furnace.

6th. That the temperature of space outside the atmosphere of the earth is $224^{\circ}$ Fuhr., or $256^{\circ}$ below that of melting ice.

7th. That the solar heat alone, constitutes only two-thirds of the entire quantity of heat' supplied. to the earth to repair its thermal losses by terrestrial radiation'; and that without the heat supplied by stellarradiaitià, the temperature of the earth would fall to a point which would be incompatible with organic life.

## CHAP. II.

## THE AIR AND ATMOSPHERIC VAPOURS.

2221. Periodical changes in the atmospheric pressure. - The periodical changes to which the pressure of the atmosphere is subject, and the principal causes which produce them have been already briefly indicated (719. et seq.). We shall now explain more fully some of the more important of these phenomena.

It has been customary in these climates to observe and register the height of the barometric column four times a day, at 9 A.m., at noon, at 3 p.ar., and at 9 p.ar.

The mean monthly and mean annual heights are obtained from a comparison of the noon observations. The diurnal period is obtained from a comparison of the morning and atternoon observations.
2222. Mean annual height of barometer. - The mean lieight of the barometer at Paris obtained from observations continued
from 1816 to 1836 , has been ascertained to be $29 \cdot 764$ inches. The mean annual height during this period did not vary so much as twelve hundredths of an inch.
2223. Effect of winds on the barometric column. - It has been found that the barometric column is affected by the direction and continuance of the wind, but these effects are not the same in all localities. At Paris, the height is greatest when the wind blows from the north or north-east, and least when from the south and south-west. The extreme difference of the mean heights during such winds was found to be twenty-seven hundredths of an inch. Observations made at Metz by Schuster gave a like result, but with a little less difference. At Marseilles, however, no such effect has been observed, but rather a tendency to a contrary change, the height being generally above the mean in southerly winds, and below it in north-westerly.
2224. Diurnal variations of the barometer. - A long series of observations on the diurnal changes in the barometer establish the existence of two periods, a period of decpease from 9 a.m. to 3 p.m., and a period of increase from 3 p.m. to 9 p.s. The mean amount of the former, taken from ten years' observation at Paris, was 0.0294 in , and of the latter 0.0146 in . The decrease from 9 A.m. to 3 r.m. is therefore less than the thirtieth of an inch, and the increase from 3 p.a. to 9 p.m, less than the sixtieth of an inch.

A comparison of these variations in different seasons of the year shows that the increase of the evening is subject to very minute and irregular changes, but that the changes of the decrease in the morning are both more considerable and more regular, the amount of the decrease being always least in November, December, and January, and greatest in February, March, and April.

During the night the barometer falls from 9 p.m. to 4 A.3s., and rises from 4 A.Mr. to 9 A.3r.
2225. The winds. - No meteorological 'phenomenon has had so many observers, and there is none of which the theory is so little understood, as the winds. The art of navigation has produced in every seaman an observer, profoundly interested in the discovery of the laws which govern a class of phenomena, upon the knowledge of which depends not only his professional success but his personal security, and the lives and property committed to his charge.

The chief part of the knowledge which has been collected
respecting the causes which produce these atmospheric currents is derived, nevertheless, much more from the comparison of the registers of observatories than from the practical experience of mariners.
2226. Winds by compression and rarefaction. - Winds are propagated either by compression or by rarefaction. In the former case they are developed in the same direction in which they blow; in the latter case they are developed in the contrary direction. To render this intelligible, let us imagine a column of air included in a tube. If a piston inserted in one end of the tube be driven from the mouth inwards, the air contiguous to it will be compressed, and this portion of air will compress the succeeding portion, and so on; the compression being propagated from the end at which the piston enters toward the opposite end. The remote end being open, the air will flow in a current driven before the piston in the same direction in which the compression is propagated.

If we imagine, on the other hand, a piston inserted in the tube at some distance from its mouth, to be drawn outwards to. ward the mouth, the air behind it will expand into the space deserted by the piston, and a momentary rarefaction will be produced. The next portion of air will in like manner follow that which is next the piston, the rarefaction which begins at the piston being propagated backwards through the tube in a direction contrary to the motion of the piston and that of the current of air which follows it.

What is here supposed to take place in the tube is exhibited on a larger scale in the atmosphere. Any physical cause which produces a compression of the atmosphere from north to south will produce a north wind; and any cause which produces a rarefaction from north to south will produce a south wind.
2227. Effect of sudden condensation of vapour. - Of all the causes by which winds are produced, the most frequent is the sudden condensation of vapour suspended in the atmosphere. In general the atmosphere above us consists of a mixture of air properly so called, and water, either in the state of vapour, or in a vesicular state, the nature and origin of which has not yet been clearly ascertained. In either case its sudden conversion into the liquid state, and its consequent precipitation to the earth, leaves the space it occupied in the atmosphere a vacuum, and a corresponding rarefaction of the air previously
mixed with the vapour ensues. The adjacent strata immediately rush in to re-establish the equilibrium of pneumatic pressure, and winds are consequently produced.

The propagation of winds by rarefaction manifested in directions contrary to that of the winds themselves, is commonin the North of Europe. Wargentin gives various examples of this. When a west wind springs up, it is felt, he observes, at Moscow before it reaches Abo, although the latter city is four hundred leagues west of Moscow, and it does not reach Sweden until after it has passed over Finland.
2228. Hurricanes.-The intertropical regions are the theatre of hurricanes. It is there only that these atmospheric commotions are displayed in all their terrors. In the temperate zones tempests are not only more rare in their occurrence but much less violent in their force. In the circumpolar zone the winds seldom acquire the force which would justify the title of a storm.

The hurricanes of the warm climates spread over a considerable width, and extend through a still more considerable length. Some are recorded which have swept over a distance of four or five hundred leagues with a nearly uniform violence.

It is only by recounting the effects produced by these vast commotions of the atmosplieric ocean, that any estimate can be formed of the force which air, attenuated and light as that fluid is, may acquire when a great velocity is given to it. In hurricanes such as that which took place at Guadaloupe on the 25 th July, 1825, houses the most solidly constructed were overthrown. A new building erected in the most durable manner by the government was rased to the ground. Tiles carried from the roof were projected against thick doors with such force as to pass through them like a cannon ball. A plank of wood $3 \frac{1}{2}$ feet long, 9 inches wide, and an inch thick, was projected with such force as to cut through a branch of palm wood 18 inches in diameter. A piece of wood 15 feet long and 8 inches square in its cross section, was projected upon a hard paved road, and buried to a depth of more than three feet in it. A strong iron gate in front of the governor's house was carried away, and three twenty-four pounders erected on the fort were dismounted.
2229. The probable causes explained. - These effects, prodigious as they are, all arise from mechanical causes. There is no agent engaged in hurricanes more subtle than the me-
chanical force of air in motion, and since the weight. and density of the air suffer no important change, the rast momentum manifested by such effects as those described above, must be ascribed altogether to the extraordinary velocity imparted to the air by the magnitude of the local vacuum produced, as already stated, by the sudden condensation of vapour. To form some approximate estimate of this it may be stated that, in the intertropical regions, a fall of rain often takes place over a vast extent of surface, sufficient in quantity to cover it with a stratum of water more than an inch in depth. If such a fall of rain were to take place over the extent of a hundred square leagues, as sometimes happens, the vapour from which such a quantity of liquid wouild be produced by condensation would, at the temperature of only $50^{\circ}$, occupy a volume 100,000 times greater than that of the liquid; and, consequently, in the atmosphere over the surface of 100 square leagues it would fill a space 9000 feet, or nearly two miles in length. The extent of the vacuum produced by its condensation would be a volume nearly equal to 200 cubic miles, or to the volume of a column whose base is a square mile and whose height is 200 miles.
2230. Water spouts and land spouts. - These phenomena, called water or land spouts according as they are manifested at sea or on land, consist apparently of dense masses of aqueous vapour and air, having at once a gyratory and progressive motion, and resembling in form a conical cloud, the base of which is presented upwards, and the vertex of which generally rests upon the ground, but sometimes assumes a contrary position. This phenomenon is attended with a sound like that of a waggon rolling on a rough pavement.

Violent mechanical effects sometimes attend these meteors. Large trees torn up by the roots, stripped of their leaves, and exhibiting all the appearances of having been struck by lightning, are projected to great distances. Houses are often thrown down, unroofed, and otherwise injured or destroyed, when they lie in the course of these meteors. Rain, hail, and frequently globes of fire, like the ball lightning, also accompany them.

The various appearances exhibited by water spouts are represented in fig. 669.

No satisfactory theory has yet connected these phenomena with the general laws of physics.
2231. Evaporation from the surface of vater. - If the surface of a sen, lake, or other
 large collection of water were exposed to the atmosphere consisting of pure air without any admixture of vapour, evaporation would immediately commence, and the vapour developed at the surface of the water would ascend into and mix with the atmosphere. The pressure of the atmosphere would then be the sum of the pressures of the atmosphere, properly so called, and of the vapour suspended in it, since neither of these elastic fluids can augment or diminish the pressure of the other.

The vapour developed from the surface of the water thus mingling with the atmosphere, acquires a commón temperature with it. This vapour, therefore, receiving thus from the air with which it is intermixed more or less heat, after having passed into the vaporous state, is superheated vapour (1496.). It has, therefore, a greater temperature thare that which corresponds to its density, or, what is the same, it has a less density than that which corresponds to its temperature. Such vapour may therefore lose temperature to $a$-certain extent-without being condensed,
2232. Air may be saturated with vapoitr. - But if the same atmosphere continue to be suspended over tlie surface of water, the process of evaporation being continued, the quantity of vapour which rises into the air and mingles with it will be continually increased until it acquires the greatest density which is compatible with its temperature. Evaporation must then cease, and the air is said to be saturated with vapour.

If the temperature of the nir in such case rise, evaporation will recommence and will continue until the vapour shall acquire the greatest density compatible with the increased temperature, and will then cease, the air being, as before, saturated.
2233. If the temperature of saturated air fall, condensation will take place. - But if the temperature fall, the greatest density of vapour compatible with it being less than at the higher
temperature, a part of the vapour must be condensed, and this condensation must continue until the vapour suspended in the air shall be reduced to that state of density which is the greatest compatible with the reduced temperature.
2234. Atmosphere rarely saturated. - A fluid so light and mobile as the atmosphere, can never remain long in a state of repose, and the column of air suspended over the surface of any collection of water however extensive, is subject to frequent change. In general, therefore, before any such portion of the atmosphere become saturated by evaporation, it is removed and replaced by another portion. It happens, consequently, that the atmosphere rarely becomes saturated by the immediate effect of evaporation.
2235. May become so by reduced temperature or intermingling strata.-The state of saturation is, however, often attained either by loss of temperature, or by the intermixture of strata of air of different temperatures and differently charged with vapours. Thus, if air which is below the point of saturation suffer a loss of heat, its temperature may fall to that point which is the highest compatible with the density of the rapour actually suspended in it. The air will then become saturated, not by receiving any increased quantity of rapour, but by losing that caloric by which the vapour it contained was previously superheated.

If two strata of air at different temperatures, and both charged with vapour to a point below saturation, be intermingled, they will take an jintermediate temperature, that which had the higher temperature imparting a portion of "its heat to that which had a lower'temperature. The vapour with which they were previously charged will likewise be intermixed and reduced to the common temperature. Now, in this case it may happen that the common temperature to which the. entire mass is reduced, after intermixture, shall be either equal to or less than the greatest temperature compatible with the density of the vapour in the mass of air thus mixed. If it be equal to that temperature, the mass of air after intermixture will be saturated, though the strata before intermixture were both below saturation; and if less, condensation must take place until the density of the vapour suspended in the mixture be reduced, to the greatest density compatible with the temperature.
2236. Air and vapour intermingle though of different specific gravities. - It might be supposed that air and vapour being mixed together without combining chemically, would arrange themselves in strata, the lighter floating above the heavier as oil floats above water. This statical law, however, which prevails in liquids, is in the case of elastic fluids subject to important qualifications. The latter class of fluids have a tendency to intermingle and diffuse themselves through and among each other in opposition to their specific gravities. Thus if a stratum of hydrogen, the lightest of the gases, rest upon a stratum of carbonic acid, which is the heaviest, they will by slow degrees intermingle, a part of the hydrogen descending among the carbonic acid, and a part of the carbonic acid ascending among the hydrogen, and this will continue until the mixture becomes perfectly uniform, every part of it containing the two gases in the proportion of their entire quantities.

The same law prevails in the case of vapours mixed with gases; and thus may be explained the fact, that although the aqueous vapour suspended in the air, and having the same temperature, is always lighter bulk for bulk than the air, it does not ascend to the upper strata of the atmosphere, but is uniformly diffused through it.
2237. The pressure of air retards, but does not diminish evaporation. - It may be stated generally, that the effect of a column of air superposed upon the surface of water is only to retard, but not either to prevent or diminish, the evaporation. The same quantity of vapour will be developed as would be produced at the same temperature if no air were superposed on the water; but while in the latter case the entire quantity of vapour would be developed instantaneously, it is produced gradually, and completed only after a certain interval of time when the air is present. The quantity of vapour developed, and its density and pressure, are however exactly the same, whether the space through which it is diffused be a vacuum, or be filled by air, no matter what the density of the air may be. The properties of the air, therefore, neither modify nor are modified by those of the vapour which is diffused through it.
2238. When vapour intermixes with air, it renders it specifically lighter. - Since, at the same temperature and pres-
sure, the density of the vapour of water is less than that of air in the ratio of 5 to 8 , it follows that when air becomes charged with vapour of its own temperature, the volume will be augmented, but the density diminished. If a certain volume of air weigh 8 grains, an equal volume of vapour will weigh 5 grains, the two volumes mixed together will weigh 13 grains, and, consequently, an equal volume of the mixture will weigh $6 \frac{1}{2}$ grains. In this case, therefore, the density of the air charged with vapour is less than the density of dry air of the same temperature in the ratio of $6 \frac{1}{2}$ to 8 .

## CHIAP. III.

hygrometry.
2239. Hygrometry. - This is the name given to that branch of meteorology which treats of the methods of measuring the elastic force and the quantity of aqueous rapour which is suspended in the atmosphere, and in which the influence of various natural bodies and physical agents upon this vapour is explained.

If the atmosphere were always charged with vapour to saturation, the pressure and density of the vapour contained in it would be immediately determined by its temperature, for there would then be the greatest pressure and density compatible with the temperature, and the pressure and density would be given by the tables (1494).
2240. The dew point. - But when the air, as generally happens, is not saturated, it becomes necessary to contrive means by which the temperature to which it must be reduced, in order to become saturated by the quantity of vapour actually suspended in it, can be determined.

Such temperature is called the dew point, inasmuch as alter reduction below that temperature, more or less condensation, and the consequent deposition of moisture or DEw, will take place.
2241. Method of determining the pressure and density of the
vapour suspended in the air. - When the actual temperature of the air and the dew point are known, the pressure and density of the vapour suspended in the air may be found,

Let T express the temperature of the air, $t$ the dew point, $P$ the pressure of the vapour which would saturate the air at the temperature $\mathrm{T}, \boldsymbol{p}$ the pressure of the vapour which would saturate it at the temperature $t$, and, in fine, let $\mathbf{P}^{\prime}$ express the pressure of the vapour actually suspended in the air.

This pressure $P^{\prime}$ is greater than the pressure $p$, which the same vapour having the same density has at the temperature $t$, by that increase of pressure which is due to the increase of temperature from $t$ to $\mathbf{T}$. If the increase of pressure due to one degree of augmented temperature be expressed by $n$, the increase due to $(\mathrm{r}-t)$ degrees will be expressed by $(\mathrm{T}-t) \times n$. Hence, we shall have

$$
\mathrm{P}^{\prime}=p \times\{1+(\mathrm{x}-t) \times n\}
$$

So that when $p$, the pressure of the saturating vapour at the dew point, is known, $\mathbf{P}^{\prime}$, the actual pressure, can be found.

But any means by which the temperature $t$ at the due point can be determined, will necessarily also determine the pressure $p$, inasmuch as this pressure is that which corresponds to vapour having the greatest density compatible with the temperature $t$, and is therefore given by the tables (1494). 'This being found, $\mathbf{P}^{\prime}$ may be computed by the preceding formula.

To find the density of the vapour actually suspended in the nir, or, what is the same, the weight of water in the state of vapour contained in a cubic foot of air, let this weight be expressed by $w^{h}$, and let $w$ express the weight of vapour which would saturate a cubic foot of air at the temperature $T$.

Since the pressure is proportional to the density when the temperature is the same, we shall have

$$
\mathbf{P}: \mathbf{P}^{\prime}:: \mathbf{W}: \mathbf{W}^{\prime} ;
$$

Therefore,

$$
\mathrm{W}^{\prime}=\mathrm{W} \times \frac{\mathrm{P}^{\prime}}{\mathrm{P}}=\frac{\mathrm{W}}{\mathrm{P}} \times p \times\{1+(\mathrm{T}-t) \times n\}
$$

By this formula, therefore, the weight $\mathrm{w}^{\prime}$ of vapour contained in a cubic foot of air can be found, provided the weight and pressure of the vapour which would saturate it at the same temperature, its dew point, and the pressure of the vapour which would saturate it at that point, are severally known.
2242. Table of pressures and densities of saturating vapours. -The following table, in which are given the pressure and weight of the saturating vapour in a cubic foot of air, at the several temperatures expressed in the first column, will supply all the data necessary for such calculations, provided only that means be obtained for determining by experiment the dew point.

Table showing the Pressure and Weight of saturating Vapour contained in a Cubic Foot of Air at Temperatures varying from - $4^{\circ}$ Fabr. to $+104^{\circ}$ Fahr.

| Teraperature. | Pressure: Inclics, Mercury. | Weight of Vapour in a Cuble Fool of Atr. | Temperature. | Piesture: Inches, Merctry | Weight of Vapour fin a Cuble Foot of Air. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 4.0 |  | Grains. | 60.2 |  | Grains |
| - 5.0 | .$^{.08}$ | 1 | ${ }_{68.0}^{60}$ | -64 | 7 |
| 14.0 | $\cdot 10$ | 1 | 69.8 | . 72 | 7 |
| 23.0 | 15 | 2 | 71.6 | . 76 | 8 |
| 32.0 33.8 | -20 | 2 | 73.4 | -81 | 9 |
| 33.8 356 | $\stackrel{22}{ }$ | 3 | $75 \cdot$ | -86 | 9 |
| ${ }_{37}{ }^{3} 4$ | -24 | 3 | 78.0 78 | .96 | 10 |
| ${ }^{39} 1.2$ | -26 | 3 | 80.6 | $1 \cdot 02$ | 11 |
| \$1.00 | $\cdot 28$ |  | \%2.4 | 1.88 | 12 |
| ${ }_{4}^{4.6}$ | -32 | 4 | 84.2 86.0 | 1.14 | ${ }_{13}^{12}$ |
| 46.4 | -34 | 4 | 87.8 | 1.28 | 14 |
| 48.2 50.0 | .36 | 4 | 89.6 9.4 | 1.35 | 14 |
| 51.8 | -40 | 5 | $93 \cdot 2$ | 1.51 | 15 |
| ${ }^{63 \cdot 6}$ | -43 | 5 | 95.0 | 1-59 | 17 |
| 53.4 | . 45 |  | 96.8 | 1.68 | 18 |
| 36.0 59 | . 48 | 6 | 98.6 | 1.77 | 18 |
| 608 | . 54 | 6 | 102.2 | 1.97 | 20 |
| 62.6 64.4 | . 38 | 6 7 | 1040 | $2 \cdot 09$ | 21 |

2243. Example of such a calculation.-As an example of the application of the preceding formulx, let us suppose that the temperature of the air is $77^{\circ}$, and that the dew point is ascertained to be $54 \frac{1}{2}^{\circ}$.

By the preceding table then we obtain the following data :-

$$
\mathrm{T}=77^{\circ}, \quad \mathrm{P}=0.91, \quad t=54 \frac{1}{2}, \quad p=0.44 .
$$

But it appears from what has been already explained (1495), that $n=0.002037=$ द $\downarrow \delta$.

Hence we find

$$
\mathbf{P}^{\prime}=0.44 \times\{1+22 \cdot 5+0.002037\}=0 \cdot 46
$$

It follows, therefore, that the actual pressure of the vapour suspended in the air is 46 per cent. of the pressure of the vapour which would saturate it.

We have also

$$
\mathrm{P}=0.96, \quad \mathrm{~W}=10:
$$

And therefore

$$
\mathrm{w}^{\prime}=5 \cdot 05
$$

2244. Method of ascertaining the dew point. - To determine the dew point let a thin glass or decanter be filled with water, and, immersing a thermometer in it, let it be exposed in the open air. Let ice cold water be poured into it by small quantities and mixed with it, so as to reduce its temperature by slow degrees below that of the surrounding air. A temperature will at length be attained at which a cloudy deposition of moisture will be manifested on the external surface of the glass. The temperature at which this effect first begins to be manifested is the DEW POINT.

To explain this it must be considered that the shell of air in immediate contact with the glass is reduced to the temperature of the glass, and when that temperature has been reduced so low that the vapour suspended in the air saturates it, any further diminution of temperature is attended with condensation, which is in effect manifested by the dew which then immediately begins to collect upon the surface of the glass.
2245. Daniel's Hygrometers. - Hygrometers have been con-


Fig. 670. structed in different forms, on this principle, to indicate the dew point. That of Daniel has been most generally adopted. This instrument consists of a glass tube, having a thin bulb blown on each end of it, and being bent into the rectangular form represented in fig. 670. The bulb $a$ is filled to two-thirds of its capacity with ether, which being' boiled produces vapour which fills the tube $t$ and the bulb $b$, and escapes through a small opening in the bottom of b. In this manner the air is expelled from the ether, the tube, and the bulbs. The opening in $b$ is then closed with the blowpipe, and the heat being removed from the bulb $a$, the vapour in the tube and bulb $b$ is condensed, so that the space within the instrument above the surface of the ether contains only the vapour of ether, which corresponds to the temperature of the fluid in the bulb $a$. A thermometer is
previously inserted in the tube $t$, the bulb of which is plunged in the ether, and the bulb $b$ is surrounded by a linen or muslin cloth, which, being saturated with ether by means of a small phial provided with a fine rectangular spout, evaporation takes place, by which the bulb $b$ is cooled. The vapour of the ether which fills the bulb $b$ is thus condensed in it, and more vapour flows in to fill its place from the tube $t$. The surface of the ether in $a$ being thus continually released from the pressure of the vapour condensed, further evaporation and a consequent depression of the temperature of the fluid in the bulb $a$ ensues, and this continues until the temperature of the bulb $a$ is reduced to the dew point, when a cloudy deposition will be manifested on the glass of the bulb $a$.
2246. August's Psychrometer.-Professor August of Berlin has constructed an hygrometer, the indications of which depend on the depression of temperature produced loy evaporation in an atmosphere which is below the point of saturation. 'Two thermometers, exactly alike in all respects, are mounted on a support in immediate juxtaposition, the bulb of one being enveloped in a cloth, which is kept constantly wetted with distilled water. If the atmosphere were already saturated no evaporation would ensue; but if it be not saturated evaporation will take place from the wet cloth surrounding the bulb, and a depression of temperature will be indicated, which will bear a certain relation to the rate of this evaporation. The thermometer therefore, enveloped, in the wet cloth, will fall below the other, which gives the true temperature of the air, and the difference between the two thermometers thus becomes a measure of the rate of evaporation from the cloth, and thereby of the degree of dryness of the air. The greater the quantity of vapour with which the air is charged, the less will be the difference of the temperatures indicated by the two thermometers.

When the air is extremely dry, the difference between the two thermometers sometimes amounts to from $14^{\circ}$ to $18^{\circ}$.

Professor August has constructed tables by which the pressure of the vapour suspended in the air, which corresponds to the various indications of the two thermometers, can be immediately found.
2247. Saussure's Hygrometer. - Hygrometric substances are those porous bodies whose affinity for moisture is so strong, that when they are exposed to an atmosphere in which more or
less vapour is suspended, they will attract this vapour and condense it in their pores, so that they will become wet. The quantity of moisture which they imbibe in this manner is more or less, according to the quantity of vapour with which the atmosphere is charged.

The varying absorption of vapour causes in some bodies a corresponding rariation of dimensions. The hygrometer of Saussure is founded on this property. A hair well prepared and deprived of all greasy matter is attached to a point of suspension, and being carried round a small wheel is kept extended by suspending to its extremity a small weight. Being hygrometric, it absorbs moisture from the atmosphere, by which it is made to contract and shorten its length. This causes the wheel round which it is coiled to turn through a eorresponding space, which is shown by an index fixed upon the centre of the wheel, which plays upon a graduated arch.

As the vapour suspended in the air increases or diminishes, the contraction of the hair varies in corresponding manner, and the index shows the changes, indicating extreme dryness at one extremity of the scale, and extreme humidity at the other.

Tables have been constructed by which the indications of this instrument give the pressure of the vapour suspended in the air.
2248. Dew.-The evaporation produced during the day by the action of solar heat on the surface of water, and on all bodies charged with moisture, causes the atmosphere at the time of sunset to be more or less charged with vapour, especially in the warm season. On hot days, and in the absence of winds, the atmosphere at sunset is generally at or near the point of saturation.

Immediately after sunset the temperature of the air falls. If it were previously in a state of saturation condensation must ensue, which will be considerable if the heat of the day and the consequent change of temperature after sunset be great. In such case, the vapour condensed often assumes the appearance of a fine rain or mist taking the liquid form before its actual deposition on the surface.

The deposition of dew, however, also takes place even where the atmosphere is not reduced to its point of saturation. When the firmament is unclouded after sunset, all objects which are good radiators of heat, among which the foliage and flowers of
vegetables are the foremost, lose by radiation the heat which they had received before sunset without receiving any heat from the firmament sufficient to replace it. The temperature of such objects, therefore, falls much below that of the air, on which they produce an effect precisely similar to that which a glass of very cold water produces when exposed to a warm atmosphere charged with vapour. The air contiguous to their surface being reduced to the dew. point by contact with them, a part of the vapour which it holds in suspension is condensed, and collects upon them in the form of dew.

It follows from this reasoning, that the dew produced by the fall of temperature of the air below the point of saturation will be deposited equally and indifferently on the surfaces of all objects exposed in the open air, but that which is produced by the loss of temperature of objects which radiate freely, will only be deposited on those surfaces which are good radiators. Foreign writers on physics accordingly class these depositions as different phenomena, the former being called by French meteorologists serein, and the latter rosée or dew. We are not aware that there is in English any term corresponding to serein.

Dew will fail to be deposited even on objects which are good radiators, when the firmament is clouded. For although heat be radiated as abundantly from objects on the surface of the earth as when the sky is unclouded, yet the clouds being also good radiators, transmit heat, which being absorbed by the bodies on the earth, compensates for the heat they lose by radiation, and prevents their temperature from falling so much below that of the air as to produce the condensation of vapour in contact with them.

Wind also prevents the deposition of dew by carrying off the air from contact with the surface of the cold object before condensation has time to take place. Meanwhile, by the contact of succeeding portions of air, the radiator recovers its temperature.

In general, therefore, the conditions necessary to insure the deposition of dew is, lst, a warm day to charge the air with vapour; 2d, an unclouded night; 3d, a calm atmosphere; and, 4th, objects exposed to it which are good radiators of heat.

In the close and sheltered streets of cities the deposition of dew is rarely observed, because there the objects are necessarily exposed to each other's influence, and an interchange of heat by
radiation takes place so as to maintain their temperature ; besides which, the objects found there are not as strong radiators as the foliage and flowers of vegetables.
2249. Hoar frost.-When the cold which follows the condensation of vapour falls below $32^{\circ}$, what would otherwise be dew becomes hoar frost. For the same reason that dew is deposited when the temperature of the air is above the point of saturation, hoar frost may be manifested when the temperature of the air is many degrees above the point of congelation ; for in this case, as in that of dew, the objects on which the hoar frost collects lose so much heat by their strong radiation, that while the atmosphere may be above $40^{\circ}$ they will fall below $32^{\circ}$. In such cases, a dew is first deposited upon them which soon congeals, and forms the needles and crystals with which every observer is familiar.

The hoar frost is sparingly or not at all formed upon the naked earth, or on stones or wood, while it is profusely collected on leaves and flowers. The latter are strong, the former feeble radiators.

Glass is a good radiator. The panes of a window fall during the night to a temperature below $32^{\circ}$, although the air of the room be at a much higher temperature. Condensation and a profuse deposition of moisture takes place on their inner surfaces, which soon congeals and exhibits the crystallized coating so often witnessed.

The frosts of spring and autumn, which so frequently are attended with injury to the crops of the farmer and gardener, proceed generally not from the congelation of moisture deposited from the atmosphere, but from the congelation of their own proper moisture by the radiation of their temperature caused by the nocturnal radiation, which in other cases produces dew or hoar frost. The young buds of leaves and flowers in spring, and the grain and fruit in autumn, being reduced by radiation below $32^{\circ}$, while the atmosphere is many degrees above that temperature, the water which forms part of their composition is frozen, and blight ensues.

These principles, which serve to explain the cause of the evil, also suggest its remedy. It is only necessary to shelter the olject from exposure to the unclouded sky, which may be done by matting, gauze, and various other expedients.
2250. Fabrication of ice in hot climates. - In tropical cli-
mates the principle of nocturnal radiation has supplied the means of the artificial production of ice. This process, which is conducted on a considerable scale in Bengal, where some establishments for the purnose employ several hundred men, consists in placing water in shallow pans of unglazed pottery in a situation which is exposed to the clear sky and sheltered from currents of air. Evaporation is promoted by the porous quality of the pans which become soaked with water, and radiation takes place at the same time both from the water and the pans. Both these causes combine in lowering the temperature of the water in the pans, which congeals when it falls below $32^{\circ}$.
2251. Fogs and clouds. - When the steam issuing from the surface of warm water ascends into air which is at a lower temperature, it is condensed, but the particles of water formed by such condensation are so minute, that they float in the air as would the minute particles of an extremely fine dust. These particles lose their transparency by reason of their minuteness, according to a general law of physical optics. The vapour of water is transparent and colourless. It is only when it loses the character and qualities of true vapour, that it acquires the cloudy and semi-opaque appearance just mentioned.

Fogs are nothing more than such condensed vapour produced from the surface of seas, lakes, or rivers, when the water has a higher temperature than the stratum of air which rests upon it. These fogs are more thick and frequent when the air, besides having a lower temperature than the water, is already saturated with vapour, because in that case all the vapour developed must be immediately condensed, whereas, if the air be not saturated, it will absorb more or less of the vapour which rises from the water.

Clouds are nothing but fogs suspended in the more elevated strata of the atmosphere. Clouds are most frequently produced by the intermixture of two strata of air, having different temperatures and differently charged with vapour, the mixture being supersaturated, and therefore being attended with partial condensation as already explained (2235).
2252. Rain. - When condensation of vapour takes place in the upper strata of the atmosphere, a fog or mist is first produced, after which the aqueous particles coalescing form themselves in virtue of the attraction of cohesion into spherules, and fall by their gravity to the earth, producing the phenomenon of rain.
2253. Rain gauge.-An instrument by which the quantity of rain which falls upon an area of given magnitude, at a given place, within a given time, is called a Ram gavge or Udometer.

These instruments, which vary in form, in magnitude, and in the provisions by which the quantity falling is measured and registered, consist, in general, of a cylindrical reservoir of known diameter, the bottom of which being funnel-shaped, terminates in a discharge pipe, through which the contents pass into a close vessel. The quantity received from time to time by this vessel is measured and indicated by a great variety of expedients.
2254. Quantity of rain falling in various places. - The quantity of rain which falls in a given time at a given place, is expressed by stating the depth which it would have if it were received upon a plane and level surface, into which no part of it would penetrate.

At Paris, the average annual quantity of rain which falls, obtained from observations continued for thirty years at the Observatory, is 23.6 inches. There is, however, considerable variation in the quantities from which this average is deduced; the smallest quantity observed being 16.9 inches, and the greatest 27.9 inches.

The greatest annual fall of rain is that observed at Maranham, lat. $2 \frac{1}{2}^{\circ}$ S., which is stated by Frumboldt to amount to 277 inches, more than double the annual quantity hitherto observed elsewhere. The following are the annual quantities at the under-named places:-

RAIN-SNOW—HAIL.


Among the exceptional pluvial phenomena, the following may be mentioned: -

At Bombay, six inches of rain fell in a single day.
At Cayenne, ten inches fell in ten hours.
At Genon, on the 25th of Oct. 1822, thirty inches of rain fell on the occurrence of a water spout. This is the greatest fall of rain on record.
2255. Snow. -The physical conditions which determine the production of snow are not ascertained. It is not known whether the flakes as they fall are immediately produced by the congelation of condensed vapour in the cloud whence they first proceed, or whether being at first minute particles of frozen rapour, they coalesce with other frozen particles in falling through the successive strata of the air, and thus finally attain the magnitude which they have on reaching the ground.

The only exact observations which have been made on snow refer to the forms of the crystals composing it, which Captain Scoresby has observed with great accuracy in his Polar Voyages, and of which he has given drawings. The flakes appear to consist of fine needles, grouped with singular symmetry. A few of the most remarkable forms are represented in fig. 671.
2256. Hail. - The physical causes which produce this formidable scourge of the agriculturist are uncertain. Hypotheses have been advanced to explain it which are more or less plausible, but which do not fulfil the conditions that would entitle them to the place of physical causes. Volta proposed a theory, which has obtained some celebrity, and which is characterized by the ingenuity that marked every physical investigation of that great philosopher. Two strata of clouds, each charged with vapour, and with opposite electricities, are supposed to be carried by different atmospheric currents at different elevations to such a position, that one is vertical above the other, and separated from it by a stratum of the atmosphere of
a certain thickness. Assuming that condensation and congelation is produced in the superior cloud, and that hailstones of


Fig. 671.
small magnitude result directly from the congelation of particles of water, these fall in a shower upon the inferior cloud, where their electricity is first neutralized by an equal charge of the contrary fluid, and they are then charged with that fluid, when they are repelled upwards, and rise again to the superior cloud, where like effects ensue, and they fall again to the inferior cloud, and so continue to rise and fall between the two clouds upon the same principle as the pith-balls move in the experiment described in (1794). The gradual increase of magnitude of the hailstones during this reverberation between the two clouds is thus explained by Volta: - When they fall from the superior upon the inferior cloud they penetrate it to a certain depth, and because of their low temperature, the vapour condenses and congeals upon their surface, thus increasing their. volume. The same effect is produced when they rise again to the superior cloud, and is repeated each time that they pass to and fro from cloud to cloud, until the weight of the stones become so great that it resists the electric attraction, and they then fall to the earth.

Volta also explained how two clouds might thus be charged with contrary electricities, by the effect of solar heat in pro-
ducing evaporation, and by the assumption that vaporization develops positive and condensation negative electricity. This explanation is inadmissible, inasmuch as it is now established that evaporation and condensation are only attended with the development of electricity when they cause decomposition. However, as it is well ascertained that clouds are frequently charged with opposite electricities, this part of the hypothesis of Volta might be received without objection as a possibility. But even admitting this, the hypothesis cannot be regarded as more than an ingenious conjecture.
2257. The phenomena attending hailstorms.-In the absence of any satisfactory explanation of the phenomenon, it is im. portant to ascertain with precision and certainty the circumstances which attend it, and the conditions under which it is produted.

It may then, in the first place, be considered as certain that the formation of hail is an effect of sudden electrical changes in clouds charged with vapour ; for there is no instance known of hail which is not either preceded or accompanied by thunder and lightning.

Before the fall of hail, during an interval more or less, but sometimes of several minutes' duration, a rattling noise is generally heard in the air, which has been compared to that produced by shaking violently bags of nuts.

Hail falls much more frequently by day than by night. Hail clouds have generally great extent and thickness, as is indicated by the obscuration they produce. They are observed also to have a peculiar colour, a grey having sometimes a reddish tint. Their form is also peculiar, their inferior surfaces having enormous protuberances, and their edges being indented and ragged.

These clouds are often at very low elevations. Observers on mountains very frequently see a hail cloud below them.

It appears, from an examination of the structure of hailstones, that at their centre there is generally an opaque nucleus, resembling the spongy snow that forms slect. Round this is formed a congealed mass, which is semi-transparent. Sometimes this mass consists of a succession of layers or strata. These layers are sometimes all transparent, but in different degrees. Sometimes they are alternately opaque and semitransparent.

2258: Extraordinary examples of hailstones.-Extraordinary reports of the magnitude of hailstones, which hare fallen during storms so memorable as to find a place in general history, have come down from periods of antiquity more or less remote. According to the Chronicles, a hailstorm occurred in the reign of Charlemagne, in which hailstones fell which measured fifteen feet in length by six feet in breadth, and eleven feet in thickness; and under the reign of Tippoo Saib, hailstones equal in magnitude to elephants are said to have fallen. Setting aside these and like recitals, as partaking rather of the character of fable than of history, we shall find sufficient to create astonishment in well authenticated observations on this subject.

In a hailstorm which took place in Flintshire on the 9th April; 1697, Halley saw hailstones which weighed five ounces.

On 4th May, 1697, Robert Taylor saw fall hailstönes measuring fourteen inches in circumference.

In the storm which ravaged Como on 20th August, 1787, Volta saw hailstones which weighed nine ounces.

On 22d May, 1822, Dr. Noggerath saw fall at Bonn hailstones which weighed from twelve to thirteen ounces.

It appears, therefore, certain that in different countries hailstorms have occurred in which stones, weighing from half to three quarters of a pound have fallen.

## CHAP. IV.

## atmospheric electricity.

2259. The air generally charged with positive electricity. The terrestrial globe which we inhabit is invested with an ocean of air the depth of which is about the 200th part of its diameter. It may therefore be conceived by imagining ad coating of air, the tenth of an inch thick, investing a twenty inch globe. This aerial ocean, relatively shallow as it is, at the bottom of which the tribes of organized nature have their
dwelling, is nevertheless the theatre of stupendous electrical phenomena.

It may be stated as a general fact, that the atmosphere which thus covers the globe is charged with positive electricity, which, acting by induction on the superficial stratum of the globe on which it rests, decomposes the natural electricity, attracting the negative fluid to the surface and repelling the positive fluid to the inferior strata. The globe and its atmosphere may therefore be not inaptly compared to a Leyden plial, the outer conting of which being placed in connexion witli the prime conductor of a machine, is charged with positive electricity, and the inner coating being in connexion with the ground; is charged by induction with negative electricity. The outer conting represents the atmosphere, and the inner the superficial stratum of the globe.
2260. This state subject to variations and exceptions. This normal state of the general atmospheric ocean is subject to variations and exceptions, variations of intensity and exceptions in quality or name. The variations are periodical and accidental. The exceptions local, patches of the general atmosphere in which clouds float being occasionally charged with negative electricity.
2261. Diurnal variations of electrical-intensity. - The intensity of the electricity with which the atmosphere is charged varies, in the course of twenty-four hours, alternately increasing and decreasing. It begins to decrease at a few minutes after sunrise, and continues to decrease, until two or three o'clock in the afternoon, when it attains a minimum. It then increases and continues to increase until some minutes after sunset, when it attains a maximum. After that it again decreases, attaining a minimum at a certain time in the night, which varies in different places and different seasons, after which it again increases and attains a maximum at a few minutes after sunrise.

In general, in winter, the electricity of the air is more intense than in summer.
2262. Observations of Quetelet. - These were the general results of the extensive series of observations on atmospheric electricity made by Saussure. More recently they have been confirmed by the observations of M. Quetelet, which have been. continued without interruption daily at the Observatory of

Brussels for thelast ten years. M. Quetelet found that the first maximum was manifested about $8 \mathrm{~A} . \mathrm{M}$., and the second about 9 p.m. The minimuin in the day was at 3 r.m. He found also that the mean intensity was greatest in January and least in June.

Such are the normal changes which the electrical condition of the air undergoes when the atmosphere is clear and unclouded. When, bowever, the firmament is covered with clouds, the electricity is subject during the day to frequent and irregular changes not only in intensity but in name; the electricity being often negative, owing to the pressure of clouds over the place of observation charged some with positive and some with negative electricity.
2263. Irregular and local variations and exceptions. - The intensity of the electricity of the air is also affected by the season of the year, and by the prevalent character and direction of the winds; it varies also with the elevation of the strata, being in general greater in the higher than in the lower regions of the atmosphere. The intensity is generally greater in winter, and especially in frosty weather, than in summer, and when the air is calm than when winds prevail.

Atmospheric deposits, such as rain, hail, snow, \&c., are sometimes positive and sometimes negative, varying with the direction of the wind. North winds give positive, and south winds negative deposits.
2264. Methods of observing atmospheric electricity. - The electricity of the atmosphere is observed by erecting in it, to any desired elevation, pointed metallic conductors, from the lower extremities of which wires are carried to electroscopes of various forms, according to the intensity of the electricity to be observed. All the usual effects of artificial electricity may be reproduced by such means; sparks may be taken, light bodies attracted and repelled, electrical bells, such as those described in (1792), affected ; and, in fine, all the usual effects of the fluid produced. So immediate is the increase of electrical tension in rising through the strata of the air, that a gold leaf electroscope properly adapted to the purpose, and reduced to its natural state when placed horizontally on the ground, will show a sensible divergence when raised to the level of the eyes.
2265. Methods of ascertaining the electrical condition of the higher strata. - To ascertain the electrical condition of strata
too elevated to be reached by a fixed conductor, the extremity of a flexible wire, to which a metallic point is attached, is connected with a heavy ball, which is projected into the air by a gun or pistol, or to an arrow projected by a bow. The projectile, when it attains the limit of its flight, detaches the wire. from the electroscope, which then indicates the electrical state of the air at the highest point attained by the projectile.

The expedient of a kite, used with so much success by Franklin, Romas, and others, to draw electricity from the clouds, may also be adopted with advantage, more especially in cases where the atmospheric strata to be examined are at a considerable elevation.
2266. Remarkable experiments of Romas, 1757. - The vast quantities of electricity with which the clouds are sometimes charged were rendered manifest in a striking manner by the well-known experiments made by means of kites by Romas in 1757. The kite, carrying a metallic point, was elevated to the strata in which the electric cloud floated. A wire was connected with the cord, and carried from the pointed conductor borne by the kite to a part of the cord at some distance from the lower extremity, where it was turned aside and brought into connexion with an electroscope, or other experimental menns of testing the quantity and quality of the electricity with which it was charged. Romas drew from the extremity of this conducting wire not only strong electric sparks, but blades of fire nine or ten feet in length and an inch in thickness, the discharge of which was attended with a report as loud as that of a pistol. In less time than an hour, not less than thirty flashes of this magnitude and intensity were often drawn from the conductor, besides many of six or seven feet and of less length.
2267. Electrical charge of clouds varies. - It has been shown by means of kites thus applied, that the clouds are charged some with positive and some with negative electricity, while some are observed to be in their natural state. These circumstances serve to explain some phenomena observed in the motions of the clouds which are manifested in stormy weather. Clouds which are similarly electrified repel, and those which are oppositely electrified attract each other. Hence arise motions among such clouds of the most opposite and complicated kind. While they are thus reciprocally attracted and repelled in virtue of the electricity with which they are charged,
they are also transported in various directions by the currents which prevail in the atmospheric strata in which they float, these currents often having themselves different directions.
2268. Thunder and lightning.-Such appearances are the sure prognostics of a thunderstorm. Clouds charged with contrary electricities affect each other by induction, and mutually attract, whether they float in the same stratum or in strata at different elevations. When they come within striking distance, that is to say, such a distance that the force of the fluids with which they are charged surpasses the resistance of the intervening air, the contrary fluids rush to each other, and an electrical discharge takes place, upon the same principle as the same phenomenon on a smaller scale is produced when the charges of the internal and external coatings of a Leyden jar, overcoming the resistance of the uncoated part, rush together and a spontaneous discharge is made.

The sound and the flash, the thunder and the lightning, are only the reproduction on a more vast scale of the explosion and spark of the jar.

The clouds, however, unlike the metallic coatings of the jar, are very imperfect conductors, and consequently, when discharged at one part of their vast extent, they preserve elsewhere their electricity in its original intensity. Thus, the first discharge, instead of establishing equilibrium, rather disturbs it, for the part of the cloud which is still charged is alone attracted by the part of the other cloud in which the fluid has not yet been neutralized. Hence arise various and complicated motions and variations of form of the clouds, and a succession of discharges between the same clouds must take place before the electrical equilibrium is established. This is necessarily attended by a corresponding succession of flashes of lightning and claps of thunder.
2269. Form and extent of the flash of lightning.-The form of the flash in the case of lightning, like that of the spark taken from an electrified conductor, is zigzag. The doublings or acute angles formed at the successive points when the flash changes its direction vary in number and proximity. The cause of this zigzag course, whether of the electric spark or of lightning, has not been explained in any clear or satisfactory manner.

The length of the flashes of lightning also varies; in some $r$
cases they have been ascertained to extend to from tro and a half to three miles. It is probable, if not certain, that the line of light exhibited by flashes of forked lightning are not in reality one continued line simultaneously luminous, but that on the contrary the light is developed successively as the electricity proceeds in its course, the appearance of a continuous line of light being an optical effect analogous to the continuous line of light exhibited when a lighted stick is moved rapidly in a circle, the same explanation being applicable to the case of lightning (1143).
2270. Causes of the rolling of thunder.-As the sound of thunder is produced by the passage of the electric fluid through the air which it suddenly compresses, it is evolved progressively along the entire space along which the lightning moves. But since sound moves only at the rate of 1100 feet per second, while the transmission of light is so rapid that in this case it may be considered as practically instantaneous, the sound will not reach the ear for an interval greater or less after the perception of the light, just as the flash of a gun is seen before the report is heard (831).

By noting the interval, therefore, which elapses between the perception of the flash and that of the sound, the distance of the point where the discharge takes place can be computed approximately by allowing 1100 feet for every second in the interval.

But since a separate sound is produced at every point through which the flash passes, and as these points are at distances from the observer which vary according to the position, length, direction, and form of the flash, it will follow necessarily that the sounds produced by the same flash, though practically simultancous, because of the great velocity with which the electricity moves, arrive at the ear in comparatively slow succession. Thus, if the flash be transmitted in the exact direction in which the observer is placed, and its length be 11,000 feet, the distances of the points where the first and last sounds are produced will differ by ten times the space through which sound moves in one second. The first sound will, therefore, be heard ten seconds before the last, and the intermediate sounds will be heard daring the interval.

The varying loudness of the successive sounds heard in the rolling of thunder proceeds in part from the same causes as the varying intensity of the light of the flash. But it may, perhaps,
be more satisfactorily explained by the combination of the successive discharges of the same cloud rapidly succeeding each other, and combining their effects with those arising from the varying distances of different parts of the same flash.
2271. Affected by the zigzag form of lightning. - It appears to us that the varying intensity of the rolling of thunder may also be very clearly and satisfactorily explained by the zigzag form of the flash, combined with the effect of the varying distance; and it seems extraordinary that an explanation so obvious has not been suggested. Let A, B, C, D, fig. 672., be a


Fig. 672.
part of a zigzag flash seen by an observer at 0 . Taking 0 as a centre, suppose arcs $\mathbf{c} c$ and в $b$ of circles to be drawn, with $O c$ and $O B$ as radii. It is clear that the points $c$ and $c$, and $\mathbf{B}$ and $b$, being respectively equally distant from the observer, the sounds produced there will be heard simultaneously, and, supposing them equal, will produce the perception of a sound twice as loud as either heard alone would do. All the points on the zigzag $c$ в $\mathbf{c} \boldsymbol{b}$ are so placed that three of them are equidistant from $o$. Thus, if with $o$ as centre, and $o m$ as radius, a circular are be described, it will intersect the path of the lightning at the three points $m, m^{\prime}$, and $m^{\prime \prime}$, and these three points being, therefore, at the same distance from 0 , the sounds produced at them will reach the observer at the same moment, and if they be equally intense will produce on the ear the same effect as a single sound three times as loud. The same will be true for all the points of the zigzag between $c$ and $b$. Thus, in this case, supposing the intensity of the lightning to be uniform from $A$ to $D$, there will be three degrees of loudness in the sound produced, the least between $\Delta$ and $c$ and between $b$ and D , the greatest between $c$ and $b$ along the zigzag, and the intermediate at the points c $c$ and в $b$.

It is evident, that from the infinite variety of form and position with relation to the observer, of which the course of the lightning is susceptible, the variations of intensity of the rolling of thunder which may be explained in this way have no limit.
2272. Affected by the varying distance of different parts of the flash.- Since the loudness of a sound diminishes as the square of the distance of the observer is increased (844), it is clear that this affords another means of explaining the varying loudness of the rolling of thunder.
2273. Affected by echo and by interference.-As the rolling of thunder is much more varied and of longer continuance in mountainous regions than in open plane countries, it is, no doubt, also affected by reverberation from every surface which it encounters while capable of reflecting sound. A part therefore of the rolling must be in such cases the effect of echo.

It has been also conjectured that the acoustic effects are modified-by the effects of interference (836).
2274. Inductive action of clouds on the earth.-A cloud charged with electricity, whatever be the quality of the fluid or the state of the atmosphere around it, exercises by induction an action on all bodies upon the earth's surface immediately under it. It has a tendency to decompose their natural electricity, repelling the fluid of the same name, and attracting to the highest points the fluid of a contrary name. The effects thus actually produced upon objects exposed to such induction will depend on the intensity and quality of the electricity with which the cloud is charged, its distance, the conductibility of the materials of which the bodies affected consist, their magnitude, position, and, above all, their form.

Water being a much better conductor than earth in any state of aggregation, thunder clouds act with great energy on the sea, lakes, and other large collections of water. The flash has a tendency to pass between the cloud and the water, just as the spark passes between the conductor of an electric machine and the hand presented to it. If the water were covered with a thin sheet of glass, the lightning would still pass, breaking through the glass, because, although the glass be a nonconductor, it does not intercept the inductive action of the cloud, any more than a thin glove of varnished silk on the hand would intercept the spark from the conductor.
2275. Formation of fulgurites explained.--This explains the fact that lightning sometimes penetrates strata of the solid ground under which subterranean reservoirs of water are found. The water of such reservoirs is affected by the inductive action of an electrified cloud, and in its turn reacts upon the cloud as one coating of a Leyden jar reacts upon the other. When this mutual action is sufficiently strong to overcome the resistance of the subjacent atmosphere, and the strata of soil under which the subterranean reservoir lies, a discharge takes place, and the lightning penetrates the strata, fusing the materials of which it is composed, and leaving a tubular hole with a hard vitrefied coating.

Tubes thus formed have been called fulgurites, or thunder tubes.
2276. Accidents of the surface which attract lightning.The properties of points, edges, and other projecting parts of conductors, which have been already stated (1776), will render easily intelligible the influence of mountains, peaked hills, projecting rocks, trees; lofty edifices, and other objects, natural and artificial, which project upwards from the general surface of the ground. Lightning never strikes the bottom of deep and close valleys. In Switzerland, on the slopes of the Alps and Pyrenees, and in other mountainous countries, multitudes of cultivated valleys are found, the inhabitants of which know by secular tradition that they have nothing to fear fyom thunderstorms. If, however, the width of the valleys were so great as twenty or thirty times their depth, clouds would occasionally descend upon them in masses sufficiently considerable, and lightning would strike.

Solitary hills, or elevated buildings rising in the centre of an extensive plain, are peculiarly exposed to lightning, since there are no other projecting objects near them to divert its course.

Trees, especially if they stand singly apart from others, are likely to be struck. Being from their nature more or less impregnated with sap, which is a conductor of electricity, they attract the fluid, and are struck.

The effects of such objects are, however, sometimes modified by the agency of unseen causes below the surface. The condition of the soil, subsoil, and even the inferior strata, the depth of the roots and their dimensions, also exercise considerable influence on the phenomena, so that in the places where there
is the greatest apparent safety there is often the greatest danger. It is, nevertheless, a good general maxim not to take a position in a thunderstorm either under a tree or close to an elevated building, but to keep as much as possible in the open plain.
2277. Lightning follows conductors by preference. - Its effects on buildings.-Lightning falling upon buildings chooses by preference the points which are the best conductors. It sometimes strikes and destroys objects which are non-conductors, but this happens generally when such bodies lie in its direct course towards conductors. Thus lightning has been found to penetrate a wall attracted by a mass of metal placed within it.

Metallic roofs, beams, braces, and other parts in buildings, are liable thus to attract lightning. The heated and rarefied air in chimneys acquires conductibility. Hence it happens often that lightning descends chimneys, and thus passes into rooms, .It follows bell-wires, metallic mouldings of walls and furniture, and fuses gilding.
2278. Conductors or paratonnerres for the protection of build-ings.-The purpose of paratonnerres or conductors, erected for the protection of buildings, is not to repel, but rather to attract lightning, and divert it into a course in which it will be innoxious.

A paratonnerre is a pointed metallic rod, the length of which varies with the building on which it is placed, but which is generally from thirty to forty feet. It is erected vertically over the object it is intended to protect. From its base an unbroken series of metallic bars, soldered or welded together end to end, are continued to the ground, where they are buried in moist soil, or, better still, immersed in water, so as to facilitate the escape of the fluid which descends upon them. If water, or moist soil, cannot be conveniently found, it should be connected with a sheet of metal of considerable superficial magnitude, buried in a pit'filled with pounded charcoal, or, better still, with braise.

The parts of a well-constructed paratonnerre are represented in fig. 673. The rod, which is of iron, is round at its base, then square, and decreases gradually in thickness to the summit. It is composed commonly of three pieces closely jointed together, and secured by pins passed transversely through them. In the figure are represented only the two extremities
of the lowest, and those of the intermediate piece, to avoid giving inconvenient magnitude to the diagram. The superior piece, $g$, is represented complete. It is a rod of brass or copper, about two feet in length, terminating in a platinum point, about three inches long, attached to the rod by silver solder, which is further secured by a brass ferule, which gives the projecting appearance in the diagram below the point.

Three of the methods, reputed the most efficient for attaching the paratonnerre to the roof, are represented in fig. 674., at $p, l$, and $f$. At $p$ the rod is supported against a vertical piece, to which it is attached by stirrups; at $l$ it is bolted upon a diagonal brace; and at $f$ it is simply secured by bolts to a horizontal beam through which it passes. The last is evidently the least solid method of fixing it.

The conductor is continued downwards along the wall of the edifice, or in any other convenient course, to the ground, either by bars of iron, round or square, or by a cable of iron or copper wires, such as is sometimes used for the lighter sort, of suspension bridges. This is attached, at its upper extremity, to the base of the paratonnerre by a joint, which is hermetically closed, so as to prevent oxydation, which would produce a dangerous solution of continuity.

To comprehend the protective influence of this apparatus, it must be considered that the inductive action of a thunder-cloud decomposes the natural electricity of the rod more energetically than that of surrounding objects, both on account of the material and the form of the rod (1776). The point becoming surcharged with the fluid of a contrary name from that of the cloud suspended over it, discharges this fluid in a jet towards the cloud, where it combines with and neutralizes an equal quantity of the electricity with which the cloud is charged, and,
by the continuance of this process, ultimately reduces the cloud to its natural state.


Fig. 674.
It is therefore more correct to say that the paratonnerre draws electricity from the ground and projects it to the cloud, than that it draws it from the cloud and transmits it to the earth.

It is evidently desirable that all conducting bodies to be protected by the paratonnerre should be placed in metallic connexion with it, since in that case their electricity, decomposed by the inductive action of the clouds, will necessarily escape by the conductor either to the earth or to the cloud by the point.

It is considered generally that the range of protection of a paratonnerre is a circle round its base, whose radius is two or three times its length.
2279. Effects of lightning on bodies which it strikes. - The effects of lightning, like those of electricity evolved by artificial means, are threefold, physiological, physical, and mechanical.

When lightning kills, the parts where it has struck bear the marks of severe burning; the bones are often broken and crushed as if they had been subjected to violent mechanical pressure. When it acts on the system by induction only, which is called the secondary or indirect shock, it does not immediately kill, but inflicts nervous shocks so severe as sometimes to leave effects which are incurable.

The physical effects of lightning produced upon conductors is to raise their temperature. This elevation is sometimes so
great that they are rendered incandescent, fused, and even burned. This happens occasionally with bell-wires, especially in exposed and unprotected positions, as in courts or gardens. The drops of molten metal produced in such cases set fire to any combustible matter on which they may chance to fall. Wood, straw, and such non-conducting bodies are ignited generally by the lightning drawn through them by the attraction of other bodies near them which are good conductors.

The mechanical effects of lightning, the physical cause of which has not been satisfactorily explained, are very extraordinary. Enormous masses of metal are torn from their supports, vast blocks of stone are broken, and massive buildings are razed to the ground.
2280. The Aurora Borealis - the phenomenon unexplained. - No theory or hypothesis which has commanded general acceptation, has yet been suggested for the explanation of this meteor. All the appearances which attend the phenomenon are, however, electrical ; and its forms, directions, and positions, though ever varying, always bear a remarkable relation to the magnetic meridians and poles. Whatever, therefore, be its physical cause, it is evident that the theatre of its action is the atmosphere; that the agent to which the development is due is electricity, influenced in some unascertained manner by terrestrial magnetism. In the absence of any satisfactory theory for the explanation of the phenomenon, we shall confine ourselves here to a short description of it, derived from the most extensive and exact series of observations which have been made in those regions where the meteor has been seen with the most marked characters and in the greatest splendour.
2281. General character of the meteor. - The aurora borealis is a luminous phenomenon, which appears in the heavens, and is seen in high latitudes in both hemispheres. The term aurora borealis, or northern lights, has been applied to it because the opportunities of witnessing it are, from the geographical character of the globe, much more frequent in the northern than in the southern hemisphere. The term aurora polaris would be a more proper designation.

This phenomenon consists of luminous rays of various colors, issuing from every direction, but converging to the same point, which appear after sunset generally toward the north, occasionally toward the west, and sometimes, but rarely, toward the
south. It frequently appears near the horizon, as a vague and diffuse light, something like the faint streaks which harbinger the rising sun and form the dawn. Hence the phenomenon has derived its name, the northern morning. Sometimes, however, it is presented under the form of a sombre cloud, from which luminous jets issue, which are often variously coloured, and illuminate the entire atmosphere.

The more conspicuous auroras commence to be formed soon after the close of twilight. At first a dark mist or foggy cloud is perceived in the north, and a little more brightness towards the west than in the other parts of the heavens. The mist gradually takes the form of a circular segment, resting at each corner on the horizon. The visible part of the arc soon becomes surrounded with a pale light, which is followed by the formation of one or several luminous ares. Then come jets and rays of light variously coloured, which issue from the dark part of the segment, the continuity of which is broken by bright emanations, indicating a movement of the mass, which seems agitated by internal shocks, during the formation of these luminous radiations, that issue from it as flames do from a conflagration. When this species of fire has ceased, and the aurora has become extended, a crown is formed at the zenith, to which these rays converge. From this time the phenomenon diminishes in its intensity, exhibiting, nevertheless, from time to time, sometimes on one side of the heavens and sometimes on another, jets of light, a crown and colours more or less vivid. Finally the motion ceases, the light approaches gradually to the horizon; the cloud quitting the other parts of the firmament settles in the north. The dark part of the segment becomes luminous, its brightness being greatest near the horizon, and becoming more feeble as the altitude augments until it loses its light altogether.

The aurora is sometimes composed of two luminous segments, which are concentric, and separated from each other by one dark space, and from the earth by another. Sometimes, though rarely, there is only one dark segment, which is symmetrically pierced round its border by openings, through which light or fire is seen.
2282. Description of auroras seen in the polar regions by M. Lottin. - One of the most recent and exact descriptions of this meteor is the following, supplied by M. Lottin, an officer
of the French navy, and a member of the Scientific Commission, sent some jears ago to the North Seas. Between September 1838 and April 1839, this savant observed nearly 150 meteors of this class. They were most frequent from the 17 th November to the 25th January, being the interval during which the sun remained constantly below the horizon. During this period there were sixty-four auroras visible, besides many which a clouded sky concealed from the eye, but the presence of which was indicated by the disturbances they produced upon the magnetic needle.

The succession of appearances and changes presénted by these meteors are thus described by M: Lottin :-

Between four and eight o'clock, r.m., a light fog, rising to the altitude of six degrees, became coloured on its upper edge, being fringed with the light of the meteor rising behind it. This border becoming gradually more regular took the form of an arc, of a pale yellow colour, the edges of which were diffuse, the extremities resting on the horizon. This bow swelled slowly upwards, its vertex being constantly on the magnetic meridian. Blackish streaks divided regularly the luminous are, and resolved it into a system of rays; these rays were alternately extended and contracted; sometimes slowly, sometimes instantaneously; sometimes they would dart out, increasing and diminishing suddenly in splendour. The inferior parts, or the feet of the rays, presented always the most vivid light, and formed an arc more or less regular. The length of these rays was very various, but they all converged to that point of the heavens indicated by the direction of the southern pole of the dipping needle. Sometimes they were prolonged to the point where their directions intersected, and formed the summit of an enormous dome of light.

The bow then would continue to ascend toward the zenith: it would suffer an undulatory motion in its light - that is to say, that from one extremity to the other the brightness of the rays would increase successively in intensity. This luminous current would appear several times in quick succession, and it would pass much more frequently from west to east than in the opposite direction. Sometimes, but rarely, a retrograde motion would tuke place immediately afterward; and ns soon as this wave of light had run successively over all the rays of the aurora from west to east, it would return, in the contrary di-
rection, to the point of its departure, producing such an effect that it was impossible to say whether the rays themselves were actually affected by a motion of translation in a direction nearly horizontal, or if this more vivid light was transferred from ray to ray, the system of rays themselves suffering no change of position. The bow, thus presenting the appearance of an alternate motion in a direction nearly horizontal, had usually the appearance of the undulations or folds of a ribbon or flag agitated by the wind. Sometimes one and sometimes both of its extremities would desert the horizon, and then its folds would become more numerous and marked, the bow would change its character, and assume the form of a long sheet of rays returning into itself, and consisting of several parts forming graceful curves. The brightness of the rays would vary suddenly, sometimes surpassing in splendour stars of the first magnitude; these rays would rapidly dart out, and curves would be formed and developed like the folds of a serpent; then the rays would affect various colours, the base would be red, the middle green, and the remainder would preserve its clear yellow hue. Such was the arrangement which the colours always preserved; they were of admirable transparency, the base exhibiting blood-red, and the green of the middle being that of the pale emerald; the brightness would diminish, the colors disappear, and all be extinguished, sometimes suddenly, and sometimes by slow degrees. After this disappearance, fragments of the bow would be reproduced, would continue their upward movement, and approach the zenith; the rays, by the effect of perspective, would be gradually shortened; the thickness of the arc, which presented then the appearance of a large zone of parallel rays, would be estimated; then the vertex of the bow would reach the magnetic zenith, or the point to which the south pole of the dipping needle is directed. At that moment the rays would be seen in the direction of their feet. If they were coloured, they would appear as a large red band, through which the green tints of their superior parts could be distinguished; and if the wave of light above mentioned passed along them, their feet would form a long sinuous undulating zone; while, throughout all these changes, the rays would never suffer any oscillation in the direction of their axis, and would constantly preserve their mutual parallelisms.

While these appearances are manifested, new bows are
formed, either commencing in the same diffuse manner, or with vivid and ready-formed rays : they succeed each other, passing through nearly the same phases, and arrange themselves at certain distances from each other. As many as nine have been counted, forming as many bows, having their ends supported on the earth, and, in their arrangement, resembling the short curtains suspended one behind the other over the scene of a theatre, and intended to represent the sky. Sometimes the intervals between these bows diminish, and two or more of them close upon each other, forming one large zone, traversing the heavens, and disappearing toward the south, becoming rapidly feeble after passing the zenith. But sometimes, also, when this zone extends over the summit of the firmament from east to west, the mass of rays which have already passed beyond the magnetic zenith appear suddenly to come from the south, and to form with those from the north the real boreal corona, all the rays of which converge to the zenith. This appearance of a crown, therefore, is doubtless the mere effect of perspective; and an observer, placed at the same instant at a certain distance to the north or to the south, would perceive only an are.

The total zone, measuring less in the direction north and south than in the direction east and west, since it often leans upon the earth, the corona would be expected to have an ellip? tical form; but that does not always happen: it has been seen circular, the unequal rays not extending to a greater distance than from eight to twelve degrees from the zenith, while at other times they reach the horizon.

Let it, then, be imagined, that all these vivid rays of light issue forth with splendour, subject to continual and sudden variations in their length and brightness; that these beautiful red and green tints colour them at intervals; that waves of light undulate over them; that currents of light succeed each other; and, in fine, that the vast firmament presents one im, mense and magnificent dome of light, reposing on the snow, covered base supplied by the ground - which itself serves as a dazzling frame for a sea, calm and black as a pitchy lake - and some idea, though an imperfect one, may be obtained of the splendid spectacle which presents itself to him who witnesses the aurora from the bay of Alten.

The corona, when it is formed, only lasts for some minutes:
it sometimes forms suddenly, without any previous bow. There are rarely more than two on the same night; and many of the auroras are attended with no crown at all.

The corona becomes gradually faint, the whole phenomenon being to the south of the zenith, forming bows gradually. paler, and generally disappearing before they reach the southern horizon. All this most commonly takes place in the first half of the night, after which the aurora appears to have lost its intensity: the pencils of rays, the bands and the fragments of bows, appear and disappear at intervals; then the rays become more and more diffused, and ultimately merge into the vague and feeble light which is spread over the lieavens grouped like little clouds, and designated by the name of auroral plates (plaques aurorales). Their milky light frequently undergoes striking changes in its brightness, like motions of dilatation and contraction, which are propagated reciprocally between the centre and the circumference, like those which are observed in marine animals called Medusæ. The phenomena become gradually more faint, and generally disappear altogether on the appearance of twilight. Sometimes, however, the aurora continues after the commencement of daybreak, when the light is so strong that a printed book may be read. It then disappears, sometimes suddenly ; but it often happens that, as the daylight augments, the aurora becomes gradually vague and undefined, takes a whitish colour, and is ultimately so mingled with the cirrho-stratus clouds that it is impossible to distinguish it from them.

Some of the appearances here described are represented in figs. 675, 676, 677, 678., copied from the memoir of M. Lottin.


Fig. 675.


There is great difficulty in determining the exact beight of the aurora borealis above the earth, and accordingly the opinions given on this subject by different observers are widely discordant. Mairan supposed the mean height to be 175 French leagues; Bergman says 460, ạhd Euter several thousand miles. From the comparison of a number of observations of an aurora that appeared in March; 1826, made at different
places in the north of England and south of Scotland, Dr. Dalton, in a paper presented to the Royal Society, computed its height to be about 100 miles. But a calculation of this sort, in which it is of necessity supposed that the meteor is seen in exactly the same place by the different observers, is subject to very great uncertainty. The observations of Dr. Richardson, Franklin, Hood, Parry, and others, seem to prove that the place of the aurora is far within the limits of the atmosphere, and scarcely above the region of the clouds; in fact, as the diurnal rotation of the earth produces no change in its apparent position, it must necessarily partake of that motion, and consequently be regarded as an atmospherical phenomenon.


# BOOK THE SECOND. astronomy. 

## CHAPTER I.

## METHODS OF INVESTIGATION AND MIEANS OF OBSERVATION.

2283. The solar system. - The earth, which in the economy of the universe has become the halitation of the races of men, is a globular mass of matter, and one of an assemblage of bodies of like form and analogous magnitude which revolve in paths nearly circular round a common centre, in which the sun, a globe having dimensions vastly greater than all the others, is established, maintaining physical order among them by his predominant attraction, and ministering to the well-being of the tribes which inhabit them by a fit and regulated supply of light and heat.

This group of bodies is the Solar System.
2284. The stellar universe. - In the vast regions of space which surround this system other bodies similar to the sun are placed, countless in number, and most of them, according to all probability, superior in magnitude and splendour to that luminary. With these bodies, which seem to be scattered throughout the depths of immensity without any discoverable limit, we acquire some acquaintance by the mere powers of natural vision, aided by those of the understanding; but this knowledge has received, especially in modern times, prodigious extension from the augmented range given to the eye by the telescope, and by the great advances which have been made in mathematical science, which may be considered as conferring upon the mind the same sort of enlarged power as the telescope has conferred upon the eye.
2285. Subject of astronomy-origin of the name. - The investigation of the magnitudes, distances, motions, local arrangements, and, so far as it can be ascertained, the physical condition of these great bodies composing the Universe, constitutes the subject of that branch of science called Astronomy, a term derived from the Greek words a $a \pi \eta \rho$ (aster), a star (under which all the heavenly bodies were included), and vomos (nomos), a law - the science, which expounds the laws which govern the motions of the Stars.
2286. It treats of inaccessible objects. - It is evident, therefore, that astronomy is distinguished from all other divisions of natural science by this peculiarity, that the bodies which are the subjects of observation and enquiry are all of them inaccessible. Even the earth itself, which the astronomer regards as a celestial object - an a arnp, - is to him, in a certain sense, even more inaccessible than the others; for the very fact of his place of-observation being confined strictly to its surface, an insignificant part of which alone can be observed by him at any one moment, renders it impossible for him to examine, by direct observation, the earth as a whole - the only way in which he desires to consider it, - and obliges him to resort to a variety of indirect expedients to acquite that knowledge of its dimensions, form, and motions which, with regard to other and more distant objects, results from direct and immediate observation.
2287. Hence arise peculiar methods of investigation and peculiar instruments of observation. - This circumstance of having to deal exclusively with inaccessible objects has obliged the astronomer to invent peculiar modes of rensoning and peculiar instruments of observation, adapted to the solution of such problems, and to the discovery of the necessary data. Much needless repetition will then be saved by explaining once for all, with as much brevity as is compatible with clearness, the most important classes of those problems which determine the circumstances of each particular celestial object, and by describing the principal instruments of observation by which the necessary data are obtained.
2288. Direction and bearing of visible objects. - The eye estimates only the direction or relative bearings of objects within the range of vision, but supplies no direct means of determining their distances from each other, or from the eye 1 itself (1168, et seq.).

The absolute direction of a visible object is that of a straight line drawn from the eye to the object.

The relative direction or bearing of an object is determined by the angle formed by the absolute direction with some other fixed or known direction, such as that of a line drawn to the north, south, east, or west.
2289. They supply the means of ascertaining the distances and positions of inaccessible objects.-By comparing the relative bearings of inaccessible objects, taken from two or more accessible points whose distance from each other is known, or can be ascertained by actual measurement, the distances of such inaccessible objects from the accessible objects, from the observer, and from each other, may be determined by computation. Such distances being once known, become the data by which the mutual distances of other inaccessible objects from the former, and from each other, may be in like manner computed; so that, by starting in this manner from two objects whose mutual distance can be actually measured, we may proceed, by a chain of computations, to determine the relative distances and positions of all other objects, however inaccessible, that fall within the range of vision.
. 2290. Angular magnitude-its importance. - It will be apparent, therefore, that angular magnitude plays a most prominent part in astronomical investigations, and it 'fos, before all, decessary that the student-should be rendered familiar with it.
2291. Division of the circle - its nomenclature. - A circle is divided into four equal arcs, called quadrants, by two diameters $A A^{\prime}$ and ${ }_{\dot{s}} B^{\prime}$ intersecting at right angles


Fig. 679. at the centre c, fig. 679.

The circumference being supposed to be divided into 360 equal parts, each of which is called a degree, a quadrant will consist of 90 degrees.

Angles are subdivided in the same manner as the arcs which measure them, and accordingly a right angle, such as ACB, being divided into 90 equal angles, each of these is a degree.
If an angle or are of one degree be divided into 60 equal parts, each of these is called a minute.

If an angle or arc of one minute be divided into 60 equal. parts, each such part is called a second.

Angles less than a second are usually expressed in decimal parts of a second.

Degrees, minutes, and seconds are usually expressed by the signs, ${ }^{\circ}, ', "$; thus, $25^{\circ} 30^{\prime} 40^{\prime} \cdot 9$ means an angle or are which measures 25 degrees, 30 minutes, 40 seconds, and $9-10$ ths of a second.

The letters $m$ and $s$ have sometinies been used to express minutes and seconds; but since it is frequently necessary to express tame as well as space, it will be more convenient to reserve these letters for that purpose. Thus, $25^{h} 30^{m} 40^{s} \cdot 9$ expresses an interval of time consisting of 25 hours, 30 minutes, 40 seconds, and 9-10ths of a second.
2292. Relative magnitudes of arcs of $1^{\circ}, 1^{\prime}$, and $1^{\prime \prime}$, and the radius. - It is proved in geometry that the length of the entire circumference of a circle whose radius is expressed by 1.000 exceeds 6.283 by less than the 5000 th part of the radius. As the exact length of the circumference does not admit of any numerical ex.pression, it will therefore be sufficient for all practical purposes to take 6.283 to express it.

If $d, m$, and $s$ express respectively the actual lengths or linear values of a degree, a minute, and a second of a circle the length of whose radius is expressed by $r$, we shall therefore have the': following numerical relations between these several lengths: -

$$
\begin{aligned}
& 60 \times s=m, \quad 60 \times m=d, \quad 3600 \times s=d, \\
& 360 d=6.283 r, \quad 360 \times 60 \times m=21600 \times m=6.283 \times r, \\
& 21600 \times 60 \times s=1296000 \times s=6.283 r ;
\end{aligned}
$$

and from these may be deduced the following:

$$
r=57.3 \times d=3437.8 \times m=206265 \times s
$$

By these formulx respectively the length of the radius may be computed when the linear value of an are of $1^{\circ}, 1^{\prime}$, or $1^{\prime \prime}$ is known.

In like manner, if the length of the radius $r$ be given, the linear value of an arc of $1^{\circ}, 1^{\prime}$, or $1^{\prime \prime}$ may be computed by the formula

$$
d=\frac{1}{57 \cdot 3} \times r, \quad m=\frac{1}{3+37 \cdot 8} \times r, \quad s=\frac{1}{206265} \times r .
$$

2293. The linear and. angular magnitude of an arc.-By the linear magnitude of an are is to be understood its actual length if extended in a'straight tine, or the number expressing its length in units of some known modulus of length, such as an incl, a foot 3 :or a mile. Byitsongular magnitude is to be understood the angle formed thy tuof lines or padii drawn to its extremities from the centige fo the ofreteot whid it forms a part, of: the nubier exprossing the magntude of this angle in angular units of knawn vatio, as deamees, minutes, and seconds.
2294. Of the three following quantities, -the linear value of an arc, its angular vatue, and thee leñgth "of the radius,-any two being given, the third may, be compluted. -I.Let a express the angular and $a$ the linear value-of the are, and $r$ the radius.
${ }^{*}$ 오 . Let $a$ and $\mathfrak{a}$ be given to compute $r$. By aividing. $\dot{a}$ by a we shall find the linear value of $1^{\circ}, 1^{\prime}$, or $1^{\prime \prime}$, according as $a$ is expressed in dègrees, minutes or seconds, and $x$ mas then be computed : by (2293) - Thus, aceording, the anguller units in which $a$ is expressed, vie slath have .

$$
x=\frac{a}{0} \times 573 \times 343
$$

$2^{\circ}$. Let and be wiven oonpute any (ge93) the tinear
 dividing $a$ by one or ofther of these values $a$ will be found : thus we shall have:
 the linear values of $1^{\circ}, 1^{\%} 0,1^{* / 4}$ may, be found, andrby muthiplying one or ather of these by a the taluede of will be obvined. Thus wee shall have ${ }^{\prime}$

$$
a=\frac{1}{57 \cdot 3} \times r \times a=\frac{a}{3437 \cdot 8} \times r \times d x \times a^{\prime \prime}
$$

2295."The arc";tla cord, ard'tié sinie may be considered as * squal when the avgle is smill.-If Acc B, fig. 680 , be the angle, A B the are, and $x=A$ the radius, a line $A D^{\circ}$ drawn from one extremity of the ence perpendiçular to the radius $A B$, through

"Fig• 680
the other extremity, is called its sine; and the - straight line a b joining the extremitios of the are is called its cord.
$\because$, It will be evident-by mierely drawing the "diagram with à graduallif decreásing , angle, that the three lengtirs, the-sine a D , the cord $A-B$, and the arc $A^{\prime} D$, will approach to equality in the aro diminishes. Even ivhere the-are is so large as $30^{\circ}$;-it does not exceed the length of the cord by more than three-tenths of a degree 'rand $_{\text {therefore, for all angles less than }}$ this, the cord and are may be considered as equal where the most extreme precision is not required.
: In like manner, if the angle aci be $15^{\circ}$, the sine $\Delta \mathrm{D}$. will be less thagn the are by only two-tenths of in degrege, that is, by the 75th part of the entire length of the arc. In all cases, therefore; where grefater preciston than this is not required, the sine $A D$, the cord, and thiceare nay be considered for such angles as interchangeable

When the anglo are so pmall as ádegree or two these quantities maý for practieal purposes beconsidared to bie equal. .
2296. To ascertain the distarees of an inaccessible abject from: two acaessilfe stations. - This ${ }_{2}$ which is à problena' of the highest ${ }^{\circ}$. importance, theing in fact the basis of all the triowledge we ${ }_{\sim}$ possess of the distances dimansions, and motions of the great bodies of the universe adinits of easy solution-


Fig. 681. "Líet's arid's', jig . 68\% . be the two stations, and 9 the jobject. of observation; and let the visual angles subtended by $o$ and 's'at $s^{\prime}$; and by o and is at $s^{\prime}$, be obscrved, and the distance siś measured:" ".Tako a hiue"s sf consisting of as many incties as therfe are mites in $s^{\prime} s^{\prime-}$ and draw tivo linës so, and $s^{\prime} o$ frotid and $s^{\prime}$, making with $s s^{\prime}$ the seme angles as so $s$ and $s^{\prime} o$ are xscertained, by observation - tó make with s st inh that'case the tríangle $s o s^{\prime}$ will be in all respects similar to thetriangle $s o s^{\prime}$, anly drawn on a smaller scale, an iach in any of tits fidés corresponding 111.
to a mile in one of the sides of the great triangle sos'. If the sides $s o$ and $s^{\prime} o$ be therefore measured, they will consist of as many inches as there are miles in the corresponding sides so and $s^{\prime} o$ of the great triangle, Now, since the small triangle is always accessible to direct ipeasurement, and as the relation of its scale to that of the great triangle is known, the magnitude of the sides of the great triangfe may be ascertained:

- Without being identical in its actual details with the process by which this problem is solved. the precediar rehsoning is the sañe ia pripciple and spinite Trigonometrical tables supply múch" more axecurate meats of determining the proportion of the sides of the triangle, but such tabler are hothing niore than - the arithmetical-representationi of such diagrams ang fo. 681.

2297. Case io which the distande of tha object is onvat re-- Idtively to the distathe betuequ the qtationisinfin this case the. stations. 160 - 50 c selected inith feference to the object that the directions of the pobject ing seen from then- shal form angles withe the hine joining: the stationis whet shall-lue equal or neaph so this latter line muty be eonsiderep as the cord of the are descrifed, with the ofjecto as a centre and the distance "as ra radius ; and if the direction of the object from * $\Phi_{1}, \therefore$ eitlies station be at rght angles to tlte line joining
 the tations, this: latter line maty be considered as the sine of the arc:- In either case, the distance of the bbject bearing a jigh ratio to the distance betireen the stations the angle formed by the two directions of the object, as seer from the stations, will be so small, that the cond or sine may be con-- siderea as egual to the ares nind tie solution of the problem wit be simplified ${ }^{2}$ y the principles establishied in (2295):-

Leet sind st', fig. 682., be tje stations, and o the object; under the conditions supposed the angle o will necesssarily be small. Ito magnịtude may be ascertained by heasuring the visual nogles os s' 'and ös' $s_{2}$ whichen y be done, gince'both stations $s$ and st are accessiblef and each of them, is visible from the ather ${ }^{-1} \mathrm{By} a$ well-known principle establisled in elementary geometry, the three angles Fig. 682. of every triapogle added togethiore make $180^{\circ}$. If, therefore, the sum of the two. observed angles;at sand $s^{\prime}$ be
subtracted from $180^{\circ}$, the remainder will be the angle $o$. Now if this angle be expressed by $\alpha$ in seconds, we shall have (2294)

$$
\dot{\operatorname{son}} \dot{\mathrm{o}}=\mathrm{ss}^{\prime} \times \underset{\mathrm{z}^{\prime}}{206265^{\prime \prime}}
$$

2298. Given the apparent distance between ituo 'distant abjects, such:distañè leijig at rüht angles; or nearly so, to their visual directions, arid their distauce from the observer, to find the actual idistarice Votweèn thicm, This poprotem is only a particular application of the generad principle explained yn (2294), $a$ being thie apparent distance eof the objects, athe rear distance between theng and then distande flota the observerd:

This inethod may bepplied without practicni orrory fiftie apparentu distapee: betwen the oljects be not gredter fina tro . or thre degrees, and it máy be used ns ough approximation in cases +whofecthénpparent distance te eyen; so great as $30^{\circ}$. When the apparent distanco niglints to so thact as $60^{\circ}$, the actual-distanee oomputed in thio way vif not;exceed the true
 cord $9 f$ : $60^{\circ}$ is equal to the radius, prd the refore to an arc of $57^{\circ}: 3$, being tess than the arce oy only $2^{\circ} 7$, or about a " $4 t h$ patt of its lengthe"

2299, Gitentile äpparent ticumaterof bupurisal otjeet and
 also a particulat application of the general problent (2294), a being the apparent diameter and $x$ the dritanoe and in diluases
 that the pesulto of the computition viay be conside ved perfectly exact.
 distant objett - It miglit ioppear an easy matter tó observie thie ${ }^{-4}$. exact direction of ony point plaged within the tange of wision, since that direction must bo that of $a^{\prime}$ straigitline passiag directly frome the efe of the observer to the point to be observed. If the eye wegre supplied. yvith the appendages : necessary to record and measurè the directions of tisilhe objectes. This would
 instrument.' 'The eye is, however, adapted to other and different uses, end eqnstructed to play a different part in the animal economy 5 and jinvertion bas-been stimulated to supply expedients, by meains of which the exact diractions of visible distant
points can be ascertained, observed, and compared one with another, so as to supply the various data necessary in the classes of problems which have just been noticed, and others which we shall have occasion hereafter to advert to.
2301. Use of sights. - The most simple expedient by which the visual direction of a distant point can be determined is by sights, which are small holes or narrow slits made in two thin opaque plates placed at right angles, or nearly so, to the line of vision, and so arranged, that when the eye is placed behind the posterior opening the object of observation shall be visible through the anterior opening. Every one is rendered familiar with this expedient by its application to fire-arms as a method of "taking aim."

This contrivance is, however, too rude and susceptible of error within too wide limite, to be available for astronomical purposes.
2302. Application of the telescope to indicate the visual direction of micrometric wires. - The telescope (1212) supplies means of determining the direction of the visual ray with all the necessary precision.

If $\mathrm{T}_{\mathrm{T}}$, fig. 683., represent the tube of a telescope, T the ex -


Fig. 683.
tremity in which the object-glass is fixed "and $\mathrm{T}^{\prime}$ the end where the images of distant objects to which the tube is directed are formed, the visual direction of any object will be that of the line $s^{\prime} c$ drawn from the image of such object formed in the field of view of the telescope to the centre $c$ of the object-glass, for if this line be continued it will pass through the object $s$.

But since the field of, ت̈lew of the telescope is a circular space of definite extent, wíthin which many objects in different directions may at the same time be visible, some expedient is necessary by which one or- more fixed points in it may be permanently' marked; or .by which the entire field may be spaced out as a map is by the lines of latitude and longitude.

This is accomplished by a system of Gibres, or wires (38) so thin that even whe magnified they will appear like hairs. These are extended in a frame fixed within the cye-piece of the telescope, so that they appear when seen through the eye-glass
like fine lines drawn across the field of view. They are differently arranged, according to the sort of observation to which the instrument is to be applied.
2303. Line of collimation. - In some cases two wires intersect at right angles at the centre of the field of view, dividing it into quadrants, as represented in fig. 679. The wires are so adjusted that their point of intersection c coincides with the axis of the telescopic tube; and when the instrument is so adjusted that the point of observation, a star for example, is seen precisely upon the intersection $c$ of the wires, the line of direction, or visual ray of that star, will be the line $s^{\prime} c$, fig. 683 ., joining the intersection c, fig.679., of the wires with the centre c, fig. 683. of the object-glass.

The line $s^{\prime} c$, fig. 683., is technitally called the line of collimation.
2304. Application of the telescope to àgraduated instrument. - The telescope thus prepared is attached to a graduated instrument by which angular magnitudes can be observed and measured. Such instruments vary infinitely in form, magnitude, and mode of mounting and adjustment, according to the purposes to which they are applied, and to the degree of precision necessary in the observations to be made with them. To explain and illustrate the general principles on which they are constructed we shall take the example of one, which consists of a complete circle graduated in the usual manner, being the most common form of insistrument used in astronomy for the measurement of angular distances.

Such an apparatus is represented in fig. 684. The circle

abcd, on which the divisions of the graduation are accurately engraved, is connected with its centre by a series of spokes
$x y z$. At its centre is a circular hole, in which an axle is inserted so as to turn smoothly in it, and while it turns to be always concentric with the circle ABCD. To this axle the telescope $a b$ is attached in such a manner that the imaginary line $s^{\prime} c, f i g .683$., which joins the intersection of the wires, fig. 679., with the centre of the object-glass, shall be parallel to the plane of the circle, and in a plane passing through its centre and at right angles to it.

At right angles to the axis of the telescope are two arms, $m n$, which form one piece with the tube, so that when the tube is turned with the axis to which it is attached, the arms $m n$ shall turn also, always preserving their direction at right angles to the tube. Marks or indices are engraved upon the extremities $m$ and $n$ of the arms which point to the divisions upon the limb (as the divided arc is called).

A clamp is provided on the instrument, by which the telescope, being brouglt to any desired position, can be fixed immoveably in that position, while the observer examines the points upon the limb to which the indices $m$ and $n$ are directed.

Now let us suppose that the visual angle under the directions of two distant objects within the range of vision is required to be measured. The circle being brought into the plane of the objects, and fixed in it, the telescope is moved upon its axis until it is directed to one of the objects, so that its image shall coincide exactly with the intersection of the wires. The telescope is then clamped, and the observer examines the points of the divided limb, to which one of the indices, $m$ for example, is directed. This process is called " reading off." The clamp being disengaged, the telescope is then in like manner directed to the other object, and being clamped as before, the position of the index is "read off." The difference between the numbers which indicate the position of the same index in both cases, will evidently be the visual angle under the directions of the two objects.

As a means of further accuracy, both the indices $m$ and $n$ may be "read off"" and if the results differ, which they always will slightly, owing to various causes of error, a mean of the two may be taken.

It is evident that the same results would be obtained if, instead of making the telescope move upon the circle, it were immoveably attached to it, and that the circle itself turned upon its centre, as a wheel does upon its axle, carrying the
telescope with it. In this case the divided limb of the circle is made to move before a fixed index, and the angle under the directions of the objects will be measured by the length of the are which passes before the index.

Such a combination is represented in section in $\mathcal{K g} .685$. .


Fig. 685.
Where $\mathbf{T}$ is the telescope, $p$ the pieces by which it is attached to the circle $\boldsymbol{A}$ b seen edgewise, the axis of which D works in a solid block of metal. The fixed index $F$ is directed to the graduated limb which moves before it.

This is the most frequent method of mounting instruments used in astronomy for angular measurement.
2305. Expedients for measiuring the fraction of a division. It will happen in general that the index will be directed, not 'to any exact division, but to some point intermediate between two divisions of the limb. In that case expedients are provided by which the fraction of a degree between the index, and the last division which it has passed, may be ascertained with an extraordinary degree of precision.
2306. By a vernier. - This may be accomplished by means of a supplemental scale called a Vernier, already described (1354).
2307. By a compound microscope, and


Fig. 686. micrometric screw. - The same object may, however, be attained with far greater accuracy by means of a compound microscope mounted as represented in fig. 686., so that the observer looks at the index through it. A system of cross wires is placed in the field of view of the microscope, and the whole may be so adjusted by the action of a fine screw, that the index shall coincide precisely
with the intersection of the wires. The screw is then turned until the intersection of the cross is brought to coincide with the previous division of the limb; and the number of turns and fraction of a turn of the screw will give the fraction of a degree between the index and the previous division of the limb.

It is necessary, however, to ascertain previously the value of a complete revolution of the screw. This is easily done by turning the screw on which the intersection of the cross is moved from one division to the adjacent one. Dividing, then, one degree of the limb by the number of turns and fraction of a turn, the are which corresponds to one complete turn will be found.
2308. Observation and measurement of minuté angles. When the points between which the angular distance required to be ascertained are so close together as to be seen at one and the same time within the field of view of the telescope, a method of measurement is applicable, which admits of even greater relative accuracy than do the methods of observing large angular distances. This arises from the fact that the distance between such points may be determined by various forms of micrometric instruments, in which fine wires, or lines of spider's web, are moved in a direction perpendicular to tlecir length, so as to pass successively through the points whose distance is to be observed.
2309. The parallel wire micrometer. - One of the forms of micrometric apparatus used for this purpose is represented in transverse section in fig. 687. This, which is called the ra-


Fig. 687.
rallel tire micrometer, consists of two sliding frames, across which the parallel wires or threads $c$ and $D$ are stretched. These frames are both moved in a direction perpendicular to that of the wires by screws, constructed with very fine threads, and called from their use micrometer screws. This frame is placed in the focus of the object-glass of the telescope, so that
the eye viewing the objects under observation sees also distinctly the parallel and noveable wires. These wires are moved by the screws until they pass through the points whose distance asunder is to be measured. This being accomplished, one of them is moved until it coincides with the other, and the number of turns and parts of a turn of the screw necessary to produce this motion gives the angular distance between the points under observation.

In this, as in the case explained in (2307), it is necessary that the angle corresponding to one complete revolution of the screw be previously ascertained, and this is done by a process precisely similar to that explained in the former case. An object of known angular magnitude, as, for example, a foot rule at the distance of a hundred yards, is observed, and the number of turns necessary to carry the wire from end to end of its image is ascertained. The angle such a rule subtends at that distance being divided by the number of turns and parts of a turn, the quotient is the angle corresponding to one complete revolution of the screw.
2310. Measurement of the apparent diameter of an object.When an object is not too great to be included in the field of view of the telescope, its apparent diameter (1117) can be measured by such an apparatus. To accomplish this the screws are turned until the wires C and D, fig. 687., are made to touch opposite sides of the disk of the object. One of the screws is then turned until the wires coincide, and the number of turns and parts of a turn gives the apparent magnitude.

## CHAP. II.

TIIE GENERAL ROTUNDITY AND DIAIENSIONS OF THE EARTH.
2311. The earth a station from which the universe is observed. - The earth is, in various points of view, an interesting object of scientific investigation. The naturalist regards it as the habitation of the numerous tribes of organized beings which are the special subject of his observation and inquiry, and examines curiously those properties and qualities of soil, climate, and atmosphere, by which it is fitted for their main-
tenance and propagation, and the conditions which govern their distribution over its surface. The geologist and mineralogist regard it as the theatre of vast physical operations continued through periods of time extending infinitely beyond the records of human history, the results of which are seen in the state of its crust. The astronomer, rising above these details, regards it as a whole, examines its form, investigates its motions, measures its magnitude, and, above all, considers it as the station from which alone he can take a survey of that universe which forms the peculiar object of his study, and as the only modulus or standard by which the magnitudes of all the other bodies in the universe, and the distances which separate them from the earth and from each other, can be measured.
2312. Necessary to ascertain its form, dimensions, and motions.-But since the apparent magnitudes, motions, and relative arrangement of surrounding oljects severally vary, not only with every change in the position of the station of the observer, but even with every change of position of the observer on that station, it is most necessary to ascertain with all attainable accuracy the dimensions of the earth, which is the station of the astronomical observer, its form, and the changes of position in relation to surrounding objects to which it is subject.
2313. Form globular. - The first impression produced by the aspect presented by the surface of the earth is that of a vast indefinite plane surface, broken only by the accidents of the ground on land, such as hills and mountains, and by the more mutable forms due to the agitation of the fluid mass on the sea. Even this departure from the appearance of an extensive plane surface ceases on the sea out of sight of land in a perfect calm, and on certain planes of vast extent on land, such as some of the prairies of the American continents.

This first impression is soon shown to be fallacious; and it is easily demonstrated that the immediate indications of the unaided sense of vision, such as they are, are loosely and incorrectly interpreted, and that, in fact, even that small part of the earth's surface which falls at once within the range of the eye in a fixed position does not appear to be a plane.

Supposing that any extensive part of the surface of the earth were really a plane, let several stakes or posts, of equal height, be erected along the same straight line, and at equal distances,
say a mile apart. Let these stakes be represented by $s s, s^{\prime} s^{\prime}, s^{\prime \prime} s^{\prime \prime}$, \&c., fig. 688., and let a stake of equal height o o be erected at


Fig. 688.
the station of the observer. Now if the surface were a plane, it is evident that the points $s, s^{\prime}, s^{\prime \prime}, \& c$. must appear to an eye placed at $o$ in the same visual line, and would each be visible through a tube directed at $o$ parallel to the surface os. But such will not be found to be the case. When the tube is directed to s , all the succeeding points $s^{\prime}, s^{\prime \prime}$, \&c. will be below its direction. If it be directed to $s^{\prime}$, the point $s$ will be above, and $s^{\prime \prime}$ and all the succeeding points will be below its direction. In like manner, if it be directed to $s^{\prime \prime}$, the preceding points $s$ and $s^{\prime}$ will be above, and the succeeding points below its direction. In effect it will appear as though each succeeding stake were a little shorter than the preceding one. But as the stakes are all precisely equal, it must be inferred that the successive points of the surface $\mathrm{s}, \mathrm{s}^{\prime}, \mathrm{s}^{\prime \prime}, \mathrm{s}^{\prime \prime \prime}$, \&c. are relatively lower than the station o. Nor will the effects be explained by the supposition that the surface $0 \mathrm{~s} \mathrm{~s}^{\prime} \mathrm{s}^{\prime \prime}$, \&c., is a descending but still a plane surface, because in that case the points $s, s^{\prime}, s^{\prime \prime}, \& c$. must still be in the same visual line directed from o. It therefore follows that the surface in the direction $0 \mathrm{~s}^{\prime} \mathrm{s}^{\prime \prime} \mathrm{s}^{\prime \prime \prime}$, \&c. is not plane but curved, as represented in fig. 689., where the visual lines are in obvious accordance with the actual appearances as above explained.


Fig. 689.
Now since these effects are found to prevail in every direction around the point of observation 0 , it follows that the curvature of the surface prevails all around that point; and since
the extent of the depression of the points $\mathrm{s}, \mathrm{s}^{\prime}, \mathrm{s}^{\prime \prime}, \& \mathrm{c}$. at equal distances from 0 , are equal in every direction around 0 , it follows that the curvature is in every direction sensibly uniform around that point.

But by slifting the centre of observation $O_{y}$ and making similar observations elsewhere, and on every part of the earth where such a process is practicable, not only are like effects observed, but the degree of depression corresponding to equal distances from the centres of observation is the same.

Hence we infer that the surface of the earth, as olserved directly by the eye, is not a plane surface, but one everywhere curved, and that the curvature is everywhere uniform, at least that no departure from perfect uniformity in its general curvature exists sufficiently considerable to be discovered by this method.

But the only form of a solid body which has a surface of uniform curvature is a sphere or globe, and it is therefore established that such is the form of the earth.
2314. This conclusion corroborated by circumnavigation. If a vessel sail, as far as it is practicable to do so, constantly in the same direction, it will at length return to the port of its departure, having circumnavigated the earth, and during its course it appears to pass over an uniform surface. This is obviously what must take place so far as regards that part of the earth which is covered with water, supposing it to be a globe.
2315. Corroborated by lunar eclipses. - But the most striking and conclusive corroboration of the inference just made, and indeed a phenomenon which alone would demonstrate the form of the earth, is that which is exhibited in lunar eclipses. These appearances; which are so frequently witnessed, are caused by the earth coming between the sun and the moon, so as to cast its shadow topop stre Jatter. Now the form of that shadow is always precisely that which one globe would project upon another. The phenomenon thu's àt once establishes not only the globular form of the earth, but that of the moon also.
2316. Various effectṣ indicätz̀ng the earth's rotundity. - The rotundity of the earth being once admitted, a multitude of its consequences and effects'present themselves, which supply corroborative evidence of that important proposition.

When a ship sails. from the observer, the first part which should cease to be visible, if the earth was a glane, would be the
rod of the top-mast, having the smallest dimensions, and the last the hull and sails, being the greatest in magnitude; - but, in fact, the very reverse takes place. The hull first disappears, then the sails, and in fine the top-mast alone is visible by a telescope, appearing like a pole planted in the water. This becomes gradually shorter, appearing to sink in the water as the vessel recedes from the eye.

These appearances are the obvious consequences of the gradual interposition of the convexity of the part of the earth's surface over which the vessel has passed, and will be readily compreliended by the fig. 690.


Fig. 690.
If the observer take a more elevated position, the same succession of phenomena will be presented, only greater distances will be necessary to produce the same degree of apparent sinking of the vessel.

Land is visible from the top-mast in approaching the shore, when it cannot be seen from the deck.

The top of theopeak of Teneriffe, can be seen from a distance when the base of the mountain is invisible.

The sun shines on the summits of the Alps lqing after sunset in the valleys.'

An acronaut ascending after sunset has witnessed the sun to reappear with all the effects of sunrise. Ondescending, he witnessed a second sunset.
2317. Dimensions of thie eartifa - Method of measuring a degree. - Having thus ascertained that the form of the earth is a globe, it now remains to disçaver its magnitude, or, what is the same, its diameter.

For this purpose it will be neepessary first to ascertain the actual length of a degree upon its surface, that is, the distance between two points on the surface, so placed that the lines drawn from themto the centre shall make with each other an angle of one degreá

Let $p$ and $p^{\prime}, f i g .691 .$, represent two places upon the earth's surface, distant from each other from 60 to 100 miles, and let


Fig. 691. $c$ be the centre of the earth. Now, let us suppose that two observers at the places $p$ and $p^{\prime}$ observe two stars $s$ and $s^{\prime}$, which at the same time are vertically over the two places, and to which, therefore, plumb-lines suspended at the two places would be directed. The direction of these plumb-lines, if continued downwards, would intersect at $c$, the centre of the earth.

The visual angle under the directions of these stars $s$ and $s^{\prime}$ at $\boldsymbol{p}^{\prime}$ is $\boldsymbol{s} \boldsymbol{p}^{\prime} s^{\prime}$, and at c is $s \mathrm{c} s^{\prime}$. But, owing to the insignificant proportion which the distances $p p^{\prime}$ and $p \mathrm{c}$ bear to the distances of the stars (as will be made evident hereafter), the visual angle of the stars, whether seen from $p$ or c, will be the same. If, then, this visual angle at $\boldsymbol{p}^{\prime}$ be measured, as it may be with the greatest precision, we may consider it as the magnitude of the angle $p \mathrm{c} p^{\prime}$.

Let the actual distance D , between the places $p$ and $p^{\prime}$, be measured or ascertaifed by the process of surveying, and the number of seconds in the observed angle $s p^{\prime} s^{\prime}$ be expressed by $a$. If $d$ express the distance of two points on the earth which would subtend at the centre $c$ an angle of $1^{\circ}$, we shall then have -

$$
a: 3600:: \mathrm{D}: d=\mathrm{v} \times \frac{3600}{a}
$$

since the number of seconds in a degree is 3600 (2292).
2318. Length of a degree. - In this way it has been ascertained that the length of a degree of the earth's surface is a little less than 70 British statute miles, and may be expressed in feet (in round numbers) by 365,000 .
It will therefore be easy to remember that the length of a degree is as many thousand feet as there are days in the year.
2319. Length of a second of the earth. - Since a second is the 3600th part of a degree, it follows also that the length of a second is an hundred feet very nearly, a measure also easily remembered.
2320. Change of direction of the plumb-line in passing over a given distance. - From what has just been explained it will be understood that since a plumb-line always points to the centre of the earth (when its direction is undisturbed by any local attraction), its change of direction, in passing from any one place to any other, may be always found by allowing 1 " for every hundred feet in the direct line joining the places, or still more exactly by allowing 365,000 feet for every degree, and a proportional part of this length for every fraction of a degree between the places.
2321. To find the earth's diameter. - Nothing can be more easy, after what has been stated, than the solution of the problem to determine the earth's diameter. By what has been explained (2294), if $r$ express the radius or semidiameter of the earth $\mathbf{c} p, a$ the arc $p p^{\prime}$ of the earth's surface between the two places, and $a$ the angle $p \mathrm{c} \boldsymbol{p}^{\prime}$, we shall have-

$$
r=a \times \frac{206265}{a^{\prime \prime}}
$$

If the distance $a$ be one degree, this will become -

$$
r=\frac{365000}{3600} \times 206265=20,912979
$$

or very nearly 21 million feet, which is equal to 3960 statute miles. So that the diameter of the earth would be 7920 miles, or in round numbers (for we are not here pretending to extreme arithmetical precision) 8000 miles.

The process of observation above explained is not in its details exactly that by which the magnitude of the earth is ascertained, but it is in spirit and principle the method of observation and calculation. It would not be easy to find, for example, any two sufficiently observable stars which at one and the same moment would be vertically over the two places $p$ and $\boldsymbol{p}^{\prime}$, but any two stars nearly over them - would equally answer the purpose by observing the extent of their departure from the vertical direction. Neither is it necessary that the two observations should exactly coincide as to time; but these details do not affect the principle of the method, and will be more clearly intelligible as the student advances.
2322. Superficial inequalities of the earth relatively insigni. ficant.-It is by comparison alone that we can acquire any clear or definite notions of distances and magnitudes which do
not come under the immediate cognizance of the senses. If we desire to acquire a notion of a vast distance over which we cannot pass, we compare it with one with which we have immediate and actual acquaintance, such as a foot, a yard, or a mile. And since the area or, superficial extent of surfaces and the volume or bulk of solids are respectively determined by the length of their linear dimensions, the same expedient suffices to acquire notions of them. In Astronomy, having to deal with magnitudes exceeding in enormous proportions those of all objects, even the most stupendous, which are so approachable as to afford means of direct sensible observation, we are incessantly obliged to have recourse to such comparisons in order to give some degree of clearness to our ideas, since without them our knowledge would become a mere assemblage of words, numbers, and geometrical diagrams.

Let us, then, consider the dimensions and form of the earth, as they have been ascertained in the preceding paragfaphs.

When it is stated that the earth is a globe, the first objection which will be raised by the uninformed student is that the cortinents; iellands, and tracts of land with which it is covered are marked by considerable inequalities of level; that mountains rise into ridges and peaks of vast height; that the seas and oceans, though level at their surface in a certain general sense, are agitated by great waves, and alternately swelled and depressed by tides, and that the solid bottom of them is known to be subject to inequalities analogous in character, and not less in depth, thran those which prevail on the land. Since, then, it is the characteristic property of a globe that all points on its surface are equally distant from its centre, how, it may be demanded, can a mass of matter, so unequal in its surface as the earth is, be a globe?

It may be fonceded at once, in reply to this objection, that the earth is not, in the strict geometric sense of the term, a globe. But let us consider the extent of its departure from the globular form, so far as relates to the superficial inequalities just adverted to.

The most lofty mountain peaks do not exceed five miles in Leight. Few, indeed, approach that limit. Most of the considerable mountainous districts are limited to less than half that height. No considerable tract of land has a general elevation even of one mile. The deepest parts of the sea have not been
sounded; but it is certain that their depth does not exceed the heights of the most lofty mountains, and the general depth is incomparably less. The superficial inequalities of the aqueous surface produced by waves and tides are comparatively insignificant.

Now, let us consider how these several superficial inequalities would be represented, observing a due proportion of scale, even on the most stupendous model.

Construct a globe 20 feet in diameter, as a model of the earth. Since 20 feet represents 8000 miles, $1-400$ th part of a foot, or $3-100$ th parts of an inch, represents a mile. The height, therefore, of the most lofty mountain peak, and the greatest depth of the ocean, would be represented by a protuberance or a hole having no greater elevation or depth than 15-100ths, or about the seventh part of an inch. The general elevation of a continent would be fairly represented by a leaf of paper pasted upon the surface, having the thickness of less than the fiftieth of an inch; and a depression of little greater amount would express the depth of the general bed of the sea.

It will therefore be apparent, that the departure of stecle at model from the true form of a globe would be in all, save a strictly geometrical sense, absolutely insignificant.
2323. Relative dimensions of the atmosphere. - The surface of the earth is covered by an ocean of air which floats upon it, as the waters of the seas rest upon their solid bed. The density of this fluid is greatest in the stratum which is in immediate contact with the surface of the land and water of the earth, and it diminishes in a very rapid ratio in ascending, so that one half of the entire atmosphere is included in the strata whose height is within $3 \frac{1}{2}$ miles of the surface. At an altitude of 80 miles, or the hundredth part of the earth's diameter, the rarefaction must be so extreme, that neither animal life nor combustion could be maintained.

The atmosphere, being then limited to such a height, would be represented on the model above described by a stratum two inches and a half thick.
2324. If the earth moved, how could its motion be perceived? - Having thus ascertained, in a rough way, the form and dimensions of the earth, let us consider the question of its rest or mobility.

Nothint is more repugnant to the first impressions received
from the aspect of the surface of the earth, and all upon it, than the idea that it is in motion. But if this universal impression be traced to its origin, and rightly interpreted, it will not be found erroneous, and will form no exception to the general maxim which induces all persons, not even excepting philosophers, to regard without disrespect notions which have obtained universal popular acceptation.

What is the stability and repose ascribed by the popular judgment to the earth? Repose certainly absolute, so far as regards all objects of vulgar or popular contemplation. It is maintained, and maintained truly, that everything upon the earth, so far-as the agency of external causes is concerned, is at relative rest. "Hills', m'oyntains, and valleys, oceans, seas, and rivers, as well as.all artificial structures, are in relative repose; and if our observation did not extend to objects exterior to the globe, the popular maxim would be indisputable. But the astronomer contemplates objects which either escape the attention of, of are imperfectly known to, mankind in general ; and the phenomena which attend these render it manifest, that while the earth, in relation to all objects upon it and forming part of it, is at rest, it is in motion with relation to all the other bodies of the universe.

The motion of objects external to the observer is perceived by the sense of sight only, and is manifested by the relative displacement it produces among the objects affected by it, with relation to objects around them which are not in motion, and with relation to each other. Motions in which the person of the observer participates may affect the senses both of feeling and sight. The feeling is affected by the agitation to which the body of the observer is exposed. Thus, in a carriage which starts or stops, or suddenly increases or slackens its speed, the matter composing the person of the observer has a tendency to retain the motion which it had previous to the change, and is accordingly affected with a certain force, as if it were pushed or drawn from rest in one direction or the other. But once in a state of uniform motion, the sense of feeling is only affected by the agitation proceeding from the inequalities of the road. If these inequalities are totally removed, as they are in a boat drawn at a uniform rate on a canal, the sense of feeling no longer affords any evidence whatever of the motion.

A remarkable example of the absence of all consciousness of
motion, so far as mere feeling is concerned, is presented to all who have ascended in a balloon. As the aerial vehicle floats with the stratum of the air in which it is suspended, the feeling of the aeronaut is that of the most absolute repose. The balloon seems as fixed and immoveable as the solid globe itself, and nothing could produce in the voyager, blindfolded, any consciousness whatever of motion. When however bis eyes, unbandaged, are turned downwards, he sees the vast diorama below moving under him. Fields and woods, villages and towns pass in succession, and the phenomena are such as to impress on the eye, and through the eye upon the mind, the conviction that the balloon is stationary, and the earth moving under it! A certain effort of the understandiug, slight, it is trué; but still an effort, is required to arrive at the inference that the impression thus produced on the sense of vision is an illusion, that the-motion with which the landscape seems to be affected is one which in reality affects the balloon in which the speetantor is Euspended, and that this motion is equal in speed, and contrary in dipection, to that which appears to affect the subjacent country.

Now it will be evident, that if the globe of the earth, and all upon it, were floating in space, and moving in any direction at any uniform rate, no consciousness of such motion could affect any sensitive being upon it. All objects partaking in common in such motion, no more derangement among them would ensue than among the persons and objects transported in the car of the balloon, where the aeronaut, no matter what be the speed of the motion, can fill a glass to the brim as easily as if he were upon the solid ground. Supposing, then, that the earth were affected by any motion in which all objects upon it, including the waters of the ocean, the atmosphere, and clouds, would all participate, would the existence of such a motion be perceived by a spectator placed upon the earth who would himself partake of it? It is clear that he must remain for ever unconscious of it, unless he could find within the range of his vision some objects which, not partaking of the motion, would appear to have a motion contrary to that which the observer has in common with the earth.

But such objects are only to be looked for in the regions of space beyond the limits of the atmosphere. We find them in fine in the sun, the moon, the stars, and all the objects which * the firmament presents. Whatever motion the earth may have
will impart to all these distant objects the appearance of a motion in the contrary direction.

But how, it may be asked, is the apparent motion produced in distant objects by a real motion of the station in which the observer is placed, to be distinguished from the real motion of the distant objects themselves, which would give them the same apparent motion? Since the phenomena are absolutely identified, whether the apparent motion observed is produced by a real motion in the observer, or a real motion in the object observed, it is necessary to seek for evidence; either that the object observed cannot have the real motion which would produce the phenomena, or that the station of the observer has it. But before engaging in this question, it is necessary first, to obtain a clear and definite knowledge of what the apparent motion in question is; secondly, what is the real motion of the earth which could produce it; and thirdly, what would be the real motion, or motions, of the objects observed, which would produce the same phenomena.
2325. Parallax. - Since the apparent place of a distant object depends on the direction of the visual line drawn from the observer to such object, and since while the object remains stationary the direction of this visual line is changed with every change of position of the observer, such change of position produces necessarily a displacement in the apparent position of the object.

This apparent displacement of any object seen at a distance, due to the change of position of the observer, is called parallax.

It follows that a distant object seen by two observers at different places on the earth is seen in different directions, so that its apparent place in the firmament will be different. It would therefore follow, that the aspect of the heavens would vary with every change of position of the observer on the earth, just as the relative position of objects on land which are stationary changes when viewed from the deck of a vessel which sails or steams along the coast. But it so happens, as will appear hereafter, that even the greatest difference of position which can exist between observers on the earth's surface is so small compared even with the nearest bodies to the earth, that the apparent displacement, or parallax, thus produced is very small; while for the most numerous of celestial objects, the stars, it is
absolutely inappreciable by the most refined means of observation and measurement.

Small as it is, however, so far as relates to the nearer bodies of the universe, it is capable of definite measurement, and its amount for each of them supplies one of the data by which their distances are calculated.
2326. Apparent and true place of an object. - Diurnal parallax. - When an object is within such a limit of distance as would cause a sensible displacement to be produced when it is viewed from different parts of the earth's surface, it is convenient, in registering its apparent position at any given time, to adopt some fixed station from which it is supposed to be observed. The station selected by astronomers for this purpose is the centre of the earth. The direction in which an object would be seen if viewed from the centre of the earth is called its troe pilace. The direction in which it is seen from any place of observation on the surface is called its apparent place, and the apparent displacement which would be produced by the transfer of the observer from the centre to the surface or vice versa, or, what is the same, the difference between the true and apparent places, is called the diurnal parallax.

In fig. 692., let c represent the centre of the earth, P a place

of observation on its surface, $o$ an object seen in the zenith of $P, o^{\prime}$ the same object seen at the zenith distance o $\mathrm{PO}^{\prime} \mathrm{O}^{\prime}$, and $\mathrm{o}^{\prime \prime}$ the same object seen in the horizon.

It is evident that o will appear in the same direction, whether it be viewed from $p$ or $c$. Hence it follows that in the zenith there is no diurnal parallax, and that there the apparent place of an object is its true place.

But if the object be at $o^{\prime}$, then the apparent direction is $\mathbf{P} \mathbf{o}^{\prime}$, while the true direction is $c o^{\prime}$, and the apparent place of the object will be $a^{\prime}$, while its true place will be $t^{\prime}$; and the diurnal parallax corresponding to the zenith distance o $\mathrm{Po}^{\prime}$ will be $t^{\prime} a^{\prime}$, or the angle $t^{\prime} \mathrm{o}^{\prime} a^{\prime}$, which is equal to $\mathrm{PO}^{\prime} \mathrm{c}$.

As the object is more remote from the zenith the parallax is augmented, because the semidiameter cp of the earth, which passes through the place of observation, is more and more nearly at right angles to the directions $\mathrm{CO}^{\prime}$ and $\mathrm{P} \mathrm{O}^{\prime}$.
2327. Horizontal parallax. - When the object is in the horizon, as at $\mathrm{o}^{\prime \prime}$, the diurnal parallax becomes greatest, and is called the Horizontal parallax. It is the angle $\mathrm{po}^{\prime \prime} \mathrm{c}$ which the semidiameter of the earth subtends at the object.

If $z$ express the zenith distance, or the angle $\mathrm{PCO}^{\prime}$, a line $\mathrm{c} n$ drawn from c at right angles to $\mathrm{P}^{\prime}{ }^{\prime} n$ will be expressed by $z \times$ $r \times \sin . z, r$ being the semidiameter 0 of the earth. If $D$ express the distance of the object $O^{\prime}$, and ov the parallactic angle $\mathbf{P O}^{\prime} \mathbf{c}$, which is always very small, we shall have, by the principle explained in (2294):

$$
\sigma^{\prime \prime}=206265^{\prime \prime} \times \sin . z \times \frac{r}{\mathrm{D}},
$$

the parallax being expressed in seconds.
If the object be in the horizon as at $0^{\prime \prime}$, we shall have $z=90^{\circ}$, and therefore

$$
w^{\prime \prime}=206265^{\prime \prime} \times \frac{r}{D}
$$

2328. Given the horizontal parallax and the earth's semidiameter, to compute the distance of the object. - It is evident that this important problem can be solved by the preceding formula; for we have (2297)

$$
\mathrm{D}=\frac{206265}{\pi^{\prime \prime}} \times r
$$

## CHAP. III.

## APPARENT FORM AND MOTION OF THE FIRMAMENT.

2329. Aspect of the firmament.-If we examine the heavens with attention on clear starlight nights, we shall soon be struck with the fact, that the brilliant objects scattered over them in such incalculable numbers maintain constantly the same relative position and arrangement. Every eye is familiar with certain groups of stars called constellations. These are never observed to change their relative position. A diagram representing them now would equally represent them at any future time; and if a general map be made, showing the relative arrangement of these bodies on any night, the same map will represent them with equal exactness and fidelity on any other night. There are a few, - some thirty or forty or so, -among many thousands, which are exceptions to this, with which, however, for the present we need not concern ourselves.
2330. The celestial hemisphere.-The impression produced upon the sight by these objects is that they are at a vast distance, but all at the same distance. They seem as though they were attached in fixed and unalterable positions upon the surface of a vast hemisphere, of which the place of the observer is the centre. Setting aside the accidental inequalities of the ground, the observer seems to stand in the centre of a vast circular plane, which is the base of this celestial hemisphere.
2331. Horizon and zenith. - This plane, extended indefinitely around the observer, meets the celestial hemisphere in a
 (orizein), to terminate or bound, being the boundary or limit of the visible heavens.

The centre point of the visible hemisphere - that point which is perpendicularly above the observer, and to which a plumbline suspended at rest would be directed - is called the Zenith.
2332. Apparent rotation of the firmament. - A few hours' attentive contemplation of the firmament at night will enable any common observer to perceive, that although the stars are, relatively to each other, fixed, the hemisphere, as a whole, is in
motion. Looking at the zenith, constellation after constellation will appear to pass across it, having risen in an oblique direction from the horizon at one side, and, after passing the zenith, descending on the other side to the horizon, in a direction similarly oblique. Still more careful and longer continued observation, and a comparison, so far as can be made by the eye, of the different directions successively assumed by the same object, creates a suspicion, which every additional observation strengthens, that the celestial vault has a motion of slow and uniform rotation round a certain diameter as an axis, carrying with it all the objects visible upon it, without in the least deranging their relative positions or disturbing their arrangement.

Such an impression, if well founded, would involve, as a necessary consequence, that $a$ certain point in the heavens placed at the extremity of the axis of its rotation, would be fixed, and that all other points would appear to be carried around it in circles; each such point preserving therefore, constantly, the same distance from the point thus fixed.
2333. The pole star.-To verify this inference, we must look for a star which is not affected by the apparent rotation of the heavens, which affects more or less every other star.

Such a star is accordingly found, which is always seen in the same direction, - so far at least as the eye, unaided by more accurate means of observation, can determine.

The place of this star is called the Pole, and the star is called the Pole Star.

2334 Fiotation proved by instrumental observation.-Mere visual observation, however, can at most only supply grounds for probable conjecture, either as to the rotation of the sphere, or the position of its pole, if such rotation take place. To verify this conjecture, to determine with certainty whether the motion of the ${ }^{\text {s }}$ sphare be one of rotation, and if so, to ascertain with precisioñ the direction of the axis round which this rotation takesip fioe, itts velocity, and, in fine, whether it be uniform or variabile, - are problems of the highest importance, but which are altorether beyond the powers of mere visual observation, unaidediby instruments of precision.
2335.'Exact direction of the axis and position of the pole. Suppose ateleseope of low magnifying power, supplied with mictolmetric pirtes (2302), to be directed to the pole star, so that tlite star
middle wires. If this star were precisely at the extremity of the axis of the hemisphere, or at the pole, it would remain permanently at the intersection of the wires, notwithstanding the rotation of the firmament. Such is not, however, found to be the case. The star will appear to move; but, if the magnifying power of the telescope be low enough, it will not leave the field of view. It will appear to move in a small circle, the diameter of which is about three degrees. The telescope may be so adjusted that the star will move in a circle round the intersection of the middle wires as a centre; and in that case the point marked by the intersection of the middle wires is the true position of the Pole, round which the pole star is carried in a circle, at the distance of about $1 \frac{1}{2}^{\circ}$, by the rotation of the sphere.
2336. Equatorial instrument. -The exact direction of the axis of the celestial sphere being thus ascertained, it is possible to construct an apparatus which shall be capable of revolving upon a fixed axis, the direction of which shall coincide with that of the sphere; so that if a telescope were fixed in the direction of this axis, its line of collimation (2303) would exactly point to the celestial pole.

Upon this axis, thus directed and fixed, suppose a telescope to be so mounted that it may be placed with its line of collimation at any desired angle with the axis, and let a properly graduated arc be provided, by which the magnitude of this angle may be measured with all practicable precision.

Thus, let $\wedge A^{\prime}$, fig. 693., represent the direction of the axis on which the instrument is made to revolve. The line i $A^{\prime}$, if continued to the firmament, would pass through the pole $p$. Let co represent the line of collimation of a telescope, so attached to the axis at $c$ that it may be placed at any desired angle with it; which may be accomplished by placing a joint at $c$ on which the telescope can turn. Let non' be a graduated arc, "to whíh the telescope is attached at $o$, and which turns with the telescope round the axis $A A^{\prime}$. When the telescope, being fixed at any proposed angle oca' with the axis, is turned round AA', the line of collimation describes a cone of which c is the v grtex and $\mathrm{CA}^{\prime}$ the axis, and the extremity o describes an arc oo' of a circle at a distance from $\mathrm{s}^{\prime}$ measured by the angle ogit.

If the line of collimation coor co' be imagined to be continued to the heavens, it will describe, as the telesmere revolres, a . 11.
circle $O o^{\prime}$ on the firmament corresponding to the circle $00^{\prime}$ and at the same angular distance op, $o^{\prime} p$ from the celestial pold


Fig. 693.
$p$, as the end 0 or $o^{\prime}$ of the line of collimation of the telescope is from $\mathrm{N}^{\prime}$ or $\mathrm{A}^{\prime}$. In short, the angle $0 \mathrm{CN}^{\prime}$ equally measures the two arcs, the celestial are op and the instrumental arc $0 \mathrm{~N}^{\prime}$.

The instrument thus described in its principle is one of most extensive utility in observatories, and is called an Equatorial.

In its practical construction it is very rariously mounted, and is sometimes acted upon by clock-work, which imparts to it a motion round the axis $\mathrm{AA}^{\prime}$, corresponding with the rotation of the celestial sphere.

One of the many mechanical arrangements by which this may be effected is represented in fig. 694., as given by the Astronomer Royal, in his lectures delivered at the Ipswich Museum.

The instrument is supported upon pivots, so that its $\pi x i s A^{\prime} B^{\prime}$ shall coincide exactly with the direction of the celestial axis.

The telescope $\mathbf{C D}$ turns upon a joint at the centre, so that different directions, such as $c^{\prime} \mathrm{D}^{\prime}, \mathrm{c}^{\prime \prime} \mathrm{D}^{\prime \prime}$, may be given to it.


Fig. 694.
The motion upon its axis is imparted to it by wheel-work elk, impelied by clock-work, as already mentioned.
2337. Rotation of firmament proved by equatorial. - Now, to establish, by means of this instrument, the fact that the firmament really has a motion of apparent rotation with a velocity rigorously uniform round the axis, let the telescope be first directed to any star, o, fig.693., for example, so that it shall be seen upon the intersection of the middle wires. The line of collimation will then be directed to the star, and the angle $0 \mathrm{CN}^{\prime}$ or the are on' will express the apparent distance of such star from the pole $p$.

Let the instrument be then turned upon its axis from east to west (that is, in the same direction as the rotation of the firmament), through any proposed angle, say $90^{\circ}$, and let it be fixed in that position. The firmament will follow it, and after a certain interval the same star will be seen upon the intersection of the wires; and in the same manner, whatever be the change of position of the instrument upon its axis, provided the direction of the telescope upon the arc $\mathrm{on}^{\prime}$, fig. 693., be not changed, the star will always arrive, after an interval more or less, according to the angle through which this instrument has been turned, upon the intersection of the wires.

It follows, therefore, from this, that the particular star here observed is carried in a circle round the henmens, always at the same distance, op, from the celestial pole.

The same observations being made with a like result upon
every star to which the telescope is directed, it follows that the motion of the firmament is such that all dojects upón it describe circles at right angles to its axis, each qbject atways, remaining at the same distance from the pole.

This is precisely the effect which woullibe piroduced by the rotation of the heavens round an axis directed to the pole from the place of the observer.

But it remains to ascertain the time ofrotation, and whether the rotation be uniform.

If the telescope be directed as before to any star, so that it shall be seen at the intersection of the wires, let the instrument be then fixed, being detached from the clock-work, and let the exact time of the star passing the wires be noted. On the following night, at the approach of the sume hour, the same star will be seen approaching to the same position, and it will at length arrive again upon the wircs. The time being again exactly observed, it will be found that the interval which has elapsed between the two successive passages of the star over the wires is

$$
23^{\mathrm{h} \cdot} \cdot 56^{\mathrm{m} \cdot} \cdot 4 \cdot 09^{\mathrm{s}}
$$

Such is, therefore, the time in which the celestial sphere makes one complete revolution, and this time will be always found to be the same, whatever be the star to which the telescope is directed.

To prove that not only every complete revolution is performed in the same time, but that the rotation during the same revolution is uniform, let the instrument, after being directed to any star, be turned in the direction of the motion of the sphere through any proposed angle, $90^{\circ}$ for example. It will be found that the interval which will elapse between the passage of the star over the wires in the two positions will, in this case, be the fourth part of $23^{\mathrm{h} \cdot} 56^{\mathrm{m} \cdot} 4.09^{\mathrm{s} \cdot}$; and, in general, whatever be the angle through which the instrument may be turned, the interval between the passages of the same star over the wires in the two positions will bear the same proportion to $23^{\mathrm{h}} \cdot 56^{\mathrm{m} \cdot} \cdot 4 \cdot 09^{\text {s. }}$, as the angle bears to $360^{\circ}$.

It follows, therefore, that the apparent rotation of the heavens is rigorously uniform.

It will be observed that the time of one complete revolution is $3^{\mathrm{m} \cdot} \cdot 55 \cdot 91^{\mathrm{s}}$. less than twenty-four hours, or a common day. The cause of this difference will be explained hereafter.
2338. Sidereal tinie. - Thie time of one complete revolution of the firmtueat-is ealled a sidereal day. This interval is divided, likonitomuon day, into 24 hours, each hour into 60 minutes, and enek minute into 60 seconds.

Since in $24^{\circ}$ siderear hours the sphere turns through $360^{\circ}$, and singe its motion is rigorously uniform, it turns through $15^{\circ}$ in a sidercitytrour, and through $1^{\circ}$ in four sidereal minutes.
2339. 'The same apparent motion olserved by day.-It may be objected that although this description of the movement of the heavens accords with the appearances during the night, there is no evidence of the continuance of the same rotation during the day, since in a cloudless firmament no object is visible except the sun, which being alone cannot manifest the same community of motion as is exhibited by the multitudinous objects which, being crowded so thickly on the firmament at night, move together without any change in their apparent relative position. To this objection it may be answered that the moon is occasionally seen in the day-time as well as the sun; and, moreover, that before sunset and sunrise the planets Jupiter and Venus are occasionally seen under favourable atmospheric circumstances. Besides, with telescopes of sufficient power properly directed, all the brighter stars can be distinctly seen when not situated very near the position of the sun. Now, in all these cases, the objects thus seen appear to be carried round by the same motion of the firmament, which is so much more conspicuously manifested in the absence of the sun and at night.
2340. Certain fixed points and circles necessary to express the position of oljects on the heavens.- It will greatly contribute to the facility and clearness with which the celestial phenomena and their causes shall be understood if the student will impress upon his memory the names and positions of certain fixed points, lines, and circles of the celestial sphere, by reference to which the position of objects upon it are expressed. Without incumbering him with a more complex nomenclature than is indispensably necessary for this purpose, we shall therefore explain some of the principal of these landmarks of the heavens.
2341. Vertical circles, zenith, and nadir. - If from the place of the observer $a$ straight line be imagined to be drawn perpendicular to the plane of the horizon, and to be continued indefi-
nitely both upwards and downwards, it will meet the visible hemisphere at its vertex, the Zeniti, and the invisible hemisphere, which is under the plane of the horizon, at a corresponding point called the Nadir.

If a plane be supposed to pass through the place of the observer and the zenith, it will meet the celestial surface in a series of points, forming a circle at right angles to the. horizon. Such a circle is called a vertical circle, or, shortly, a Vertical.

If this plane be supposed to be turned round the line passing upwards to the zenith, it will assume successively every direction round the observer, and will meet the heavens in every possible vertical circle.

The vertical circles, therefore, all intersecting at the zenith as a common point, divide the horizon as the divisions of the hours and minutes divide the dial-plate of a clock.
2342. The celestial meridian and prime vertical. - That vertical which passes though the celestial pole is called the Meridian.

The meridian is, therefore, the only circle of the heavens which passes at once through the two principal fixed points, the pole and the zenith.

It divides the visible hemisphere into two regions on the right and left of the observer; as he looks to the north, that which is on his right being called the Eastern, and that which is on his left the Western.

Another vertical at right angles to the meridian is called the prome vertical. This is comparatively little used for reference.
2343. Cardinal points. - The meridian and prime vertical divide the horizon at four points, equally distant, and therefore separated by arcs of $90^{\circ}$. These points are called the cardinal pornts. Those formed by the intersection of the meridian with the horizon are called the Nortil and South points, that which is nearest to the visible pole in the northern hemisphere being the north. Those formed by the intersection of the prime vertical with the horizon are called the East and West, that to the right of an observer looking towards the north being the east.

The cardinal points correspond with those marked on the card of a mariner's compass, allowance being made for the variation of the needle.
2344. The azimuth. - The direction of an object, whether terrestrial or celestial, in reference to the cardinal-points, or to the plane of the meridian, is called its Azmoth. Thus it is said to have so many degrees of azimuth east or west, according as the vertical circle, whose plane passes through it, forms that angle east or west of the plane of the meridian.

- 2345. Zenith distance and altitude. - It is always possible to conceive a vertical circle which shall pass through any proposed object on the heavens. The arc of such a circle between the zenith and the object is called its Zenitio distance.

The remainder of the quadrant of the vertical between the object and the horizon is called its Altitode.

It is evident, therefore, that the altitude of the zenith is $90^{\circ}$, and the zenith distance of every point on the horizon is also $90^{\circ}$.

The arc of the meridian between the zenith and the pole is the zenith distance of the pole, and the arc of the meridian between the pole and the horizon is the altitude of the pole.
2346. Celestial equator. - If a plane be imagined to pass through the place of the observer at right angles to the axis of the sphere, and to be continued to the heavens, it will meet the surface of the celestial vault in a circle which shall be $90^{\circ}$ from the pole, and which will divide the sphere into two hemispheres, at the vertex of one of which is the visible or north pole, and at the vertex of the other the invisible or south pole.

This circle is called the celestial equator.
The several fixed points and circles described above will be more clearly conceived by the aid of the diagram, fig. 695.,


Fig. 695.
where $o$ is the place of the observer, $z$ the zenith, $P$ the pole, SZPN the visible, and spze the invisible half of the meridian; SENW is the horizon scen by projection as an oral, being, however, really a circle; $N$ and $s$ are the north and south, and E and w the east and west cardinal points. The points of the several circles which are below the horizon are distinguished by dotted lines.: The celestial equator is represented at $\pi Q$, and the prime vertical at $z \mathrm{WE} z$, both being looked at edgewise.

A plane $\mathrm{v} n$, drawn through the north cardinal point, cuts off a portion of the sphere, having the visible pole $n$ at its centre, all of which is above the horizon; and a corresponding plane, $s s$, through the south cardinal point, cuts off a part, leaving the invisible pole at its centre, all of which is below the. horizon.
2347. Apparent motion of the celestial sphere.- Now, if the entire sphere be imagined to revolve on the line rop through the poles as a fixed axis, making one complete revolution, and in such a direction that it will pass over an observer at o, looking towards a from his right to his left, carrying with it all the objects on the firmament, without disturbing their relative position and arrangement, we shall form an exact notion of the apparent motion of the heavens. All objects rise upon the eastern half, sen, of the horizon, and set upon the western half, swn. The objects which are nearer to the visible pole P than the circle $n \mathrm{~N}$ never set; and those which are nearer to the invisible pole $P$ than the circle ss never rise. Those which are between the equator $\boldsymbol{X Q}$ and the circle $n_{N}$ are longer above the horizon than below it; and those which are between the equator $\pi Q$ and the circle $s s$ are longer below the equator than abovẹ it. Objects, in fine, which are upon the equator are equal times below and above the horizon.

When an object rises, it gradually increases its altitude until it reaches the meridian. It then begins to descend, and continues to descend until it sets.

## CHAP. IV.

diUndal rotation of the earti.
2348. Apparent diurnal rotation of the heavens-its possille causes, - The apparent diurnal rotation of the celestial sphere being such as has been explained, it remains to determine what is the real motion which produces it. Now it is demonstrable that it may be caused indifferently, either by a real motion of the sphere round the observer corresponding in direction and velocity with the apparent motion, or by a real motion of the earth in the contrary direction, but with the same angular velocity upon that diameter of the globe which coincides with the direction of the axis of the celestial sphere, and that no other conceivable motion would produce that apparent rotation of the heavens which we witness. Between these two we are to decide which really exists.
2349. Supposition of the real motion of the universe inadmissible. - The fixity and absolute repose of the globe of the earth being assumed by the ancients as a physical maxim which did not even admit of being questioned, they perceised the inevitable character of the alternative which the apparent diurnal rotation of the heavens imposed upon them, and accordingly embraced the hypothesis, which now appears sp monstrous, and which is implied in the term unverse*, which they have bequeathed to us.

It is true that, owing to the imperfect knowledge Which prevailed as to the real magnitudes and distances of the bodies to which this common motion was so unhesitatingly ascribed, the improbability of the supposition would not have seemed so gross as it does to the more enlightened enquirers of our age. Nevertheless, in any view of it, and even with the most imperfect knowledge, the hypothesis which required the admission that

[^3]the myriads of bodies which appear upon the firmament should have, besides the proper motions of several of them, such as the moon and planets, of which the ancients were not unaware, motions of revolution with velocities so prodigious and so marvellously related that all should, in the short interval of twentyfour hours, whirl round the axis of the earth with the unerring harmony and regularity necessary to explain the apparent diurual rotation of the firmament, ought to have raised serious difficulties and doubts.

But with the knowledge which has been obtained by the labours of modern astronomers respecting the enormous magnitudes of the principal bodies of the physical universe, magnitudes compared with which that of the globe of the earth dwindles to a mere point, and their distances under the expression of which the very power of number itself almost fails, and recourse is had to colossal units in order to enable it to express even the smallest of them, the hypothesis of the immobility of the eartl, and the diurnal rotation of the countless orbs of magnitudes so unconceivable filling the immensity, of space once every twenty-four hours round this grain of matter composing our globe, becomes so preposterous that it is rejected, not as an improbability, but as an absurdity too gross to be even for a moment seriously entertained or discussed.
2350. Siniplicity and intrinsic probability of the rotation of the earth. -But if any ground for hesitation in the rejection of this hypothesis existed, all doubt would be removed by the simplicity and intrinsic probability of the only other physical cause which can produce the phenomena. The rotation of the globe of the earth upon an axis passing through its poles, with an uniform motion from west to east once in twenty-four hours, is a supposition against which not a single reason can be adduced based on improbability. 'Such a motion explains perfectly the apparent diurnal rotation of the celestial sphere. Being uniform and free from irregularities, checks, or jolts, it would not be perceivable by any lecal derangement of bodies on the surface of the earth, all of which would partipate in it. Obscrvers upon the surface of our globe would be no more conscious of it, than are the voyagers shut up in the cabin of a canal boat, or transported above the clouds in the car of a balloon.
2351. Direct proofs of the earth's rotation. - Irresistible, nevertheless, as this logical alternative is, the universality and
antiquity of the belief in the immobility of the earth, and the vast physical importance of the principle in question, have prompted enquirers to search for direct proofs of the actual motion of the earth upon its axis. Two phenomena have accordingly been produced as immediate and conclusive proof of this motion.
2352. Proof by the descent of a body from a great lecight.It has been already (184) shown that a body descending from a great height does not fall in the true vertical line, which it would if the earth were at rest, but eastward of it, which it must, if the earth have a motion of rotation from west to east.
2353. M. Leon Foucault's mode of demonstration.-An ingenious expedient, by which the diurnal rotation of the earth is rendered visible, has been conceived and reduced to experiment by M. Leon Foucault. This contrivance is based upon the principle, that the direction of the plane of vibration of a pendulum is not affected by any motion of translation which may be given to its point of suspension. Thus, if a pendulum suspended in a room and put into vibration in a plane parallel to one of the walls be carried round a circular table, the plane of its vibration will continually be parallel to the same wall, and will therefore vary constantly in the angle it forms with the radius of the table which is directed to it.

Now, if a pendulum, suspended any where so near the pole of the earth that the circle round the pole may be considered a plane, be put in vibration in a plane passing through the pole, this plane, continuing parallel to its original direction as it is carried round the pole by the earth's rotation, will make a varying angle with the line drawn to the pole from the position it occupies. After being carried through a quarter of a revolution it will make an angle of $90^{\circ}$ with the line to the pole, and so on. In fine, the direction of the pole will appear to be carried round the plane of vibration of the pendulum.

The same effects will be produced at greater distances from the pole, but the rate of variation of the angle under the plane of vibration and the plane of the meridian will be different, owing to the effects of the curvature of the meridian.

This phenomenon, therefore, being a direct effect of the rotation of the earth, supplies a proof of the existence of that motion, attainable without reference to objects beyond the limits of the globe.
2354. Analogy supplies evidence of the cartl's rotation. The obvious analogy of the planets to the earth, which will appear more fully hereafter, would supply strong evidence in favour of the earth's rotation, even if positive demonstration were wanting. All the planets are globes like the earth, receiving light and heat from the same luminary, and, like the earth, revolving round it. Now all the planets which we have been enabled to observe have motions of rotation on axes, in times not very different from that of the eartl.
2355. Figure of the earth supplies another proof. - Besides these, it will be shown hereafter that another proof of the rotation of the earth is supplied by a peculiar departure from the strictly globular form.
2356. How this rotation of the earth explains the diurnal phe-nomena.-We are then to conclude that the earth, being a globe, has a motion of uniform rotation round a certain diameter. The universe around it is relatively stationary, and the bodies which compose it being at distances which mere vision carmot appreciate, appear as if they were situate on the surface of a vast celestial sphere in the centre of which the earth revolves. This rotation of the earth gives to the sphere, the appearance of revolving in the contrary direction, as the progressive motion of a boat on a river gives to the banks an appearance of retrogressive motion; and since the apparent motion of the heavens is from east to west, the real rotation of the earth which produces that appearance must be from west to east.

How this motion of rotation explains the phenomena of the rising and setting of celestial objects is easily understood. An observer placed at any point upon the surface of the eartli is carried round the axis in a circle in twenty-four hours, so" that every side of the celestial sphere is in succession exposed to his view. As he is carried upon the side opposite to that in which the sun is placed, he sees the starry heavens visible in the absence of the splendour of that luminary. As he is turned gradually towards the side where the sun is placed, its light begins to appear in the firmament, the dawn of morning is manifested, and the globe continuing to turn, he is brought into view of the luminary itself, and all the phenomena of dawn, morning, and sunrise are exhibited. While he is directed towards the side of the firmament in which the sun is placed, the other bodies of inferior lustre are lost in the splendour of that luminary, and
all the phenomena of day are exhibited. When by the continued rotation of the globe the observer begins to be turned away from the direction of the sun, that luminary declines, and at length disappears, producing all the phenomena of evening. and sunset.

Such, in general, are the effects which would attend the motion of a spectator placed upon the earth's surface, and carried round with it by its motion of rotation. He is the spectator of a gorgeous diorama exhibited on a vast scale, the earth which forms his station being the revolving stage by which he is carried round, so as to view in succession the spectacle which surrounds him.

These appearances vary with the position assumed by the observer on this revolving stage, or, in other words, upon his situation on the earth, as will presently appear.
2357. The earth's axis. - That diameter upon which it is necessary to suppose the earth to revolve in order to explain the phenomena is that which passes through the terrestrial poles.
2358. The terrestial equator, poles, and meridians. - If the globe of the earth be imagined to be cut by a plane passing through its centre at right angles to its, axis, such a plane will meet the surface in a circle, which will divide it into two hemispheres, at the summits of which the poles are situate. This circle is called the terrestrial equator.

That hemisphere which includes the continent of Europe is called the northern hemisphere, and the pole which it includes is called the nomtiern tembestmal pole; the other hemisphere being the southern memspuere, and including the southern terrestrial pole.
If the surface of the earth be imagined to be intersected by planes passing through its axis, they will meet the surface in circles which, passing through the poles, will be at right angles to the equator. These circles are called terrestrial meridiavs, and will be seen delineated on any ordinary terrestrial globe.
2359. Latitude and longitude. - The positions of places upon the surface of the earth are expressed and indicated by stating their distance north or south of the equator, measured upon a meridian passing through them, and by the distance of such meridinn east or west of some fixed meridian arbitrarily selected,
such as the meridian passing through the observatory at Greenwich. The former distance, expressed in degrees, minutes, and seconds, is called the Latitude, and the latter, similarly expressed, the Longitude of the place.
2360. Fixed meridians - those of Greenwich and Pdris. As no natural phenomenon is found by which a fixed meridian from which longitude is measured can be determined, astronomers and geographers have not agreed in the arbitrary selection of one. The meridians of the Greenwich and Paris observatories have been taken, the former by English and the latter by French authorities, as the starting-point. To reduce the longitudes expressed by either to the other, it is only necessary to add or subtract the angle under the meridians of the two observatories, which has been ascertained to be $2^{\circ} 20^{\prime} 22^{\prime \prime}$, the meridian of Paris being east of that of Greenwich.
2361. How the diurnal phenomena vary with the latitude.Let $\mathrm{s} \boldsymbol{\operatorname { s e n }} \mathrm{Q}$, fig. 696., represent the earth suspended in space, surrounded at an immeasurable distance by the stellar universe. The magnitude of the earth being absolutely insignificant compared with the distances of the stars, the aspect of these will be the same whether they, are viewed from any point on its surface, or from its centre. The observer may therefore, whatever be his position on the earth, be considered as looking from the centre of the celestial sphere.

Let us suppose, in the first place, the observer to be at o, a point on its surface between the equator $\pi$ and the north pole n , the latitude of which will therefore be om , and will be measured by the angle ocx. If a line be imagined to be drawn from the centre c through the place o of the observer, and continued upwards to the firmament, it will arciye at the point $z$, which is the zenith of the observer. If the térrestrial axis SN be imagined to be continued to the firmament, it will arrive at the north celestial pole $n$ and the south celestial pole $s$. If the plane of the terrestrial equator fig be supposed to be continued to the heavens, it will intersect the shrface of the celestial sphere at the celestial equator $\boldsymbol{e} q \cdot{ }^{\circ}$.

The observer placed at o will see the entire hemisphere $h z h^{\prime}$ of which his zenith $z$ is the summit; and the other hemisphere $h s h^{\prime}$ will be invisible to him, being in fact concealed from his view by the earth on which he stands.

It is evident that the arc of the heavens $z n$ between his
zenith and the north celestial pole consists of the same number of degrees as the arc on of the terrestrial meridian between his


Fig. 696.
place of observation $o$ and the north terrestrial pole $n$. The zenith distance therefore of the visible pole at any place is always equal to ithe nctual distance expressed in degrees of that place from the terrestrial pole, and as this distance is the complement * of the latitude, it follows that the zenith distance of the visible pole is the complement of the latitude, and that the altitude of the visible pole is equal to the latitude of the place.

* The complement of an angle or are is that number of degrees by which it differs from $90^{\circ}$. Thus $30^{\circ}$ is the complement of $60^{\circ}$.

2362. Method of finding the latitude of the place. - The latitude of the place of observation may therefore be always determined if the altitude of the celestial pole can be observed. If there were any star situate precisely at the pole, it would therefore be sufficient to observe its altitude. There is, however, no star exactly at the pole, althougl, as has been already observed, the role star is very near it. The altitude of the pole is found, -therefore, not by one, but by two observations. The pole star, or any other star situate near the pole, is carried round it in a circle by the apparent diurnal motion of the sphere, and it necessarily crosses the meridian twice in each revolution, once above, and once below the pole. Its altitude in the latter position is the least, and in the former the greatest it ever has; and the pole itself is just midway between these two extreme positions of this circumpolar star. To find the actual altitude of the pole, it is only necessary therefore to take the mean, that is, half the sum of these two extreme altitudes. By making the same observations with several circumpolar stars, and taking a mean of the whole, still greater accuracy may be attained.
2363. Position of celestial equator and poles varies with the latitude. - Since the altitude of the celestial pole is everywhere equal to the latitude of the place, and since the position of the celestial equator and its parallels in which all celestial objects appear to be moved by the diurnal rotation, varies with that of the pole, it is evident that the celestial sphere must present a different appearance to the observer at every different latitude. In proceeding towards the terrestrial pole, the celestial pole will gradually approach the zenith, until we arrive at the terrestrial pole, when it.will actually coincide with that point; and in proceeding towards the terrestrial equator the celestial pole will gradually descend towards the horizon, and on arriving at the Line it will be actually on the horizon.
2364. Parallel sphere seen at the poles.-At the poles, therefore, the celestial pole being in the zenith, whe celestial equator will coincide with the horizon, and by the diurnal motion all objects will move in circles parallel to the horizon. Every object will therefore preserve during twenty-four hours the same altitude and the same zenith distance. No object will either rise or set, at least so far as the diurnal motion is concerned.

This aspect of the firmament is called a parallel spieme, the motion being parallel to the horizon.
2365. Right sphere seen at the equator. - At the terrestrial equator, the poles being upon the horizon, the axis of the celestial sphere will coincide with a line drawn upon the plane of the horizon connecting the north and south points. The celestial equator and its parallels will be at right angles to the plane of the horizon; and since the plane of the horizon passes through the centre of all the parallels, it will divide them all into equal semicircles.

It follows, therefore, that all objects on the heavens will be equal times above and below the horizon, and that they will rise and set in planes perpendicular to the horizon.

This aspect of the firmament is called a might sphere, the diurnal motion being at right angles to the horizon.
2366. Oblique sphere seen at intermediate latitudes. - At latitudes between the equator and pole, the celestial pole holds a place between the horizon and the zenith determined by the latitude. The celestial equator eq, fig. 696., and its parallels, are inclined to the plane of the horizon at angles equal to the distance of the pole from the zenith, and herefore equal to the complement of the latitude. The centres of all parallels to the celestial equator $\mathscr{q} q$ which are between it and the visible pole are above the plane of the horizon, between $\mathbf{c}$ and N , and the centres of all parallels at the other side of the equator below it. The parallels, such as $l^{\prime} m^{\prime}$ and $l m$, will therefore be all divided unequally by the plane of the horizon, the visible part $l^{\prime} r^{\prime}$ being greater than the invisible part $m^{\prime} r^{\prime}$ for the former, and the invisible part mr greater than the visible part lr for the latter.

It follows, therefore, that all objects between the celestinl equator $a q$ and the visible pole $N$ will be longer above than below the horizon, and all objects on the other side of the equator will be longer below the horizon than above it.

A parallel $h^{\prime} k^{\prime}$ to the celestial equator, whose distance from the visible pole is equal to the latitude, will be entirely above the horizon, just touching it at the point under the visible pole; and a corresponding parallel $k k$, at an equal distance from the invisible pole, will be entircly below the horizon, just touching it at the point above the invisible pole.

All parallels nearer to the visible pole than $h^{\prime} h^{\prime}$ will be en*.
tirely above the horizon, and all parallels nearer to the invisible pole than $k k$ will be entirely below it.

Hence it is that, in European latitudes, stars within a certain limited distance of the north or visible celestial pole never set, and stars at a corresponding distance from the south or invisible celestial pole never rise.

The observer can only see these by going to places of observation having lower latitudes.

This aspect of the firmament is called an oblique sphere, the diurnal motion being oblique to the horizon.
2367. Objects in celestial equator equal times above and below horizon. - Whether the sphere be right or oblique, the centre of the celestial equator being on the plane of the horizon, one half of that circle will be below, and the other above the horizon. Every object upon it will therefore be equal times above and below the horizon, rising and setting exactly at the east and west points.

In the parallel sphere, the celestial equator coinciding with the horizon, an object upon it will be carried round the horizon by the diurnal rotation, without either rising or setting.*
2368. Method of deftermining the longitude of places. - This perfect uniformity of the earth's rotation, inferred from the observed uniformity of the apparent rotation of the firmament, is the basis of all methods of determining the longitude. The longitude of a place will be determined if the angle under the meridian of the place; and that of any other place whose longitude is known, can be found. But since, by the uniform rotation of the globe, the meridians of all places upon it are brought in regular succession under every part of the firmament, the moments at which the two meridians pass under the same star, or, what is the same, the moments at which the same star is seen to pass over the two meridians, being observed, the interval will bear the same ratio to the entire time of the earth's rotation ris the: difference of the longitudes of the two places bears to $360^{\circ}$.

[^4]To make this more clear, let us take the case of two places


Fig. 697. $\mathbf{P}$ and $\mathbf{r}^{\prime}$, fig. 697., upon the equator. If $c$ be the centre of the earth, the angle $\mathbf{P C P}^{\prime}$ will be the difference between the longitudes. Now, let the time be observed at each place at which any particular star $s$ is seen upon the meridian. If the motion of the earth be in the direction of the arrow, the meridian of $\mathbf{p}$ will come to the star before the meridian of $\mathrm{P}^{\prime}$. This necessarily supposes $P$ to be east of $P^{\prime}$, since the earth revolves from west to east. Let the true interval of time between the passage of $s$ over the two meridians be $t$, let $x$ be the time of one complete revolution of the globe on its axis, and let $\mathbf{L}$ be the difference of the longitudes, or the angle $\mathrm{PCP}^{\prime}$; we shall then have

$$
\begin{gathered}
t: \mathrm{T}:: \mathrm{L}: 360^{\circ}, \\
\mathrm{L}=\frac{t}{\mathrm{~T}} \times 360^{\circ}
\end{gathered}
$$

But in the practical solution of this problem a difficulty is presented which has conferred historical celebrity upon the question, and caused it to be referred to as the type of all difficult enquiries. It is supposed, in what has just been explained, that means are provided at the two places $P$ and $P^{\prime}$ by which the absolute moments of the transit of the star over the respective meridians may be ascertained, so as to give the exact interval between them. If these moments be observed by any form of chronometer, it would then be necessary that the two chronometers should be in exact accordance, or, what is the same, that their exact difference may be known. If a chronometer, set correctly by another which is stationary ane place $p$, be transported to the other place $\mathrm{P}^{\prime}$, this object will be attained, subject, however, to the error which may be incidental to the rate of the chronometer thus transported. If the distance between the places be not considerable, the chronometers may thus be brought into very exact accordance; but when the distance - is great, and that a long interval must elapse durifig the trans-
port of the chronometer, this expedient is subject to errors too considerable to be tolerated in the solution of a problem of such capital importance.

It will be apparent that the reat object to be attained is, to find some phenomenon sứfficiently instantaneous in its manifestation to mark, jwith all the, hoefessary precision, a certain moment of time., : Such $\ddot{x}$ phenomẹnon woŭld $\dot{b}$, for example, the sudden extinction of $a_{x}$ conspicuous light 'seen at once at both, places. The moment of suck a phetomenon being obsenved by'means of two olugnomekers ${ }^{[t t}$ the 'Maces,- the difference of the times indicated by them would be known, and they would chen sebre for the determination of the differefree of the longitưaes poy' thé mettiod "explained above. "Severad phenomena, "ath terrestrial and zelestial, have accordingly been used frothis purpose. Among the former may be mentioned the suidden extinction of the oxyhydrogen or electric light, the explosion.of 2.1tocket, \&e.; among the latter, the extinction of a star by the lisk of the moon passing over it, and the eclipse of the satellites of cetrtain planets, phenomena which will be more fully notiţed hereafter. :
2369. Lintiar method of finding the longitude. - The change of position of the moof with relation to the sun and stars being very rapid, affords another, phenomenon which has been found of grent ufility in the determination,of the lopgitude, especially for the purposes of mariners. Tablés are calculated in which the moon's apparent. distanees from the sun, and many of the most conspicuous fixed stars, äre given for short intervals of time, and the exact times at Greenwich when the moon has these distances are giren. If then the mariner, observing with proper instruments the position of the moon with relation to these objects; compares his observed distances with the tables which are supplied todim in the Nautical Almanack, he will find. the time at Greenwich corresponding to, the moment of his observation; and being always, by the ordinary methods, able to determine by observation the local timerd the place of his observation, the difference gives thim the time required for a star to pass from the meridian of Greenwich to the meridian of the place of his observation, or wice vers $\hat{a}$; and this time gives the longitude, as already explained.

This last is knowifas the Lunar ýethod"of determining tele longitude.

In practice, many details are necessary, and various calculations must be made, which cannot be explained here.
2370. Method by electric telegraph. - When two places are connected by a line of eleotric telegraph, their difference of longitude can be easily and exactly determined, inasmuch as instantaneous signals can lye transmittexf,by whick the lócal elqcks can be compared aund reguláted,' and, if it be'so desired, 'Fept in exact adcordance : $^{->}$
2371. Pardlels of latitüde- A series of points on, the eatth which are at equar distances from "the equator' or which bare the same latitude, Form a circle parallel to the equator, cafled a parallè̀ de latytúde. -

Thus ąl places; which have tue same Jatutude are oun-tine same parallel.

All places.which are on the sgme meridian have the, same longitude.

## CHAP. V.

## SPHEROIDAL FORSI, MASS; AND DENSIPY OF THE EARTH.

2372. Progress of physical investigation approximative.-I It is the coudition of man, and probably of ay other finite intelligences, to arrive at the possession of knowledge by the slow and laborious process of a sort of "system of trial and error. The first conclusions to which, in physical enquigies, observation conducts us, are never better than very roughsapproximations to the truth. These being submitted to subsequent comparison with the originals, andergo a first series of corrections, the more prominent and conspicuous departures from conformity being removed. A second approximation, but still only an approximation, is thus obtained; and another and still more severe comparison with the phenomend under investigation is made, and another order of correctiops is effected, and a closer approximation obtained. Nor does this progressive approach to perfect exactitude appear to have any limity" The best results of our intellectual labours aro stilfonly close resemblances to truth, the absolute perfection of which is" probably reserved for a higher intellectual säte.

The labours of the physical enquirer resemble those of the sculptor, whose first efforts produce from the block of marble a rude and uncouth resemblance of the human form, which only approaches the grace and beauty of nature by comparing it incessantly and indefatigably with the original ; detaching from it first the grosser and rougher protuberances, and subsequently reducing its parts by the nicer and more delicate touches of the chisel to near conformity with the model.

It would however be a great mistake to depreciate on this account the results of our first efforts in the acquisition of a knowledge of the laws of nature. If the first conclusions at which we arrive are erroneous, they are not therefore the less necessary to the ultimate attainment of more exact knowledge. They prove, on the contrary, not only to be powerful agents in the discovery of those corrections to which they are themselves to be submitted, but to be quite indispensable to our progress in the work of investigation and discovery.

These observations will be illustrated by the process of instruction and discovery in every department of physical science, but in none so frequently and so forcibly as in that which now occupies us.
2373. Figure of the earth an example of this. - The first conclusions at which we have arrived respecting the form of the earth is that it is a globe; and with respect to its motion is, that it is in uniform rotation round one of its diameters, making one complete revolution in twenty-four hours sidereal time, or $23^{\mathrm{h}} \cdot 56^{\mathrm{m} \cdot} \cdot 4 \cdot 09^{\mathrm{s} \cdot}$ common or civil time.
2374. Globular figure imcompatible with rotation. - The first question then which presents itself is, whether this form and rotation are compatible? It is not difficult to show, by the most simple principles of physics, that they are not ; that with such a form such a rotation could not be maintained, and that with such a rotation such a form could not permanently continue. And if this can be certainly established, it will be necessary to retrace our steps, to submit our former conclusions to more rigorous comparison with the objects and phenomena from which they were derived, and ascertain which of them is inexact, and what is the modification and correction to which it must be submitted in order to be brought into harmony with the other.
2375. Rotation cannot be modificd - supposed form may.-

The conclusion that the earth revolves on its axis with a motion corresponding to the apparent rotation of the firmament, is one which admits of no modification, and must firom its nature be either absolutely admitted or absolutely rejected. The globular form imputed to the earth, however, has been inferred for observations of a general nature, unattended by any conditions of exact measurement, and which would be equally compatible with innumerable forms, departing to $a$ very considerable and measurable extent from that of an exact geometrical sphere or globe.

23:6. How rotation would affect the superficial gravity on a


Fig. 698. globe. - Let N Q s, fig. 698., represent a section of a globe supposed to lave a motion of rotation round the diameter ns as an axis. Every point on its surface, such as $\mathbf{P}$ or $\mathbf{P}^{\prime}$, will revolve in a circle, the centre of which $o$ or $o^{\prime}$ will be upon the axis, and the radius $O P$ or $o^{\prime} \mathrm{P}^{\prime \prime}$ will gradually decrease in approaching the poles N and s , where no motion takes place, and will gradually incrense in approaching the equator $Q \circ Q$, where the circle of rotation will be the equator itself.

A body placed at any part of the surface, such as p , being thus carried round in a circle, will be affected by a centrifugal force, the intensity of which will be expressed by (314)

$$
\mathrm{c}=1.226 \times \mathrm{R} \times \mathrm{N}^{2} \times \mathrm{w},
$$

where $n=P o$, the radius of the circle, $w$ the fraction of a revolution made in one second, and w the weight of the body, and the direction of which is $\mathrm{P} c$.

This centrifugal force being expressed by $P \boldsymbol{c}$ is equivalent (170) to two forces expressed in intensity and direction by $P m$ aud $P n$. The component $r m$ is directly opposed to the weight w of the body, which acts in the line po directed to the centre, and has the effect of diminishing it. The component $\mathrm{P} \boldsymbol{n}$ being directed towards the equator $Q$, has a tendency to cause the body to move towards the equator; and the body, if free, would necessarily so move.

Now it will be evident, by the mere inspection of the diagram,
that the nearer the point $P$ is to the equator $Q$, the more di: rectly will the centrifugal force $\mathrm{P} \boldsymbol{c}$ be opposed to the weight, and consequently the greater will be that component of it, $\mathrm{P} m$, which will have the effect of diminishing the weiglit.

But this diminution of the weight is further augmented by - the increase of the actual intensity of the centrifugal force itself in approaching the equator. - By the above formula, it appears that the intensity of the centrifugal force must increase in proportion as the radius r or Po increases. Now it is apparent that $P O$ increases gradually in going from $P \cdot$ to $Q$, since $P^{\prime} o^{\prime}$ is greater, and $\mathbf{Q} O$ greater still than $P o$; and that, on the other hand, it decreases in going from $P$ to $N$ or s , where it becomes nothing.

Thus the effect of the centrifugal ferce in diminishing weight being nothing at the pole N or s , gradually increases in approaching the equator; first, because its absolute intensity gradually increases; and secondly, because it is more and more directly opposed to gravity until we arrive at the equator itself, where its intensity is greatest, and where it is directly opposed to gravity.

The effects, therefore, produced by the rotation of a globe, such as the earth has been assumed to be, are $-1^{\circ}$. The decrease of the weights of bodies upon its surface, in going from the pole to the equator; and $2^{\circ}$. A tendency of all such bodies as are free to move from higher latitudes in either hemisphere towards the equator.
2377. Amount of the diminution of weight produced at the equator by. centrifugal force. - This quantity may be easily computed by means of the formula.

$$
\mathbf{c}=1 \cdot 226 \times \mathrm{R} \times \mathrm{N}^{2} \times \mathrm{w}
$$

Taking the radius of the equator in round numbers (which are sufficient for this purpose) at 4000 miles, and reducing it to feet, and reducing the time of rotation $23^{\mathrm{h}} \cdot 56^{\mathrm{m} \cdot} \cdot 4.09^{\mathrm{g} \cdot}$ to seconds, we shall have

$$
\mathrm{n}=21,120,000, \quad \mathrm{~N}=\frac{1}{86,206}:
$$

substituting these numbers we have

$$
c=1,226 \times 21,120,000 \times \frac{1}{(86,216)^{2}} \times w ;
$$

and executing the arithmetical operations here indicated, we find

$$
\mathrm{c}=\frac{1}{287} \times \mathrm{w}
$$

The centrifugal force would therefore be the 287 th part of the weight, and as it is directly opposed to gravity, the weight would sustain this entire loss.
2378. Loss of veight at other latitudes. - The centrifugal force at any latitude $P$ would be less than at $Q$ in the ratio of $O Q$ to op. But the part of this $\mathbf{P} m$ which is directly opposed to the weight is less than the whole $\mathrm{P} c$, in the ratio of Pc to Pm , 'or, what is the same, of $P D$ or $O Q$ to $P o$. If then $C^{\prime}$ express the whole centrifugal force at $p$, and $c^{\prime \prime}$ that part of it which is directily opposed to gravity, we shall have

$$
\mathrm{c}^{\prime}=\frac{1}{287} \times \frac{\mathrm{Po}}{\mathrm{OQ}}, \quad \mathrm{C}^{\prime \prime}=\mathrm{c}^{\prime} \times \frac{\mathrm{Po}}{\mathrm{OQ}}=\frac{1}{287} \times\left(\frac{\mathrm{Po}}{\mathrm{OQ}}\right)^{2}
$$

The number which expresses $\frac{P O}{O Q}$ is that which is called in
Trigonometry the cosine of the are $\mathbf{P Q}$, that is, the cosine of the latitude. Therefore we have

$$
c^{\prime \prime}=\frac{1}{287} \times \cos .^{2} \text { lat. }
$$

The loss of weight, therefore, which would be sustained by reason of the centrifugal force at any proposed latitude, would be a fraction of the whole weight found by dividing the square of the cosine of latitude by 287 .
2379. Effect of centrifugal force on the geographical condition of the surface of the globe. - In what precedes, we have only considered the effect of that one, $\mathbf{P} m$, of the two components of the centrifugal force which is opposed to the weight. It repains to examine the effect of the other, $\mathrm{p} n$, which is directed towards the equator.

If the surface of the globe were composed altogether of solid matter, of such coherence as to resist separation by the agency of this force, no other effect would take place except a tendency towards the equator, which would be neutralized by cohesion. But if the surface or any parts of it were fluid, whether liquid or gaseous, such parts, in virtue of their mobility, would yield to the impulse of the element $\mathrm{p} \boldsymbol{n}$ of the centrifugal force, and
would flow towards the equator. The waters of the surface would thus flow from the higher latitudes in either hemisphere, and accumulating round the equator, the surface of the globe would be resolved into two great polar continents, separated by a vast equatorial ocean.
2380. Such effects not existing, the earth cannot be an exact globe. - But such is not the actual geographical condition of the surface of the globe. On the contrary, although about two-thirds of it are covered with water, no tendency of that fluid to accumulate more about the equator than elsewhere is manifested. Land and water, if not indifferently distributed over the surface, are certainly not apportioned so as to indicate any tendency such as that above described. If, therefore, the rotation of the earth be admitted, it follows that its figure must be such as to counteract the tendency of fluid matter to flow towards any one part of the surface rather than any other. In short, its figure must be such that gravity itself shall counteract that element $\mathrm{P} \boldsymbol{n}$ of the centrifugal force which tends to move a body from the higher latitudes of either hemisphere towards the equator.
2381. The figure must therefore be some sort of oblate spheroid.-Now this condition would be fulfilled, if the earth, instead of being an exact sphere, were an oblate spheroid, having a certain definite ellipticity,-that is, a figure which would be produced by an ellipse revolving round its shorter axis. Such a figure would resemble an orange or a turnip. It would be more convex at the equator than at the poles. A globe composed of elastic materials would be reduced to such a figure by pressing its poles together, so as to flatten more or less the surface of these points, and produce a protuberance around the equa-


Fig. 699. tor. The meridians of such a globe would be ellipses, having its axis as their lesser axis, and the diameters of the equator as their greater axes.

The form of the meridian would be such as is represented in fig. 699., ws being the axis of rotation, and $E Q$ the equatorial diameter.
2382. Its ellipticity must depend on gravity and centrifugal force. - The protuberance around the equator may be more or less, according to the ellipticity of the spheroid; but since the distribution of land and water is indifferent on the surface,
having no prevalence about the equator rather than about the poles, or vice vers $\hat{a}$, it is evident that the degree of protuberance must be that which counteracts, and no more than counteracts, the tendency of the fluids, in virtue of the centrifugal force, to flow towards the equator. This protuberance may be considered as equivalent in its effects to an acclivity of regulated inclination, rising from each pole towards the equator. To arrive at the equator the fluid must ascend this acclivity, to which ascent gravity opposes itself, with a force depending on its steepness, which increases with the magnitude of the protuberance, or, what is the same, with the ellipticity of the spheroid. If the ellipticity be less than is necessary to counteract the effect of the centrifugal force, the fluid will still flow to the equator, and the earth would consist, as before, of a great equatorial ocean separating two vast polar continents. If the ellipticity were greater than is necessary to counteract the effect of the centrifugal force, then gravity would prevail over.the centrifugal force, and the waters would flow down the acelivities of the excessive protuberance towards the poles, and the earth would consist of a vast equatorial continent separating two polar oceans.

Since the geographical condition of the surface of the earth is not consistent with either of these consequences, it is evident that its figure must be an oblate spheroid, having an ellipticity exactly corresponding to the variation of gravity upon its surface, due to the combined effect of the attraction exerted by its constituent parts upon bodies placed on its surface, and the centrifugal force arising from its diurnal rotation.

It remains, therefore, to determine what this particular degree of ellipticity is, or, what is the same, to determine by what fraction of its whole length the equatorial diameter $\varepsilon \&$ exceeds the polar axis Ns .
2383. Ellipticity may be calculated and measured, and the results compared.-The degree of ellipticity of the terrestrial spheroid may be found by theory, or ascertained by observation and measurement, or by both these methods, in which case the accordance or discrepancy of the results will either prove the validity of the reasoning on which the theoretical calculation is founded, or indicate the conditions or data in such reasoning which must be modified.

Both these methods have accordingly been adopted, and their results are found to be in complete harmony.
2384. Ellipticity calculated.-The several quantities which are involved in this problem are:-

1. The time of rotation $=\mathbf{r}$.
2. The fraction of its whole length by which the equatorial exceeds the polar diameter $=e$.
3. The fraction of its whole weight by which the weight of a body at the pole exceeds the weight of the same body at the equator $=w$.
4. The mean density of the earth.
5. The law according to which the density of the strata varies in proceeding from the surface to the centre.
All these quantities have such a mutual dependance, that when some of them are given or known, the others may be found.

It whatever way the solution of the problem may be approached, it is evident that the form of the spheroid must be the same as it would be if the entire mass of the earth were fluid. If this were not so, the parts actually fluid would not be found, as they are always, in local equilibrium. The state of relative density of the strata proceeding from the surface to the centre is, however, not so evident. Newton investigated the question by ascertaining the form which the earth would assume if it consisted of fluid matter of uniform density from the surface to the centre; and the result of his analysis was that, in that case, assuming the time of rotation to be what it is, the equatorial diameter must exceed the polar by the 230th part of its whole length, and gravity at the pole must exceed gravity at the equator by the same fraction of its entire force.

As physical science progressed, and mathematical analysis was brought to a greater state of perfection, the same problem was investigated by Clairault and several other mathematicians, under more rigorous conditions. The uniform density of the constituents of the earth - a highly improbable supposition was put aside, and it was assumed that the successive strata from the centre to the surface increased in density according to some undetermined conditions. It was assumed that the mutual attraction of all the constituent parts upon any one part, and the effect of the centrifugal force arising from the rotation, are in equilibrium; so that every particle composing the spheroid,
from its centre to its surface, is in repose, and would remain so were it free to move.

By a complicated and very abstruse, but perfectly clear and certain mathematical analysis, it has been proved that the quantities above mentioned have the following relation. Let $r$ express a certain number, the amount of which will vary with 12. We shall then have

$$
e+w=r .
$$

Now it has been shown that when $\mathrm{R}=23^{\mathrm{h}} \cdot 56^{\mathrm{m} \cdot} \cdot 4 \cdot 09^{\text {s. }}$, the number $r$ will be $T_{1}^{2}$, so that in effect

$$
e+w=\frac{1}{115} .
$$

This result was shown to be true, whatever may be the law according to which the density of the strata varies.

It further results from these theoretical researches that the mean density of the entire terrestrial spheroid is about twice the mean density of its superficial crust.

It follows from this that the density of its central parts must greatly exceed twice the density of its crust.

It remains, therefore, to see how far these results of theory are in accordance with those of actual observation and measurement.
2385. Ellipticity of terrestrial spheroid by observation and measurement. -If a terrestrial meridian were an exact circle, as it would necessarily be if the earth were an exact globe, every part of it would have the same curvature. But if it were an ellipse, of which the polar diameter is the lesser axis, it would have a varying curvature, the convexity being greatest at the equator, and least at the poles. If, then, it can be ascertained by observation, that the curvature of a meridian is not uniform, but that on the contrary it increases in going towards the Line, and diminishes in going-towards the poles, we shall obtain a proof that its form is that of an oblate spheroid.

To comprehend the method of ascertaining this, it must be considered that the curvature of circles diminishes as their diameters are auginented. It is evident that a circle of one foot in diameter has a less degree of curvature, and is less convex than a circle one inch in diameter. But an arc of a circle of a given angular magnitude, such for example as $1^{\circ}$,
has a length proportional to the diameter. Thus, an arc of $1^{\circ}$ of a circle a foot in diameter, is twelve times the length of an arc of $1^{\circ}$ of a circle an inch in diameter. The curvature, therefore, increases as the length of an arc of $1^{\circ}$ diminishes.

If, therefore, a degree of the meridian be observed, and measured, by the process already explained (2317), at different latitudes, and it is found that its length is not uniformly the same as it would be if the meridian were a circle, but that it is less in approaching the equator, and greater in approaching the pole, it will follow that the convexity or curvature increases towards the equator, and diminishes towards the poles; and that consequently the meridian has the form, not of a circle, but of an ellipse, the lesser axis of which is the polar diameter.

Such observations have accordingly been made, and the lengths of a degree in various latitudes, from the Line to $66^{\circ} \mathrm{N}$. and to $35^{\circ} \mathrm{S}$., have been measured, and found to vary from 363,000 feet on the Line to 367,000 feet at lat. $66^{\circ}$.

From a comparison of such measurements, it has been ascertained that the equatorial diameter of the spheroid exceeds the polar by ${ }^{\frac{1}{8}}{ }^{\text {t }}$ th of its length. Thus (2384)

$$
e=\frac{1}{300} .
$$

2386. Variation of gravity by observation. - The manner in which the variation of the intensity of superficial gravity at different latitudes is ascertained by means of the pendulum, has been already explained (552). From a comparison of these observations it has been inferred that the effective weight of a body at the pole exceeds its weight at the equator by about the $1 \frac{1}{6} \mathrm{t}^{2}$ * part of the whole weight.
2387. Accordance of these results with theory.-By comparing these results with those obtained by Newton, on the supposition of the uniform density of the earth, a discrepancy will be found sufficient to prove the falsehood of that supposition. The value of $e$ found by Newton is $\frac{1}{3}_{\frac{1}{3}}^{0}$, its actual


On the other hand, the accordance of these results of observation and measurement with the more rigorous conclusions of later researches is complete and striking.

[^5]If in the relation between $e$ and $w$, explained in (2384),

$$
e+2 c=\frac{1}{115},
$$

we substitute for $w$ the value $\frac{1}{18}$, obtained by observation, we find

$$
e=\frac{1}{115}-\frac{1}{187}=\frac{1}{300},
$$

which is the value of 2 obtained by computation founded on measurement.
2388. Diminution of weight due to ellipticity.-It has been already shown (2377) that the loss of weight at the equator due to the centrifugal force is the 287 th of the entire weight. From what has been stated (2386), it appears that the actual loss of weight at the equator is greater than this, being the 187 th part of the entire weight. . The difference of these is

$$
\frac{1}{187}-\frac{1}{287}=\frac{1}{537} .
$$

It appears, therefore, that while the 287th part of the weight is balanced by the centrifugal force, the actual attraction exerted by the earth upon a body at the equator is less than at the pole by the 537th* part of the whole weight. This difference is due to the elliptical form of the meridian, by which the distance of the body from the centre of the earth is augmented.
2389. Actual linear dimensions of the terrestrial spheroid.It is not enough to know the proportions of the earth. It is required to determine the actual dimensions of the spheroid. The following are the lengths of the polar and equatorial diameters, according to the computations of the most eminent and recent authorities:-


The close coincidence of these results supplies a striking

* According to Herschel, the 590th part.
example of the precision to which such calculations have been brought.

The departure of the terrestrial spheroid from the form of an exact globe is so inconsiderable that, if an exact model of it turned in ivory were placed before us, we could not, either by sight or touch, distinguish it from a perfect billiard ball. A figure of a meridian accurately drawn on paper could only be distinguished from a circle by the most precise measurement. If the major axis of such an ellipse were equal in length to the page now under the eye of the reader, the lesser axis would fall short of the same length less than the fortieth of an inch.
2390. Dimensions of the spheroidal equatorial excess. -If a sphere $\mathrm{n} q \mathrm{~s} q$ be imagined to be inscribed within the terrestrial spheroid having the polar axis ns, fig. 700., for its diameter, a


Fig. 700. spheroidal shell will be included between its surface and that of the spheroid composed of the protuberant matter, having a thickness $Q q$ of 26 miles at the equator, and becoming gradually thinner in proceeding to the poles, where its thickness vanishes. This shell, which constitutes the equatorial excess of the spheroid, and which, as will hereafter appear, has a density not more than half the mean density of the earth, the bulk of which, moreover, would be imperceptible upon a mere inspection of the spheroid, is nevertheless attended with most important effects, and by its gravitation is the origin of most striking phenomena not only in relation to the moon, but also to the far more distant mass of the sun.
2391. Density and mass of the earth by observation. - The magnitude of the earth being known with great precision, the determination of its mass and that of its mean density become one and the same problem, since the comparison of its mass with its magnitude will give its mean density, and the comparison of its mean density with its magnitude will give its mass.

The methods of ascertaining the mass or actual quantity of matter contained in the earth are all based upon a comparison of the gravitating force or attraction which the earth exerts
upon an object with the attraction which some other body, whose mass is exactly known, exerts on the same object. It is assumed, as a postulate or axiom in physics, that two masses of matter which at equal distances exert equal attractions on the same body, must be equal. But as it is not always possible to bring the attracting and attracted bodies to equal distances, their attractions at unequal distances may be observed, and the attractions which they would exert at equal distances may be thence inferred by the general law of gravitation, by which the attraction exerted by the same body increases as the square of the distance from it is diminished.

Thus, if E be the mass of the earth, A the attraction it exerts at the distance $D$ from its centre of gravity, and $A^{\prime}$ the attraction it exerts at any other distance $D^{\prime}$, we have -

$$
A: A^{\prime}:: D^{\prime 2}: D^{2} ;
$$

and therefore

$$
\mathbf{A}^{\prime}=\mathrm{A} \times \frac{\mathbf{D}^{2}}{\mathbf{D}^{\prime 2}} .
$$

If $a$ be the attraction which any mass $m$ of known quantity exerts at the distance $\mathrm{D}^{\prime}$ upon the same body upon which the earth exerts the attraction $\Delta^{\prime}$, we shall have -

$$
\mathrm{E}: m:: \dot{\mathrm{A}}^{\prime}: a ;
$$

and therefore

$$
\mathrm{E}=m \times \frac{\mathrm{A}^{\prime}}{a}=m \times \frac{\mathrm{A}}{a} \times \frac{\mathrm{D}^{2}}{\mathrm{D}^{\prime 2}} .
$$

If, therefore, the mass $m$, the ratio of the attractions $A$ and $a$, and the ratio of the distances $D$ and $\mathrm{o}^{\prime}$, be respectively known, the mass E of the earth can be computed.
2392. Dr. Maskelyne's solution by the attraction of Schehallien. - This celebrated problem consisted in determining the ratio of the mean density of a mountain called Schehallien, in Perthshire, to that of the earth, by ascertaining the amount of the deviation of a plumb-line from the direction of the true vertical produced by the local attraction of the mountain.

To render this method practicable, it is necessary that the mountain selected be a solitary one, standing on an extensive plain, since otherwise the deviation of the plumb-line would be affected by neighbouring eminences to an extent which it might not be possible to estimate with the necessary precision. No-
eminence sufficiently considerable exists near enough to Schehallien to produce such disturbance.

The mountain ranging east and west, two stations were selected on its northern and southern acclivities, so as to be in the same meridian, or very nearly so. A plumb-line, attached to an instrument called a zenith sector, adapted to measure with extreme accuracy small zenith distances, was brought to each of these stations, and the distance of the same star, seen upon the meridian from the directions of the plumb-line, were observed at both places.

The difference between those distances gave the angle under the two directions of the plumb-line. This will be more clearly understood by reference to fig. 701, where $p$ and


Fig. 701.
$\mathbf{x}^{\prime}$ represent the points of suspension of the two plumb-lines. If the mountain were removed, they would hang in the directions $P C$ and $P^{\prime} C$ of the earth's centre, and their directions would be inclined at the angle PCP'. But the attraction exerted
by the interjacent mass produces on each side a slight deflection towards the mountain, so that the two directions of the plumb-line, instead of converging to the centre of the earth c , converge to a point $c$ nearer to the surface, and form with each other an angle PCP $^{\prime}$ greater than $\mathbf{P C P}^{\prime}$ by the sum of the two deflections CPC and CP ${ }^{\prime}$ c.

Now by means of the zenith sector the distances $s z$ and $s z^{\prime}$ of the points $z$ and $z^{\prime}$ from any star such as $s$, can be observed with a precision so extreme as not to be subject to a greater error than a small fraction of a second. The difference of these distances will be -

$$
\mathrm{sz}^{\prime}-\mathrm{sz}=\mathrm{zz} z^{\prime}
$$

the apparent distance between the two points $z$ and $z^{\prime}$ on the heavens to which the plumb-line points at the two stations. This distance éxpressed in seconds gives the magnitude of the angle $\mathrm{PcP}^{\prime}$ formed by the directions of the plumb-line at the two stations, which is the sum of the defection produced by the local attraction of the mountain.

If the mountain were not present, the angle $\mathrm{PCP}^{\prime}$ could be ascertained by the zenith sector; but as the indications of that instroment have reference to the direction of the plumb-line, it is rendered inapplicable in consequence of the disturbing effect of the mountain.

To determine the magnitude of the angle $P{ }^{\prime} P^{\prime}$, therefore, the direct distance between the stations $\mathbf{P}$ and $\mathbf{P}^{\prime}$ is ascertained by making a survey of the mountain which, as will presently appear, is also necessary, in order to determine its exact volume. For every hundred feet in the distance between $P$ and $\mathbf{P}^{\prime}$ there will be $1^{\prime \prime}$ in the angle $\mathbf{P C P}^{\prime}(2319)$. Finding, therefore, the direct distance between $\mathbf{P}$ and $\mathbf{P}^{\prime}$ in feet, and dividing it by 100 , we shall have the angle $\mathbf{P C P} \mathbf{P}^{\prime}$ in seconds.

In the case of the experiment of Dr. Maskelyne, which was made in 1774 , the angle $P C P^{\prime}$ was found to be $41^{\prime \prime}$, and the angle $\mathrm{PcP}^{\prime} 53^{\prime \prime}$. The sum of the two deflections was therefore $12^{\prime \prime}$.

The survey of the mountain supplied the data necessary to determine its actual volume in cubic miles, or fraction of a cubic mile. An elaborate examination of its stratification, by means of sections, borings, and the other usual methods, supplied the data necessary to determine the weights of its com-
ponent parts, and thence the weight of its entire volume; and the comparison of this weight with its volume gave its mean density.

If the mean density of the earth were equal to that of the mountain, the entire weight of the earth would be greater than that of the mountain, in exactly the same proportion as the entire volume of the earth exceeds that of the mountain; and these volumes being known, the weight E of the earth on that supposition was computed, and by the formula given in (2391), or others based upon the same principles, the ratio $\frac{A}{a}$ of the attraction of the earth to that of the mountain was computed, and thence the deflections which the mountain would produce was found, which instead of $12^{\prime \prime}$ was about $24^{\prime \prime}$. It followed, therefore, that the density of the earth must be double, or, more exactly, eighteen-tenths of that of the mountain, in order to reduce the deflections to half their computed amount.

The mean density of the mountain having been ascertained to be about $2 \frac{1}{2}$ times that of water, it followed, therefore, that the mean density of the earth is about five times that of water.
2393. Cavendish's solution. - At a later period Cavendish made the experiment which bears his name, in which the attraction exerted by the earth upon a body on its surface was compared with the attraction exerted by a large metallic ball on the same body; and this experiment was repeated still more recently by Dr. Reich, and by the late Mr. Francis Baily, as the active member of a committee of the Royal Astrononical Society of London. All these several experimenters proceeded by methods which differed only in some of their practical details, and in the conditions and precautions adopted to obtain more accurate results.

In the apparatus used by Mr. Baily, the latest of them, the attracting bodies with which the globe of the earth was compared were two balls of lead, each a foot in diameter. The bodies upon which their attraction was manifested were small balls, about two inches in diameter. The former were supported on the ends of an oblong horizontal stage, capable of being turned round a vertical axis supporting the stage at a point midway between them. Let fig. 702. represent a plan of the apparatus. The large metallic balls $\boldsymbol{B}$ and $\mathbf{B}^{\prime}$ are supported upon a rectangular stage represented by the dotted lines, and
so mounted as to be capable of being turned round its centre $c$ in its own plane. Two small balls $a, a^{\prime}$, about two inches in


Fig. 702.
diameter, are attached to the ends of a rod, so that the distance between their centres shall be nearly equal to $\boldsymbol{в} \mathbf{B}$ '. 'This rod is supported at $c$ by two fine wires at a very small distance asunder, so that the balls will be in repose when the rod $a a^{\prime}$ is directed in the plane of the wires, and can only be turned from that plane by the action of a small and definite force, the intensity of which can always be ascertained by the angle of deflection of the rod $a a^{\prime}$. The exact direction of the rod $a a^{\prime}$ is
observed, without approaching the apparatus, by means of two small telescopes T and $\mathrm{T}^{\prime}$, and the extent of its departure from its position of equilibrium may be measured with great precision by micrometers.

In the performance of the experiment a multitude of precautions were taken to remove or obviate various causes of disturbance, such as currents of air, which might arise from unequal changes of temperature which need not be described here.

The large balls being first placed at a distance from the small ones, the direction of the rod in its position of equilibrium was observed with the telescopes $T T^{\prime}$. The stage supporting the large balls was then turned until they were brought near the small ones, as represented at $\boldsymbol{B} \boldsymbol{B}^{\prime}$. It was then observed that the small balls were attracted by the large ones, and the amount of the deflection of the rod $a a^{\prime}$ was observed.

The frame supporting the large balls was then turned until в was brought to $b$, and $B^{\prime}$ to $b^{\prime}$, so as to attract the small balls on the other side, and the deflection of $a a^{\prime}$ was again observed. In each case the amount of the deflection being exactly ascertained, the intensity of the deflecting force, and its ratio to the weight of the balls, became known.

The properties of the pendulum supplied a very simple and exact means of comparing the attraction of the balls $B$ and $B^{\prime}$ with the attraction of the earth. - The balls $a a^{\prime}$ were made to vibrate through a small arc on each side of the position which the attraction gave them, and the rate of their vibration was observed and compared with the rate of vibration of a common pendulum. The relative intensity of the two attractions was computed from a comparision of these rates by the principles established in (542). The precision of which this process of observation is susceptible may be inferred from the fact that the whole attraction of the balls в в ${ }^{\prime}$ upon $a a^{\prime}$ did not amount to the 20 -millionth part of the weight of the balls $a a^{\prime}$, and that the possible error of the result did not exceed 2 per cent. of its whole amount.

The attraction which the balls в $\boldsymbol{B}^{\prime}$ would exert on $a \alpha^{\prime}$, on the supposition that the mean density of the earth is equal to that of the metallic balls в $\mathrm{b}^{\prime}$, was then computed on the principles explained in (2381), and found to be less than the actual
attraction observed, and it was inferred that the density of the earth was less than that of the balls $\mathbf{b} \boldsymbol{z}^{\prime}$ in the same ratio.

In fine, it resulted that the mean density of the earth is 5.67 times the density of water.

The accordance of this result with those of the Schehallien experiment, and the calculations upon the figure of the terrestrial spheroid, supply a striking proof of the truth of the theory of gravitation on which all these three independent investigations are based, and of the validity of the reasoning upon which they have been conducted.
2394. Volume 'and weight of the earth. - Having ascertained the linear dimensions and the mean density of the earth, it is a question of mere arithmetical labour to compute its volume and its weight. Taking the dimensions of the globe as already stated, its volume contains
$\mathbf{2 5 9 , 8 0 0}$ millions of cubic miles.
$382,425,60,000$ billions of cubic feet.

The average weight of each cubic foot of the earth being $5 \cdot 67$ times the weight of a cubic foot of water, is 354.375 lbs ., or $\mathbf{0 . 1 5 8 7}$ of a ton. It follows, therefore, that the total weight of the carth is

$$
6,069,094,272 \text { billions of tons. }
$$

## CHAP. VI.

THE OBSERVATORY.
2395. Knowledge of the instruments of observation necessary. - Having explained the dimensions, rotation, weight, and density of the earth, and described generally the aspect of the firmament and fixed lines and points upon it by which the relative position and motions of celestial objects are defined, it will be necessary, before proceeding to a further exposition of the astronomical phenomena, to explain the principal instruments with which an observatory is furnished, and to show the manner in which they are applied, so as to obtain those accurate data which supply the basis of those calculations from which has resulted our knowledge of the great laws of the universe. We shall therefore here explain the form and use of such of
the instruments of an observatory as are indispensably necessary for the observations by which such data are supplied.
2396. The astronomical clock.-Since the immediate objects of all astronomical observation are motions and magnitudes, and since motions are measured by the comparison of space and time, one of the most important instruments of observation is the time-piece or chronometer, which is constructed in various forms, according to the circumstances under which it is used and the degree of accuracy necessary to be obtained. In a stationary observatory, a pendulum clock is the form adopted.

The rate of the astronomical clock is so regulated that, if any of the stars be observed which are upon the celestial meridian at the moment at which the hands point to $0^{\mathrm{h}} .0^{\mathrm{m}} \cdot 0^{\mathrm{s}}$, they will again point to $0^{\text {h. }} 0^{\mathrm{m} .} 0^{\text {s. }}$ when the same stars are next seen on the meridian. The interval, which is called a sidereal day, is divided into twenty-four equal parts, called sidereal hours. The hour-hand moves over one principal division of its dial in this interval. In like manner the mindte and second-hands move on divided circles, each moving over the successive divisions in the intervals of a minute and a second respectively.

The pendulum is the original and only real measure of time in this instrument. The hands, the dials on which they play, and the mechanism which regulates and proportions their movements, are only expedients for registering the number of vibrations which the pendulum has made in the interval which clapses between any two phenomena. Apart from this convenience a mere pendulum unconnected with wheel work or any other mechanism, the vibrations of which would be counted and recorded by an observer stationed near it, would equally serve as a measure of time.

And this, in fact, is the method actually used in all exact astronomical observations. The eye of the observer is occupied in watching the progress of the object moving over the wires (2302) in the field of view of the telescope. His ear is occupied in noting, and his mind in counting the successive beats of the pendulum, which in all astronomical clocks is so constructed as to produce a sufficiently loud and distinct sound, marking the close of each successive second. The practised observer is enabled with considerable precision in this way to subdivide a second, and determine the moment of the occurrence of a phenomenon within a small fraction of that interval. A star, for
example, is seen to the left of the wire $m m^{\prime}$ at $s, f i g$. 703., at


Fig. 703. one beat of the pendulum, and to the right of it at $s^{\prime}$ with the next. The observer estimates with great precision the proportion in which the wire divides the distance between the points $s$ and $s^{\prime}$, and can therefore determine the fraction of a second after being at $s$, at which it was upon the wire $m m^{\prime}$.

Although the art of constructing chronometers has attained a surprising degree of perfection, it is not perfect, and the rate of even the best of such instruments is not absolutely uniform. It is therefore necessary..from time to time to check the indications of the clock by observing its rate. If the clock were absolutely perfect, the pendulum. would perform exactly $24 \times 60 \times 60=86,400$ vibrations in the interval between two successive returns of the same star to the meridian. Now a good astronomical clock will never make so many as 86,401 nor so few as 86,399 vibrations in the interval. In the one case its rate would be too fast, and in the other too slow by 1 in 86400 . Eren with such an crroneous rate the error thrown upon an observation of one hour would not exceed the 24th part of a second. If, however, the rate be observed, even this error may be allowed for, and no other will remain save the remote possibility of a change of rate since the rate was last ascertained.
2397. The transit instrument. - All the most important astronomical observations are made at the moment when the objects observed are upon the celestinl meridian, and in a very extensive class of such observations the sole purpose of the observer is to determine with precision the time when the object is brought to the meridian by the apparent diurnal motion of the firmament.

This phenomenon of passing the meridian is called the transit; and an instrument mounted in such a manner as to enable an observer, supplied with a clock, to ascertain the exact time of the transit is called a transit instrument.

Such an instrument consists of a telescope so mounted that the line of collimation will be successively directed to every point of the celestial meridian when the telescope is moved upon its axis through $180^{\circ}$.

This is accomplished by attaching the telescope to an axis at
right angles to its line of collimation, and placing the extremities of such axis on two horizontal supports, which are exactly at the same level, and in a line directed east and west. The line of collimation when horizontal will therefore be directed north and south; and if the telescope be turned on its axis through $180^{\circ}$, its line of collimation will move in the plane of the meridian, and will be successively directed to all points on the celestial meridian from the north to the pole, thence to the zenith, and thence to the south.

The instrument thus mounted is represented in fig. 704.


Fig. 704.
Two stone piers are erected on a solid foundation standing east and west. In the top of each of them is inserted a metallic support in the form of a $x$ to receive the cylindrical extremities of the transverse arms $A, B$ of the instrument. The tube of the telescope cD consists of two equal parts inserted in a central globe, forming part of the transversal axis a b. Thus mounted, the telescope can be made to revolve like a wheel upon the axis $A B$, and while it thus revolves its line of collimation would be
directed successively to all the points of a vertical circle, the plane of which is at right angles to the axis ab. If the axis be exactly directed east and west, this vertical must be the meridian.
2398. Its adjustments. - This, however, supposes three conditions to be fulfilled with absolute precision :
$1^{\circ}$. The axis ab must be level.
$2^{\circ}$. The line of collimation must be perpendicular to it.
$3^{\circ}$. It must be directed due east and west.
In the original construction and mounting of the instrument these three conditions are kept in view, and are nearly, but cannot be exactly, fulfilled in the first instance. In all astronomical instruments the conditions which they are required to fulfil are only approximated to in the making and mounting; but a class of expedients called adjustarents are in all cases provided, by which each of the requisite conditions, only nearly attained at first, are fulfilled with infinitely greater precision.

In all such adjustments two provisions are necessary : first, a method of detecting and measuring the deviation from the exact fulfilment of the requisite condition; and secondly, an expedient by which such deviation can be corrected.
2399. To make the axis level. - If the axis ab be not truly level, its deviation from this direction may be ascertained by suspending upon it a spirit level.

This consists of a glass tube nearly filled with alcohol or ether, liquids selected for the purpose, in consequence of the absence of all viscidity, their perfect mobility, and because they are not liable to congelation. The tube AB, fig. 705., is formed


Fig. 705.
slightly convex, and when it is placed horizontally with its convexity upwards, the bublle ab produced by its deficient fulness will take the highest position, and therefore rest at the centre of its length. Marks are engraved on or attached to the
tube at $a$ and $b$ indicating the centre of its length. The tube is attached to a straight bar $C D$, or so mounted as to be capable of being suspended from two points $\mathrm{c}^{\prime} \mathrm{D}^{\prime}$, and is so arljusted that when the lower surface of the bar CD, or the line joining the two points of suspension $C^{\prime} D^{\prime}$, is exactly level, the bubble will rest exactly in the centre of the tube between the marks $a$ and $b$.

To ascertain whether a surface, or the line joining two proposed points, be level, the instrument is applied upon the one, or suspended from the other. If the bubble rest between the marks $a$ and $b$, they are level; if not, that direction towards which it deviates is the more elevated, and it must be lowered, or the other raised. The operation must be repeated until the bubble is found to rest between the central marks $a$ and $b$, whichever way the level be placed.

A level is provided for the transit instrument with two loops of suspension corresponding with the cylindrical extremities of the axis A b, fig.704., so that its points of suspension may rest on these cylinders. If it be found that, when the level is, properly suspended thus upon the axis, the bubble rests nearer to one extremity than the other, it will be necessary to raise that end from which it is more remote, or to lower that to which it is nearer.

To accomplish this, one of the supports in which the extremity a of the axis rests is constructed so as to be moved through a small space vertically by a finely constructed screw. This support is therefore raised or lowered by such means, until the bubble of the level rests between the central marks $a$ and $b$, whichever way the level be suspended.
2.100. Ta make the line of collimation perpendicular to the axis. - It must be remembered, that the lhe of cullmation is a line drawn from the centro of the olyjeet-ghan to tho interbection of the midule wires in the field of view of the telescope. The centre of the object-giass is fixed relatively to the telescope, but the wires are so moumted that the ponition of thrir intersection can be moved through a certain small space ly means of a micrometer screw. One end of the line of collimation, therefore, being moveable, while the other is fixed, its direction may bo changed at pleasure within limits determined by the construction of the eye-glass and its micrometer.

To ascertain whether the line of collimation is or is not at - right angles to the line joining the points of support $A$ and b ,
fig. 704., let any distant point be observed upon which the intersection of the wires falls. Let the instrument be then reversed upon its supports, the end of the axis which rested on a being transferred to $b$, and that which rested on $b$ to $a$, and let the same object be observed. If it still coincide with the intersection of the wires, the line of collimation is in the proper direction; but if not, its distance from the intersection of the wires will be twice the deviation of the line of collimation from the perpendicular, and the wires must be moved by the adjusting screw, until their intersection is moved towards the object through half of its apparent distance from it.

To render this more clear, let ab, fig. 706., represent the direction of the axis, CD that of a line exactly at right angles to


Fig. 706. it, or the direction which is to be given to the line of collimation, and let $C D^{\prime}$ represent the erroneous direction which that line actually has. Let $s$ be a distant object to which it is observed to be directed, this object being seen upon the intersection of the wires. If the instrument be reversed, the line $\mathrm{cb}^{\prime}$ will have the direction $\mathrm{CD}^{\prime \prime}$, deviating as much from $C D$ to the right as it before deviated to the left. The object s will now be seen at a distance to the left of the intersection of the wires which measures the angle $\mathrm{D}^{\prime} \mathrm{CD}^{\prime \prime}$, which is twice the angle $\mathrm{DCD}^{\prime}$, or the deviation of the line of collimation from the perpendicular do.
2401. To render the direction of the supports due east and urst, - This is in some cases accomplished by a mantins mark, which is a distinct object, such as $a$ whito vertieal lino puinted on a black ground, erected at a sufficient distance from the instrument in the exact meridian of the observatory. If, on directing the telescope to it, it is seen on the one side or the other of the middle wire (which ought to coincide with the meridian), the direction of the axis ab, fig. 704., will deviate to the same extent from the true east and west, since it has been already, by the previous adjustments, rendered perpendicular to
the line of collimation. The entire instrument must therefore be shifted round, until the meridian mark coincides with the middle wire. This is accomplished by a provision made in the support on which the extremity of the axis B, fig. 704., rests, by which it has a certain play in the horizontal direction urged by a fine screw. In this way the axis ab is brought into the true direction east and west, and therefore the line of collimation into the true meridian.

It will be observed that, in explaining the second adjustment, it has been assumed that the deviations are not so great as to throw the object $s$ out of the field of view after the instrument is reversed. This condition in practice is always fulfilled, the extent of deviation left to be corrected by the adjustments being always very small.
2402. Micrometer wires - method of observing transit. In, the focus of the eye-piece of the transit instrument, the system of micrometer wires (2302), already mentioned, is placed. This consists commonly of 5 or 7 equidistant wires, placed vertically at equal distances, and intersected at their middle points by a horizontal wire, as represented in fig. 703. When the instrument has been adjusted, the middle wire $\boldsymbol{m} \boldsymbol{m}^{\prime}$ will be in the plane of the meridian, and when an object is seen upon it, such object will be on the celestial meridinn, and the wire itself may be regarded as a small arc of the meridian rendered visible.

The fixed stars, as will be explained more fully hereafter, appear in the telescope, no matter how high its magnifying power be, as mere lucid points, having no sensible magnitude. By the diurnal motion of the firmament, the star passes successively over all the wires, a short interval being interposed between its passages. The observer, just before the star approaching the meridian enters the field of view, notes and writes down the hours and minutes indicated by the clock, and he proceeds to count the seconds by his ear. He observes, in the manner already explained, to a fraction of a second, the instant at which the star crosses each of the wires; and taking a mean of all these times, he obtains, with a great degree of precision, the instant at which the star passed the middle wire, which is the time of the transit.

By this expedient the result has the advantage of as many independent observations as there are parallel wires. The
errors of observation being distributed, are proportionally diminished.

When the sun, moon, or a planet, or, in general, any object which has a sensible disk, is observed, the time of the transit is the instant at which the centre of the disk is upon the middle wire. This is obtained by observing the instants which the western and eastern edges of the disk touch each of the wires. The middle of these intervals are the moments at which the centre of the disk is upon the wires respectively. Taking a mean of the contact of the western edges, the contact of the western edige with the middle wire will be obtained; and, in like manner, a mean of the contacts of the eastern edge will give the contact of that edge with the middle wire, and a mean of these two will give the moment of the transit of the centre of the disk, or a mean of all the contacts of both edges will give the same result.

By day the wires are visible, as fine black lines intersecting and spacing out the field of view. At night they are rendered visible by a lamp, by which the field of view is faintly illuminated.
2403. Apparent motion of objects in field of view. - Since the telescope reverses the objects observed, the motion in the field will appear to be from west to east, while that of the firmament is from east to west. An object will therefore enter the field of view on the west side, and, having crossed it, will leave it on the east side.

Since the sphere revolves at the rate of $15^{\circ}$ per hour, $15^{\prime}$ per minute, or $15^{\prime \prime}$ per second of time, an object will be seen to pass across the field of view with a motion absolutely uniform, the space passed over between two successive beats of the pendulum being invariably $15^{\prime \prime}$.

Thus, if the moon or sun be in or near the equator, the disk will be observed to pass across the field with a visible motion, the interval between the moments of contact of the western and eastern edges with the middle wire being $2^{\mathrm{m} \cdot} 8^{\mathrm{s}}$, when the apparent diameter is $32^{\prime}$. Thus, the disk appears to move over a space equal to half its own diameter in $1^{\mathrm{m} \cdot} 4^{\mathrm{s}}$.
2404. Circles of declination, or kotir circles. - Circles of the celestial sphere which pass through the poles are at right angles to the celestial equator, and are on the heavens exactly what meridians are upon the terrestrial globe. They divide
the celestial equator into arcs which measure the angles which such circles form with each other. Thus, tivo such circles which are at right angles include an arc of $90^{\circ}$ of the celestial equator, and two which form with each otlier an ángle of $1^{\circ}$ include between them an arc of $1^{\circ}$. of the celestial equator. These circles of declination, or hour circles as they are called, are carried round by the diurnal motion of the heavens, and are brought in succession to coincide with the celestial meridian, the intervals between the moments of their coincidence with the meridian being always proportional to the angle they form with each other, or, what is the same, to the arc of the celestial equator included between them. Thus, if two circles of declination form with each other an angle of $30^{\circ}$, the interval between the moments of their coincidence with the meridian will be two sidereal hours.

The relative position of the circles of declination with respect to each other and to the meridian, and the successive positions assumed by any one such circle during a complete revolution of the sphere, will be perceived and understood without difficulty by the aid of a celestial globe, without which it is scarcely possible to obtain any clear or definite notion of the apparent motions of celestial objects.
2405. Right ascension. - The are of the celestial equator between any circle of declination and a certain point on the equator called the first point of Aries (which will be defined hereafter), is called the right ascension of all objects through which the circle of declination passes. This arc is always understood to be measured from the point where the circle of declination meets the celestial equator westward, that is, in the direction of the apparent diurnal motion of the heavens, and it may extend, therefore, over any part whatever of the equator from $0^{\circ}$ to $360^{\circ}$.

Right ascension is expressed sometimes according to angular magnitude, in degrees, minutes, and seconds; but since, according to what has been explained, these magnitudes are proportional to the time they take to pass over the meridian, right ascension is also often expressed immediately by this time. Thus, if the right ascension of an object is $15^{\circ} 15^{\prime} 15^{\prime \prime}$, it will . be expressed also by $1^{\mathrm{h} \cdot} 1^{\mathrm{m} \cdot} 1^{\mathrm{s}}$.

In general, right ascension expressed in degrees, minutes, and seconds may be reduced to time by dividing it by 15 ; and if
it be expressed in time, it may. be reduced to angular language by multiplying it by 15 .

The difference of right ascensions of any two objects may be ascertained by the transit instrument and clock, by observing the interval which elapses between their transits over the meridian. . This interval, whether expressed in time or reduced to degrees, is their difference of right ascension.

Hence, if the right ascension of any one object be known, the right ascension of all others can be found.
2406. Sidereal clock indicates right ascension.-If the hands of the sidereal clock be set to $0^{\text {h. }} 0^{\mathrm{mm}} 0^{\mathrm{s}}$. when the first point of Aries is on the meridian, they will at all times (supposing the rate of the clock to be correct) indicate the right ascension of such objects as are on the meridian. For the motion of the hands in that case corresponds exactly with the apparent motion of the meridian on the celestial equator produced by the diurnal motion of the heavens. While $15^{\circ}$ of the equator pass the meridian the hands more through 1 h ; and other motions are made in the same proportion.
2407. The mural circle. - The transit instrument and sidereal clock supply means of determining with extreme precision the instant at which an object passes the meridian; but the instrument is not provided with any accurate means of indicating the point at which the object is seen on the meridian. A circle is sometimes, it is true, attached to the transit by which the position of this point may be roughly observed; but to ascertain it with a precision proportionate to that with which the transit instrument determines the right ascensions, requires an instrument constructed and mounted for this express object in a manner, and under conditions, altogether different from those by which the transit instrument is regulated. The form of instrument adopted in the most efficiently furnished observatories for this purpose is the mural circle.

This instrument is a graduated circle, similar in form and principle to the instrument described in (2304). It is centred upon an axis established in the face of a stone pier or ucall (hence the name), erected in the plane of the meridian. The axis, like that of a transit instrument, is truly horizontal, and directed due east and west. Being by the conditions on which it is first constructed and mounted, very nearly in this position, it is rendered exactly so by two adjustments, one of which
iII.
moves the axis vertically, and the other horizontally, by means of screws, through spaces which, though small, are still large enough to enable the observer to correct the slight errors of position incidental to the workmanship and mounting.


Fig. 707.

The instrument, as mounted and adjusted, is represented in perspective in fig. 707., where A ${ }^{\prime}$ is the stone wall to which the instrument is attached, $D$ the centrat axis on which it turns; and FG the telescope, which does not move upon the circle, but is immoveably attached to it, so that the entire instrument, including the telescope, turns in the plane of the meridian upon the axis $\mathbf{D}$.

A front view of the circle in the plane of the instrument is given in fig. 708.


The graduation is usually made on the edge, and not on the face limb. The hoop of metal thus engraved forms, therefore, what may be called the tire of the wheel.

Troughs o, containing mercury, are placed on the floor in convenient positions in the plane of the instrument, in the surface of which are seen, by reflection, the objects as they pass over the meridian. .The observer is thus enabled to ascertain the directions, as well of the images of the objects reflected in the mercury, as of the objects themselres, the advantage of which will presently appear.

Convenient ladders, chairs, and couches, capable of being adjusted by racks and other mechapical arrangements, at any desired inclinations, enable the observer, with the utmost ease and comfort, to apply his eye to the telescope, no matter what be its direction.

In the more important national observatories the mural circles are eight feet in diameter, and consequently $301 \cdot 5$ inches in circumference. Each degree upon the circumference measuring, therefore, above eight-tenths of an inch, admits of extremely minute subdivision.

The divisions on the graduated edge of the instrument are numbered as usual from $0^{\circ}$ to $360^{\circ}$ round the entire circle. The position which the direction of the line of collimation of the telescope has with relation to the $0^{\circ}$ of the limb is indifferent. Nothing is necessary except timat this line, in moving round the axis $D$ of the instrument, shall remain constantly in the plane of the meridian. This condition being fulfilled, it is evident that, as the circle revolves, the line of collimation will be successively directed to every poith of the meridian when presented upwards, and to every point of its reflected image in the mercury when presented downwards.
2408. Method of observing with it. - The position of the instrument when directed successively to two objects on the meridian, or to their images reflected in the mercury, being observed, the angular distance, or the arc of the meridian between them, will be found by ascertaining the arc of the graduated limb of the instrument, which passes before any fixed point or index, when the telescope is turned from the direction of the one object to the direction of the other.
2409. Compound microscopes - their number and use. This arc is observed by a compound microscope (2307), attached to the wall or pier, and directed towards the graduated limb. The manner in which the fraction of a division of the limb is observed by this expedient has been already explained.

But to give greater precision to the obseryation, as well as to efface the errors which might arise, either from defective centreing, or from the small derangement of figure that might arise from the flexure produced by the weight of the instrument, several compound microscopes - generally six - are provided at nearly equal distances around the limb, so that the observer is enabled to note the position of six indices. The six ares of the limb which pass under them being observed, are equivalent to six independent observations, the mean of which being taken, the errors incidental to them are reduced in proportion to their number.
2410. Circle primarily a diffenential instrument. - The observations, however, thus taken ure, strictly speaking, only differential. The arc of the meridian between the two objects is determined, and this arc is the difference of their meridional distances from the zenith or from the horizon; but unless the positions which the six indexes have, when the line of collination is directed to the zenith or horizon, be known, no positive result arises from the observations; nor can the absolute distance of any object, either from the hqrizon or the zenith, be ascertained.
2411. Method of ascertaining' the horizontal point.- The "reading", as it is technically cilled, at each of the microscopes, in any proposed position of the instrument, is the distance of that microscope from the zero point of the limb. Now it is easy to show that half the sum of the two readings at any microscope, when the telescope is successively directed to an object and its image in the mercury, will be the reading at the same microscope when the line of collimation is horizontal.

Let a circle be imagined to be drawn upon the stone pier


Fig. 709. around the instrument, and let m , fig. 709., represent the position of any of the microscopes. Let co be the position' of the telescope when directed to the object, and let $z$ be the position of the zero of the limb. Let ci be the position of the telescope when directed to the image of the same object in the mercury. If $z z^{\prime \prime}=0 \mathrm{I}, z^{\prime \prime}$ will be then the place of the zero, because the zero will be
moved with the instrument through the same space as that through which the telescope is moved. Since the direction ar is as much below the horizon as co is above it, the direction of the horizon must be that of the point $H$ which bisects the are oI. The telescope, when horizontal, will have therefore the direction CH , and when it has this position the zero will evidently be at $z^{\prime}$, the point which bisects the arc $z z^{\prime \prime}$.

The "readings" of the microscope m, when the telescope is directed to 0 and I , are ar $z$ and $m z$ ". The "reading" of the same microscope when the telescope is horizontal would be $\mathbf{m} z^{\prime}$. Now it is evident, from what has been stated above, that

$$
\mathrm{M} z^{\prime}-\mathrm{M} z \div \mathrm{M} z^{\prime \prime}-\mathrm{M} z^{\prime} ;
$$

and, therefore,

$$
\mathrm{M} z^{\prime}=\frac{1}{2}\left(\mathrm{M} z+\mathrm{M} z^{\prime \prime}\right) ;
$$

tha is, the reading for the horizontal direction of the telescope would be half the sum of the readings for an object and its image.
2412. Method of observing altitudes and zenith distances. The readings of all the microscopes, when the telescope is directed to the horizon, being thus determined, are preserved as necessary data in all observations on the altitudes or zenith distances of oljects. To determine the altitude of an object $o$, let the telescope be directed to ft , so that it shall be seen at the intersection of the wires; and let the readings of the six microscopes be $o_{1}, o_{2}, o_{3}, o_{4}, o_{5}$, and $a_{6}$, and let their six horizontal readings be $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$, and $H_{6}$. We shall have six values for the altitudes:

$$
\begin{aligned}
& \mathrm{A}_{1}=\mathrm{H}_{1}-o_{1}, \\
& \mathrm{~A}_{2}=\mathrm{H}_{2}-o_{2}, \\
& \mathrm{~A}_{3}=\mathrm{H}_{3}-o_{3}, \\
& \mathrm{~A}_{4}=\mathrm{H}_{4}-o_{4}, \\
& \mathrm{~A}_{5}=\mathrm{H}_{5}-o_{5}, \\
& \mathrm{~A}_{6}=\mathrm{H}_{6}-O_{6} .
\end{aligned}
$$

These will be nearly, but not precisely, equal, because they will differ by the small errors of observation, centreing, and form. A mean of the six being taken by adding them and dividing their sum by 6 , these differences will be equalized, and the errors nearly effuced, so that we shall have the nearest approximation to the true altitude -

$$
\Delta=\frac{1}{8}\left\{A_{1}+A_{2}+A_{3}+A_{4}+A_{5}+A_{6}\right\} .
$$

The altitude of an object being known, its zenith distance may be found by subtracting the altitude from $90^{\circ}$ : thus, if $z$ express the zenith distance, we shall have

$$
z=90^{\circ}-\Lambda .
$$

'2413. Method of determining the position of the pole and equator. - The mural circle may be regarded as the celestial meridian reduced in scale, and brought immediately under the hands of the observer, so that all distances upon it may be submitted to exact examination and measurement. Besides the zenith and horizon, the positions of which, in relation to the microscopes, have just been ascertained, there are two other points of equal importance, the pole and the equator, which should also be established.

The stars which are so near the celestial pole that they never set, are carried by the diurnal motion of the heavens round the pole in small circles, crossing the visible meridian twice, once nbove and once below the pole. Of all these oircumpolar stars, the most important and the most useful to the observer is the pole star, both because of its close proximity to the pole, from which its distance is only $1 \frac{1}{2}^{\circ}$, and because its magnitude is sufficiently great to be visible with the telescope in the day. This star, then, crosses the meridian above the pole and below it, at intervals of twelve hours sidereal time, and the true position of the pole is exactly midway between the two points where the star thus crosses the meridian.

If, therefore, the readings of the six microscopes be taken when the pole star makes its transit above and below the pole, their readings'for the pole itself will be half the sum of the former for each microscope.

The readings for the pole being determined, those which correspond to the point where the celestial equator crosses the meridian may be found by substracting the former from $90^{\circ}$.

When the positions of the microscopes in relation to the pole and equator are determined, the latitude of the observatory will be known, since it is equal to the altitude of the celestial pole (2362).
2414. All circles of declination represented by the circle. Since the circles of declination, which are imagined to surround the heavens, are brought by the diurnal motion in succession to
coincide with the celestial meridian (2404), and since that meridian is itself represented by the mural circle, that circle may be considered as presenting successively a model of every circle of declination ; and the position of any object upon the circle of declination is represented on the mural circle by the position of the telescope when directed to the point of the meridian at which the object crosses it.

If the object have a fixed position on the firmament, it is evident that it will always pass the meridian at the same point; and if the telescope be directed to that point and maintained there, the object will be seen at the intersection of the wires regularly after intervals of tiventy-four hours sidereal time.
2415. Declination and polar distance of an object. - The distance of an object from the celestial equator, measured upon the circle of declination which passes through it, is called its declination, and is north or sodtri, according to the side of the equator at which the object is placed.

The declination of an object is ascertained with the mural circle in the same manner and by the same observation as that which gives its altitude. The readings of the microscopes for the object being compared with their readings for the pole (2413), give the polar distance of the object; and the difference between the polar distances and $90^{\circ}$ gives the declination.

Thus the polar distance and declination of an object are to the equator exactly what its altitude and zenith distance are to the horizon. But since the equator maintains always the same position during the diurnal motion of the heavens, the declination and polar distance of an object are not affected by that motion, and remain the same, while the altitude and zenith distances are constantly changing.
2416. Position of an object defined by its declination and right ascension. - The position of an object on the firmament is determined by its declination and right ascension. Its declination expresses its distance north or south of the celestial equator, and its right ascension expresses the distance of the circle of declination upon which it is placed from a certain defined point upon the celestial equator.

It is evident, therefore, that declination and right ascension define the position of celestial objects in exactly the same manner
as latitude and longitude define the position of places on the earth. A place upon the globe may be regarded as being projected on the heavens into the point which forms its zenith; and hence it appears that the latitude of the place is identical with the declination of its zenith.

## CHAP. VII.

## ATMOSPHERIC REFRACTION.

2417. Apparent position of celestial objects affected by refraction. - It has been shown that the ocean of air which surrounds, rests upon, and extends to a certain limited height above the surface of the solid and liquid matter composing the globe, decreases gradually in density in rising from the surface (719); that when a ray of light passes from a rarer into a denser transparent medium, it is deflected towards the perpendicular to their common surface; and that the amount of such deflection increases with the difference of densities and the angle of incidence ( 978 et seq.). These properties, which air has in common with all transparent media, produce important effects on the apparent positions of celestial objects.
Let $s a, f i g .710$., be a ray of light coming from any distant


Fig. 710. object s , and falling on the surface of a series of layers of transparent matter, increasing in density downwards. The ray sa, passing into the first layer, will be deflected in the direction $a a^{\prime}$ towards the perpendicular; passing thence into the next, it will be again deflected in the direction $a^{\prime} a^{\prime \prime}$, more towards the perpendicular; and, in fine, passing through the lowest layer, it will be still more deflected, and will enter the eye at $e$, in the direction $a^{\prime \prime} e:$ and since every object
is seen in the direction from which the visual ray enters the eye, the object $s$ will be seen in the direction es', instead of its true direction $a \mathrm{~s}$. The effect, therefore, is to make the object appear to be nearer to the zenithal direction than it really is.

And this is what actually occurs with respect to all celestial objects seen, as such objects always must be, through the atmosphere. The visual ray sp, fig. 711., passing through a


Fig. 711.
succession of strata of air, gradually and continually increasing in density, its path will be a curve bending from 1 towards $A$, and convex towards the zenithal line az. The direction in which the object will be seen, being that in which the visual ray enters the eye, will be the tangent $a s$ to the curve at $a$. The object will therefore be seen in the direction as instead of D s.

It has been shown that the deflection produced by refraction is increased with the increase of the angle of incidence. Now, in the present case, the angle of incidence is the angle under the true direction of the object and the zenithal line, or, what is the same, the zenith distance of the object. The extent, therefore, to which any celestial object is disturbed from its true place by the refraction of the atmosphere, increases with
its zenith distance. The refraction is, therefore, nothing in the zenith, and greatest in the horizon.
2418. Law of atmospheric refraction. -The extent to whicl a celestial object is displaced by refraction, therefore, depends upon and increases with its distance from the zenith; and it can be shown to be a consequence of the general principles of optics, that when other things are the same, the actual quantity of this displacement (except at very low altitudes) varies in the proportion of the tangent of the zenith distance.

Thus, if az, fig. 712., be the zenithal direction, and $a O, A O^{\prime}$, $\mathrm{AO}^{\prime \prime}$, \&c., be the directions of celes-


Fig. 712. tial objects, their zenith distances being zao, zao', zao', \&c., the quantities of refraction by which they will be severally affected, or, what is the same, the differences between their true and apparent directions, will be in the ratio of the tangents $\mathbf{z T}, \mathrm{zT}^{\prime}, \mathrm{zT}^{\prime \prime}$, \&cc. of the zenith distances.*

This law prevails, with considerable exactitude, except at very low altitudes, where the refractions depart from it, and become uncertain.
2419. Quantity of refraction. - When the latitude of the observatory is known, the actual quantity of refraction at a given altitude may be ascertained by observing the altitudes of a circumpolar star, when it passes the meridian above and below the pole. The sum of these altitudes would be exactly

[^6]$$
\sin z=m \times \sin (z-r)=m \times \sin . z \cos r-m \times \cos z \sin . r
$$

But since $r$ is a very small angle, if it be expressed in seconds, we shall have

$$
\cos . r=1, \quad \sin . r=\frac{r}{206265},
$$

and, consequently,

$$
\sin . z=m \times \sin . z-m \times \cos . z \times \frac{r}{206265},
$$

and, therefore,

$$
r=206267^{\prime \prime} \times \frac{m-1}{m} \times \frac{\sin . z}{\cos z}=206265^{\prime \prime} \times \frac{m-1}{m} \times \tan . z
$$

equal to twice the latitude (2362) if the refraction did not exist, but since by its effects the star is seen at greater than its true altitudes, the sum of the altitudes will be greater than twice the latitude by the sum of the two refractions. This sum will therefore be known, and being divided between the two altitudes in the ratio of the tangents of the zenith distances, the quantity of refraction due to each altitude will be known.

The pole star answers best for this observation, especially in these and higher latitudes, where it passes the meridian within the limits of the more regular influence of refraction; and the difference of its altitudes being only $3^{\circ}$, no considerable error can arise in apportioning the total refraction between the two altitudes.
2420. Tables of refraction. - To determine with great exactitude the average quantity of refraction due to different altitudes, and the various physical conditions under which the actual refraction departs from such average, is an extremely difficult physical problem. These conditions are connected with phenomena subject to uncertain and imperfectly known laws. Thus, the quantity of refraction at a given altitude depends, not only on the density, but also on the temperature of the successive strata of air through which the visual ray has passed. Although, as a general fact, it is apparent that the temperature of the air falls as we rise in the atmosphere (2185), yet the exact law according to which it decreases is not fully ascertained. But even though it were, the refraction is also influenced by other agencies, among which the hygrometric condition of the air holds an important place.

From these causes, some uncertainty necessarily attends astronomical observations, and some embarrassment arises in cases where the quantities to be detected by the obsercations are extremely minute. Nevertheless, it must be remembered, that since the total amount of refraction is never considerable, and in most cases it is extremely minute, and since, small as it is, it can be very nearly estimated and allowed for, and in some cases wholly effaced, no serious obstacle is offered by it to the general progress of astronomy.

Tables of refraction have been constructed and calculated, partly from observation and partly from theory, by which the observer may at once obtain the average quantity of refraction
at each altitude; and rules are given by which this average refraction may be corrected according to the peculiar state of the barometer, thermometer, and other indicators of the physical state of the air.
2421. Average quantity at mean altitudes. - While the refraction is nothing in the zenith, and somewhat greater than the apparent diameter of the sun or moon in the horizon, it does not amount to so much as $1^{\prime}$, or the thirtieth part of this diameter, at the mean altitude of $45^{\circ}$.
2422. Effect on rising and setting. - Its mean quantity in the horizon is $33^{\prime}$, which being a little more than the mean apparent diameters of the sun and moon, it follows that these objects, at the moment of rising and setting, are visible above the horizon, the lower edge of their disks just touching it, when in reality they are below it, the upper edge of the disk just touching it.

The moments of rising of all objects are therefore accelerated, and those of setting retarded, by refraction. The sun and moon appear to rise before they have really risen, and to set after they have really set; and the same is true of all other objects.
2423. General effect of the barometer on refraction. Since the barometer rises with the increased weight and density of the air, its rise is attended by an augmentation, and its fall by a decrease, of refraction. It may be assumed that the refraction at any proposed altitude is increased or diminished by $1 \cdot 300$ th part of its mean quantity for every loth of an inch by which the barometer exceeds or falls short of the height of 30 inches.
2424. Effect of thermometer. - As the increase of temperature causes a decrease of density, the effect of refraction is diminished by the elevation of the thermometer, the state of the barometer being the same. It may be assumed, that the refraction at any proposed altifude is diminished or increased by the 420th part of its mear amount for each degree by which Fahrenheit's thermometer exceeds or falls short of the mean temperature of $55^{\circ}$.
2425. Twilight caused by the reflection of the atmosphere.The sun continues to illuminate the clouds and the superior strata of the air after it has set, in the same manner as it shines on the summits of lofty mountain peaks long after it
has descended from the view of the inhabitants of the adjacent plains. The air and clouds thus illuminated, reflect light to the surface below them; and thus, after sunset and before sunrise, produce that light, more or less feeble according to the depression of the sun, called twilignt. Immediately after sunset the entire visible atmosphere, and all the clouds which float in it, are flooded with sunlight, and produce, by reflection, an illumination little less intense than before the sun had disappeared. According as the sun sinks lower and lower, less and less of the visible atmosphere receives his light, and less and less of it is transmitted by reflection to the surface, until at length, and by slow degrees, all reflection ceases, and night begins.

The same series of phenomena are developed.in an opposite order before sunrise in the morning, commencing with the first feeble light of dawn, and ending with the full blaze of day when the disk of the sun becomes visible.

The general effect of the air, clouds, and vapours in diffusing light, and rendering more effectual the general illumination produced by the sun, has been already explained in (923, 924).
24.26. Oval form of disks of sun and moon explained.-One of the most curious effects of atmospheric refraction is the oval form of the disks of the sun and moon, when near the horizon. This arises from the unequal refraction of the upper and lower limbs. The latter being nearer the horizon is more affected by refraction, and therefore raised in a greater degree than the upper limb, the effect of which is to bring the two limbs apparently closer together, by the difference between the two refractions. The form of the disk is therefore affected as if it were pressed between two forces, one acting above, and the other below, tending to compress its vertical diameter, and to give it the form of an ellipse, the lesser axis of which is vertical, and the greater horizontal.*

[^7]
## CHAP. VIII.

## anNual motion of the earth.

2427. Apparent motion of the sun in the heavens. - Independently of the motion which the sun has in common with the entire firmament, and in virtue of which it rises, ascends to the meridian, and sets, it is observed to change its position from day to day with relation to the other celestial objects among which it is placed. In this respect, therefore, it differs essentially from the stars, which maintain their relative positions for months, years, and ages, unaltered.

If the exact position of the sun be observed from day to day and from month to month, through the year, with reference to the stars, it will be found that it has an apparent motion among them in a great circle of the celestial sphere, the plane of which forms an angle of $23^{\circ} 28^{\prime}$ with the plane of the celestial equator.
2428. Ascertained by the transit instrument and mural circle.- This apparent motion of the sun was ascertained with considerable precision before the invention of the telescope and the subsequent and consequent improvement of the instruments of observation. It may, however, be made more clearly manifest by the transit instrument and mural circle.

If the transit of the sun be observed daily (2402), and its right ascension be ascertained (2405), it will be found that from day to day the right ascension continually increases, so that the circle of declination (2404) passing through the centre of the sun is carried with the sun round the heavens, making a complete revolution in a year, and moving constantly from west to east, or in a direction contrary to the apparent diurnal motion of the firmament.

If the point at which the sun's centre crosses the meridian daily be observed with the mural circle (2408), it will be found to change from day to day. Let its distance from the celestial equator, or its declination, be observed (2415) daily at noon. It will be found to be nothing on the 21st of March and 21st of September, on which days the polar distance of the sun's centre will be therefore $90^{\circ}$. The sun's centre is, then, on these days,
in the celestial equator. After the 21 st March the sun's centre will be north of the equator, and its declination will continually increase, until it becomes $23^{\circ} 28^{\prime}$ on the 21st Junc. It will then begin slowly to decrease, and will continue to decrease until 21st September, when the centre of the suu will again be in the equator. After that it will pass the meridian south of the equator, and will consequently have south declination. This will increase, until it becomes $23^{\circ} 28^{\prime}$ on the 21 st December; after which it will decrease until the centre of the sun returns to the equator on the 21st March.

By ascertaining the position of the centre of the sun's disk from day to day, by means of its right ascension and declination (2416), and tracing its course upon the surface of a celestial globe, its path is proved to be a great circle of the heavens, inclined to the equator at an angle of $23^{\circ} 28^{\prime}$.
2429. The ecliptic. - This great circle in which the centre of the disk of the sun thus appears to move, completing its revolution in it in a year, is called the ecliptic, because, for reasons which will be explained hereafter, solar and lunar eclipses can never take place except when the moon is in or very near it.
2430. The equinoxial points. - The ecliptic intersects the celestial equator at two points diametrically opposite to each other, dividing the equator, and being divided by it into equal parts. These are called the equinoxlal points, because, when the centre of the solar disk arrives at them, being then in the celestial equator, the sun will be equal times above and below the horizon (2367), and the days and nights will be equal.
2431. The vernal and autumnal equinoxes.-The equinoxial point at which the sun passes from the south to the north of the celestial equator is called the vernal, and that at which it passes from the north to the south is called the autuanal, equinoxial point. The times at which the centre of the sun is found at these points are called, respectively, the vernal and a dtumal equinoxis.

The vernal equinox, therefore, takes place on the 21 st March, and the autumnal on the 21st September.
2432. The seasons. - That semicircle of the ecliptic through which the sun moves from the vernal to the autumnal equinox is north of the celestial equator; and during that interval the sun will therefore (2351) be longer above than below the hori-
zon, and will 'pass the meridian above the equator in places having north latitude. The days, therefore, during that halfyear, will be longer than the nights.

That semicircle through which the centre of the sun moves from the autumnal to the vernal equinox being south of the celestial equator, the sun, for like reasons, will during that halfyear be longer below than above the horizon, and the days will be shorter than the nights, the sun rising to a point of the meridian below the equator.

The three months which succeed the vernal equinox are called spring, and those which precede it winter; the three months which precede the autumnal equinox are called summer, and those which succeed it winter.
2433. The solstices. - Those points of the ecliptic which are midway between the equinoxial points are the most distant from the celestial equator. The arcs of the ecliptic between these points and the equinoxial points are therefore $90^{\circ}$. These are called the solstitial points, and the times at which the centre of the solar disk passes through them are called the solstices.

The summer solstice, therefore, takes place on the 21st June, and the winter solstice on the 21st December.

This distance of the summer solstitial point north, and of the winter solstitial point south of the celestial equator is $23^{\circ} 28^{\prime}$.

The more distant the centre of the sun is from the celestial equator, the more unequal will be the days and nights (2356), and consequently the longest day will be the day of the summer, and the shortest the day of the winter, solstice.

It will be evident that the seasons must be reversed in southern latitudes, since there the visible celestial pole will be the south pole. The summer solstice and the vernal equinox of the northern, are the winter solstice and autumnal equinox of the southern hemisphere. Nevertheless, as the most densely inhabited and civilized parts of the globe are in the northern hemisphere, the names in reference to the local phenomena are usually preserved.
2434. Tee Zodiac.- It will be shown hereafter that the apparent motions of the planets are included within a space of the celestial sphere extending a few degrees north and south of the ecliptic. The zone of the heavens included within these limits is called the zodiac.
2435. The signs of the zodiac. - The circle of the zodiac is divided into twelve equal parts, called srgns, each of which therefore measures $30^{\circ}$. They are named from principal constellations, or groups of stars, which are placed in or near them. Beginning from the vernal equinoxial point they are as follows: -

| 1. Aries (the ram) - | $\stackrel{\text { Sign. }}{\underset{r}{ }}$ | 7. Libra (the balance) - $\quad$ Sign. |
| :---: | :---: | :---: |
| 2. Taurus (the bull) | $\bigcirc$ | 8. Scorpio (the scorpion) $\quad m$ |
| 3. Gemini (the twins) | II | 9. Sagittorius (the archer) - 7 |
| 4. Cancer (the crab) | 8 | 10. Capricornus (the goat) - vi |
| 5. Leo (the lion) | - h | 11. Aquarius (the waterman) - m |
| 6. Virgo (the virgin) | M | 12. Pisces (the fishes) - $\quad$ 长 |

Thus, the position of the vernal equinoxial point is the FIRST point of aries, and that of the autumnal the first point of libra. The summer solstitial point is at the first point of cancer, and the winter at the first point of capricorn.
2436. The tropics.-The points of the ecliptic at which the centre of the sun is most distant from the celestial equator are also called the tropics, - the northern being the tropic of cancer, and the southern the tropic of capricorn.

This term troric is also applied in geography to those parts of the earth whose distances from the terrestrial equator are equal to the greatest distance of the centre of the solar disk from the celestial equator. The northern tropic is, therefore, a parallel of latitude $23^{\circ} 28^{\prime}$ north, and the southern tropic a parallel of latitude $23^{\circ} 28^{\prime}$ south of the terrestrial equator.
2437. Celestial latitude and longizude. - The terms latitude and longitude, as applied to objects on the heavens, have a signification different from that given to them when applied to places upon the earth. The latitude of an object on the heavens means its distance from the ecliptic, measured in a direction perpendicular to the ecliptic; and its longitude is the arc of the ecliptic, between the first point of Aries and the circle which measures its latitude, taken, like the right ascension, according to the order of the signs.

Thus since the centre of the sun is always on the ecliptic, its latitude is always $0^{\circ}$. At the vernal equinox its longitude is $0^{\circ}$, at the summer solstice it is $90^{\circ}$, at the autumnal equinox $180^{\circ}$, and at the winter solstice $270^{\circ}$.
2438. Annual motion of the earth.- The apparent annual motion of the sun, described above, is a phenomenon which can
only proceed from one or other of two causes. It may arise from a real annual revolution of the sun round the earth at rest, or from a real revolution of the earth round the sun at rest. Either of these causes would explain, in an equally satisfactory manner, all the circumstances attending the apparent annual motion of the sun around the firmament. There is nothing in the appearance of the sun itself which could give a greater probability to either of these hypotheses than to the other. If, therefore, we are to choose between them, we must seek the grounds of choice in some other circumstances.

It was not until the revival of letters that the annual motion of the earth was admitted. Its apparent stability and repose were until then universally maintained. An opinion so long and so deeply rooted must have had some natural and intelligible grounds. These grounds, undoubtedly, are to be found only in the general impression, that if the globe moved, and especially if its motion had so enormous a velocity as must be imputed to it, on the supposition that it moves annually round the sun, we must in some way or other be sensible of such. movement.

All the reasons, however, why we are unconscious of the real rotation of the earth upon its axis (2350) are equally applicable to show why we must be unconscious of the progressive motion of the earth in its annual course round the sun. The motion of the globe through space being perfectly smooth and uniform, we can have no sensible means of knowing it, except those; which we possess in the case of a boat moving smoothly along a river: that is, by looking abroad at some external objectss which do not participate in the motion imputed to the earth.. Now, when we do look abroad at such objects, we find that they appear to move exactly as stationary objects would appear to move, seen from a moveable station. It is plain, then, if it be true that the earth really has the annual motion round the sun which is contended for, that we cannot expect to be conscious of this motion from anything which can be observed on our own bodies or those which surround us on the surface of the earth : we must look for it elsewhere.

But it will be contended that the apparent motion of the sun, even upon the argument just stated, may equally be explained by the motion of the earth round the sun, or the motion of the sun round the earth; and that, therefore, this appearance can
still prove nothing positively on this question. We have, however, other proofs, of a very decisive character.

Newton showed that it was a general law of nature, and part, in fact, of the principle of gravitation, that any two globes placed at $a$ distance from each other, if they are in the first instance quiescent and free, must move with an accelerated motion to their common centre of gravity, where they will meet and coalesce; but if they be projected in a direction not passing through this centre of gravity, they will both of them revolve in orbits around that point periodically.

Now it will appear hereafter that the common centre of gravity of the earth and sun, owing to the immense preponderance of the mass of the sun (309), is placed at a point very near the centre of the sun. Round that point, therefore, the earth must, according to this principle, revolve.
24.39. Motion of light proves the annual motion of the earth. -Since the principle of gravitation itself might be considered as more or less liypothetical, it has been considered desirable to find other independent and more direct proofs of a phenomenon, so fundamentally important and so contrary to the first impressions of mankind, as the revolution of the earth and the quiescence of the sun. A remarkable evidence of this motion has been accordingly discovered in a vast body of apparently complicated phenomena which are the immediate effects of such a motion, which could not be explained if the earth were at rest and the sun in motion, and which, in fine, would be inexplicable on any other supposition save the revolution of the earth round the sun.

It has been ascertained, as has been already explained, that light is propagated through space with a certain great but definite velocity of about 192,000 miles per second. That light has this velocity is proved by the body of optical phenomena which cannot be explained without imputing to it such a motion, and which are perfectly explicable if such a motion be admitted. Independently of this, another demonstration that light moves with this velocity is supplied by an astronomical phenomenon which will be noticed in a subsequent part of this volume.
2440. Aberration of light. - Assuming, then, the velocity of light, and that the earth is in motion in an orbit round the sun with a velocity of about 19 miles per second, which must
be its speed if it more at all, as will hereafter appear, an effect' would be produced upon the apparent places of all celestial objects by the combination of these tyo motions which we shall now explain.

It has been stated that the apparent direction of a visible olject is the direction from which the visual ray enters the eye. Now this direction-will depend oń the actual direction of the ray if the eye which receives it be quiescent ; Wut if the eye be in motion, the same effect is produced upon the organ of sense as if the cay, besides the motion which is proper to it, had another motion equal and contrary to that of the eye. - Thus, if light moving from the north to the souths with a velocity of 192,000 miles per sécond be struck by an eye moving from west te east avith the same welocity, the tffect produced. by the light upon threorgancwill be the same as if the eye being at rest, were sfruck by the, light having a oritotion compounded of two equal motions, one from north to south, and the ofther from east to prest. The direction of this compoand affect would, by the principles of the comprasition of motion (176), be equivalent to


Fige 713. a mation from the durection of the northcast, The object.from wine the light comes would, therefore, be apparentlig displaced, and would be seen rasi point, beyond that thích it really pecupiess the direction in which the eye of the fobserver is moved. This displacpment is ealled accordtngly the abliraftion of.liget.
"This maty be náde ctill more" evident by the following mode of inlistration.. Let 0 , fig: 713.; be the object from which light comes inithe direation $\circ \circ \beta^{\prime \prime}$. ' Let $\&$ be the place of the eqpe of the obscrver when the light is-at. $o$, and let thre eye'be eupposed to nupe from $e$ to $e^{\prime \prime}$ in the srome time that the light moves from o.to $e^{\prime \prime}$ ". . Let $\bar{a}$ straight -tobe be imagined to be directed from the eye.abe to tlie light at; 0 ; so tirat the light - shall be in the centre of its opening, while the tube moves with the eye from $o e$ to $o^{\prime t} e^{\prime \prime}$, maintaining eonsthnthy'tlae same direc-- tion, and remaining.parallel to itself: the light
in moving from $o$ to $e^{\prime \prime}$, will pass along its axis, and will arrive at $e^{\prime \prime}$ when the eye arrives at that point. Now it is evident that in this case the direction in which-the object would be visible, would be the direction of the axis of the tube, so that, instead of appearing in the direction $o .0$, which is its true direction, it would appear in the direction o 0 advanced from o in the direction of the motion e $d^{\prime \prime}$, with which the observer is affected.

The motion of light being.at the rate of i 92,000 miles per second, and that of thie cartli (if it move at ant) at the rate of 19 miles per second (both these velocities win be .Established hereafter), it foltows, that the proporition of $q e^{j \prime}$ to ec $e^{\prime \prime}$ must be 192,000 to $1.9 \%$ or 10,100 , to -1 .

The angice or aberiration ooo will yargentith the obliquity of the direction, $e^{\prime \prime \prime}$ of the obseryer's motion.to that of the visual ray o $e^{\prime \prime}$ : In an cilses the ratio of o $\dot{E}^{\prime \prime}$ to $e e^{\prime \prime}$ with be 10,100 to 1. If the tuiretion of the eapth's 'motion be atr right'angles to the direction o ot's of the object of we shall have (?994) the aberration

$$
\begin{aligned}
& 20,265=20^{\pi} 42 \\
& 10,100 \div
\end{aligned}
$$

If the angle oc $c^{\prime \prime} s$ be otrique, it yitl bé necessary to teduce e $e^{\prime \prime}$ to its conjounent at right anglés to $\theta^{\prime} e^{\prime \prime}$, which is done by multiplying. it by tha trigonometrical sine of the obliquity o $e^{\prime \prime} e$ of the direction of the object to that of the earth's motion. If this obliquity be expressed if o, we shall have for the aberrations in generat

$$
A=20^{N} 42 \times \sin i^{\circ}
$$

According to thin'; tho aberration would, be greatest when the direction of the earth's mpotion is at right angles to, that of the object, and would . docrease as the angle o decreases, being nothing when the object is seer in the diredion in which the earth is moving"' or in-oxtactly the controuy directionn "

The phenomera may alsa.be imaguined . ky consiut ring that the earth, in reyolying round the sun, eonstantily changes the direction of its motion; ,that direction making'a complete revolution with the earth, it-folloins that the effect produced "upon the apparent place of a distint object vould be the same as if that object really revolved once in a'gear, oound its true place in a circle whose plane vould be parallel to that of the earth's orbit, and whose radits would ssubtend at, the eearfl anrangle of
$20^{\prime \prime} \cdot 42$, and the object would be always seen in such a circle $90^{\circ}$ in advance of the earth's place in its orbit.

These circles would be reduced by projection to ellipses of infinitely various excentricities, according to the position of the object with relation to the plane of the earth's orbit. At a point perpendicularly above that plane, the object weuld appear to move annually in an exact circle. At points nearer to the ecliptic, its opparent pati would be an ellipse, the excentricity of which would increase as the distance from the ecliptic would diminish, according to definite conditions.
*Now, all thése opparent motions are actually obsersed to affect all the bodies visible on the heavens, and to affect them in precisely the degree and direction which would be produced by the annual niotion of the eartliround the sun.
$\Delta \dot{s}$ the supposed mofion of the earth round the sun completely and satisfactorily explains this, complicated body of phenomena called aberration, while the motion of the sun:round the earth would 'gltogether fail to explain them, they, afford, another striking evidence of the annual motion of the eqrtl.
2441. Argument from analogy. - In fine, another argument in favour of the earth's annual motion rofud the sun is taken from its analogy to the planets, to all of which, like the earth, the sun is a source of light and heat, and all of which revolve round the sun as a centre, having days, nights, and seasons in all respects similar to those which prevail upon the earth. It seems, therefore, contrary to all probability, that the earth alone, being one of the planets, $\circ$ and by no means the greatest in magnitude or physical importance, should be a centre round which not only the sun, but all the other planets, should revolve.
2442. Annual parallax. - If the earth be admitted to move annually round the sun, as a stationary centre in a circle whose diameter must have the vast magnitude of 200 millions of miles, all observers placed upon the earth, seeing distant objects from points of view so extremely distant one from the other as are opposite extremities of the same diameter of such a circle, must necessarily, as might be supposed, see these objects in very dilferent directions.

To comprehend the effect which might be expected to be produced upon the apparent place of a distant object by such a motion, let $\mathbf{e} \mathrm{E}^{\prime} \mathrm{E}^{\prime \prime} \mathrm{E}^{\prime \prime \prime}$, fig. 714., represent the earth's annual course round the sun as seen in perspective, and let o be any
distant object visible from the earth. The extremity $E$ of the line EO, which is the visual direction of the object, being carried


Fig. 714. with the earth round the circle $E E^{\prime} E^{\prime \prime} E^{\prime \prime \prime}$, will annually describe a cone of which the base is the path of the earth, and the vertex is the place of the object 0 . While the earth moves round the circle $E E^{\prime \prime}$, the line of visual-direction woind therefore have $\dot{a}$ corresponding motion, and the apparent place of the object would be súccessively changed with the change of direction of thiis line. - If the object - be imagined to be projected by the eye upor: the firmament, it would trace upon it a path $\delta o^{\prime} 0^{\prime \prime} o^{4 \prime}$, which would be circular or elliptical; according to the direction of the object:: When the earth is at $E$, the object would be seen at $o$; and when the earth is at $\varepsilon^{\prime \prime}$, it would be seen at $o^{\prime \prime}$. The extent of this apparent displacement of the object would be measured by the angle EOE', which the diameter EE" of the earth's path or orbit would subtend at the object $o$.

Ith has been stated that, in general, the apparent displacement of a distant visible oliject produced by any change in the station from which it is viewed is called paratidax. That which is produced by the change of position due to the diurnal motion of the earth being called picrnal parallax, the corresponding displacement due to the annual motion of the earth is called the annual parallax.

The greatest amount, therefore, of the annual parallax for any proposed object is the angle which the semidiameter of the earth's orbit subtends at such object, as the greatest amount of the diurnal parallax is the angle which the semidiameter of the earth itself subtends at the object.

Now, as the most satisfactory evidence of the annual motion of the earth would be the discovery of this displacement, and
successive changes of apparent position of all objects on the firmament consequent on such motion, the absence of any such phenomenon must be admitted to constitute, primâ facie, a formidable argument against the earth's motion.
2443. Its effects upon the bodies of the solar system apparent. -The effects of annual parallax are observable, and indeed are of considerable amoint, in the case of all the bodies composing the solar system. The apparent annual motion of the sun is altogether due to parallax. . The apparent motions of the planets and other bodies composing the solar system are the effects of parallax, combined with the real motions of these various bodies.
2444. But erroneorsily explained by the ancients-Ptolenaic system. - Until tlie annual motion of the earth was admitted, these effects of anmual parallax on the apparent motions of the solar system were ascribed to a very complicated system of real motions of these bodies; of which the earth was assumed to be the stationary centre, the sun revolving round it, while at the same time the planets severally revolved round the sun as a moveable centre. "This liypothesis, proposed originally by Apollonius of Perga, a.Grecitin astrotiomer, some centuries before the birth of Christ 2 received the name of the Prolemate Srstem, having been developed and axplained by Pronemy, an Egyptian astronomer who flotristhed in the sec̣and century, and whose work, entitled "Syntax;" obitained great celebrity, and for many centuries 'cottinued to bee received as the standard of astronomical science.'

Althoughi Pjetuagoras had throsin out the idea that the annual motion of the sun was merely apparent, and that it arose from a real motion of the earth, the natural repugnancy of the human mind to admit a supposition so contrary to reccived notions prevented this happy anticipation of future and remote discovery from receiving the attention it merited; and Aristotle, less sagacious than Pythagoras, lent the great weight of his authority to the contrary hypothesis, which was accordingly adopted universally by the learned world, and continued to prevail, until it was overturned in the middle of the sixteenth century by the celebrated Copernicus, who revived the Pythagorean hypothesis of the stability of the sun and the motion of the earth.
2445. Copernican system. - The hypothesis proposed by hifn
in a work entitled "De Revolutionibus Orbium Colestium," published in 1543, at the moment of his death, is that since known as the Copernican Systea, and, being now established upon evidence sufficiently demonstrative to divest it of its hypothetical character, is admitted as the exposition of the actual movements by which that part of the universe called the solar system is affected.
2446. Effects of annual parallax of the stars. - The greatest difficulty against which the Copernican systemí has had to struggle, even among the most enlightened of its opponents, has been the absence of all apparent effects of - parallax among the fixed stars, those objects which are "scattered. in such countless numbers over every part of the firniament From what has been explained, it will bẹ perceived that,-supposing thẹse dodies to be, as they evidently must be, placed at yast distances outside the limits of the solar. system and in every, imaginalle direction around it, the effects of anntaal parallax would bento give to each of them an apparent annual. motion in, a circle or ellipse, accordipg to their direction in relation to the positiqu of the earth in its orbit, the ellipse parying in its eccentricity with this position, and the dinmeter of the cifcle or major axis of the ellipse being determined by the angle which the diameter $\mathrm{E} \mathrm{E}^{\prime \prime}$ (fig. 714.) of the earth's orbit subtevids' at'thee stat, being less the greater the distance of the star, and yice evessî. The apparent position of the star in this circle or ellipse wauld be evi-. dently always in the plane passing through the star and the line joining the sun and earth.
2447. Close resemblance of these to aberration. - Nö: it will be apparent, that such phenomena bear a very close resemblance to those of aberration already described (2440.). In both the stars appear to move anpually in small circles when situate $90^{\circ}$ from the ecliptic; in both they appear to move in small ellipses between that position and the ecliptic; in both the eccentricities of the ellipses increase in approaching the ecliptic; and in both the ellipses flatten into their transverse axis when the object is actually in the ecliptic.
2448. Yet aberration cannot arise from parallax. - Notwithstanding this close correspondence, the phenomena of aberration are utterly incompatible with the effects of annual parallax. The apparent displacement produced by aberraion - is always in the direction of the earth's motion, that is to say, 11.
in the direction of the tangent to the earth's orbit at the point where the earth happens to be placed. The apparent displacement due to parallax would, on the contrary, be in the direction of the line joining the earth and sun. The apparent axis of the ellipse or diameter of the circle of aberration is exactly the same, that is $20^{\prime \prime} \cdot 42$, for all the stars; white the 9pparent axis of the ellipse or diameter of the círcle due to annual parallax would be different for stars at different distances, and would vary, in fact, in the inverse ratio of the distance of the star, and could not therefore be the same for all stars whatever, except on the supposition that all stars are at the same distance from the solar system, a supposition that cannot be entertained.
2449. General absence of parallax explained by great dis-tance.-Since, then, with two or three exceptions, which will be noticed hereafter, no traces of the effects of annual parallax have been discovered among the innumerable fixed stars by which the solar system is surrounded, and since, nevertheless, the annual motion of the earth in its orbit rests upon a body of evidence and is supported by arguments which must be regarded as conclusive, the absence of parallax can only be ascribed to the fact that the stars generally are placed at distances from the solar system compared with which the orbit of the eartb shrinks into a point, and therefore that the motion of an observer round this orbit, vast as it may seem compared with all our familiar standards of magnitude, produces no more apparent displacement of a fixed star than the motion of an animalcule round a grain of mustard seed would produce upon the apparent direction of the moon or sun.

We shall return to the subject of the annual parallax of the stars in a subsequent chapter.
2450. The diurnal and annual phenomena explained by the two motions of the earth.-Considering, then, the annual revolution of the earth, as well as its diurnal rotation, established, it remains to show how these two motions will explain the various phenomena manifested in the succession of seasons.

While the earth revolves annually round the sun, it has a motion of rotation at the same time upon a oertain diameter as an axis, which is inclined from the perpendicular to its orbit at an angle of $23^{\circ} 28^{\prime}$. During the annual motion of the earth this diameter keeps continually parallel to the same direction, and the earth completes its revolution upon it in twenty-three
hours and fifty-six minutes. In consequence of the combination of this motion of rotation of the earth- upon its axis with its annual motion round the sun, we are supplied with the alternations of day and night, and the succession of seasons.

When the globe of the earth is in such a position tbat its north pole leans toward the sun, the greater portion of its northern hemisphere is enlightened, and the greater portion of the southern hemisphere is dark. This position is represented in fig. 715., where N is the north pole, and s the south pole.


Fig. 715.


Fig. 716.

The days are therefore longer than the nights in the northern hemisphere. The reverse is the case with the southern hemisphere, for there the greater segments of the parallels are dark, and the lesser segments enlightened; the days are therefore shorter than the nights. Upon the equator, however, at $\kappa$, the circle of the earth is equally divided, and the days and nights are equal. When the south pole leans toward the sun, which it does exactly at the opposite point of the earth's annual orbit, circumstances are reversed : then the days are longer than the nights in the southern hemispliere, and the nights are longer than the days in the northern hemisphere. At the intermediate points of the earth's annual path, when the axis assumes a position perpendicular to the direction of the sun, fig. 716., then the circle of light and darkness passes through the poles; all parallels in every part of the earth are equally divided, and there is consequently equal day and night all over the globe.

In the annexed perspective diagram, fig. 717., these four positions of the earth are exhibited in such a manner as to be clearly intelligible.

On the day of the 21 st of June, the north pole is turned in the direction of the sun; on the 21 st of December, the south pole is turned in that direction. On the days of the equinoxes, the axis of the earth is at right angles to the direction of the sun, and it is equal day and night ererywhere on the earth.

The annual variation of the position of the sun with reference to the equator, or the changes of its declination, are explained


Fig. 717.
by these motions. The summer solstice-the time when the sun's distance from the equator is the greatest - takes place when the north pole leans toward the sum; and the winter solstice - or the time when the sun's distance south of the equator is greatest - takes place when the south pole leans toward the sun.

In virtue of these motions, it follows that the sun is twice a year vertical at all places between the tropies; and at the tropics themselves it is vertical once a year. In all higher latitudes the point at which the sun passes the meridian daily alternately approaches to and recedes from the zenith. From the 21 st of December until the 21 st of June, the point continually approaches the zenith. It comes nearest to the zenith on the 21 st of June; and from that day until the 21st of December, it continually recedes from the zenith, and attains its lowest position on the latter day. The difference, therefore, between the meridional altitudes of the sun on the days of the summer and winter solstices at all places swill be twice twenty-three degrees and twenty-eight minutes, or forty-six degrees and fiftysix minutes. In all places beyond the tropics in the northern hemisphere, therefore, the sun rises at noon on the 21st of June, forty-six degrees and fifty-six minutes higher than it rises on the 21st of December. These are the limits of meridional altitude which determine the influence of the sun in different places.
2451. Mean solar or civil time. - It has beden explained that the rotation of the earth upon its axis is rigorously uniform, and is the only absolutely uniform motion among the many and complicated motions observable on the heavens. This quality would render it a highly convenient measure of time, and it is accordingly adopted for that purpose in all observatories. The hands of a sidereal clock move in perfect accordance with the apparent motion of the firmament.

But for civil purposes, uniformity of motion is not the only condition which must be fulfilled by a measure of time. It is equally indispensable that the intervals into which it divides duration should be marked by conspicuous and universally observable phenomena. Now it happens that the intervals into which the diurnal revolution of the heavens divides duration, are marked by phenomena which astronomers alone can witness and ascertain, but of which mankind in general are, and must remain, altogether unconscious.
2452. Civil day - noon and miduight. - For the purposes of common life, mankind by general consent has therefore adopted the interval between the successive returns of the centre of the sun's disk to the meridian, as the unit or standard measure of time. This interval, called a civil day, is divided into 24 equal parts called hours, which are again subdivided into minutes and seconds as already explained in relation to sidereal time. The hours of the civil day, however, are not counted from 0 to 24 as in sidereal time, but are divided into two equal parts of 12 hours, one commencing when the centre of the sun is on the meridian, the moment of which is called noon or midday, and the other 12 hours later when the centre of the sun must pass the meridian below the horizon, the moment of which is midnight.

For civil purpose, this latter moment has been adopted as the commencement of one day, and the end of the other.
2453. Difference between mean solar and sidereal time. A solar day is evidently longer than a sidereal day. If the sun did not change its position on the firmament, its centre would return to the meridian after the same interval that elapses between the successive transits of a fixed star. But since the sun, as has been explained, mores at the rate of about $1^{\circ}$ per day from west to east, and since this motion takes place upon the ecliptic, which is inclined to the equator at an angle of $23^{\circ} 28^{\prime}$, the centre
of the sun increases its right ascension from day to day, and this increase, varies according to its position on the ecliptic. When the circle of declination on which the centre of the sun is placed át noon on one day returns to the meridian the next day, the centre of the sun will have left it, and will be found upon another circle of declination to the east of it ; and it will not consequently come to the meridian until a few minutes later, when this other circle of declination, by the diurnal motion of the heavens, shall come to coincide with the meridian.

Hence the solar day is longer than the sidereal day.
2454. Difference between apparent noon and mean noon. But since, from the cause just stated and another which will be presently explained, the daily increase of the sun's right ascension is variable, the difference between a sidereal day and the interval between the successive transits of the sun is likewise variable, and thus it would follow that the solar days would be more or less unequal in length.
2455. Mean solar time - Equation of time. - Hence has arisen an expedient adopted for civil purposes to efface this inequality. An imaginary sun is conceived to accompany the true sun, making the complete revolution of the heavens with a rigorously uniform increase of right ascension from hour to hour, while the increase of right ascension of the true sun thus varies. The time measured by the motion of this imaginary sun is called mean solar time, and the time measured by the motion of the true sun is called apparent solar tiame.

The difference between the apparent and mean solar time is called the "equation of time."

The variation of the increase of the sun's right ascension being confined within narrow limits, the true and imaginary suns can never be far asunder, and consequently the difference between mean and apparent time is never considerable.

The time indicated by a sun-dial is apparent time, that indicated by an exactly regulated clock or watch is mean time.

The correction to be applied to apparent time, to reduce it to mean time, is often engraved on sun-dials, where it is stated how much "the sun is too fast or too slow."
2456. Distance of the sun. - Although the problem to determine with the greatest practicable precision the distance of the sun from the earth is attended with great diticulties, many
phenomena of easy observation supply the means of ascertaining that this distance must bear a very great proportion to the earth's diameter, or must be such that, by comparison with it, a line 8000 miles in length is almost a point. If, for example, the apparent distance of the centre of the sun from any fixed star be observed simultaneously from two places npon the earth, no matter how far they are apart, no difference avill be discovered between them, unless means of observation susceptible of extraordinary precision be resorted to. The expedients by which the apparent displacement of the sun's centre by a change of position of the observer from one extremity of a diameter of the earth to the other, or, what is the same, the apparent magnitude of the diameter of the earth as it would be seen from the sun, has been ascertained, will be explained hereafter. Meanwhile, however, it may be stated that this visual angle amounts to no more than $17^{\prime \prime} \cdot 2$, or about the hundredth part of the apparent dianeter of the sun as seen from the earth.

Supplied with this datum, and the actual magnitude of the diameter of the earth, we can calculate the distance of the sun by the rule explained in 2298. If $r$ express the distance of the sun, and $a$ the diameter of the earth, we shall have

$$
r=\frac{2,062,650}{172} \times a=11,992 \times a .
$$

It appears, therefore, that the distance of the sun is equal to 11,992 diameters of the earth, and since the diameter of the earth measures about 7900 miles (2389), the distance of the sun must be

$$
11,992 \times 7900=94,736,800 \text { miles },
$$

or very nearly ninety-five millions of miles.
Since the mean distance of the earth from the sun has been adopted as the unit or standard, with reference to which astronomical distances generally are expressed, it is of the highest importance to ascertain its value with the greatest precision which our means of observation and measurement armit. By elaborate calculations, based upon the observations made, in 1769, on the transit of Venus, it has accordingly been shown by Professor Encke that when the earth is at its mean distance from the sun,

## ASTRONOMY. .

the semidiameter of the terrestrial equator subtends at the sun an angle of $8^{\prime \prime} \cdot 5776$. This is therefore the mean equatorial horizontal parallax of the sun; and if $r$ express the semidiameter of the equator, and $\mathbf{D}$ the mean distance of the earth from the sun, we shall therefore have

$$
\mathrm{D}=\frac{206265}{8 \cdot 5776} \times r=24047 \times r
$$

and since the semidiameter of the equator measures 3962.8 miles (2389), it follows that

$$
\mathrm{D}=95,293,452 .
$$

Since all the numerical results of observation and measurement are liable to some amount of error, it is important, when precision is required, to know the limit of this error, in order to appreciate the extent to which such results are to be relied upon. In all cases this is possible, a major and minor limit of the computed or observed quantity being assignable, which cannot be exceeded. In the present case the value of d cannot vary from the truth by more than its three-hundredth part; that is to say, the actual mean distance of the earth from the sun, or the semiaxis major of the orbit, cannot be greater than

$$
95,293,452+117,645=95,411,097 \text { miles, }
$$

or less than

$$
95,293,452-117,645=95,175,807 \text { miles. }
$$

2457. Linear value of $1^{\prime \prime}$ at the sun's distance.-By what has been explained in 2298, it appears that the linear value of $1^{\prime \prime}$ at the sun's distance is

$$
\frac{95,000,000}{206,265}=466 \text { miles. }
$$

2458. Daily and hourly apparent motion of the sun, and real motion of the earth. - Since the sun moves over $360^{\circ}$ of the heavens in $365 \frac{1}{4}$ days, its daily apparen't motion must be $59^{\prime} 14$, or $3548^{\prime \prime}$, which being about twice the sun's apparent diameter, it is easy to remember that the disk of the sun appears to move in the firmament daily over a space nearly equal to twice its own apparent diameter. Its hourly apparent motion is

$$
\frac{3548^{\prime \prime}}{24}=147^{\prime \prime} \cdot 8
$$

Since $1^{\prime \prime}$ at the sun's distance is equal to 466 miles, and since the real orbitual motion is equal to that which the sun would have if it moved round the earth in a year, it follows that the daily orbitual motion of the earth is

$$
3548 \times 466=1,653,368 \text { miles, }
$$

and its motions per hour, minute, and second, are

> 68,890 miles per hour, 1,148 miles per minute, $19 \cdot 1$ miles per second.
2459. Orbit of the earth elliptical. - In what precedes, we have considered the path of the earth around the sun, called by astronomers its orbir, to be a circle, in the centre of which the centre of the sun is placed. This is nearly true, but not exactly so, as will appear from the following observed phenomena.

Let a telescope supplied with the micrometric wires described in 2317, be directed to the sun, and the wires so adjusted that they shall exactly touch the upper and lower limbs, as in fig. 718. Let the observer then watch from day to day the appear-


Fig. 718.


Fig. 719.


Fig. 720.
ance of the sun and the position of the wires; he will find that, after a certain time, the wires will no longer touch the sun, but will perhaps fall a little within it, as represented in fig. 719. And after a further lapse of time, he will find, on the other hand, that they fall a little without it, as in fig. 720.

Now, as the wires throughout such a series of observations are maintained always in the same position, it follows that the disk of the sun must appear smaller at one time, and larger at another - that, in fact, the apparent magnitude of the sun must be variable. It is true that this variation is confined within very small limits, but still it is distinctly perceptible. What, then, it may be asked, must be its cause? Is it possible to imagine that the sun really undergoes a change in its size? This idea would, under any circumstances, be absurd;
but when we have ascertained, as we may do, that the change of apparent magnitude of the sun is regular and periodical that for one half of the year it continually diminishes until it attains a minimun, and then for the next half year it increases until it attains a maximum - such a supposition as that of a real periodical change in the glowe of the sun becomes altogether incredible.

If then, an actual change in the magnitude of the sun be impossible, there is but one other conceivable cause for the change in its apparent magnitude - which is, a corresponding change in the earth's distance from it. If the earth at one time be more remote than at another, the sun will appear proportionally smaller. This is an easy and obvious explanation of the changes of appearance that are observed, and it has been demonstrated accordingly to be the true one.

On examining the change of the apparent diameter of the sun, it is found that it is least on the lst of July, and greatest on the 31st of December; that from December to July, it regularly decreases; and from July to December, it regularly increases.

Since the distance of the earth from the suil must increase in the same ratio as the apparent diameter of the sun decreases, and vice versa (1118), the variation of the distance of the earth from the sun in every position which it assumes in its orbit can be exactly ascertained. A plan of the form of the orbit may therefore be laid down, having the point occupied by the centre of the sun marked in it. Such a plan proves on geometric examination to be an ellipse, the place of the sun being one of the foci.
2460. Method of descriling an ellipse - its foci, axis, and eccentricity. - If the ends of a thread be attached to two points less distant from each other than its entire length, and a pencil be looped in the thread, and moved round the points, so as to keep the thread tight, it will trace an ellipse, of which the two points are the fock.

The line drawn joining the foci, continued in both directions to the ellipse, is called its transverse, or major axis.

Another line, passing through the middle point of this at right angles to it, is called its minor axis.

The middle point of the major axis is called the centre of the ellipse.

The fractional or decimal number which expresses the distance of the focus from the centre, the semiaxis major being taken as the unit, is called the eccentricity of the ellipse.


In fig. $721 ., \mathrm{c}$ is the centre, s and $s^{\prime}$ the foci, $A B$ the transverse axis.

The less the ratio of $\mathrm{ss}^{\prime}$ to AB , or, what is the same, the less the eccentricity is, the more nearly the form of the ellipse approaches to that of a circle, and when the foci actually coalesce, the ellipse becomes an exact circle.
2461. Eccentricity of the eartli's orbit. - The eccentricity of the elliptic orbit of the earth is so small, that if an ellipse, representing truly that orbit, were drawn upon paper, it would be distinguishable from a circle only by submitting it to exact measurement. The eccentricity of the orbit has been ascertained to be only 0.01679 . The semiaxis major, or mean distance, being 1.0000 , the greatest and least distances of the earth from the sun will be -

$$
\begin{aligned}
& \mathrm{BS}=1.0000+0.01679=1.01679 \\
& \mathrm{~A} S=1.0000-0.01679=0.98321
\end{aligned}
$$

The difference between these extreme distances is, therefore, only 0.03358 . So that the difference between the greatest and least distances does not amount to so much as four hundredths of the mean distance.
2462. Perihelion and aphelion of the earth.-The positions $\Delta$ and b , where the earth is nearest to, and most distant from, the sun, are called peribelion and aphelion.

The positions of these points are ascertained by observing the places of the sun when its apparent diameter is greatest and least.

It is evident from what has been stated that the earth is in aphelion on 1st July, and in perihelion on 1st January.

Contrary to what might be expected, therefore, the earth is more distant from the sun in summer than in winter.
2463. Variations of temperature through the year. - The succession of spring, summer, autumn, and winter, and the 111.

$$
16
$$

variations of temperature of the seasons - so far as these variations depend on the position of the sun - will now require to be explained.

The influence of the sun in heating a portion of the earth's surface, will depend partly on its altitude above the horizon. The greater that altitude is, the more perpendicularly the rays will fall, and the greater will be their calorific effect.

To explain this, let us suppose abcd, fig. 722., to re-


Fig. 722. present a beam of the solar light ; let cD represent a portion of the earth's surface, upon which the beam would fall perpendicularly; and let ce represent that portion on which it would fall olliquely; the same number of rays will strike the surfaces $\mathbf{C D}$ and $\mathbf{C E}$; but the surface $\mathbf{c e}$ being obviously greater than $\mathbf{C D}$, the rays will necessarily fall more densely on the latter: and as the heating power must be in proportion to the density of the rays, it follows that $C D$ will be heated more than $C E$ in just the same proportion as CE is greater than CD. But if we would compare two surfaces on neither of which the sun's rays fall perpendicularly, let us take ce and cf. They fall on ce with more obliquity than on $\mathbf{C F}$; but Ce is evidently greater than $\mathbf{C F}$, and therefore the rays, being diffused over a larger surface, are less dense, and therefore less effective in heating.

The calorific effect of the sun's rays on a surface more oblique to their direction than another will then be proportionably less.

If the sun be in the zenith, its rays will strike the surface perpendicularly, and the heating effect will therefore be greater than when the sun is in any other position.

The greater the altitude to which the sun rises, the less obliquely will be the direction in which its rays will strike the surface at noon, and the more effective will be their heating power. So far, then, as the heating power depends on the altitude of the sun, it will be increased with every increase of its meridian altitude.

Hence it is that the heat of summer increases as we approach the equator. The lewer the latitude is, the greater will be the height to which the sun will rise. The meridian altitude of
the sun at the summer solstice being everywhere outside the tropics forty-six degrees and fifty-six minutes more than at the winter solstice, the heating effect will be proportionately greater.

But this is not the only cause which produces the greatly superior heat of summer as compared with winter, especially in the higher latitudes. The leating effect of the sun depends not alone on its altitude at midday ; it also depends on the length of time which it is above the horizon and below it. While the sun is above the horizon, it is continually imparting heat to the air and to the surface of the earth; and while it is below the horizon, the heat is continually being dissipated. The longer, therefore,-other things being the same,-the sun is above the horizon, and the shorter time it is below it, the greater will be the amount of heat imparted to the earth every twenty-four hours. Let us suppose that between sunrise and sunset, the sun, by its calorific effect, imparts a certain amount of heat to the atmosphere and the surface of the earth, and that from sunset to sunrise a certain amount of this heat is lost: the result of the action of the sun will be found by deducting the latter from the former.

Thus, then, it appears that the influence of the sun upon the seasons depends as much upon the length of the days and nights as upon its altitude; but it so happens that one of these circumstances depends upon the other. The greater the sun's meridional altitude is, the longer will be the days, and the shorter the nights; and the less it is, the longer will be the nights, and the shorter the days. Thus both circumstances always conspire in producing the increased temperature of summer, and the diminished temperature of winter.
2464. Why the longest day is not also the hottest.-The dog-days.-A difficulty is sometimes felt when the operation of these causes is considered, in understanding how it happens that, notwithstanding what has been stated, the 21st of June - when the sun rises the highest, when the days are longest and the nights shortest - is not the hottest day, but that, on the contrary, the dog-days, as they are called, which comprise the hottest wenther of the year, occur in August; and in the same manner, the 21st of December-when the height to which the sun rises is least, the days shortest, and the nights longest -is not usually the coldest day, but that, on the other hand, the most inclement weather occurs at a later period.

To explain this, so far as it depends on the position of the sun and the length of the days and nights, we are to consider the following circumstances:-

As midsummer approaches, the gradual increase of the temperature of the weather has been explained thus: The days being considerably longer than the nights, the quantity' of heat imparted by the sun during the day is greater than the quantity lost during the night; and the entire result during the twenty-four hours gives an increase of heat. As this augmentation takes place after each successive day and night, the general temperature continues to increase. On the 21st of June, when the day is longest, and the night is shortest, and the sun rises highest, this augmentation reaches its maximum; but the temperature of the weather does not therefore cease to increase. After the 21 st of June, there continues to be still a daily augmentation of heat, for the sun still continues to impart more beat during the day than is lost during the night. The temperature of the weather will therefore only cease to increase when, by the diminished length of the day, the increased length of the night, and the diminished meridional altitude of the sun, the heat imparted during the day is just balanced by the heat lost during the night. There will be, then, no further increase of temperature, and the heat of the wenther will have attained its maximum.

But it might occur to a superficial observer, that this reasoning would lead to the conclusion that the weather would continue to increase in its temperature, until the length'of the days would become equal to the length of the nights; and such would be the case, if the loss of heat per hour during the night were equal to that gain of heat per hour during the day. But such is not the case; the loss is more rapid than the gain, and the consequence is, that the hottest day usually comes within the month of July, but always long before the day of the autumnal equinox.

The same reasoning will explain why the coldest weather does not usually occur on the 21 st of December, when the day is shortest and the night longest, and when the sun attains the lowest meridional altitude. The decrease of the temperature of the weather depends upon the loss of heat during the night being greater than the gain during the day; and until, by the
increased length of the day and the diminished length of the night, these effects are balunced, the coldest weather will not be attained.

These observations must be understood as applying only so far as the temperature of the weather is affected by the sun, and by the length of the days and nights. There are a variety of other local and geograplical causes which interfere with these effects, and vary them at different times and places.

On referring to the annual motion of the earth round the sun, it appears that the position of the sun within the elliptic orbit of the earth is such that the earth is nearest to the sun about the 1st of January, and most distant from it about the 1st of July. As the calorific power of the sun's rays increases as the distance from the earth diminishes, in even a higher proportion than the change of distances, it might be expected that the effect of the sun in heating the earth on the 1st of January would be considerably greater than on the 1st of July. If this were admitted, it would follow that the annual motion of the earth in its elliptic orbit would have a tendency to diminish the cold of the winter in the northern hemisphere, and mitigate the heat of summer, so as to a certain extent to equalise the seasons; and, on the contrary, in the southern hemisphere, where the lst of January is in the middle of summer and the 1st of July the middle of winter, its effects would be to aggravate the cold in winter and the heat in summer. . The investigations, however, which have been made in the physics of heat, have shown that that principle is governed by laws which counteract such effects. Like the operation of all other physical agencies, the sun's calorific power requires a definite time to produce a given effect, and the heat received by the earth at any part of its orbit will depend conjointly ou its distance from the sun and the length of time it takes to traverse that portion of its orbit. In fact, it has been ascertained that the leating power depends as much on the rate at which the sun changes its longitude as upon the earth's distance from it. Now it happens that, in consequence of the laws of the planetary motions, discovered by Kepler, and explained by Newton, when the earth is most remote from the sun, its velocity is least, and consequently the hourly changes of longitude of the sun'will be proportionally less. Thus it appears that
what the heating power loses by augmented distance, it gains by diminished velocity; and again, when the earth is nearest to the sun, what it gains by diminished distance, it loses by increased speed. There is thus a complete compensation produced in the heating effect of the sun, by the diminished velocity of the earth which accompanies its increased distance.

This period of the year, during which the heat of the weather is usually most intense, was called the canicular days, or dog days. These days were generally reckoned as forty, commencing about the 3rd of July, and received their name from the fact, that in ancient times the bright star Sirius, in the constellation of Canis major, or the grent dog, at that time rose a little before the sun, and it was to the sinister influence of this star that were ascribed the bad effects of the inclement heat, and especially the prevalence of madness among the canine race. Owing to a cause which will be explained hereafter (the precession of the equinoxes), this star no longer rises with the sun during the hot season.

## CHAP. IX.

## the moon.

2465. The moon an object of popular interest. -Although it be in mere magnitude, and physically considered, one of the most insignificant bodies of the solar system, yet for various reasons the moon has always been regarded by mankind with feelings of profound interest, and has been invested by the popular mind with various influences, affecting not only the physical condition of the globe, but also the phenomena of the organised world. It has been as much an object of popular superstition as of scientific observation. These circumstances doubtless are in some degree owing to its striking appearance in the firmament, to the various changes of form to which it is subject, and above all to its proximity to the earth, and the close alliance existing between it and our planet.
2466. Its distance. - The distance of the moon is computed,
by the method explained in 2328 , by first ascertaining its horizontal parallax.


Fig. 723.

Let E and $\mathrm{E}^{\prime}$, fig. 723., be the opposite ends of a diameter of the earth, and let ar be the place of the moon's centre. Let s be any conspicuous star seen near the moon in the heavens, in the plane of the points $\mathrm{E}, \mathrm{E}^{\prime}$, and m . The apparent distance of this star from the moon's centre is ss to an observer at E , and it is $\mathrm{s}^{\prime} \mathrm{s}^{\prime}$ to an observer at $\mathrm{E}^{\prime}$. The difference of these distances $s^{\prime} s$ is the are of the heavens which measures the angle $s$ ms $s^{\prime}$ or, what is the same, the angle eme', under which the diameter $\mathrm{EE} \mathrm{E}^{\prime}$ of the earth would be seen from the moon.

Now the ares $s s$ and $s s^{\prime}$ can be and have been measured, and their mean difference $s s^{\prime}$ has been ascertained to be $114^{\prime} 12^{\prime \prime}$ $=6852^{\prime \prime}$, subject to a slight variation from a cause which will presently be explained.

It appears, from 'what has been explained in 2327 , that half the angle eme' is the moon's horizontal parallax, which is therefore $57^{\prime} 6^{\prime \prime}=3426^{\prime \prime}$.
The moon's distance therefore, computed by the formula explained in 2328 , is

$$
\mathrm{ME}=\frac{206265}{3425} \times r=60.2 \times r
$$

It follows, therefore, that the moon's distance is about thirty times the earth's diameter; and since the value of the latter is 7900 miles, the moon's distance is

$$
7900 \times 30=237,000 \text { miles }
$$

or, as appears by more exact computation, 237,630 miles.
2467. Linear value of $1^{\prime \prime}$ on $i t$. - Having thus ascertained the moon's distance, we are enabled, by the method explained in 2319, to asgertain the actual length measured transversely to the line of vision on the moon which corresponds to the risual angle of $1^{\prime \prime}$. This length is

$$
\frac{237630}{206265}=1 \cdot 15 \text { mile. }
$$

By this formula any space upon the moon, measured by its visual angle, can be reduced to its actual linear value, provided its direction be at right angles to the visual ray, which it will be if it be at the centre of the lunar disk. If it be between the centre and the edges it will be foreshortened by the obliquity of the moon's surface to the line of vision, and, consequently, the linear value thus computed will be the real linear value diminished by projection, which, however, can be easily allowed for so that the true linear value can be obtained for every part of the lunar disk.
2468. Its apparent and real diameter. - The apparent diameter of the moon is subject to a slight variation, owing to a corresponding variation due to the small ellipticity of its orbit. Its mean value is found to be $31^{\prime} 7^{\prime \prime}$ or $1867^{\prime \prime}$.

By what has just been established (2392), therefore, its real diameter must be

$$
1867 \times 1 \cdot 15=2147 \text { miles. }
$$

More exact methods give 2153 miles.
Since the superficial magnitude of spheres is as the squares, and their volume or solid bulk as the cubes, of their diameters, it follows that the superficial extent of the moon is about the fourteenth part of the surface, and its volume about the fartyninth part of the bulk, of our globe.
2469. Apparent and real motion. - The moon, like the sun, appears to move upon the celestial sphere in a direction contrary to that of the diurnal motion. Its apparent path is a great circle of the sphere, inclined to the ecliptic at an angle of about $5^{\circ} 8^{\prime} 48^{\prime \prime}$. It'completes its revolution of the heavens in $27^{\text {d. }}$ $7^{\mathrm{h} \cdot} \cdot \mathbf{4 4 \mathrm { m }}$.

This apparent motion is explained by a real motion of the moon round the earth at the mean distance above mentioned, and in the time in which the apparent revolution is completed.
2470. Hourly motion, apparent and real.- Since the time taken by the moon to make a complete revolution, or $360^{\circ}$ of the heavens, is $27^{\mathrm{d}} \cdot 7^{\mathrm{h} \cdot} 44^{\mathrm{m}}$. or $655^{\mathrm{h}} \cdot 73$, it follows, that her mean apparent motion per day is $13^{\circ} 10^{\prime} 35^{\prime \prime}$, and per hour is $32^{\prime} 42^{\prime \prime}$, which is a little more than her mean apparent diameter. The rate of the moon's apparent motion on the firmament may
therefore be remembered by the fact, that she moves over the length of her own apparent diameter in an hour.

Since the linear value of $1^{\prime \prime}$ at the moon's distance is 1.15 mile, the linear value of $l^{\prime}$ is 6.9 miles, and, consequently, the real motion of the moon per hour in her orbit, is

$$
6 \cdot 9 \times 32 \cdot 9=227 \text { miles }
$$

Her orbitual motion is therefore at the rate of 3.8 miles per minute.
2471. Orbit elliptical. - Although in its general form and character, the path of the moon round the earth is, like the orbits of the planets and satellites, circular, yet when submitted to accurate observation, we find that it is strictly an ellipse or oval, the centre of the earth occupying one of its foci. This fact can be ascertained by immediate observation upon the apparent magnitude of the moon. It will be easily comprehended that any change which the apparent magnitude, as seen from the earth, undergoes, must arise from corresponding changes in the moon's distance from us. Thus, if at one time the disk of the moon appears larger than at another time, as it cannot be supposed that the actual size of the moon itself could be changed, we can ouly ascribe the increase of the apparent magnitude to the diminution of its distance. Now we find by observation that such apparent changes are actually observed in its monthly course around the earth. The moon is subject to a small though perceptible variation of apparent size. We find that it diminishes until it reaches a minimum, and then gradually increases until it reaches a maximum.

When the apparent magnitude is least, it is at its greatest $j$ distance, and when greatest, at its least distance. The positions in which these distances lie are directly opposite. Between these two positions the apparent size of the moon undergoes a regular and gradual change, increasing continually from its minimum to its maximum, and consequently between these posi; tions its distance must gradually diminish from its maximum to its minimum. If we lay duwn on a chart or plan a delineation of the course or path thus determined, we shall find that it will represent an oval, which differs however very little from a circle; the place of the earth being nearer to one end of the oval than the other.
2472. Moon's apsides - apogee and perigee - progression of
the apsides. - The point of the moon's path in the heavens at which its magnitude appears the greatest, and when, therefore, it is nearest the earth, is called its perigee; and the point where its apparent size is least, and where, therefore, its distance from the earth is greatest, is called its apogee. These two points are called the moon's apsides.

If the positions of these points in the heavens be observed accurately for a length of time, it will be found that they are subject to a regular change ; that is to say, the place where the moon appears smallest will every month shift its position; and a corresponding change will take place in the point where it appears largest. The movement of these points in the heavens is found to be in the same direction as the general movement of the planets; that is, from west to east, or progressive. This phenomenon is called the progression of the moon's apsides.

The rate of this progression of the moon's apsides is $40^{\circ} 68^{\prime}$ in a tropical or common year, being equivalent to $6^{\prime} 41^{\prime \prime}$ per day. They consequently make a complete revolution in 8.85 years.
2473. Moon's nodes - ascending and descending node—their retrogresston. - If the position of the moon's centre in the heavens be observed from day to day, it will be found that its apparent path is a great circle, making an angle of about $5^{\circ}$ with the ecliptic. This path consequently crosses the ecliptic at two points in opposite quarters of the heavens. These points are called the moon's nodes. Their positions are ascertained by observing from time to time the distance of the moon's centre from the ecliptic, which is the moon's latitude; by watching its gradual diminution, and finding the point at which it becomes nothing; the moon's centre is then in the ecliptic, and its position is the node. The node at which the moon passes from the south to the north of the ecliptic is called the ascending node, and that at which it passes from the north to the south is called the descending note.

These points, like the apsides, are subject to a small change of position, but in a retrogade direction. They make a complete revolution of the ecliptic in a direction contrary to the motion of the sun in $18 \cdot 6$ years, being at the rate of $3^{\prime} 10^{\prime \prime} \cdot 6$ per day.
2474. Rotation on its axis-While the moon moves round the
earth thus in its monthly course, we find, by observations of its appearance, made even without the aid of telescopes, that the same hemisphere is always turned towards us. We recognise this fact by observing that the same marks are always seen in the same positions upon it. Now in erder that a globe which revolves in a circle around a centre should turn continually the same hemisphere toward that centre, it is necessary that it should make one revolution upon its axis in the time it takes so to revolve. For let us suppose that the globe, in any one position, has the centre round which it revolves north of it, the hemisphere turned toward the centre is turned toward the north. After it makes a quarter of a revolution, the centre is to the east of it, and the hemisphere which was previously turned to the north must now be turned to the east. After it has made another quarter of a revolution the centre will be south of it, and it must be now turned to the south. In the same manner, after another quarter of a revolution, it must be turned to the west. As the same hemisphere is successively turned to all the points of the compass in one revolution, it is evident that the globe itself must make a single revolution on its axis in that time.

It appears, then, that the rotation of the moon upon its axis, being equal to that of its revolution in its orbit, is $27^{\mathrm{d} \cdot 7^{\mathrm{h}}} 44^{\mathrm{m}}$. or $655^{\mathrm{h}} .44^{\mathrm{m}}$. The intervals of light and darkness to the inhabitants of the moon, if there were any, would then be altogether different from those provided in the planets; there would be about $327^{\mathrm{h}} .52^{\mathrm{m}}$. of continued light alternately with $327^{\mathrm{h}} \cdot 52^{\mathrm{m}}$. of continued darkness; the analogy, then, which, as will hereafter appear, prevails among the planets with regard to days and nights, and which forms a main argument in favour of the conclusion that they are inhabited globes like the earth, does not hold good in the case of the moon.
2475. Inclination of axis of rotation.-Although as a general proposition it be true that the same hemisphere of the moon is always turned toward the earth, yet there are small variations at the edge called librations, which it is necessary to notice. The axis of the moon is not exactly perpendicular to its orbit, but is inclined at the small angle of $1^{\circ} 30^{\prime} 10^{\prime \prime} .8$. By reason of this inclination, the northern and southern poles of the moon lean alternately in a slight degree to and from the earth.
2476. Libration in latitude.- When the north pole leans towards the earth, we see a little more of that region, and a little
less when it leans the contrary way. This variation in the northern and southern regions of the moon visible to us, is called the libration in latitude.
2477. Libration in longitude. - In order that in a strict sense the same hemisphere should be continually turned toward the earth, the time of rotation upon its axis must not only be equal the time of rotation in its orbit, which in fact it is, but its angular velocity on its axis in every part of its course, must be exactly equal to its angular velocity in its orbit. Now it happens that while its angular velocity on its axis is rigorously uniform throughout the month, its angular velocity in its orbit is subject to a slight variation; the consequence of this is that a little more of its eastern or western edge is seen at one time than at another. This is called the libmation in longitude.
2478. Diurnal libration.-By the diurnal motion of the earth, we are carried with it round its axis; the stations from which we view the moon in the morning and evening, or rather when it rises and when it sets, are then different according to the latitude of the earth in which we are placed. By thus viewing it from different places, we see it under slightly different aspects. This is another cause of a variation, which we see in its eastern and western edges; this is called the diurnal. libration.
2479. Phases of the moon. - While the moon revolves round the earth, its illuminated hemisphere is always presented to the sun; it therefore takes various positions in reference to the earth. In fig. 724. the effects of this are exhibited. Let Es


Fig. 724.
represent the direction of the sun, and E the earth; when the moon is at N , between the sun and the earth, its illuminated hemisphere being turned toward the sun, its dark hemisphere will be presented toward the earth; it will therefore be inrisible. In this position the moon is said to be in conjonction.

When it moves to the position $c$, the enlightened hemisphere being still presented to the sun, a small portion of it only is turned to the earth, and it appears as a thin crescent, as represented at $c$.

When the moon takes the position of $Q$, at right angles to the sun, it is said to be in quadrature; one half of the enlightened hemisphere only is then presented to the earth, and the moon appears halved, as represented at $q$.

When it arrives at the position g , the greater part of the enlightened portion is turned to the earth, and it is gibbous, appearing as represented at $g$.

- When the moon comes in opposition to the sum, as seen at $F$, the enlightened hemisphere is turned full toward the earth, and the moon will appear full as at $f$, unless it be obscured by the earth's shadow, which rarely happens. In the same manner it is shown that at $G^{\prime}$ it is again gibbous; at $Q^{\prime}$ it is halved, and at $c^{\prime}$ it is a crescent.

When the moon is full, being in opposition to the sun, it will necessarily be in the meridian at midnight, and will rise as the sun sets, and set as the sun rises; and thus, whenever the enlightened hemisphere is turned toward us, and when, therefore, it is the most capable of benefiting us, it is up in the firmament all night; whereas, when it is in conjunction, as at N , and the dark hemisphere is turned toward us, it would then be of no use to us, and is accordingly up during the day. The position at $Q$ is called the "first quarter," and at $\mathrm{Q}^{\prime}$ the " last quarter." The position at $c$ is called the first octant; $G$ the second octant; $G^{\prime}$ the third octant; and $c^{\prime}$ the fourth octant. At the first and fourth octants it is a crescent, and at the second and third octants it is gibbous.
-2480.-Synodic period or common month.-The apparent motion of the moon in the heavens is much more rapid than that of the sun; for while the sun makes a complete circuit of the ecliptic in $365 \cdot 25$ days, and therefore moves over it at about 61' per day, the moon moves at the rate of $13^{\circ} 10^{\prime} 35^{\prime \prime}(2470)$ per day. As the sun and moon appear to more in the same direction in the
firmament, both proceeding from west to east, the moon will, after conjunction, depart from the sun toward the east at the rate of about $12^{\circ} 9^{\prime}$ per day. If then, the moon be in conjunction with the sun on any given day, it will be $12^{\circ} 9^{\prime}$ east of it at the same time on the following day; $24^{\circ} 18^{\prime}$ east of it after two days, and so on. If, then, the sun set with the moon on any evening, it will, at the moment of sunset on the following evening, be $12^{\circ} 9^{\prime}$ east of it, and at sunset will appear as a thin crescent, at a considerable altitude; on the succeeding day it will be $24^{\circ} 18^{\prime}$ east of the sun, and will be at a still greater altitude at sunset, and will be a broader crescent. After seven days, the moon will be removed nearly $90^{\circ}$ from the sun; it will be at or near the meridian at sunset. It will remain in the heavens for about six hours after sunset, and will be seen in the west as the half-moon. Each successive evening increasing its distance from the sum, and also increasing its breadth, it will be visible in the meridian at a later hour, and will consequently be longer apparent in the firmament during the night-it will, then be gibbous. After about fifteen days, it will be $180^{\circ}$ removed from the sun, and will be full, and consequently will rise when the sun sets, and set when the sun rises - being visible the entire night. After the lapse of about twenty-two days, the distance of the shoon from the sun being about $270^{\circ}$, it will not reach the meridian until nearly the hour of sunrise; it will then be visible during the last six hours of the night only. The moon will then be waning, and toward the close of the month will only be seen in the morning before sunrise, and will appear as a crescent.

If the earth and sun were both stationary while the moon revolves round the former, the period of the phases would be the same as the period of the moon. But from what has been explained, it will be evident that while the moon makes its apparent revolution of the heavens in about $27 \cdot 3$ days, the sun advances through somewhat more than $27^{\circ}$ of tho heavens, in the same direction. Before the moon can reassume the same phase, it must have the same position relative to the sun, and must, therefore, overtake it. But since it moves at the rate of about $1^{\circ}$ in two hours, it will take more than two days to move over $27^{\circ}$. Hence the synodic period, or lunar month, or the interval between two successive conjunctions, is about two days longer than the sidereal period of our satellite.

The exact length of the synodic period is $29^{\text {a }} 12^{\mathrm{b}} \cdot 14^{\mathrm{m}}$. $2^{5 \cdot} 87$, or 29.53059 mean solar days.
2481. Mass and density. - The methods by which the mass or weight of the moon has been ascertained will be explained hereafter; meanwhile it may be stated here that the result of the most recent solutions of this problem, by various methods and on different data, proves that the mass or quantity of matter composing the globe of the moon, is a little more than the 90 th part of the mass of the earth; or, more exactly, if the mass of the earth consist of a million of equal parts, the mass of the moon will be equal to 11,399 of these parts.

Since the volume or bulk of the moon is about the 50th part of that of the earth, while its mass or weight is little more than the 90th part of that of the earth, it follows that its mean density must be little more than half the density of the earth, and therefore (2393.) about 2.83 times that of water.
2482. No air upon the moon. - In order to determine whether or not the globe of the moon is surrounded with any gaseous envelope like the atmosphere of the earth, it is necessary first to consider what appearances such an appendage would present, seen at the moon's distance, and whether any such appearances are discoverable.

According to ordinary and popular notions, it is difficult to separate the idea of an atmosphere from the existence of clouds; yet to produce clouds something more is necessary than air. The presence of water is indispensable, and if it be assumed that no water exist, then certainly the absence of clouds is no proof of the absence of an atmosphere. Be this as it may, however, it is certain that there are no clouds upon the moon, for if there were, we should immediately discover them, by the variable lights and shadows they would produce. If there is, then, an atmosphere upon the moon, it is one entirely unaccompanied by clouds.

One of the effects produced by a distant view of an atmosphere surrounding a globe, one hemisphere of which is illuminated by the sun, is, that the boundary, or line of separation between the hemisphere enlightened by the sun and the dark hemisphere, is not sudden and sharply defined, but is gradual - the light fading away by slow degrees into the darkness.

It is to this effect upon the globe of the earth that twilight is owing, and as we shall see bereafter, such a gradual fading away of the sun's light is discoverable on some of the planets, upon which an atmosphere is observed.

Now, if such an effect of an atmosphere were produced upon the moon, it would be perceived by the naked eye, and still more distinctly with the telescope. When the moon appears as a crescent, its concave edge is the boundary which separates the enlightened from the dark hemisphere. When it is in the quarters, the diameter of the semicircle is also that boundary. In neither of these cases, however, do we ever discover the slightest indication of any such appearance as that which has just been described. There is no gradual fading away of the light into the darkness; on the contrary, the boundary, though serrated and irregular, is nevertheless perfectly well defined and sudden.

All these circumstances conspire to prove that there does not exist upon the moon an atmosphere capable of reflecting light in any sensible degree.
2483. Absence of air indicated by absence of refraction. But it may be contended that an atmosphere may still exist, though too attenuated to produce a sensible twilight. Astronomers, however, have resorted to another test of a much more decisive and delicate kind, the nature of which will be understood by explaining a simple principle of optics.

Let $m m^{\prime}, f i g .725$. , represent the disk of the moon. Let $a a^{\prime}$


Fig. 725.
represent the atmosphere which surrounds it. Let sme and $s m^{\prime} e$ represent two lines touching the moon at $m$ and $m^{\prime}$, and proceeding towards the earth. Let $\boldsymbol{s} \boldsymbol{s}$ be two stars seen in the direction of these lines. If the moon had no atmosphere, these - stars would appear to touch the edge of the moon at $m$ and $m^{\prime}$, because the rays of light from them would pass directly
towards the earth; but if the moon have an atmosphere, then that atmosphere will possess the property which is common to all transparent media of refracting light, and, in virtue of such property, stars in such positions as $s^{\prime} s^{\prime}$, behind the edge of the moon, would be visible at the earth, for the ray $s^{\prime} m, s^{\prime} m^{\prime}$, in passing through the atmosphere, would be bent at an angle in the direction $m e^{\prime}$, and in like manner the ray $s^{\prime} m^{\prime}$ would be bent at the angle $m^{\prime} e^{\prime}$-so that the stars $s^{\prime} s^{\prime}$ would be visible at $e^{\prime} e^{\prime}$, notwithstanding the interposition of the edges of the moon.

This reasoiing leads to the conclusion that as the moon moves over the face of the firmament, stars will be continually visible at its edge which are really behind it if it have an atmosphere, and the extent to which this effect will take place will be in proportion to the density of the atmosphere.

The magnitude and motion of the moon and the relative positions of the stars are so accurately known that nothing is more easy, certain, and precise, than the observations which may be made with the view of ascertaining whether any stars are ever seen which are sensibly behind the edge of the moon. Such observations have been made, and no such effect has ever been detected. This species of observation is susceptible of such extreme accuracy, that it is certain that if an atmosphere existed upon the moon a thousand times less dense than our own, its presence must be detected.

Bessel has calculated that if the difference between the apparent diameter of the moon, and the arc of the firmament moved over by the moon's centre during the occultation of a star, centrically occulted, were admitted to amount to so much as $2^{\prime \prime}$, and allowing for the possible effect of mountains, by which the edge of the disk is serrated, taking these at the extreme height of 24,000 feet, the density of the lunar atmosphere, whose refraction would produce such an effect, would not exceed the 968th part of the density of the earth's atmosphere, supposing the two fluids to be similarly constituted. Nor would this conclusion be materially modified by any supposition of an atmosphere composed of gases different from the constituents of the earth's atmosphere.

The earth's atmosphere supports a column of 30 inches of mercury: an atmosphere 1000 times less dease would support
a column of three-tenths of an inch only. We may therefore consider it as an established fact, that no atmosphere exists on the moon having a density even as great as that which remains under the receiver of the most perfect air-pump, after that instrument has withdrawn from it the air to the utmost extent of its power.

If further proofs of the nonexistence of a lunar atmosphere were required, Sir J. Herschel indicates severnl which are found in the phenomena of eclipses. In a solar eclipse the existence of an atmosphere having any sensible refraction, would enable us to trace the limb of the moon beyond the cusps externally to the sun's disk, by a narrow but brilliant line of light extending to some distance along its edge. No such phenomenon has, however, been seen.

If there were any appreciable quantity of vapour suspended over the moon's surface, very faint stars ought to disappear behind it before the moment of their occultation by the interposition of the moon's edge. Such, however, is not the case. When occulted at the enlightened edge of the lunar disk, the light of the moon overpowers them and renders them invisible, and even at the dark edge the glare in the sky, caused by the proximity of the enlightened part of the disk, renders the occultation of extremely minute stars incapable of observation. But these obstacles are removed in the case of total solar eclipses, on which occasions stars, so faint as to be only seen by the aid of a telescope, come up close to the limb without any sensible diminution of their brightness, and undergo an extinction as instantaneous as the largest and brightest by the interposition of the moon's limb.
2484. Moonlight not sensibly calorific. - It has long been an object of inquiry whether the light of the moon has any leat, but the most delicate experiments and observations have failed to detect this property in it. The light of the moon was collected into the focus of a concave mirror of such magnitude as would have been sufficient, if exposed to the sun's light, to evaporate gold or platinum. The bulb of a differential thermoineter, sensitive enough to show a change of temperature amounting to the 500 th part of a degree, was placed in its focus so as to receive upon it the concentrated rays. Yet no sensible effect was produced. We must, therefore, conclude that the light of the moon does not possess the calorific property
in any sensible degree. But if the rays of the moon be not warm, the vulgar impression that they are cold is equally erroneous. We have seen that they produce no effect either way on the thermometer.
2485. No liquids on the moon. - The same physical tests which show the nonexistence of an atmosphere of air upon-the moon are equally conclusive against an atmosphere of vapour. It might, therefore, be inferred that no liquids can exist on the moon's surface, since they would be subject to evaporation. Sir John Herschel, however, ingeniously suggests that the nonexistence of vapour is not conclusive against evaporation. One hemisphere of the moon being exposed continuously for 328 hours to the glare of sunshine of an intensity grenter than a tropical noon, because of the absence of an atmosphere and clouds to mitigate it, while the other is for an equal interval exposed to a cold far more rigorous than that which prevails on the summits of the loftiest mountains or in the polar region, the consequence would be the immediate evaporation of all liquids which might happen to exist on the one hemisphere, and the instantaneous condensation and congelation of the vapour on the other. The vapour would, in short, be no sooner formed on the enlightened hemisphere than it would rush to the vacuum over the dark hemisphere, where it would be instantly condensed and congealed, an effect which Herschel aptly illustrates by the familiar experiment of the cryopnorous. The consequence, as he observes, of this state of things would be absolute aridity below the vertical sun, constant accretion of hoar frost in the opposite region, and perhaps a narrow zone of running water at the borders of the enlightened hemisphere. He conjectures that this rapid alternation of evaporation and condensation may to some extent preserve an equilibrium of temperature, and mitigate the severity of both the diurnal and nocturnal conditions of the surface. He admits nevertheless that such a supposition could only be compatible with the tests of the absence of a transparent atmosphere even of vapour within extremely narrow limits; and it remains to be seen whether the general physical condition of the lunar surface as disclosed by the telescope be not more compatible with the supposition of the total absence of all liquid whatever.

It appears to have escaped the attention of those who assume
the possibility of the existence of water in the liquid state on the moon, that, in the absence of an atmosphere, the temperature must necessarily be, not only far below the point of congelation of water, but even that of most other known liquids. Even within the tropics, and under the line.with a vertical sun, the height of the snow line does not exceed 16,000 feet (2187), and nevertheless at that elevation, and still higher, there prevails an atmosphere capable of supporting a considerable column of mercury. At somewhat greater elevations, but still in an atmosphere of very sensible density, mercury is congealed. Analogy, therefore, justifies the inference that the total, or nearly total, absence of air upon the moon is altogether incompatible with the existence of water, or probably any other body in the liquid state, and necessarily infers a temperature altogether incompatible with the existence of organised beings in any respect analogous to those which inhabit the earth.

But another conclusive evidence of the nonexistence of liquids on the moon is found in the form of its surface, which exhibits none of those well understood appearances which result from the long-continued action of water. The mountain formations with which the entire visible surface is covered are, as will presently appear, universally so abrupt, precipitous, and unchangeable, as to be utterly incompatible with the presence of liquids.
2486. Absence of air deprives solar light and heat of their utility. - The absence of air also prevents the diffusion of the solar light. It has been already shown (923) that the.general diffusion of the sun's light upon the earth is mainly due to the reflection and refraction of the atmosphere, and to the light reflected by the clouds; and that without such means of diffusion the solar light would only illuminate those places into which its rays would directly penetrate. Every place not in full sunshine, or exposed to some illuminated surface, would be involved in the most pitchy darkness. The sky at noon-day would be intensely black, for the brautiful azure of our firmament in the day-time is due to the reflected colour of the air.

Thus it appears that the absence of air must deprive the sun's illuminating and heating agency of nearly all its utility. If no diffusion of light and no retention and accumulation of
heat, such as an atmosphere supplies, prevail, it is impossible to conceive the existence and maintenance of an organised world having any analogy to the earth.
2487. As seen from the moon, appearance of the earth and the firmament. - If the moon were inhabited, observers placed upon it would witness celestial phenomena of a singular description, differing in many respects from those presented to the inhabitants of our globe. The heavens would be perpetually serene and cloudless. The stars and planets would shine with extraordinary splendour during the long night of 328 hours. The inclination of her axis being only $5^{\circ}$, there would be no sensible changes of season. The year would consist of one unbroken monotony of equinox. The inhabitants of one hemisphere would never see the earth; while the inhabitants of the other would have it constantly in their firmament by day and by night, and always in the same position. To those who inhabit the central part of the hemisphere presented to us, the earth would appear stationary in the zenith, and would never leave it, never rising nor setting, nor in any degree changing its position in relation to the zenith or horizon. To those who inhabit places intermediate between the central part of that hemisphere and those places which are at the edge of the moon's disk, the earth would appear at a fixed and invariable distance from the zenith, and also at a fixed and invariable azimuth, the distance from the zenith being everywhere equal to the distance of the observer from the middle point of the hemisphere presented to the earth. To an observer at any of the places which are at the edge of the lunar disk, the earth would appear perpetually in a fixed direction on the horizon.

The earth shone upon by the sun would appear as the moon does to us; but with a disk having an apparent diameter greater than that of the moon in the ratio of 79 to 21 , and an apparent superficial magnitude about fourteen times greater, and it would consequently have a proportionately illuminating power.

Earth light at the moon would, in fine, be about fourteen times more intense than moonlight at the earth. The earth would go through the same phases and complete the series of them in the same period as that which regulates the succession of the lunar phases, but the corresponding phases would be separated
by the interval of half a month. When the moon is full to the earth, the earth is new to the moon, and vice versâ: when the moon is a crescent, the earth is gibbous, and vice versâ.

The features of light and shade would not, as on the moon, be all permanent and invariable. So, far as they would arise from the clouds floating in the terrestrial atmosphere, they would be variable. Nevertheless, their arrangement would have a certain relation to the equator, owing to the effect of the prevailing atmospheric currents parallel to the line.* This cause would produce streaks of light and shade, the general direction of which would be at right angles to the earth's axis, and the appearance of which would be in all respects similar to the belts which, as will appear hereafter, are observed upon some of the planets, and which are ascribed to a like physical cause.

Through the openings of the clouds the permanent geographical features of the surface of the earth would be apparent, and would probably exhibit a variety of tints according to the prevailing characters of the soil, as is observed to be the case with the planet Mars even at an immensely greater distance. The rotation of the earth upon its axis would be distinctly observed and its time ascertained. The continents and seas would be seen to disappear in succession at one side and to reappear at the other, and to pass across the disk of the earth as carried round by the diurnal rotation.
2488. Why the full dish of the moon is fuintly visible atnew moon. - Soon after conjunction, when the moon appears as a thin crescent, but is so removed from the sun as to be seen at a sufficientaltitude after sunset, the entire lunar disk appears faintly illuminated within the horns of the crescent. This phenomenon is explained by the effect of the earth shining upon the moon and illuminating it by reflected light as the moon illuminates the earth, but with a degree of intensity greater in the ratio of about 14 to 1 . According to what has just been explained, the earth appears to the moon nearly full at the time when the moon appears to the earth as a thin crescent, and it therefore receives then the strongest possible illumination. As the lunar crescent increases in breadth, the phase of the earth as seen from the moon becomes less and less full, and the intensity of the illu-

[^8]mination is proportionately diminished. Hence we find, that as the lunar crescent passes gradually to the quarter, the complement of the lunar disk becomes gradually more faintly visible, and soon disappears altogether.
2489. Physical condition of the moon's surface. - If we examine the moon carefully, even without the aid of a telescope, we shall discover upon it distinct and definite lineaments of light and shadow. These features never change; there they remain, always in the same position upon the visible orb of the moon. Thus. the features that occupy its centre now have occupied the same position throughout all human record. We have already stated that the first and most obvious inference which this fact suggests, is that the same hemisphere of the moon is always presented toward the earth, and consequently, the other hemisphere is never seen. This singular characteristic which attaches to the motion of the moon round the earth, seems to be a general characteristic of all other moons in the system. Sir William Herschel, by the aid of his powerful telescopes, observed indications which render it probable that the moons of Jupiter revolve in the same manner, each presenting continually the same hemisphere to the planet. The cause of this peculiar motion has been attempted to be explained by the hypothesis that the hemisphere of the satellite which is turned toward the planet, is very elongated and protuberant, and it is the excess of its weight which makes it tend to direct itself always toward the primary, in obedience to the universal principle of attraction. Be this as it may, the effect is, that our selenographical knowledge is necessarily limited to that hemisphere which is turned toward us.

But what is the condition and character of the surface of the moon? What are the lineaments of light and shade which we see upon it? There is no object outside the earth with which the telescope has afforded us such minute and satisfactory information.

If, when the moon is a crescent, we examine with a telescope, even of moderate power, the concave boundary, which is that part of the surface where the enlightened hemisphere ends and the dark hemisphere begins, we shall find that this boundary is not an even and regular curve, which it undoubtedly would be if the surface were smooth and regular, or nearly so. If, for
example, the lunar surface resembled in its general characteristics that of our globe, supposing that the entire surface is land, having the general characteristics of the continents of the earth, the inner boundary of the lunar crescent would still be a regular curve broken or interrupted only at particular points. Where great mountain ranges, like those of the Alps, the Andes, or the Himalaya, might chance to cross it, these lofty peaks would project vastly elongated shadows along the adjacent plain; for it will be remembered that, being situated, at the moment in question, at the boundary of the enlightened and darkened hemispheres, the shadows would be those of evening or morning; which are prodigiously longer than the objects themselves. The effect of these would be to cause gaps or irregularities in the general outline of the inner boundary of the crescent. With these rare exceptions, the inner boundary of the crescent produced by a globe like the earth would be an even and regular curve.

Such, however, is not the case with the inner boundary of the lunar crescent, even when viewed by the naked eye, and still less so when magnified by a telescope.

It is found, on the contrary, rugged and serrated, and brilliantly illuminated points are seen in the dark parts at some distance from it, while dark shadows of considerable length nppear to break into the illuminated surface. The inequalities thus apparent indicate singular characteristics of the surface. The bright points seen within the dark hemisphere are the peaks of lofty mountains tinged with the sun's light. They are in the condition with which all travellers in Alpine countries are familiar; after the sun has set, and darkness has set in over the valleys at the foot of the chain, the sun still continues to illuminate the peaks above.

The sketch of the lunar crescent given in fig. 726. will illustrate these observations.

The visible hemisphere of our satellite has, within the last quarter of a century, been subjected to the most rigorous examination which unwearied industry, aided by the vast improvement which has been effected in the instruments of telescopic observation, rendered possible; and it is no exaggeration now to state that we possess a chart of that hemisphere which in accuracy of detail far exceeds any similar representation of the earth's surface.

Among the selenographical observers the Prussian astronomers, MM. Beer and Mädler,


Fig. 726. stand pre-eminent. Their descriptive work entitled Der Monde contains the most complete collection of observations on the physical condition of our satellite, and the chart, measuring 37 inches in diameter, exhibits the most complete representation of the lunar surface extant. Besides this great work, a selenographic chart was produced by Mr. Russell, from observations made with a sevenfoot reflector, a similar delineation by Lohrmann, and, in fine, a very complete model in relief of the visible hemisphere by Madame Witte, an Hanoverian Lady.

To convey to the student any precise or complete idea of the mass of information collected by the researches and labours of these eminent observers, would be altogether incompatible with the necessary limits of a work like that which we have undertaken. We shall therefore confline ourselves to a selection from some of the most remarkable results of those works, aided by the telescopic chart of the south-eastern quadrant of the moon's disk, given in Plate I., which has been reduced from the great chart of Beer and Miidler, the scale being exactly one half of that of the original.

## 2490. General Description of the Moon's Surface.

(a) Description of the chart, Plate I. - The entire surface of the visible hemisphere of the moon is thickly covered with mountainous masses and ranges of varions forms, magnitudes, and heights, in which, however, the prevalence of a circular or crater-like form is conspicuous. The mere inspection of the chart of the S. E. quadrant, Plate I., will render this evident; and the other three quadrants of the disk do not differ from this in their general character.*

[^9](b) Causes of the tints of white and gray on the moon's disk. - The various tints of white and gray which mark the lineaments observed upon the disk of the full moon arise partly from the different reflecting powers of the matter composing different parts of the lunar surface, and partly from the different angles at which the rays of the solar light are incident upon them. If the surface of the lanar hemisphere were uniformly level, or nearly so, these angles of incidence would be determined by the position of each point with relation to the centre of the illaminated hemisphere; and, in that case, the tints would be more regular and would vary in relation principally to the centre of the disk; but, owing to the great inequalities of level, and the vast and complicated mountainous masses which project from every part of the surface, and the great depths of the cavities and plains which are surrounded by the circular mountain ranges, the angles of incidence of the solar rays are subject to extreme and irregular variation, which produce those lineaments and forms tinted with various shades of gray and white with which every cye is familiar.
(c) Shadows visible only in the phases-they supply measures of heights and depths. - When the moon is full no shadows upon it can be seen, because, in that position, the visual ray coinciding with the luminous ray, each object is directly interposed between the observer and its shadow. As the phases progress, however, the shadows gradually come into view, because the visual ray is inclined at a gradually increasing angle to the solar ray, and, in the quarters, this angle having increased to $90^{\circ}$, and the boundary of the enlightened hemisplere being then in the centre of the hemisphere presented to the observer, the position is most favourable for the observation of the shadows by which chiefly, not only the forms and dispositions of the mountainous masses and the intervening and enclosed valleys and ravines are ascertained, but their heights and depths are measured. This latter problem is solved by the well-understood principles of geometrical projection when the directions of the visual and solar rays, the position of the object, and of the surface on which the shadows are projected, are severally given.
the north pole at the lowest point of the disk, and the castern limit is on the right and the western on the left of the observer, all of which positions are the reverse of those which the same points have when viewed without a telescope, or with one which does not invert. The longitudes are measured east and west of the meridian which bisects the visible disk. The original chart is engraved in four separate sheets, each representing a quadrant of the visible hemisphere. The names of the various selenographical regions and more prominent mountains are indicated on the chart, and have been taken generally from those of eminent scientific men. The meridians drawn on the chart divide the surface into zones, each of which measures five degrees of longitude, and the parallels to the equator divide it into zones, having each the width of five degrees of latitude. The moon's diameter being less than that of the carth in the ratio of 100 to 382 , a degree of lunar latitude is less than 60 geographical miles in the same proportion, and is, therefore, equal to 33 geographical miles. This supplies a scale by which the magnitudes on the chart, Plate I., may be approximately estimated.
(d) Uniform patches, called oceans, seas, fcc, proved to be irregular land surface. - Uniform patches of greater or less extent, each having an uniform gray tint more or less dark, having been supposed, by early observers, to be large collections of water, were designated by the names, Oceanus, Mare, Palve; Lacus, Sinus, \&c. These names are still retained, but the increased power of the telescope has proved that such regions are diversified, like the rest of the lunar surface, by inequalitics and undulations of permanent forms, and are therefore not, as was imagined, water or other liquid. They differ from other regions only in the magnitude of the mountain masses which prevail upon thenn. About two-thirds of the visible hemisphere of the moon consists of this character of surface. Examples of these are presented by the Mare Nubium, Oceanus Procellarum, Mare Eumorum, \&c., on the chart.
(e) Whiter spots, mountains. - The more intensely white parts ure mountains of various magnitude and form, whose height, relatively to the moon's magnitude, greatly exceeds that of the most stupendous terrestrial eminences; and there are many, characterised by an abruptness and steepness which sometimes assume the position of a vast vertical wall, altogether without example upon the earth. These are generally disposed in broad masses, lying in close contiguity, and intersected with vast and deep valleys, gullies, and abysses, none of which, however, have any of the characters which betray the agency of water.
( $f$ ) Classes of circular mountain ranges. - Circulan ranges of mountains which, were it not for their vnst magnitude, might be inferred from their form to have been volcanic craters, are by far the most prevalent arrangement. These have been denominated, according to their magnitudes, Butwark Plains, Ring Mountans, Craters, and Holes.
(g) Bulwark plains. - These are circular areas, varying from 40 to 120 miles in diameter, enclosed by a ring of mountain ridges, mostly continuous, but in some cases intersected at one or more points by vast ravines. The enclosed area is generally a plain on which mountains of less height are often scattered. The surrounding circular ridge also throws out spurs, both externally and internally, but the latter are generally shorter than the former. In some cascs, however, internal spurs, which are diametrically opposed, unite in the middle so as to cut in two the enclosed plain. In some rare cases tho cnclosed plain is uninterrupted by mountains, and it is almost invariably depressed below the general level of the surrounding land. A few instances are presented of the enclosed plain being convex.

The mountainous circle onclosing these vast areas is seldom a single ridge. It consists more generally of several concentric ridges, one of which, however, always dominates over the rest and exhibits an unequal summit, broken by stupendous peaks, which here and there shoot up from it to vast heights. Occasionally it is also interrupted by smaller mountains of the circular form.

Examples of bulwark plains are presented in the cases of Clavius, Walther, Regiomontanus, Purbach, Alphonse, and Ptolemæus.

The diameter of Clavius is 124 miles ${ }^{*}$, and the enclosed area is 12,000

[^10]square miles. One of the peaks of the surrounding ridge shoots up to the height of $\mathbf{1 6 , 0 0 0}$ feet.

The diameter of Ptolemreus is 100 miles, and it encloses an area of 6,400 square miles. This area is intersected by numerons small ridges, not above a mile in breadth and 100 feet in height. Ptolemxus is surrounded by very high mountains, and is remarkable for the precipitous character of its inner sides.

The other bulwark plains above named have nearly the same character, but less dimensions.
(h) Ring mountains. - These circular formations are on a smaller scale than the bulwark plains, varying from 10 to 50 miles in diameter, and they are generally more regular and more exactly circular in their form. They are sometimes found upon the ridge which encloses a bulwark plain, thus interrupting the continuity of its boundary; and sometimes they are seen within the enclosed area. Sometimes they stand in the midst of the maria. Their inner declivity is always steep, and the enclosed area, which is always concave, often includes a central mountain, presenting thus the general character of a volcanic crater, but on a scale of magnitude without example in terrestrial volcanoes. The surface enclosed is always lower than the region surrounding the enclosing ridge, and the central mountain often rises to such $n$ height that, if it were levelled, it would fill the depression.
(i) Tycho, a ring mountain. - The most remarkable example of this class is Tycho (see chart, lat. $42^{\circ}$, long. $12^{\circ}$ ). This object is distinguishable without a telescope on the lunar disk when full; but, owing to the multitude of other features which become apparent around it in the phases, it can then be only distinguished by a perfect knowledge of its position, and with a good telescope. The enclosed area, which is very nearly circular, is 47 miles in diameter, and the inside of the enclosing ridge has the steepness of a wall. Its height above the level of the enclosed plain is 16,000 fect, and above that of the external regions 12,000 fect. There is a central mount, height 4,700 feet, besides a few lesser hills within the enclosure.
( $/$ ) Craters and holes. - These are the smallest formations of the circular class. Craters enclose a visible area, containing generally a central mound or peak, exhibiting in a striking manner the volcanic character. Holes include no visible area, but may possibly be craters on a scale too small to be distinguished by the telescope.

Formations of this class are innumerable on every part of the visible surface of the moon, but are no where more prevalont than in the region around Tycho, which may be seen on a very enlarged scale in Plate II., which represents that ring mountain, and the adjacent region extending over sixteen degrees of latitude, and from sixteen to twenty degrees of longitude.
(l) Other mountain formations.-Besides the preceding, which are the most romarkable, the most characteristic, and the most prevalent, there are various other forms of mountain, classified by Beer and Madler, but which our limits compel us to omit.
(m) Singular and unexplained optical phenomenon of radiating streaks.Among the most remarkable phenomena presented to lunar observers, is the systems of streaks of light and shade, which radiate from the borders of some

of the largest of the ring mountains, spreading to distances of several hundred miles around them. Seven of the mountains of this class, viz., Tycho, Copernicus, Kepler, Pyrgius, Anaxagoras, Aristarchus, and Obbers are severally the centres round which this extraordinary radiation is manifested. Similar phenomena, less conspicuously developed, however, are visible around Meyer, Luler, Proclus, Aristillus, Timocharis, and some others.
These phenomena, as displayed when the moon is full around Tycho, are represented in Plate III. on the same scale as Plate II.

These radiating streaks commence at a distance of about 20 miles outside the circular ridge of Tyeho. From that limit they diverge and overspread fully a fourth part of the visible hemisphere. On the S. they extend to the edge of the disk; on the E. to Hainzel and Capuanus; on the S.E. to the Nare Nubium ; on the N. to Alphonse ; on the N.W. to the Mare Nectaris, and to the $W$., so as to cover nearly the entire south-western quadrant.

They are only visible when the sun's rays fall upon the region of Tycho at an incidence greater than $25^{\circ}$, and the more perpendicularly the rays fall upon it, the more fully developed the phenomena will be. They are, therèfore, only seen in their splendour, as represented in Plate III, when the moon is full. As the moon moves from opposition to the last quarter, tho streaks therefore gradually disappear, and the shadows of the monntain formations are at the same time gradually brought into view, so that the aspect of the moon undergoes a complete transformation. This change may be very well exhibited by holding the Plate III. before a window to which the back of the observer is turned. He will then see the phenomena as they are presented on the full moon. Let him then turn slowly upon his heel until his face is presented to the window, holding the paper between his eyes and the light. The Plate II. will then be seen by means of the transparency of the paper, and it will gradually become more and more distinctly apparent as he turns more directly towards the light.*

Although the mountain formations generally disappear under the splendour of these radiating streaks, some few, as will be perceived on Plate IIL., continue to be visible through them.
None of the numorous selenographic observers have proposed any satigfactory explanation of these phenomena, which are exlibited nearly in the same mamner around the other ring mountains above named. Sclaröter sapposed them to be mountains, an hypothesis overturned by the observations since made with more powerful instruments. Herschel, the elder, suggested the idea of streams of lava; Cassini imagined they might be clouds; and others even suggested the possibility of their being ronds! Mädler imagines that these ring mountains may lave been among the first selenological formations; and, consequently, the points to which all the

[^11]gases evolved in the formation of our satellite would have been attracted. These emanations produced effects, such as vitrification or oxydation, which modified the reflective powers of the surface. We must, however, dismiss these conjectures, however ingenious and attractive, referring those who desire to pursuc the subject to the original work.
(n) Environs of Tycho. - This region is crowded with hundreds of peaks, crests, and craters (sce Plate II.); not the least vestige of a plain can anywhere be discovered. Towards the E. and S.E. craters predominate, while to the W. chains parallel to the ring are more namerous. On the S . the mountains are thickly scattered in confused masses. At a distance of 15 to 25 miles craters and small ring mountains are seen, few being circular, but all approaching to that form. All are surrounded by steep ramparts.
(o) Wilhelm I. - This is a considerable ring mountain S.E. of Tycho. The altitude of its eastern parapet is 10,000 feet, that of its western being only 6,000 . Its crest is studded with peaks; and craters of various magnitudes, heights, and depths, surrounding it in great numbers, and giving a varied appearance to the adjacent region.
( $p$ ) Longomontanus - A large circular range, having a diameter of 80 miles, enclosing a plain of great depth. The eastern and western ridges rise to the height of 12,000 to 13,000 feet above the level of the enclosed plain. Its shadow sometimes falls upon and cenceals the numerous craters and promontorics which lie near it. The whole surrounding region is savage and ragged in the highest degree, and must, according to Mädler, have resulted from a long succession of convulsions. The principal, and apparently original, crater has given way in course of time to a series of new and less violent eruptions. All these smaller formations are visible on the full moon, but not the principal range, which then disappears, though its place may still be ascertained by its known position in relation to Tycho.
( $q$ ) Maginus. - This range N.W. of Tycho (see Plate I.) has the appearance of a rast and wild ruin. The wide plain enclosed by it lies in deep shade even when the sun has risen to the meridian. Its general height is 13,000 feet. A broad elevated base connects the numberless peaks, terraces, and groups of hills constituting this range, and small craters are numerous among these wild and confused masses. The central peak $A$ is a low but well-defined hill, close to which is a crater-like depression, and other less considerable hills.
(r) Analogy to terrestrial volcanocs more apparent than real-enlarged vieto of Gassendi. - The volcanic character observed in the selenographic formations loses much of its analogy to like formations on the carth's surface when higher magnifying powers enable us to examine the details of what appear to be craters, and to compare their dimensions with even the most extensive terrestrial craters. Numerous examples may be produced to illustrate this. We have seen that Tycho, which, viewed under a moderate magnifying power, appears to possess in so eminent a degree the volcanic character, is, in fact, a circular chain enclosing an area upwards of fity miles in dinmeter. Gassendi, another system of like form, and of still more stupendous dimensions, is delincated in fig. 1. Plate IV., as seen with high magnifying powers. This remarkable object consists of two enormous cir-


PIAN OP THE LUNAR MOUNTAIN GASSGNDT, BY MÄDLER.
cular chains of mountains, the lesser, which lies to the north, measuring $16 \frac{1}{2}$ miles in diameter, and the greater, lying to the south, cnclosing an area 60 miles in diameter. The area enclosed by the former is therefore 214 , and by the latter 2,827 square miles. The height of the lesser chain is about 10,000 feet, while that of the greater varies from 3,500 to 5,000 feet. The vast area thus enclosed by the greater chain includes, at or near its centre, a principal central mountain, having eight peaks and an height of 2,000 fect, while scattered over the surrounding enclosure upwards of a hundred mountains of less considerable elevation have been counted.

It is easy to see how little analogy to a terrestrial volcanic crater is presented by these characters.

The preceding selections, combined with the charts, Plates I., II., III., and IV., will serve to show the general physical character of the lunar surface, and the elaborate accuracy with which it has been submitted to telescopic examination. In the work of Beer and Müdler a table of the heights of above 1000 mountains is given, several of which attain to an elevation of 23,000 feet, equal to that of the highest summits of terrestrial mountains, while the diameter of the moon is little more than half that of the earth.
2491. Observations of Herschel.-Sir John Herschel says, that among the lunar mountains may be observed in its highest perfection the true volcanic character, as seen in the crater of Vesuvius and elsewhere; but with the remarkable peculiarity that the bottoms of many of the craters are very deeply depressed below the general surface of the moon, the internal depth being in many cases two or three times the external height. In some cases, he thinks, decisive marks of volcanic stratitication, arising from a succession of deposits of ejected matter, and evident indications of currents of lava streaming outwards in all directions, may be clearly traced with powerful telescopes.
2492. Observations of the Earl of Rosse. - By means of the great reflecting telescope of Lord Rosse, the flat bottom of the crater called Albategnius is distinctly seen to be strewed with blocks, not visible with less powerful instruments; while the exterior of another (Aristillus) is intersected with deep gullies radiating from its centre.
2493. Supposed influence of the moon on the weather.Among the many influences which the moon is supposed, by the world in general, to exercise upon our globe, one of those, which has been most universally believed, in all ages and in all
countries, is that which it is presumed to exert upon the changes of the weather. Although the particular details of this influence are sometimes pretended to be described, the only general principle, or rule, which prevails with the world in general is, that a change of weather may be looked for at the epochs of new and full moon: that is to say, if the weather be previously fair it will become foul, and if foul will become fair. Similar changes are also, sometimes, though not so confidently, looked for at the epochs of the quarters.

A question of this kind may be regarded either as a question of science, or a question of fact.

If it be regarded as a question of science, we are called upon to explain how and by what property of matter, or what law of nature or attraction, the moon, at a distance of a quarter of a million of miles, combining its effects with the sun, at four hundred times that distance, can produce those alleged changes. To this it may be readily answered that no known law or principle has hitherto explained any such phenomena. The moon and sun must, doubtless, affect the ocean of air which surrounds the globe, as they affect the ocean of water - producing effects analogous to tides; but when the quantity of such an effect is estimated, it is proved to be such as could by no means account for the meteorological changes here adverted to.

But in conducting investigations of this kind we proceed altogether in the wrong direction, and begin at the wrong end, when we commence with the investigation of the physical cause of the supposed phenomena. Our first business is carefully and accurately to observe the phenomena of the changes of the weather, and then to put them in juxtaposition with the contemporaneous changes of the lunar phases. If there be any discoverable correspondence, it then becomes a question of physics to assign its cause.

Such a course of observation has been made in various observatories with all the rigour and exactitude necessary in such an inquiry, and has been continued over periods of time so extended, as to efface all conceivable effects of accidental irregularities.

We can imagine, placed in two parallel columns, in juxtaposition, the series of epochs of the new and full moons, and the quarters, and the corresponding conditions of the weather
at these times, for fifty or one hundred years back, so that we may be enabled to examine, as a mere matter of fact, the conditions of the weather for one thousand or twelve hundred full and new moons and quarters.

From such a mode of observation and inquiry, it has resulted conclusively that the popular notions concerning the influence of the lunar phases on the weather have no foundation in theory, and no correspondence with observed facts. That the moon, by her gravitation, exerts an attraction on our atmosphere cannot be doubted; but the effects which that attraction would produce upon the weather are not in accordance with observed phenomena; and, therefore, these effects are either too small in amount to be appreciable in the actual state of meteorological instruments, or they are obliterated by other more powerful causes, from which hitherto they have not been eliminated. It appears, however, by some series of observations, not yet confirmed or continued through a sufficient period of time, that a slight correspondence may be discovered between the periods of rain and the phases of the moon, indicating a very feeble influence, depending on the relative position of that luminary to the sun, but having no discoverable relation to the lunar attraction. This is not without interest as a subject of scientific inquiry, and is entitled to the attention of meteorologists; but its influence is so feeble that it is altogether destitute of popular interest as a weather prognostic. It may, therefore, be stated that, as far as observation combined with theory has afforded any means of knowledge, there are no grounds for the prognostications of weather erroneously supposed to be derived from the influence of the sun and moon.

Those who are impressed with the feeling that an opinion so universally entertained even in countries remote from each other, as that which presumes an influence of the moon over the changes of the weather, will do well to remember that against that opinion we have not here opposed mere theory. Nay, we have abandoned for the occasion the support that science might afford, and the light it might shed on the negative of this question, and have dealt with it as a mere question of fact. It matters little, so far as this question is concerned, in what manner the moon and sun may produce an effect on the weather, nor even whether they be active causes in producing such effect at all.

The point, and the only point of importance, is, whether, regarded as a mere matter of fact, any correspondence between the changes of the moon and those of the weather exists? And a short examination of the recorded facts proves that it does not.
2494. Other supposed lunar influences.-But meteorological phenomena are not the only effects imputed to our satellite; that body, like comets, is made responsible for a vast variety of interferences with organised nature. The circulation of the juices of vegetables, the qualities of grain, the fate of the vintage, are all laid to its account; and timber must be felled, the harvest cut down and gathered in, and the juice of the grape expressed, at times and under circumstances regulated by the aspects of the moon, if excellence be hoped for in these products of the soil.

According to popular belief, our satellite also presides over human maladies; and the phenomena of the sick chamber are governed by the lunar phases; nay, the very marrow of our bones, and the weight of our bodies, suffer increase or diminution by its influence. Nor is its imputed power confined to physical or organic effects; it notoriously governs mental derangement.

If these opinions respecting lunar influences were limited to particular countries, they would be less entitled to serious consideration ; but it is a curious fact that many of them prevail and have prevailed in quarters of the earth so distant and unconnected, that it is difficult to imagine the same error to have proceeded from the same source.

Our limits, and the objects to which this volume is directed, render it impossible here to notice more than a few of the principal pbysical and physiological influences imputed to the moon; nor even with respect to these can we do more than indicate the kind of examination to which they have been submitted, and the conclusions which have been deduced from it.
2495. The red moon.-Gardeners give the name of Red Moon to that moon which is full between the middle of April and the close of May. According to them the light of the moon at that season exercises an injurious influence upon the joung shoots of plants. They say that when the sky is clear the leaves and buds exposed to the lunar light redden and are killed as if by frost, at a time when the thermometer exposed to the atmosphere stands at many degrees above the freezing point. They
say also that if a clouded sky intercepts the moon's light it prevents these injurious consequences to the plants, although the circumstances of temperature are the same in both cases. Nothing is more easy than the explanation of these effects. The leaves and flowers of plants are strong and powerful radiators of heat; when the sky is clear they therefore lose temperature and may be frozen ; if, on the other hand, the sky be clouded, their temperature is maintained for the reasons above stated.

The moon, therefore, has no connection whatever with this effect, and it is certain that plants would suffer under the same circumstances whether the moon is above or below the horizon. It equally is quite true that if the moon be above the horizon, the plants cannot suffer unless it be visible; because a clear sky is indispensable as much to the production of the injury to the plants as to the visibility of the moon; and, on the other hand, the same clouds which veil the moon and intercept her light give back to the plants that warmth which prevents the injury here adverted to. The popular opinion is therefore right as to the effect, but wrong as to the cause; and its error will be at once discovered by showing that on a clear nfrght, when the moon is new, and, therefore, not visible, the plants may nevertheless suffer.
2496. Supposed influence on timber.-An opinion is generally entertained that timber should be felled only during the decline of the moon; for if it be cut down during its increase, it will not be of a good and durable quality. This impression prevails in various countries. Is is acted upon in England, and is made the ground of legislation in France. The forest laws of the latter country interdict the cutting of timber during the increase of the moon. The same opinion prevails in Brazil. Signor Francisco Pinto, an eminent agriculturist in the province of Espirito Santo, affirmed, as the result of his experience, that the wood which was not felled at the full of the moon was immediately attacked by worms and very soon rotted. In the extensive forests of Germany, the same opinion is entertained and acted upon. M. Duhamel Monceau, a celebrated French agriculturist, has made direct and positive experiments for the purpose of testing this question; and has clearly and conclusively shown that the qualities of timber felled in differe $t$ parts of the lunar month are the same.
2497. Supposed lunar influence on vegetables.-It is an
aphorism received by all gardeners and agriculturists in Europe, that vegetables, plants, and trees, which are expected to flourish and grow with vigour, should be planted, grafted, and pruned, during the increase of the moon. This opinion is altogether erroneous. The increase or decrease of the moon has no appreciable influence on the phenomena of vegetation; and the experiments and observations of several French agriculturists, and especially of M. Duhamel du Monceau (already alluded to) have clearly established this.
2498. Supposed lunar infuence on wine-making. - It is a maxim of wine-growers, that wine which has been made in two moons is never of a good quality, and cannot be clear.

To this we need only answer, that the moon's rays do not affect the temperature of the air to the extent of one thousandth part of a degree of the thermometer, and that the difference of temperatures of eny two neighbouring places in which the process of making the wine of the same soil and vintage might be conducted, may be a thousand times greater at any given moment of time, and yet no one ever imagines that such a circumstance can affect the quality of the wine.
2499. Supposed lunar influence on the complexion. - It is a prevalent popular notion in some parts of Europe, that the moon's light is attended with the effect of darkening the complexion.

That light has an effect upon the colour of material substances is a fact well known in physics and in the arts. The process of bleaching by exposure to the sun is an obvious example of this class of facts. Vegetables and flowers which grow in a situation excluded from the light of the sun are different in colour from those which have been exposed to its influence. The most striking instance, however, of the effect of certain rays of solar light in blackening a light coloured substance, is afforded by chloride of silver, which is a white substance, but which immediately becomes black when acted upon by the rays near the red extremity of the spectrum. This substance, however, highly susceptible as it is of having its colour affected by light, is, nevertheless, found not to be changed in any sensible degree when exposed to the light of the moon, even when that light is condensed by the most powerful burning lenses. It would seem, therefore, that as far as any analogy can be derived from the qualities of this substance, the popular impression of
the influence of the moon's rays in blackening the skin receives no support.
2500. Supposed lunar influence on putrefaction. - Pliny and Plutarch have transmitted it as a maxim, that the light of the moon facilitates the putrefaction of animal substances, and covers them with moisture. The same opinion prevails in the West Indies, and in South America. An impression is prevalent, also, that certain kinds of fruit exposed to moonlight lose their flavour and become soft and flabby; and that if a wounded mule be exposed to the light of the moon during the night, the wound will be irritated, and frequently become incurable.

Such effects, if real, may be explained upon the same principles as those by which we have already explained the effects imputed to the red moon. Animal substances exposed to a clear sky at night, are liable to receive a deposition of dew, which humidity has a tendency to accelerate putrefaction. But this effect will be produced if the sky be clear, whether the moon be above the horizon or not. The moon, therefore, in this case, is a witness and not an agent; and we must acquit her of the misdeeds imputed to her.

Supposed lunar influence on shell-fish. -It is a very ancient remark, that oysters and other shell-fish become larger during the increase than during the decline of the moon. This maxim is mentioned by the poet Lucilius, by Aulus Gellius, and others; and the members of the academy del Cimento appear to have tacitly admitted it, since they endeavour to give an explanation of it. The fact, however, has been carefully examined by Rohault, who has compared shell-fish taken at all periods of the lunar month, and found that they exhibit no difference of quality.
2501. Supposed lunar influence on the marrow of animals.An opinion is prevalent among butchers that the marrow found in the bones of animals varies in quantity according to the phase of the moon in which they are slaughtered. This question has also been examined by Rohault, who made a series of observations which were continued for twenty years with a view to test it; and the result was that it was proved completely destitute of foundation.
2502. Supposed lunar influence on the weight of the human body. - Sanctorius, whose name is celebrated in physics for the invention of the thermometer, held it as a principle that a
healthy man gained two pounds weight at the beginning of every lunar month, which he lost toward its completion. This opinion appears to be founded on experiments made upon himself; and affords another instance of a fortuitous coincidence hastily generalised. The error would have been corrected if he had continued his observations a sufficient length of time.
2503. Supposed lunar infueence on births. - It is a prevalent opinion that births occur more frequently in the decline of the moon than in her increase. This opinion has been tested by comparing the number of births with the periods of the lunar phases; but the attention directed to statistics, as well in this country as abroad, will soon lead to the decision of this question.*
2504. Supposed lunar influence on incubation. - It is a maxim handed down by Pliny, that eggs should be put to cover when the moon is new. In France it is a maxim generally adopted, that the fowls are better and more successfully reared when they break the shell at the full of the moon. The experiments and observations of M. Girou de Buzareingues have given countenance to this opinion. But such observations require to be multiplied before the maxim can be considered as established. M. Girou inclines to the opinion that during the dark nights about new moon the hens sit so undisturbed that they either kill their young or check their development by too much heat; while in moonlight nights, being more restless, this effect is not produced.
2505. Supposed lunar influence on mental derangement and other human maladies. - The influence on the phenomena of human maladies imputed to the moon is very ancient. Hippocrates had so strong a faith in the influence of celestial objects upon animated beings, that he expressly recommends no physician to be trusted who is ignorant of astronomy. Galen, following Hippocrates, maintained the same opinion, especially of the influence of the moon. Hence in diseases the lunar periods were said to correspond with the succession of the sufferings of the patients. The critical days or crises (as they were afterward called), were the seventh, fourteenth, and twenty-first of the disease, corresponding to the intervals between the moon's prin-

[^12]cipal phases. While the doctrine of alchymists prevailed, the human body was considered as a microcosm; the heart representing the sun, the brain the moon. The planets had each its proper influence: Jupiter presided over the lungs, Mars over the liver, Saturn over the spleen, Venus over the kidneys, and Mercury over the organs of generation. Of these grotesque notions there is now no relic, except the term lunacy, which still designates unsoundness of mind. But even this term may in some degree be said to be banished from the terminology of medicine, and it has taken refuge in that receptacle of all antiquated absurdities of phraseology - the law. Lunatic, we believe, is still the term for the subject who is incapable of managing his own affairs.

Although the ancient faith in the connection between the phases of the moon and the phenomena of insanity appears in a great degree to be abandoned, yet it is not altogether without its votaries; nor have we been able to ascertain that any series of observations conducted on scientific principles, has ever been made on the phenomena of insanity, with a view to disprove this connection. We have even met with intelligent and welleducated physicians who still maintain that the paroxysms of insane patients are more violent when the moon is full than at other times.
2506. Sxamples produced by Faber and Ramazzini. - Mathiolus Faber gives an instance of a maniac who, at the very moment of an eclipse of the moon, became furious, seized upon a sword, and fell upon every one around him. Ramazzini relates that, in the epidemic fever which spread over Italy in the year 1693, patients died in an unusual number on the 21st of January, at the moment of a lunar eclipse.

Without disputing this fact (to ascertain which, however, it would be necessary to have statistical returns of the daily deaths), it may be objected that the patients who thus died in zuch numbers at the moment of the eclipse, might have had :heir imaginations highly excited, and their fears wrought upon oy the approach of that event, if popular opinion invested it with danger. That such an impression was not unlikely to revail is evident from the facts which have been recorded.

At no very distant period from that time, in August, 1654, $t$ is related that patients in considerable numbers were, by order of the physicians, shat up in chambers well closed,
III.

1
warmed, and perfumed, with a view to escape the injurious influence of the solar eclipse, which happened at that time; and such was the consternation of persons of all classes, that the numbers who flocked to confession were so great that the ecclesiastics found it impossible to administer that rite. An amusing anecdote is related of a village curate near Paris, who, with a view to ease the minds of his flock, and to gain the necessary time to get through his business, seriously assured them that the eclipse was postponed for a furtnight.
2507. Examples of Vallisnieri and Bacon.-Two of the most remarkable examples recorded, of the supposed influence of the moon on the human body, are those of Vallisnieri and Bacon. Vallisnieri declares that, being at Padua, recovering from a tedious illness, he suffered, on the 12th of May, 1706, during the eclipse of the sun, unusual weakness and shivering. Lunar eclipses never happened without making Bacon faint; and he did not recover his senses till the mnon recovered her light.

That these two striking examples should be admitted in proof of the existence of lunar influence, it would be necessary, says M. Arago, to establish the fact, that feebleness and pusillanimity of character are never connected with high qualities of mind.
2508. Supposed infuence on cutaneous affections.- Menuret considered that cutaneous maladies had a manifest connection with the lunar phases. He says that he himself observed, in the year 1760, a patient afflicted with a scald head (teigne), who, during the decline of the moon, suffered from a gradual increase of the malady, which continued until the epoch of the new moon, when it had covered the face and breast, and prot duced insufferable itching. As the moon increased, these symptoms disappeared by degrees; the face became free from the eruption; but the same effects were reproduced after the full of the moon. These periods of the disease continued for three months.

Menuret also stated that he witnessed a similar correspondence between the lunar phases and the distemper of the itch; but the circumstances were the reverse of those in the former case; the malady attaining its maximum at the full of the moon, and its minimum at the new moon.

Without disputing the accuracy of these statements, or throwing any suspicion on the good faith of the physician wh,
has made them, we may observe that such facts prove nothing except the fortuitous coincidence. If the relation of cause and effect had existed between the lunar phases and the phenomena of these distempers the same cause would have continued to produce the same effect in like circumstances; and we should not be left to depend for the proof of lunar influence on the statements of isolated cases, occurring under the observation of a physician who was himself a believer.
2509. Remarkable case adduced by Hoffman. - Maurice Hoffman relates a case which came under his own practice, of a young woman, the daughter of an epileptic patient. The abdomen of this girl became inflated every month as the moon increased, and regularly resumed its natural form with the decline of the moon.

Now if this statement of Hoffman were accompanied by all the necessary details, and if, also, we were assured that this strange effect continued to be produced for any considerable length of time, the relation of cause and effect between the phases of the moon and the malady of the girl could not legitimately be denied; but receiving the statement in so vague a form, and not being assured that the effect continued to be produced beyond a few months, the legitimate conclusion at which we must arrive is, that this is another example of fortuitous coincidence, and may be classed with the fulfiment of dreams, prodigies, 8tc., \&c.
2510. Cases of nervous diseases. - As may naturally be expected, nervous diseases are those which have presented the most frequent indications of a relation with the lunar phases. The celebrated Mead was a strong believer, not only in the lunar influence, but in the influence of all the heavenly bodies on all the human. He cites the case of a child who always went into convulsions at the moment of full moon. Pyson, another believer, cites another case of a paralytic patient whose disease was brought on by the new moon. Menuret records the case of an epileptic patient whose fits returned with the full moon. The transactions of learned societies abound with examples of giddiness, malignant fever, somnambulism, \&c., having in their paroxysms more or less corresponded with the lunar phases. Gall states, as a matter having fallen under his own observation, that patients suffering under weakness of intellect had two periods in the month of peculiar excitement; and, in a work
published in London so recently as 1829, we are assured that these epochs are between the new and full moon.
2511. Observations of Dr. Olbers on insane patients.-Against all these instances of the supposed effect of lunar influence, we have little direct proof to offer. To establish a negative is not easy. Yet it were to be wished that in some of our, great asylums for insane patients, a register should be preserved of the esact times of the access of all the remarkable paroxysms; a subsequent comparison of this with the age of the moon at the time of their occurrence would furnish the ground for legitimate and safe conclusions. We are not aware of any scientific physician who has expressly directed his attention to this question, except Dr. Olbers of Bremen, celebrated for his discovery of the planets Pallas and Vesta. He states that, in the course of a long medical practice, he was never able to discover the slightest trace of any connection between the phenomena of disease and the phases of the moon.
2512. Influence not to be hastily rejected. - In the spirit of true philosophy, M. Arago, nevertheless, recommends caution in deciding against this influence. The nervous system, says he, is in many instances an instrument infinitely more delicate than the most subtle apparatus of modern physics. Who does not know that the olfactory nerves inform us of the presence of odoriferous matter in air, the traces of which the most refined physical analysis would fail to detect? The mechanism of the eye is highly affected by that lunar light which, even condensed with all the power of the largest burning lenses, fails to affect by its heat the most susceptible thermometers, or by its chemical influence, the chloride of silver; yet a small portion of this light introduced through a pin-hole will be sufficient to produce an instantaneous contraction of the pupil; nevertheless the integuments of this membrane, so sensible to light, appear to be completely inert when otherwise affected. The pupil remains unmoved, whether we scrape it with the point of a needle, moisten it with liquid acids, or impart to its surface electric sparks. The retina itself, which sympathises with the pupil, is insensible to the influence of the most active mechanical agents. Phenomenn so mysterious should teach us with what reserve we should reason on analogies drawn from experiments made upon inanimate substances, to the far different and more difficult case of organised matter endowed with life.

## CIIAP. X.

## THE TIDES AND TRADE WINDS.

2513. Correspondence between the recurrence of the tides and the diurnal appearance of the moon.- The phenomena of the tides of the ocean are too remarkable not to have attracted notice at an early period in the progress of knowledge. The intervals between the epochs of high and low water everywhere corresponding with the intervals between the passage of the moon over the meridian above and below the horizon, suggested naturally the physical connection between these two effects, and indicated the probability of the cause of the tides being found in the motion of the moon.
2514. Erroneous notions of the lunar influence.-There are few subjects in pliysical science about which more erroneous notions prevail among those who are but a little informed. A common idea is, that the attraction of the moon draws the waters of the earth toward that side of the globe on which it happens to be placed, and that consequently they are heaped up on that side, so that the oceans and seas acquire there a greater depth than elsewhere; and that high water will thus take place under, or nearly under, the moon. But this does not correspond with the fact. High water is not produced merely under the moon, but is equally produced upon those parts most removed from the moon. Suppose a meridian of the earth so selected, that if it were continued beyond the earth, its plane would pass through the moon; we find that, subject to certain modifications, a great tidal wave, or what is called high voater, will be formed on both sides of this meridian; that is to say, on the side next the moon, and on the side remote from the moon. As the moon moves, these two great tidal waves follow her. They are of course separated from each other by half the circumference of the globe. As the globe revolves with its diurnal motion upon its axis, every part of its surface passes successively under these tidal waves; and at all such parts, as they pass under them, there is the phenomenon of high water.

Hence it is that in all places there are two tides daily, having an interval of about twelve hours between them. Now, if the common notion of the cause of the tides were well founded, there would be only one tide daily-viz., that which would take place when the moon is at or near the meridiau.
2515. The moon's attraction alone zvill not explain the tides. -'That the moon's attraction upon the earth simply considered would not explain the tides is easily shown. Let us suppose that the whole mass of matter on the earth, including the waters which partially cover it, were attracted equally by the moon; they would then be equally drawn toward that body, and no reason would exist why they should be heaped up under the moon; for if they were drawn with the same force as that with which the solid globe of the earth under them is drawn, there would be no reason for supposing that the waters would have a greater tendency to collect toward the moon than the solid bottom of the ocean on which they rest. In short, the whole mass of the earth, solid and fluid, being drawn with the same force, would equally tend toward the moon ; and its parts, whether solid or fluid, would preserve among themselves the same relative position as if they were not attracted at all.
2516. Tides caused by the difference of the attractions on different parts of the earth. - When we observe, however, in a mass composed of various particles of matter, that the relative arrangement of these particles is disturbed, some being driven in certain directions more than others, the inference is, that the component parts of such a mass must be placed under the operation of different forces; those which tend more than others in a certain direction being driven with a proportionally greater force. Such is the case with the earth, placed under the attraction of the moon. And this is, in fact, what must happen under the operation of an attractive force like that of gravitation, which diminishes in its intensity as the square of the distance increases.

Let $\mathrm{A}, \mathrm{B}, \mathrm{c}, \mathrm{d}, \mathbf{e}, \mathbf{f}, \mathrm{G}, \mathrm{H}$, fig. 727., represent the globe of the earth, and, to simplify the explanation, let us first suppose the entire surface of the glohe to be covered with water. Let m , the moon, be placed at the distance min from the nearest point of the surface of the earth. Now it will be apparent that the various points of the earth's surface are at different distances from the moon M. $A$ and $G$ are more remote than $H$;
bFstill more remote; cand e more distant again, and D more remote than all. The attraction which the moon exercises at


Fig. 727.
$n$ is, therefore, greater than that which it exercises at $A$ and $G$, and still greater than that which it produces at B and F ; and the attraction which it exercises at D is least of all. Now this attraction equally affects matter in every state and condition. It affects the particles of fluid as well as solid matter; but there is this difference, that where it acts upon solid matter, the component parts of which are at different distances from it, and therefore subject to different attractions, it will not disturb the relative arrangement, since such disturbances or disarrangements are prevented by the cohesion which characterises a solid body; but this is not the case with fluids, the particles of which are mobile.

The attraction which the moon exercises بpon the shell of water, which is collected immediately under it near the point $z$, is greater than that which it exercises upon the solid mass of the globe; consequently there will be a greater tendency of this attraction to draw the fluid which rests upon the surface at a toward the moon, than to draw the solid mass of the earth which is more distant.

As the fluid, by its nature, is free to obey this excess of attraction, it will necessarily heap itself up in a pile or wave over H, forming a convex protuberance, as represented between $r$ and $i$. Thus high water will take place at IE , immediately under the moon. The water which thus collects at $h$ will necessarily flow from the regions $B$ and $F$, where therefore there will be a diminished quantity in the same proportion.

But let us now consider what happens to that part of the earth D . Here the waters, being more remote from the moon than the solid mass of the earth under them, will be less at-
tracted, and consequently will have a less tendency to gravitate toward the moon. The solid mass of the earth, DH, will, as it were, recede from the waters at $n$, in virtue of the excess of attraction, leaving these waters behind it, which will thus be heaped up at $n$, so as to form a convex protuberance between $l$ and $k$, similar exactly to that which we have already described between $r$ and $i$. As the difference between the attraction of the moon on the waters at $z$ and the solid earth under the waters is nearly the same as the difference between its attraction on the latter and upon the waters at $n$, it follows that the height of the fluid protuberances at $z$ and $n$ are equal. In other words, the height of the tides on opposite sides of the earth, the one being under the moon and the other most remote from $i$ it, are equal.

It appears, therefore, that the cause of the tides, so far as the action of the moon is concerned, is not, as is vulgarly supposed, the mere attraction of the moon; since, if that attraction were equal on all the component parts of the earth, there would assuredly be no tides. We are to look for the cause, not in the attraction of the moon, but in the inequality of its attraction on different parts of the earth. The greater this inequality is, the greater will be the tides. Hence, as the moon is subject to a slight variation of distance from the earth, it will follow, that when it is at its least distance, or at the point called perigee, the tides will be greatest; and when it is at the greatest distance, or at the point called apogee, the tides will be least; not because the entire attraction of the moon in the former case is greater than in the latter, but because the diameter of the globe bearing a greater proportion to the lesser distance than the greater, there will be a greater inequality of attraction.
2517. Effects of sun's attraction. - It will occur to those who bestow on these observations a little reflection, that all which we have stated in reference to the effects produced by the attraction of the moon upon the earth, will also be applicable to the attraction of the sun. This is undoubtedly true; but in the case of the sun the effects are modified -in some very important respects. The sun is at 400 times a greater distance than the moon, and the actual amount of its attraction on the earth would, on that account, be 160,000 times less than that of the moon; but the mass of the sun exceeds that of the moon in a much greater ratio than that of 160,000 to 1 . It therefore possesses a much greater attracting power in virtue of its
mass, compared with the moon, than it loses by its greater distance. It exercises, therefore, upon the earth an attraction enormously greater than the moon exercises. Now, if the simple amount of its attraction were, as is commonly supposed, the cause of the tides, the sun ought to produce a vastly greater tide than the moon. The reverse is, however, the case, and the cause is easily explained. Let it be remembered that the tides are due solely to the inequality of the attraction on different sides of the earth, and the greater that inequality is, the greater will be the tides, and the less that inequality is, the less will be the tides.
In the case of the sun, the total distance is 12,000 diameters of the earth, and consequently the difference between its distances from the one side and the other of the earth will be only the 12,000 th part of the whole distance, while in the case of the moon, the total distance being only 30 diameters of the earth, the difference of the distances from one side and the other is the 30th part of the whole distance. The inequality of the attraction, upon which alone, and not on its whole amount, the production of the tidal wave depends, is therefore much greater in the case of the moon. According to Newton's calculation, the tidal wave due to the moon is greater in height than that due to the sun in the ratio of 58 to 23 , or $2 \frac{1}{2}$ to 1 very nearly.
2518. Cause of spring and neap tides. - There is, therefore, a solar as well as a lunar tide wave, the former being much less elevated than the latter, and each following the luminary from which it takes its name. When the sun and moon, therefore, are either on the same side of the earth, or on the opposite sides of the earth -in other words, when it is new or full moontheir effects in producing tides are combined, and the spring tide is produced, the height of which is equal to the solar and lunar tides taken together.

On the other hand, when the sun and moon are separated from each other by a distance of one fourth of the heavens, that is, when the moon is in the quarters, the effect of the solar tide has a tendency to diminish that of the lunar tide.

The tides produced by the combination of the lunar and solar tide waves at the time of new and full moon are called spring tides; and those produced by the lunar wave diminished by the effect of the solar wave at the quarters are called neap tides.
2519. Why the tides are not produced directly under the
moon. - If physical effects followed immediately, without any appreciable interval of time, the operation of their causes, then the tidal wave produced by the moon would be on the meridian of the earth directly under and opposite to that luminary; and the same would be true of the solar tides. But the waters of the globe have, in common with all other matter, the property of inertia, and it takes a certain interval of time to impress upon them a certain change of position. Hence it follows that the tidal wave produced by the moon is not formed immediately under that body, but follows it at a certain distance. In consequence of this, the tide raised by the moon does not take place for two or three hours after the moon passes the meridian; and as the action of the sun is still more feeble, there is a still greater interval between the transit of the sun and occurrence of the solar tide.
2520. Priming and lagging of the tides.-But besides these circumstances, the tide is affected by other causes. It is not to the separate effect of either of these bodies, but to the combined effect of both, that the effects are due; and at every period of the month, the time of actual high water is either accelerated or retarded by the sun. In the fifst and third quarters of the moon, the solar tide is westward of the lunar one; and, consequently, the actual high water, which is the result of the combination of the two waves, will be to the westward of the place it would have if the moon acted alone, and the time of high water will therefore be accelerated. In the second and fourth quarters the general effect of the sun is, for a simila reason, to produce a retardation in the time of high water. This effect, produced by the sun and moon combined, is what is commonly called the priming and lagging of the tides. The highest spring tides occur when the moon passes the meridian about an hour after the sun; for then the maximum effect of the tric bodies coincides.
2521. Researches of Whewell and Lubbock. - The subject ol the tides has of late years received much attention from several scientific investigators in Europe. The discussions held at the annual meetings of the British Association for the Advancement of Science, on this subject, have led to the development of much useful information. The labours of Professor Whewell have been especially valuable on these questions. Sir John Lubbock has also published a valuable treatise upon it. To trace the results of these investigations in all the details which would
render them clear and intelligible, would greatly transcend the necessary limits of this volume. We shall, however, briefly advert to a few of the most remarkable points connected with these questions.
2522. Vulgar and corrected establishment. - The apparent time of high water at any port in the afternoon of the day of new or full moon, is what is usually called the establishment of the port. Professor Whewell calls this the vulgar establishment, and be calls the corrected establishment the mean of all the intervals of the tides and transit of half a month. This corrected establishment is consequently the luni-tidal interval corresponding to the day on which the moon passes the meridian at noon or midnight.
2523. Diurnal inequality. - The two tides immediately following one another, or the tides of the day and night, vary, both in height and time of high water at any particular place, with the distance of the sun and moon from the equator. As the vertex of the tide wave always tends to place itself vertically under the luminary which produces it, it is evident that of two consecutive tides that which happens when the moon is nearest the zenith or nadir will be greater than the other; and, consequently, when the moon's declination is of the same denomination as the latitude of the place, the tide which corresponds to the upper transit will be greater than the opposite one, and vice versâ, the difference being greatest when the sun and moon are in opposition, and in opposite tropics. This is called the diURnal. inequality, because its cycle is one day; but it varies greatly at different places, and its laws, which appear to be governed by local circumstances, are very imperfectly known.
2524. Local effects of the land upon the tides. - We have now described the principal phenomena that would take place were the earth a sphere, and covered entirely with a fluid of uniform depth. But the actual phenomena of the tides are infinitely more complicated. From the interruption of the land, and the irregular form and depth of the ocean, combined with many other disturbing circumstances, among which are the inertia of the waters, the friction on the bottom and sides, the narrowness and length of the channels, the action of the wind, currents, difference of atmospheric pressure, \&c., \&c., great variation takes place in the mean times and heights of ligh water at places differently situated.
2525. Velocity of tidal wave. - In the open ocean the crest of tide travels with enormous velocity. If the whole surface were uniformly covered with water, the summit of the tide wave, being mainly governed by the moon, would everywhere follow the moon's transit at the same interval of time, and consequently travel round the earth in a little more than twentyfour hours. But the circumference of the earth at the'equator being about 25,000 miles, the velocity of propagation would therefore be about 1,000 miles per hour. The actual velocity is, perhaps, nowhere equal to this, and is very different at different places. In latitude $60^{\circ}$ south, where there is no interruption from land (excepting the narrow promontory of Patagonia), the tide wave will complete a revolution in a lunar day, and consequently travel at the rate of 670 miles an hour. On examining Mr. Whewell's map of cotidal lines, it will be seen that the great tide wave from the Southern Ocean travels from the Cape of Good Hope to the Azores in about twelve hours, and from the Azores to the southernmost part of Ireland in about three hours more. In the Atlantic, the hourly velocity in some cases appears to be $10^{\circ}$ latitude, or near 700 miles, which is almost equal to the velocity of sound through the air. From the south point of Ireland to the north point of Scotland, the time is eight hours, and the velocity about 160 miles an hour along the shore. On the eastern coast of Britain, and in shallower water, the velocity is less. From Buchanness to Sunderland it is about 60 miles an hour; from Scarborough to Cromer, 35 miles ${ }^{7}$; from the North Foreland to London, 30 miles; from London to Richmond, 13 miles an hour in that part of the river. (Whewell, Phil. Trans. 1833 and 1336.) It is scarcely necessary to remind the reader that the above velocities refer to the transmission of the undulation, and are entirely different from the velocity of the current to which the tide gives rise in shallow water.
2526. Range of the tides. - The difference of level between high and low water is affected by various causes, but chiefly by the configuration of the land, and is very different at different places. In deep inbends of the shore, open in the direction of the tide wave and gradually contracting like a funnel, the convergence of water causes a very great increase of the range. Hence the very high tides in the Bristol Channel, the Bay of St. Malo, and the Bay of Fundy, where the tide is said to rise sometimes to the height of one hundred feet. Promontories, under
certain circumstances, exert an opposite influence, and diminish the magnitude of the tide. The observed ranges are also very anomalous. At certain places on the south-east coast of Ireland, the range is not more than three feet, while at a little distance on each side it becomes twelve or thirteen feet; and it is remarkable that these low tides occur directly opposite the Bristol Channel, where (at Chepstow) the difference between high and low water amounts to sixty feet. In the middle of the Pacific it amounts to only two or three feet. At the London Docks, the average range is about 22 feet; at Liverpool, 15.5 feet; at Portsmouth, $12 \cdot 5$ feet; at Plymouth, also $12 \cdot 5$ feet; at Bristol, 33 feet.
2527. Tides affected by the atmosphere. - Besides the numerous causes of irregularity depending on the local circumstances, the tides are also affected by the state of the atmosphere. At Brest, the height of high water varies inversely as the height of the barometer, and rises more than eight inches for a fall of about half an inch of the barometer. At Liverpool, a fall of onetenth of an inch in the barometer corresponds to a rise in the river Mersey of nbout an inch; and at the London Docks, a fall of one-tenth of an inch corresponds to a rise in the Thames of about seven-tenths of an inch. With a low barometer, therefore, the tide may be expected to be high, and vice vers $\hat{a}$. The tide is also liable to be disturbed by winds. Sir Joln Lubbock states that, in the violent hurricane of January 8. 1839, there was no tide at Gainsborough, which is twenty-five miles up the Trent - a circumstance unknown before. At Saltmarsh, ouly five miles up the Ouse from the Humber, the tide went on ebbing, and never flowed until the river was dry in some places; while at Ostend, toward which the wind was blowing, contrary effects were observed. During strong north-westerly gales the tide marks high water earlier in the Thames than otherwise, and does not give so much water, while the ebb tide runs out late, and marks lower; but upon the gales abating and weather: moderating, the tides put in and rise much higher, while they also run longer before high water is marked, and with more velocity of current: nor do they run out so long or so low.
2528. The trade winds.-The great atmospheric currents thus denominated, from the advantages which navigation has derived from them, as well as other currents arising from the same causes, are produced by the unequal exposure of the atmospheric ocean, which coats the terrestial globe, to the action of
solar heat; the expansion and contraction that air, in common with all gaseous bodies, suffers from increase and diminution of temperature; the tendency which lighter fluids have to rise through heavier ; and, in fine, the rotation of the earth upon its axis.

The regions in which the trades prevail are two great tropical belts extending through a certain limited number of degrees north and south of the line, but not prevailing on the line itself, the atmospherical character of which is an almost constant calm. The permanent currents blow in the northern tropical belt from the north-east, and in the southern from the south-east.

On the other hand, in the higher latitudes of both hemispheres the prevalent atmospheric currents are directed from west to east, redressing, as it were, the disturbance produced by the trades.

To understand the cause of these phenomena, it is necessary to remember that the sun, never departing more than $23 \frac{1}{7}^{\circ}$ from the celestial equator, is vertical daily to different points around the tropical regions, the rotation of the earth bringing these points successively under his disk. The sun, at noon, for places within the tropics, is never so much as $23 \frac{1}{2}^{\circ}$ from the zenith. The intertropical zone from these causes becomes much more intensely heated upon its surface than the parts of either hemisphere at higher latitudes. This heat, reflected and radiated upon the incumbent atmosphere, causes it to expand and become specifically lighter, and it ascends as smoke and heated air do in a chimney. The space it deserts is filled by colder and therefore heavier air, which rushes in from the higher parts of either hemisphere; while the air thus displaced, raised by its buoyancy above its due level, and unsustained by any lateral pressure, flows down towards either pole, and, being cooled in its course and rendered heavier, it descends to the surface of the globe at those upper latitudes from which the air had been sucked in towards the line by its previous ascent.

A constant circulation and an interchange of atmosphere between the intertropical and extratropical regions of the earth would thus take place, the air ascending from the intertropical surface and then flowing towards the extratropical regions, where it descends to the surface to be again sucked towards the line.

But in this view of the effects, the rotation of the earth on its
axis is not considered. In that rotation the atmosphere participates. The air which rises from the intertropical surfaces carries with it the velocity of that surface, which is at the rate of about 1,000 miles an hour from west to east. This velocity it retains to a considerable extent after it has passed to the higher latitudes and descended to the surface, which moving with much less velocity from west to east, there is an effective current produced in that direction equivalent to the excess of the eastward motion of the air over the eastward motion of the surface of the earth. Hence arises the prevalent westward winds, especially at sea, where causes of local disturbance are not frequent, which are so familiar, and one of the effects of which has been, that, while the average length of the trip of good sailing vessels from New York to Liverpool has been only twenty days, that of the trip from Liverpool to New York has been thirty-five days.

By the friction of the earth and other causes, the air, however, next the surface, at length acquires a common velocity with it, and when it is, as above described, sucked towards the line to fill the vacuum produced by the air drawn upwards by the solar heat, it carries with it the motion from west to east which it had, in conamon with the surface, at the higher latitudes. But the surface at the line has a much greater velocity than this from west to east. The surface, therefore, and all objects upon it, are carried against the air with the relativa velocity of the surface and the air, that is to say, with the effect of the difference of their velocities. Since the surface, and the objects upon it, are carried eastward at a much less rate than the air which has just descended from the higher latitudes, they will strike against the air with a force proportional to the difference of their velocities, and this force will have a direction contrary to that of the motion of the surface, that is to say, from east to west.

But it must be considered that this eastward force, due to the motion of the earth's surface, is combined with the force with which the air moves from the extratropical regions towards the line. Thus, in the northern hemisphere, the force eastward is combined with the motion of the air from north to south, and the resultant of these forces is that north-east current which actually prevails; while, for like reasons, south of the line, the motion of the air from south to north, being combined with the force eastward, produces the south-eastern current which prevails south of the line.

Were any considerable mass of air, as Sir J. Herschel observes, to be suddenly transferred from beyond the tropics to the equator, the difference of the rotatory velocities proper to the two situations would be so great, as to produce, not merely a wind, but a tempest of the most destructive violence; and the same observation would be equally applicable to masses of air transported in the contrary direction. But this is not the case; the advance of the air is gradual, and all the while the earth is continually acting on the air, and by the friction of its surface accelerating or retarding its velocity. Supposing its progress to cease at any point, this cause would almost immediately communicate to it the deficient or deprive it of the excessive motion of rotation, after which it would revolve quietly with the earth and be at relative rest. We have only to call to mind the comparative thinness of the coating of air with which the globe is invested (2323) and its immense mass, exceeding, as it does, the weight of the atmosphere at least $100,000,000$ times, to appreciate the absolute command of any extent of territory of the earth over the atmosphere immediately incumbent upon it.

It appears, therefore, that these currents, as they approach the equator on the one side and the other, must gradually lose their force; their exciting cause being the difference of the magnitude of the parallels of latitude; and this difference being evanescent near the line, and very inconsiderable within many degrees of it, the equalising force of the earth above described is allowed to take full effect: but, besides this, the currents directed from the two poles encounter each other at the line, and destroy each other's force. Hence arises the prevalence of those calms which characterise the line.

## CHAP. XI.

## the sun.

2529. Apparent and real magnitude.-Owing to the ellipticity of the earth's orbit, the distance of the sun is subject to a periodical variation, which causes, as has been alrendy explained, n corresponding variation in its apparent magnitude. Its greatest apparent diameter, when in perihelion, is $32^{\prime} 35^{\prime \prime} \cdot 6$, or
$1955^{\prime \prime} \cdot 6$, and its least apparent magnitude, when in aphelion, is $31^{\prime} 30^{\prime \prime}$, or $1890^{\prime \prime}$. Its mean apparent diameter is therefore 1923".
It has been already (2457) shown that the linear value of $1^{\prime \prime}$ at the sun's distance is 466 niles. It follows, therefore, that the actual length of the diameter of the globe of the sun is

$$
1923 \times 466=896,118 \text { miles }
$$

The real magnitude of the sun may also be easily inferred in round numbers from that of the moon. The apparent diameter of the moon being equal in round numbers to that of the sun, and the distance of the sun being 400 times greater than that of the moon, it follows that the real diameter of the sun must be400 times greater than that of the moon. It must, therefore, be

$$
2153 \times 400=861,200 \text { miles }
$$

By methods of calculation susceptible of closer approximation than these, it has been found that the magnitude is 882,000 miles, or $111 \frac{7}{10}$ times the diameter of the earth.
2530. Magnitude of the sun illustrated. - Magnitudes such as that of the sun so far transcend all standards with which the mind is familiar, that some stretch of imagination, and some effort of the understanding, are necessary to form a conception, however imperfect, of them. The expedient which best serves to obtain some adequate idea of them is, to compare them with some standard, stupendous by comparison with all ordinary nagnitudes, yet minute when compared with them.

The earth itself is a globe $\mathbf{8 0 0 0}$ miles in diameter. If the sun be represented by a globe nine feet four inches in diameter, the earth would be represented by a globe an inch in diameter. If the orbit of the moon, which measures 474,000 miles in diameter, were filled by a sun, such a sun might be placed within the actual sun, leaving between their surfaces a distance of 200,000 miles. Such a sun, seen from the earth, would have an apparent diameter little more than half the diameter of the actual sun.
2531. Surface and volume. - Since the surfaces of globes are as the squares, and their volumes as the cubes, of their diameters, it follows that the surface of the sun must be 12,500 times, and its volume 1,400,000 times, greater than those of the earth.

Thus, to form a globe like the sun it would be necessary to roll nearly fourteen hundred thousand globes like the earth into one.

It is found, by considering the bulks of the different planets, that if all the planets and satellites in the solar system were noulded into a single globe, that globe would still not exceed the five-hundredth part the globe of the sun: in other words, the bulk of the sun is five hundred times greater than the aggregate bulk of all the rest of the bodies of the system.
2532. Its mass and density.- By methods of calculation and observation, which will be explained hereafter, the ratio of the mass of matter composing the globe of the sun, to the mass of matter composing the earth, has been ascertained to be 354,936 to 1 .

By comparing this proportion of the quantities of ponderable matter in the sun and earth with their relative volumes, it will be evident that the mean density of the matter composing the sun must be about four times less than the mean density of the matter composing the earth; for although the volume of the sun exceeds that of the earth in the ratio of $1,400,000$ to 1 , its weight or mass exceeds that of the earth in the lesser ratio of 355,000 to 1 , the latter ratio being four times 'less than the former. Bulk for bulk, therefore, the sun is four times lighter than the eartl.

Since the mean density of the earth is 5.67 times that of wnter (2393), it follows that the mean density of the sun is 1.42 times, or about one half, greater than that of water.

From the comparative lightness of the matter composing it, Herschel infers the probability that an intense heat prevails in its interior, by which its elasticity is reinforced, and rendered capable of resisting the almost inconceivable pressure due to its intrinsic gravitation, without collapsing into smaller dimensions.
2533. Form and rotation - axis of rotation. - Although to minds unaccustomed to the rigour of scientific research, it might appear sufficiently evident, without further demonstration, that the sun is globular in its form, yet the more exact methods pursued in the investigation of physics demand that we should find more conclusive proof of the sphericity of the solar orb than the mere fact that the disk of the sun is always circular. It is barely possible, however improbable, that a flat circular disk of
matter, the face of which should always be presented to the carth, might be the form of the sun; and indeed there are a great variety of other forms which, by a particular arrangement of their motions, might present to the eye a circular appearance as well as a globe or sphere. To prove, then, that a body is globular, something more is necessary than the mere fact that it always appears circular.

When a telescope is directed to the sun, we discover upon it certain marks or spots, of which we shall speak more fully presently. We observe that these marks, while they preserve the same relative position with respect to each other, move regularly from one side of the sun to the other. They disappear, and continue to be invisible for a certain time, come into view again on the other side, and so once more pass over the sun's disk. This is an effect which would evidently be produced by marks on the surface of a globe, the globe itself revolving on an axis, and carrying these marks upon it. That this is the case, is abundantly proved by the fact that the periods of rotation for all these marks are found to be exactly the same, viz., about twenty-five days and a quarter, or more exactly $25^{\mathrm{d} \cdot} 7^{\mathrm{h} \cdot} \cdot 48^{\mathrm{m}}$ Such is, then, the time of rotation of the sun upon its axis, and that it is a globe remains no longer doubtful, since a globe is the only body which, while it revolves with a motion of rotation, would always present the circular appearance to the eye. The axis on which the sun revolves is very nearly perpendicular to the plane of the earth's orbit, and the motion of rotation is in the same direction as the motion of the planets round the sun, that is to say, from west to east.
2534. Spots. - One of the earliest fruits of the invention of the telescope was the discovery of the spots upon the sun; and the examination of these has gradually led to some knowledge of the physical constitution of the centre of attraction and the common fountain of light and heat of our system.

When we submit a solar spot to telescopic examination, we discover its appearance to be that of an intensely black irregularly shaped patch, edged with a penumbral fringe. When watched for a considerable time, it is found to undergo a gradual change in its form and magnitude; at first increasing gradually in size, until it attain some definite limit of magnitude, when it ceases to increase, and soon begins, on the contrary, to diminish; and its diminution goes on gradually, until at length, the bright
sides closing in upon the dark patch, it divindles first to a mere point, and finally disappears altogether. The period which elapses between the formation of the spot, its gradual enlargement, subsequent diminution, and final disappearance, is very various. Some spots appear and disappear very rapidly, while others have lasted for weeks and even for months.

The magnitude of the spots, and the velocities with which the matter composing their edges and fringes moves, as they increase and decrease, are on a scale proportionate to the dimensions of the orb of the sun itself. When it is considered that a space upon the sun's disk, the apparent breadth of which is only a minute, actually measures (2457)

$$
466 \times 60=27,960 \text { miles },
$$

and that spots have been frequently observed, the apparent length and breadth of which have exceeded $2^{\prime}$, the stupendous magnitude of the regions they occupy may be easily conceived.

The velocity with which the luminous matter at the edges of the spots occasionally moves, during the gradual increase or diminution of the spot, has been in some cases found to be enormous. A spot, the apparent breadth of which was $90^{\prime \prime}$, was observed loy Mayer to close in about 40 days. Now, the actual linear dimensions of such a spot must have been

$$
466 \times 90=41,940 \text { miles },
$$

and consequently, the average daily motion of the matter composing its edges must have been 1050 miles, a velocity equivalent to 44 miles an hour.
2535. Cause of the spots-physical state of the sun's surface. -Two, and only two, suppositions bave been proposed to explain the spots. One supposes them to be scorix, or dark scales of incombustible matter, floating on the gencral surface of the sun. The other supposes them to be excarations in the luminous matter which coats the sun, the dark part of the spot being a part of the solid non-luminous nucleus of the sun. In this latter hypothesis it is assumed that the sun is a solid nonluminous globe, covered with a coating of a certain thickness of luminous matter.

That the spots are excavations, and not mere black patches on the surface, is proved by the following observations: If we select a spot which is at the centre of the sun's disk, having
some definite form, such as that of a circle, and watch its changes of appearance, when, by the rotation of the sun, it is carried toward the edge, we find, first, that the circle becomes an oval. This, however, is what would be expected, even if the spot were a circular patch, inasmuch as a circle seen obliquely is foreshortened into an oval. But we find that as the spot moves toward the side of the sun's limb, the black patch gradually disappears, the penumbral fringe on the inside of the spot becomes invisible, while the penumbral fringe on the outside of the spot increases in apparent breadth, so that when the spot approaches the edge of the sun, the only part that is visible is the external penumbral fringe. Now, this is exactly what would occur if the spot were an excavation. The penumbral fringe is produced by the shelving of the sides of the excavation, sloping down to its dark bottom. As the spot is carried toward the edge of the sun, the height of the inner side is interposed between the eye and the bottom of the excavation, so as to conceal the latter from view. The surface of the inner shelving side also taking the direction of the line of vision or very nearly, diminishes in apparent breadth, and ceases to be visible, while the surface of the shelving side next the edge of the sun becoming nearly perpendicular to the line of vision, appears of its full breadth.

In short, all the variations of appearance which the spots undergo, as they are carried round by the rotation of the sun, changing their distances and positions with regard to the sun's centre, are exactly such as would be produced by an excavation, and not at all such as a dark patch on the solar surface would undergo.
2536. Sun invested by two atmospheres, one luminous and the other non-luminous.- It may be considered then as proved, that the spots on the sun are excavations; and that the apparent blackness is produced by the fact that the part constituting the dark portion of the spot is either a surface totally destitute of light, or by comparison so much less luminous than the general surface of the sun as to appear black. This fact, combined with the appearance of the penumbral edges of the spots, has led to the supposition, advanced by Sir W. Herschel, which appears scarcely to admit of doubt, that the solid, opaque nucleus, or globe of the sun, is invested with at leust two atmospheres, that which is next the sun being, like our own, non-luminous, and
and the superior one being that alone in which light and heat are evolved; at all events, whether these strata be in the gaseous state or not, the existence of two such, one placed above the other, the superior one being luminous, seems to be exempt from doubt.
2537. Spots may not be black.- We are not warranted in assuming that the black portion of the spots are surfaces really deprived of light, for the most intense artificial lights which can be produced, sucl, for example, as that of a piece' of quicklime exposed to the action of the compound blow-pipe, when seen projected on the sun's disk, appear as dark as the spots themselves; an effect which must be ascribed to the infinitely superior splendour of the sun's light. All that can be legitimately inferred respecting the spots, then, is, not that they are destitute of light, but that they are incomparably less brilliant than the general surface of the sun.
2538. Spots variable. - The prevalence of spots on the sun's disk is both variable and irregular. Sometimes the disk will be completely divested of them, and will continue so for weeks or months; sometimes they will be spread over certain parts of it in profusion. Sometimes the spots will be small, but numerous; sometimes individual spots will appear of vast extent; sometimes they will be manifested in groups, the penumbre or fringes being in contact.

The duration of each spot is also subject to great and irregular variation. A spot has appeared and vanished in less than twenty-four hours, while some have maintained their appearance and position for nine or ten weeks, or during nearly three complete revolutions of the sun upon its axis.

A large spot has sometimes been observed suddenly to crumble into a great number of small ones.
2539. Prevail generally in two parallel zones. - The only circumstance of regularity which can be said to attend these remarkable phenomena is their position upon the sun. They are invariably confined to two moderately broad zones parallel to the solar equator, separated from it by a space several degrees in breadth. The equator itself, and this space which thus separates the macular zones, are absolutely divested of such phenomena.

Thus, for example, in the latter part of 1836 and the beginning of 1837, when a large number of spots became apparent, their position was such as is represented in fig. 728.,
where $\mathrm{E} Q$ represents the sun's equator, and $m m^{\prime} n n^{\prime}$ the northern; and $\boldsymbol{p} \boldsymbol{p}^{\prime} q \boldsymbol{q}^{\prime}$ the southern macular zones.


Fig. 728.
2540. Observations and drawings of M. Capocci.-The astronomers who have within the last quarter of a century made the most important contributions, by their observations and researches, to this subject, are M. Capocci, of Naples, Dr. Pastorff, of Frankfort (on the Oder), and Sir John Herschel.
M. Capocci made a series of observations on the spots which were developed on the sun's disk in 1826, when he recognised most of the characters above described. He observed that, during the increase of the spot from its first appearance as a dark point, the edges were sharply defined, without any indication of the gradually fading awny of the fringes into the dark central spot, or into each other; a character which was again observed by Sir J. Herschel, in 1837. He found, however, that the same character was not maintained when the sides began to contract and the spots to diminish: during that process the edges were less strongly defined, being apparently covered by a sort of luminous atmosphere, which often extended
so completely across the dark nucleus as to throw a thin thread of light across it, after which the spot soon filled up and disappeared. Capocci concurs with Sir W. Herschel in regarding the internal fringes surrounding the dark nucleus as the section of the inferior stratum of the atmosphere which forms the coating of the sun; he nevertheless thinks that there are indications of solid as well as gaseous luminous matter.

Capocci also observed veins of more intensely luminous matter on the fringes converging towards the nucleus of the spot, which he compares to the structure of the iris surrounding the pupil of the eye.

The drawings of the spots observed by M. Capocci, given in Plate V., will illustrate these observations. It is to be regretted, however, that he has not given any measures, either in his memoirs or upon his dravings, by which the position or magnitude of the spots can be determined.
2541. Observations and drawings of Dr. Pastorff, in 1826.Dr. Pastorff commenced his course of solar observations as early as 1819. He observed the spots which appeared in 1826, of which he published a series of drawings, from which we have selected those given in Plate VI. from observations made in September and October, contemporancously with those of M. Capocci. Pastorff gives the position of all, and the dimensions of the principal spots. The numbers on the horizontal and vertical lines express the apparent distances of the spots severally from the limb of the sun in each direction. The actual dimensions may be estimated by observing that $1^{\prime \prime}$ measured at right angles to the visual ray represents 466 miles.
2542. Observations and drawings of Pastorff, in 1828.-In May and June, 1828, a profusion of spots were developed, which were observed and delineated by Pastorff with the most elaborate accuracy.

In Plate VII. fig. 1. represents the positions of the spots as they appeared on the disk of the sun on the 24th of May, at 10 A. M. and figs. 2, 3, 4, and 5, represent their forms and magnitudes. The letters A, B, c, $\mathbf{D}$, in fig. 1. give the positions of the spots marked by the same letters in figs. 2, 3, 4, and 5 .

The dimensions of the principal spot of the group a were stupendous; measured in a plane at right angles to the visual line, the length was $466 \times 100=46,600$ miles, and the breadth $466 \times 60=27,960$ miles.


The apparent breadth of the black bottom of the spot was $40^{\prime \prime}$, which corresponds to an actual breadth of $466 \times 40=18,640$ miles. So that the globe of the efrth might pass through such a hole, leaving a distance of upwards of 5000 miles between its surface and the edges of the chasm.

The superficial dimensions of the several groups of spots observed on the sun on the 24th of May, at 10 A. ar., including the shelving sides, were calculated to be as follows :-


Thus it appears that the principal spot of the group a covered a space equal to little less than five times the entire surface of the earth; and the total area occupied by all the spots collectively amounted to more than twelve times that surface.

On the days succeeding the 24th of May, all the spots were observed to change their form and magnitude from day to day. The great spot of the group $A$, which even when so close to the limb of the sun as $5^{\prime}$, or a sixth of the apparent diameter, still measured $80^{\prime \prime}$ by $40^{\prime \prime}$, was especially rapid in its variation. Its shelving sides, as well as its dark bottom, were constantly varied, and luminous clouds were seen floating over the latter.

After the disappearance of this large spot, and several of the lesser ones of the other groups, a new spot of considerable magnitude made its appearance on the 13th of June, at the eastern edge of the disk, which gradually increased in magnitude for eight days. On the 21 st of June, at half-past 9 in the morning, the disk of the sun exhibited the spots whose position is represented in fig. 6. Plate VII., and whose forms and magnitudes are indicated in figs. 7, 8, 9, and 10.

The chief spot of the group a was nearly circular, and measured $64^{\prime \prime}$ in apparent diameter, the diameter of its dark base being about $30^{\prime \prime}$, which, without allowing for projection, represent actual lengths of $466 \times 64=29,824$ miles, and $466 \times 30=13,980$ miles, the former being above $3 \frac{1}{\frac{1}{2}}$ times, and the latter nearly $1 \frac{3}{4}$
times the earth's diameter. The process of formation of this spot, surrounded by luminous clouds, was clearly seen. The shelving sides were traversed by luminous ravines or rills, converging towards the centre of the black nucleus, and exhibiting the appearance which Capoeci compared to the structure of the iris.

On the same day (the 21st), another large spot, b, fig. 8. appeared, which measured $60^{\prime \prime}$ by $40^{\prime \prime}$.

Pastorff rejects the supposition that these spots were the mere reappearances of those which had been observed on the 24th of May, since they differed essentially in their form, and still more in their entourage.
2543. Observations of Sir J. Herschel in 1837.—Sir J. Herschel, at the Cape of Grood Hope, in 1837, observed the spots which at that time appeared upon the sun, and has given various drawings of them in his Cape Observations. These diagrams do not differ in any respect in their general character from those of Capocci and Pastorff. Sir J. Herschel recognised on this occasion the striated or radiated appearance in the fringes already noticed by Capocci and Pastorff. He thinks that this structure is intimately connected with the physical agency by which the spots are produced.
2544. Boundary of fringes distinctly defined. -It is observed by Sir J. Herschel that one of the most universal and striking characters of the solar spots is, that the penumbral fringe and black spot are distinctly defined, and do not melt gradually one into the other. The spots are intensely black, and the penumbral fringe of a perfectly uniform degree of shade. In some cases there are two nuances of fringe, one lighter than the other; but in that case no intermixture or gradual fading, away of one into the other is apparent. "The idea conveyed," observes Sir J. Herschel, "is more that of the successive withdrawal of veils, - the partial removal of definite films, - than the melting away of a mist or the mutual dilution of gaseous media." This absence of all graduation, this sharply marked suddenness of transition, is, as Sir J. Herschel also notices, entirely opposed to the idea of the easy miscibility of the luminous, non-luminous, and semi-luminous constituents of the solar envelope.
2545. Solar facules and lucules. - Independently of the dark spots just described, the luminous part of the solar disk is not uniformly bright. It presents a mottled appearance, which
may be compared to that which would be presented by the undulated and agitated surface of an ocean of liquid fire, or to a stratum of luminous clouds of varying depth and baving an unequal surface, or the appearance produced by the slow subsidence of some flocculent chemical precipitates in a transparent fluid, when looked at perpendicularly from above. In the space immedintely around the edges of the spots extensive spaces are observed, also covered with strongly defined curved or branching streaks, more intensely luminous than the other parts of the disk, among which spots often break out. These several varieties in the intensity of the brightness of the disk have been differently designated by the terms facules and lucules. These appearances are generally more prevalent and strongly marked near the edges of the disk.
2546. Incandescent coating of the sun gaseous. - Various attempts have been made to ascertain by the direct test of observation, independently of conjecture or hypothesis, the physical state of the luminous matter which coats the globe of the sun, whether it be solid, liquid, or gaseous.

That it is not solid is admitted to be proved conclusively by its extraordinary mobility, as indicated by the rapid motion of the edges of the spots in closing; and it is contended that a fluid capable of moving at the rate of 44 miles per hour cannot be supposed to be liquid, an elastic fluid alone admitting of such a motion.
2547. Test of this proposed by Arago. - Arago has, however, suggested a physical test, by which it appears to be proved that this luminous matter must be gaseous; in short, that the sun must be invested with an occan of flame, since flame is nothing more than aëriform fluid in a state of incandescence (1584). This test proposed is based upon the properties of polarised light.

It has been proved that the light emitted from an incandescent body in the liquid or solid state, issuing in directions very oblique to the surface, even when the body emitting it is not smooth or polished, presents evident marks of polarisation, so that such a body, when viewed through a polariscopic telescope, will present two images in complementary colours (1290). But, on the other hand, no signs of polarisation are discoverable, however oblique may be the direction in which the rays are emitted, if the luminous matter be flame.
2548. Its result. - The light proceeding from the disk of the sun bas been accordingly submitted to this test. The rays proceeding from its borders evidently issue in a direction as oblique as possible to the surface, and therefore, under the condition most favourable to polarisation, if the luminous matter were liquid. Nevertheless, the borders of the double image produced by the polariscope show no signs whatever of complementary colours, both being equally white even at the very edges.

This test is only applicable to the luminous matter at or near the edge of the disk, because it is from this only that the rays issue with the necessary obliquity. But since the sun revolves on its axis (2533), every part of its surface comes in succession to the edge of the disk; and thus it follows that the light emanating from every part of it is in its natural or unpolarised state, even when issuing at the greatest obliquity; and, consequently, that the luminous matter is every where gaseous.
2549. The sun probably invested with a double gaseous coating. - All the phenomena which have been here described, and others which our limits compel us to omit, are considered as giving a high degree of physical probability to the hypothesis of Sir W. Herschel already noticed, in which the sun is considered to be a solid, opaque, non-luminous globe invested by two concentric strata of gaseous matter, the first, or that which rests immediately on the surface, being non-luminous, and the other, which floats upon the former, being luminous gas or flame. The relation and arrangement of these two fluid strata may be illustrated by our own atmosphere, supporting upon it a stratum of clouds. If such clouds were flame, the condition of our atmosphere would represent the two strata on the sun.

The spots in this bypothesis are explained by occasional openings in the luminous stratum by which parts of the opaque and non-luminous surface of the solid globe are disclosed. These partial openings may be compared to the openings in the clouds of our sky, by which the firmament is rendered partially visible.

The apparent diameter of the sun is not, therefore, the diameter of the solid globe, but that of the globe bounded by the surface of the superior or luminous atmosphere; and this circumstance may throw some light upon the small computed mean density of the sun, since considering the high degree of rarefaction which must be supposed to characterise these atmospheric strata, and especially the superior one, the density
of the solid globe will necessarily be much more considerable than the mean density of the volume in which such rarefied matter is ineltudech.
2550. A thind gaseous atmosphere probable. ©- Many circumstances supply indications of the existence of a gaseous amospheve of great extent nbove the luminous matter which foums the visible surface of the sun. It is observed that the brightness of the golar disk is sensibly diminished towards its. bovders. This effect would be produced if it were survounded by an imperfectly transparent atmosphere, whereas if no such gaseous medium surnounded $i t$, the reverse of such an effect might be expected, since then the thickness of the luminous coating measured in the direction of the visual ray would be increased wery sapidly in proceeding from the centre towands the edges. This graduai diminution of brightness in proceeding towards the bonders of the soliar disk has been noticed by many astronomers; but it was most clearly manifested in the sevies of observations made by Sir J. Herschel in $\mathbf{4 8 3} \pi_{\text {, }}$ so conclusively, indeed, ns to leave no doubt whatever of its reality on the mind of that eminent observer. By projecting the image of the sun's disk on white paper loy means of a good achromatic telescope, this diminution of lighit towards the borders, was on that occasion tendered so apparent, that it appeared to him surprising that it should ever have been questioned.
2551. Its earistence indicated by solar eclipses. - But the most conclusive proofs of the existence of such an external atmosphere are supplied by certain phenomenn observed on the occasion of total eclipses of the sun, which will be fully explained in another chapter of this volume.
2552. Sir J. Herschel's faypothesis to explain the solar spots. - The immediate cause of the spots being proved to be oceasional ruptures of centinuity in the ocean of luminous fluid which forms the visible surface of the solar globe, it remains to discover what physical agency can be imagined to produce dynamical phenomena on a scale so yast as bliat which the changes of appeatance of the spots indicate.

The regions of the spots being two zones parallel to the solar equator, manifests a connection between these phenomena and the sun's rotation. The like regions on the earth are the theatres of the trade-minds and anti-trades, and of humicanes.
tornadoes, waterspouts, and other violent atmospheric disturbances. On the planets, the same regions are marked by belts, appearances which are traced by analogy to the same physical causes as those which produce the trades and other atmospheric perturbations prevailing in the tropical and ultratropical zones. Analogy, therefore, suggests the inquiry, whether any physical agencies can exist upon the sun similar to those which produce these phenomena on the earth and planets.

So far as relates to the earth it is certain, and so far as relates to the planets probable, that the immediate physical cause of these phenomena is the inequality of the exposure of the earth's surface to solar radiation, and the consequent inequality of temperature produced in different atmospheric zones, either by the direct or reflected calorific rays of the sun, combined with the earth's rotation (2528). But since the sun is itself the common fountain of hent, supplying to all, and receiving from none, no similar agency can provail upon it. It remains, therefore, to consider whether the play of the physical principles which are in operation on the sun itself, irrespective of any other bodies of the system, can supply an explanation of such a local difference of temperature as, combined with the sun's rotation, would produce any special physical effects on the macular zones by which the phenomena of the spots might be explicable.

The heat generated by some undiscovered agency upon the sun is dispersed through the surrounding space by radiation. If, as may be assumed, the rate at which this heat is generated be the same on all parts of the sun, and if, moreover, the radiation be equally free and unobstructed from all parts of its surface, it is evident that an uniform temperature must be everywhere maintained. But if, from any local cause, the radiation be more obstructed in some regions than in others, heat will accumulate in the former, and the local temperature will be more elevated there than where the radiation is more free.

But the only obstruction to free radiation from the sun must arise from the atmosphere with which to an height so enormous it is surrounded. If, however, this atmosphere have everywhere the same height and the same density, it will present the same obstruction to radiation, and the effective radia-
tion which takes place through it, though more feeble than that which would be produced in its absence, is still uniform.

But since the sun has a motion of rotation on its axis in $25^{\mathrm{d}} \cdot 7^{\mathrm{h}} \cdot 48^{\mathrm{m}}$, its atmosphere, like that of the earth, must participate in that motion and the effects of centrifugal force upon matter so mobile: the equatorial zone being carried round with a velocity greater than 300 miles per second, while the polar zones are moved at a rate indefinitely slower, all the effects to which the spheroidal form of the earth is due will affect this fluid with an energy proportionate to its tenuity and mobility, the consequence of which will be that it will assume the form of an oblate spheroid, whose axis will be that of the sun's rotation. It will flow from the poles to the equator, and its height over the zones contiguous to the equator will be greater than over those contiguous to the poles, in a degree proportionate to the ellipticity of the atmospheric spheroid.

Now, if this reasoning be admitted, it will follow that the obstruction to radiation produced by the solur atmosphere is greatest over the equator, and gradually decreases in proceeding towards either pole. The accumulation of heat, and consequent elevation of temperature, is, therefore, greatest at the equator, and gradually decreases towards the poles, exactly as happens on the earth from other and different physical causes.

The effects of this inequality of temperature, combined with the rotation, upon the solar atmosphere, will of course be similar in their general character, and different only in degree from the phenomena produced by the like cause on the earth. Inferior currents will, as upon the earth, prevail towards the equator, and superior counter-currents towards the poles (2528). The spots of the sun would, therefore, be assimilated to those tropical regions of the earth in which, for the moment, hurricanes and tornadoes prevail, the upper stratum which has come from the equator being temporarily carried downwards, displacing by its force the strata of luminous matter beneath it (which may be conceived as forming an habitually tranquil limit between the opposite upper and under currents), the upper of course to a greater extent than the lower, and thus wholly or partially denuding the opaque surface of the sun below. Such processes cannot be unaccompanied by vorticose motions, which, left to themselves, die away by degrees, and dissipate, with this peculiarity, that their lower portions come to rest more
speedily than their upper, by reason of the greater distance below, as well as the remoteness from the point of action, which lies in a higher region, so that their centre (as seen in our waterspouts, which are nothing but small tornadoes) appears to retreat upwards.*

Sir J. Herschel maintains that all this agrees perfectly with what is observed during the obliteration of the solar spots, which appear as if filled in by the collapse of their sides, the penumbra closing in upon the spot and disappearing afterwards.

It would have rendered this ingenious hypothesis still more satisfactory, if Sir J. Herschel had assigned a reason why the luminous and subjacent non-luminous atmosphere, both of which are assumed to be gaseous fluids, do not affect, in consequence of the rotation, the same spheroidal form which he ascribes to the superior solar atmosphere.
2553. Calorific power of solar rays.-It has been already shown (2217) that the intensity of heat on the sun's surface must be seven times as great as that of the vivid ignition of the fuel in the strongest blast furnace. This power of solar light is also proved by the facility with which the calorific rays pass through glass. Herschel found, by experiments made with an actinometer, that 81.6 per cent. of the calorific rays of the sun penetrate a sheet of plate-glass 0.12 inch thick, and that 85.9 per cent. of the rays which have passed through one such plate will pass through another. $\dagger$
2554. Probable physical cause of solar heat. - One of the most difficult questions connected with the physical condition of the sun, is the discovery of the agency to which its heat is due. To the hypothesis of combustion, or any other which involves the supposition of extensive chemical change in the constituents of the surface, there are insuperable difficulties. Conjecture is all that can be offered, in the absence of all data upon which reasoning can be based. Without any chemical change, heat may be indefinitely generated either by friction or by electric currents, and each of these causes have accordingly been suggested as a possible source of solar heat and light. According to the latter hypothesis, the sun would be a great electric light in the centre of the system.

[^13]$\dagger$ Ibid. p. 133.

## CHAP. XII.

## THE SOLAR SYSTEM.

2555. Perception of the motion and position of surrounding oljects depends upon the station of the observer.-'The facility, clearness, and certainty with which the motions, distances, magnitudes, and relative position and arrangement of any surrounding oljects can be ascertained, depends, in a great degree, upon the station of the observer. The form and relative disposition of the buildings, streets, squares, and limits of a great city, are perceived, for example, with more clearness and certainty if the station of the. observer be selected at the summit of a lofty building, than if it were at any station level with the general plane of the city itself. This advantage attending an elevated place of observation is much augmented if the objects observed are affected by various and complicated motions inter se. A general, who directs the evolutions of a battle, seeks an elevated position from which he can obtain, as far as it is practicable to do so, a bird's eye view of the field; and it was at one time proposed to employ captive balloons by which observers could be raised to a sufficient elevation above the plane of the military manoeurres.

All these difficulties, which arise from the station of the observer being in the general plane of the motions observed, are, however, infinitely aggravated when the station has itself motions of which the observer is unconscious; in such case the effects of these motions are optically transferred to surrounding objects, giving them apparent motions in directions contrary to that of the observer, and apparent velocities, which vary with their distance from the observer, increasing as that distance diminishes, and diminishing as that distance increases.

All such effects are imputed by the unconscious observer to 80 many real motions in the objects observed; and, being mixed up with the motions by which such objects themselves are actually affected, an inextricable confusion of changes of position, apparent and real, results, which involves the observer in
obscurity and difficulty, if his purpose be to ascertain the actual motions and relative distances and arrangement of the objects around him.
2556. Peculiar difficulties presented by the solar system.All these difficulties are presented in their most aggravated form to the observer, who, being placed upon the earth, desires to ascertain the motions and positions of the bodies composing the solar system. These bodies all move nearly in one plane, and from that plane the observer never departs: he is, therefore, deprived altogether of the facilities and ndvantages which a bird's eye view of the system would afford. He is like the commander who can find no station from which to view the evolutions of the army against which he has to contend, except one upon a dead level with it, but with this great addition to his embarrassment, that his own station is itself subject to various changes of position, of which he is altogether unconscious, and which he can only ascertain by the apparent changes of position which they produce among the objects of his observation and inquiry.

The difficulties arising out of these circumstances obstructed for ages the progress of astronomical science. The persuasion so universally entertained of the absolute immobility of the earth, was not only a vast error itself, but the cause of numerous other errors. It misled inquirers by compelling them to ascribe motion to bodies which are stationary, and to ascribe to bodies not stationary motions altogether different from those with which they are really affected.
2557. Two methods of exposition.-There are two methods by which a knowledge of the motions and arrangement of the solar system may be imparted. We may first explain its apparent motions and changes as actually seen from the earth, and deduce from them, combined with our knowledge of the motions which affect the earth itself, the real motions of the other bodies of the system ; or we may, on the contrary, first explain the real motions of the entire system as they are now known, and then show how they, combined with the motion of the earth, produce the apparent motions.
The former method would perhaps be more strictly logical, since it would proceed from observed facts as data to the con- . clusions to be deduced from them; while the other method first assumes, as known, that which we desire to ascertain, and then
shows that it is compatible with all the observed phenomena. Nevertheless, for elementary purposes, such as those to which this volume is directed, the latter method is preferable; we shall, therefore, explain the motions and relative arrangement of the bodies of the system, showing, as we proceed, how their motions cause the phenomena which are observed in the heavens.
2558. General arrangement of bodies composing the solar system.-The solar system is an assemblage of great bodies, globular in their form, and analogous in many respects to the earth. Like the earth, they revolve round the sun as a common centre in orbits which do not differ much from circles: all these orbits are very nearly, though not exactly, in the same plane with the annual orbit of the earth, and the orbital motions all take place in the same direction as that of the earth.

Several of these bodies are the centres of secondary systems, another order of smaller globes revolving round them respectively in the same manner and according to the same dynamical laws as govern their own motion round the sun.
2559. Planets pirimary and secondary.-This assemblage of globes which thus revolve round the sun as a common centre, of which the earth itself is one, are called planets; and the secondary globes, which revolve round several of them, are called secondary planets, satellites, or moons, one of them being our moon, which revolves round the earth as the earth itself revolves round the sun.
2560. Primary carry with them the secondary round the sun. -The primary planets which are thus attended by satellites, Carry the satellites with them in their orbital course; the common orbital motion, thus shared by the primary planet with its secondaries, not preventing the harmonious motion of the secondaries round the primary as a common centre.
2561. Planetary motions to be first regarded as circular, uniform, and in a common plane. - It will be conducive to the more easy and clear comprehension of the phenomena to consider, in the first instance, the planets as moving round the sun as their common centre in exactly the same plane, in exactly circular orbits, and with motions exactly uniform. None of these suppositions correspond precisely with their actual motions; but they represent them so very aearly, that nothing short of very precise means of observation and measurement is capable of detecting their departure from them. The motions
of the system thus understood will form a first and very close approximation to the truth. The modifications to which the conclusions thus established must be submitted, so as to allow for the departures of the several planets from the plane of the ecliptic, of their orbits from exact circles, and of their motions from perfect uniformity, will be easily introduced and comprehended. But even these will supply only a second approximation. Further investigation will show series after series of corrections more and more minute in their quantities, and requiring longer and longer periods of time to manifest the,effects to which they are directed.
2502. This method follows the order of discovery.- As to the rest, in following this order, proceeding from first suppositions, which are only rough approximations to the truth, to others in more exact accordance with it, we, in fact, only follow the order of discovery itself, by which the laws of nature were thus gradually, slowly, and laboriously evolved from masses of obscure and inexact hypotheses.
2563. Inferior and superior planets. - The concentric orbits of the planets then are included one within another, augmenting successively in their distances from the centre, so as in general to leave a great space between orbit and orbit. The third planet, proceeding from the sun outwards, is the earth. Two orbits, those of the planets called Mercury and Venus, are therefore included within the earth's orbit, which itself is included within the orbits of all the other planets.

Those planets which are included within the orbit of the earth are called inferior planets, and all the others are called suferior planets.
2564. Periods. - The periodic time of a planet is the interval between two successive returns to the same point of its orbit, or, in short, the time it takes to make a complete revolution round the sun. It is found by observation, as might be naturally expected, that the periodic time increases with the orbit, being much longer for the more distant planets; but, as will appear hereafter, this increase of the periodic time is not in the same proportion as the increase of the orbit.
2565. Synodic motion. - The motion of a planet considered merely in relation to that of the earth, without reference to its actual position in its orbit, is called its synodic motion.
2566. Geocentric and heliocentric motions. - The position
and motion of a planet as they appear to an observer on the earth are called Gieocentric*; and as they would appear if the observer were transferred to the sun, are called heliocentric.*
2567. Heliocentric motion deducille from geocentric. - Although the apparent motions cannot be directly observed from the sun as a station, it is a simple problem of elementary geometry to deduce them from the geocentric motions, combined with the relative distances of the earth and planet from the sun ; so that we are in a condition to state with perfect clearness, precision, and certainty, all the phenomena which the motions of the planetary system would present, if, instead of being seen from the moveable station of the earth, they were witnessed from the fixed central station of the sun.
2568. Relation between the daily heliocentric motion and the period. - If the mean daily heliocentric motion of a planet be expressed by.a, and the periodic time in days by $P$, it is evident that $a \times P$ will express $360^{\circ}$, providing that $a$ is expressed in degrees. Thus we shall have

$$
a^{\circ} \times \mathbf{P}=360^{\circ} ;
$$

and hence it follows, that if either the period $\mathbf{P}$ or the daily heliocentric motion be given, the other may be computed; for we shall have

$$
a^{\circ}=\frac{360^{\circ}}{P}, \quad P=\frac{360^{\circ}}{a^{\circ}} .
$$

It is usual to express $a$, not in degrees, but in seconds. In that case it will be necessary to reduce $360^{\circ}$ also to seconds. We shall therefore have (2292)

$$
a^{\prime \prime}=\frac{1296000}{P}, \quad P=\frac{1296000}{a^{\prime \prime}}
$$

2569. Daily synodic motion. - The daily synodic motion is the angle by which the planet departs from or approaches to the earth in its course round the sun. Thus if a express in degrees the angle formed by two lines drawn from the sun, one to the planet and the other to the earth, the daily synodic motion will be the daily increase or decrease of a produced by

[^14]the motions of the earth and planet. Now, since the earth and planet both move in the same direction round the sun with different angular motions, the increase or decrease of a will be the difference of their motions. Thus, if the planet move through $3^{\circ}$ while the earth moves through $1^{\circ}$ per day, it is evident that the daily increase or decrease of A will be $2^{\circ}$; and if, while the earth moves through $1^{\circ}$, the planet move through $\frac{1}{2}^{\circ}$, the daily increase or decrease of $A$ will be $\frac{1}{2}^{\circ}$.

If we express, therefore, the daily synodic motion of a planet by $\sigma$, its daily heliocentric motion by $a$, and that of the earth by $\varepsilon$, we shall have, for an inferior planet, whose angular motion exceeds that of the earth,

$$
\sigma=a-\varepsilon ;
$$

and for a superior planet, whose angular motion is slower,

$$
\sigma=\varepsilon-a .
$$

2570. Relation between the synodic motion and the period.Since the daily heliocentric motions are found by dividing $360^{\circ}$ by the periods, we shall have for an inferior planet

$$
\sigma^{\circ}=\frac{360^{\circ}}{P}-\frac{360^{\circ}}{E}, \quad \sigma^{\prime \prime}=\frac{1296000}{P}-\frac{1296000}{E} ;
$$

and for a superior planet

$$
\sigma^{\circ}=\frac{360^{\circ}}{E}-\frac{360^{\circ}}{P}, \quad \sigma^{\prime \prime}=\frac{1296000}{E}-\frac{1296000}{P}
$$

2571. Elongation. - The geocentric position of a planet in relation to the sun, or the angle formed by lines drawn from the earth to the sun and planet, is called the elongation of the planet, and is east or west, according as the planet is at the one side or the other of the sun.
2572. Conjunction. - When the elongation of a planet is nothing, it is said to be in conjunction, being then in the same direction as the sun when seen from the earth.
2573. Opposition. - When the elongation of a planet is $180^{\circ}$, it is said to be in opposition, being then in the quarter of the heavens directly opposite to the sun.

It is evident that a planet which is in conjunction passes the meridian at or very near noon, and is therefore above the horizon during the day, and below it during the night.

On the other hand, a planet which is in opposition passes
the meridian at or very near midnight, and therefore is above the horizon during the night, and below it during the day.
2574. Quadrature.-A planet is said to be in quadrature when its elongation is $90^{\circ}$.

In this position it passes the meridian at about six o'clock in the morning, when it has western quadrature, and six o'clock in the evening, when it has eastern quadrature. It is, therefore, above the horizon on the eastern side of the firmament during the latter part of the night in the former case, and on the western side during the first part of the night in the latter case. It is a morning star in the one case, and an evening star in the other.
2575. Synodic period. - The interval which elapses between two similar elongations of a planet is called the synodic period of the planet. Thus, the interval between two successive oppositions, or two successive eastern or western quadratures, is the synodic period.
2576. Inferior and superior conjunction. - A superior planet can never be in conjunction except when it is placed on the side of the sun opposite to the earth, so that a line drawn from the earth through the sun would, if continued beyond the sun, be directed to the planet. An inferior planet is, however, also in conjunction when it crosses the line drawn from the earth to the sun, between the earth and sun. The former is distinguished as superior and the latter as inferior conjunction.

As inferior conjunction necessarily supposes the planet to be nearer to the sun than the earth, and opposition supposes it to be more distant, it follows that inferior planets alone can be in inferior conjunction, and superior planets alone in opposition.
2577. Relation between the periodic time and synodic period. -Since the synodic period is the interval between two similar positions of the earth and planet, the one must gain upon the other $360^{\circ}$ in such interval. To perceive this, let s, $f i g .729$. be the sun, $P^{\prime}$ the earth, and $P$ an inferior planet when in inferior conjunction, the common direction of the motions of both being indicated by the arrows. Leaving this position, the angular motion of the planet round a being the more rapid, it gains upon the earth as the minute-hand of a watch gains upon the hour-hand; and when, after making a complete revolution, the planet returns to the point $P$, the earth will have advanced from $P^{\prime}$ in the direction of the arrow, so that before
the next inferior conjunction oan take place the planet must pass beyond $P$, and overtake the earth. Let $p^{\prime}$ be the position


Fig. 729.
of the earth when this takes place, the planet being then att $p$. It is evident, therefore, that in the interval between two successive inferior conjunctions the planet describes round the sun $360^{\circ}$, together with the angle $p$ s $p$, which the earth has described in the same interval. If this angle, described by the earth in the synodic period, be called $A$, the angle described by the planet in the same interval will be $360^{\circ}+\mathrm{A}$.

If $p$ represent the place of the earth, and $p^{\prime}$ that of a superior planet in opposition, the earth leaving $P$, and having a more rapid angular motion round s, will get before the planet as the minute-hand gets before the hour-hand, and when it returns to $p$ the planet will have advanced in its orbit, so that before another opposition can take place the earth must overtake it, If this happen when the planet is at $p^{\prime}$, the earth in the synodic period will have made an entire revolution, and have in addition described the angle $p \mathbf{s} \mathbf{P}$, or $A$, which the planet has described. Thus, while a expresses the angle which the superior planet describes in the synodic period, $360^{\circ}+$ a expresses the angle described by the earth in the same time.

If $\sigma$, as before, express the daily synodic motion of the planet, we shall have

$$
\sigma^{\circ}=\frac{360^{\circ}}{T} \quad \sigma^{\prime \prime}=\frac{1296000}{T}
$$

and consequently

$$
\mathrm{T}=\frac{360^{\circ}}{\sigma^{\circ}}=\frac{1296000}{\sigma^{\prime \prime}}
$$

Thus, when the daily synodic motion is given, the synodic time can be computed, and vice versâ.

But since $\sigma=a-\varepsilon, \sigma=\varepsilon-a$ (2569), according as the planet is inferior or superior, we shall have for an inferior planet

$$
\frac{36 \delta^{\circ}}{\mathrm{T}}=\frac{360^{\circ}}{\mathrm{P}}-\frac{360^{\circ}}{\mathrm{E}}
$$

and therefore -

$$
\frac{1}{T}=\frac{1}{P}-\frac{1}{E}
$$

for an inferior planet, and

$$
\frac{360^{\circ}}{T}=\frac{360^{\circ}}{\mathrm{E}}-\frac{360^{\circ}}{\mathrm{P}}
$$

and therefore

$$
\frac{1}{T}=\frac{1}{E}-\frac{1}{P}
$$

for a superior planet, showing in each case the arithmetical relation between $\mathbf{T}, \mathbf{P}$, and $\mathbf{E}$.
2578. The apparent motion of an inferior planet. - To deduce the apparent from the real mo-


Fig. 730. tion of an inferior planet, let $\mathbf{e}, \mathrm{fig}$. 730., be the place of the earth, $s$ that of the sun, and $c b c^{\prime} e$ the orbit of the planet; the direction of the planet's motion being shown by the arrows, the positions which it assumes successively are indicated at $c^{\prime}, a^{\prime}, e, a$, $c, b, e^{\prime}$, and $b^{\prime}$. Since the earth moves round the sun in the same direction as the planct, the apparent motion of the sun $s$ will be from the left to the right of an observer looking from $E$ at $s$; and since this motion is always from west to east, the planet will be west of the sun when it is any where in the semicircle $c e^{\prime} b^{\prime} c^{\prime}$, and east of it when it is any where in the semicircle $c^{\prime} a^{\prime} e a c$.

The elongation (2571) of the planet, being the angle formed by lines drawn to the sun and planet from the earth, will always be east when the planet is in the semicircle $c^{\prime} e c$, and west when in the semicircle $\boldsymbol{c}^{\prime} e^{\prime} \boldsymbol{c}$.

The planet will have its greatest elongation east when the line $\mathrm{E} e$ directed to it from the earth is a tangent to its orbit, and in like manner its greatest elongation west when the line $E e^{\prime}$ is a tangent to the orbit.

In these positions the angle $s e \mathrm{E}$, or $s e^{\prime} \mathrm{E}$, at the planet is $90^{\circ}$, and consequently the elongation and the angle es E , or $e^{\prime} s \mathrm{E}$ at the sun, taken together, make up $90^{\circ}$.

It appears, therefore, that the greatest elongation of an inferior planet must be less than $90^{\circ}$.

If the earth were stationary the real orbital motion of the planet would give it an apparent motion alternately east and west of the sun, extending to a certain limited distance, resembling the oscillation of a pendulum. While the planet moves from $c^{\prime}$ to $e$, it will appear to depart from the sun eastward, and when it moves from $e$ to $c$, it will appear to return to the sun; the elongation in the former case constantly increasing till it attain its maximum eastward, and in the latter constantly decreasing till it become nothing. It is to le observed, however, that the orbital arc $c^{\prime} e$ being greater than $e c$, the time of attaining the greatest eastern elongation after superior conjunction is greater than the time of returning to the sun from the greatest elongation to inferior conjunction.

After inferior conjunction, while the planet passes from $c$ to $e^{\prime}$, its elongation constantly increases from nothing at $c$ to its maximum west at $e^{\prime}$; and when the planet moves from $e^{\prime}$ to $c^{\prime}$, it again decreases until it becomes nothing at superior conjunction. Since the orbital arcs, $c e^{\prime}$ and $e^{\prime} c^{\prime}$, are respectively equal to $c e$ and $c^{\prime} e$, it follows, that the interval from inferior conjunction to the greatest elongation west, is equal to the interval from the greatest elongation east to inferior conjunction. In like manner, the interval from superior conjunction to the greatest elongation east, is equal to the interval from the grentest elongation west to superior conjunction.

The oscillation of the planet alternately east and west is therefore made through the same angle-that is, the angle e $e e^{\prime}$, included by tangents drawn to the planet's orbit from the earth; but the apparent motion from the greatest elongation west to
the greatest elongation east is slower than the apparent motion from the greatest elongation east to the greatest elongation west, in the ratio of the length of the orbitual arcs ec'ed to ece'.

The planet being included within the orbit of the earth, the orbital motion of the earth will give it an apparent motion in the ecliptic in the same direction as the apparent motion of the sun ; but since the apparent motion of a visible object increases as its distance decreases, and vice versâ, and since the planet being at a considerable distance from the centre of the earth's orbit, the distance of the earth from it is subject to variation, the apparent motion imparted to the planet by the earth's orbital motion will be subject to a proportionate variation, being greatest when the planët is in inferior conjunction, and least when in superior conjunction.

The apparent motion of the planet, as it is projected upon the firmament by the visual ray, arises from the combired effect of its own orbital motion and that of the earth. Now it is evident from what has been just explained, that the effect of the planet's own motion is to give it an apparent motion from west to east while passing from its greatest elongation west through superior conjunction to its greatest elongation east, and a contrary apparent motion from east to west while passing from its greatest elongation east to its greatest elongation west through inferior conjunction.

But since, in all positions, the effect of the orbital motion of the earth is to give the planet an apparent motion directed from west to east, both causes combine to impart to it this apparent motion while passing from its western to its eastern elongation through superior conjunction. On the other hand, the effect of the orbital motion of the planet being an apparent motion from east to west in passing from its eastern to its western elongation through inferior conjunction, while, on the contrary, the earth's motion imparts to it an apparent motion from west to east, the actual apparent motion of the planet, resulting from the difference of these effects, will be westward or eastward according as the effect of the one or the other predominates, and the planet will be stationary when these opposite effects are equal.

In leaving the greatest eastern elongation the effect of the earth's motion predominates, and the apparent motion of the planet continues to be, as before, eastward. As, in approaching inferior conjunction, the direction of the planet's motion be-
comes more and more transverse to the visual line, and the distance of the planet decreases, the effect of the planet's motion increasing becomes, at length, equal to the effect of the earth's motion, and the planet then becomes stationary. This takes, place at a certain elongation east. After this, the effect of the planet's motion predominating, the apparent motion becomes westward, and this westward motion continues through inferior conjunction, until the planet acquires a certain elongation west, equal to that at which it became previously stationary. Here the effects becoming again equal, the planet is again stationary, after which, the effect of the earth's motion predominating, the apparent motion becomes eastward, and continues so to the greatest elongation west, after which, as before, both causes combine in rendering it eastward.
2579. Direct and retrograde motion. - When a planet appears to move in the direction in which the sun appears to move, its apparent motion is said to be DREECT; and when it appears to move in the contrary direction, it is said to be retrogralme.

From what has been explained above, it appears that the apparent motion of an inferior planet is always direct, except within a certain elongation east and west of inferior conjunction, when it is retrograde.

The extent of this are of retrogression depends on the relative distances, and consequent relative orbital velocities, of the eartl and planet.
2580. Apparent motion as projected on the ecliptic.-From what has been here explained the apparent motion of the planet on the firmament will be easily understood. Let abefr, fig. 731., represent the ecliptic in which the planet is at present supposed to move. While passing from its western to its eastern elongation it appears to move in the same direction as the sun, from A towards B. As it approaches B its apparent motion eastward becomes gradually slower until it stops altogether at $\mathbf{p}$, and becomes, for a short interval, stationary; it then moves westward, returning upon its course to $c$, where it again becomes stationary; after which it again moves eastward, and continues to move in that direction till it arrives at a certain point $D$, where it again becomes stationary; and then, returning upon its course, it again moves westward to E , where it again becomes stationary; after which it again clianges its direction and moves eastward to F, where, after being stationary, it turns westward, and so on.

- The middle points of the arcs $B C, D E, F G, \& c$. of retrogression are those at which the planet is in inferior conjunction; and the


Fig. 731.
middle points of the arcs CD, EF, GH, \&c: of progression are those at which the planet is in superior conjunction.
2581. Origin of the term "planet."-These complicated and apparently irregular movements, by which the planets are distinguished from all other celestial objects, suggested to the ancients, whose knowledge of astronomy was too imperfect to enable them to trace such motions to fixed and regular laws, the name planet, from the Greek word $\pi \lambda \alpha \nu \dot{\eta} r \eta s$ (planetes), wanderer.
2582. Apparent motion of a superior planet,-To deduce the apparent motion of a superior planet from the real orbital motions of the earth and the planet, let s , fig. 732., be the place of the sun, $P$ that of the planet, and $E E^{\prime} E^{\prime \prime \prime} E^{\prime \prime}$ the orbit of the earth included within that of the planet, the direction of the motions of the eartl and planet being indicated by the arrows.

When the earth is at $E^{\prime \prime \prime}$, the sun $s$ and planet $P$ are in the same visual line, and the planet is consequently in conjunction.

When the earth moves to $e^{\prime}$, the elongation of the planet west of the sun is $s e^{\prime} \mathbf{r}$. This elongation increasing as the earth moves


Fig. 732.
in its orbit, becomes $90^{\circ}$ at $\varepsilon^{\prime}$, when the visual direction $\varepsilon^{\prime} p$ of the planet is a tangent to the earth's orbit, and the planet is then in its western quadrature.

While the earth continues its orbital motion to $e^{\prime \prime \prime}$, the elongation west of the sun continues to increase, and at length, when the earth comes to the position E , it becomes $180^{\circ}$, and the planet is in opposition.

After passing E , when the earth moves towards $e^{\prime \prime}$, the elongation of the planet is east of the sun, and is less than $180^{\circ}$, but greater than $90^{\circ}$. As the earth continues to advance in its orbit, the elongation decreasing becomes $90^{\circ}$ when, at $\mathbf{E}^{\prime \prime}$, the visual direction of the planet is a tangent to the earth's orbit. The planet is then in its eastern quadrature.

As the earth moves from $\mathbf{E}^{\prime \prime}$ to $\mathbf{E}^{\prime \prime \prime}$, the elongation, being still east, constantly decreases until it becomes nothing at $\mathrm{E}^{\prime \prime \prime}$, where the planet is in conjunction.
2583. Direct and retrograde motion.-If the planet were immoveable, the effect of the earth's motion would be to give it an oscillatory motion alternately eastward and westward through the angle $\mathbf{E}^{\prime} \mathbf{P E}^{\prime \prime}$, which the earth's orbit subtends at the planet. * While the earth moves from $\mathbf{E}^{\prime \prime}$ through $\mathbf{E}^{\prime \prime \prime}$ to $\mathrm{E}^{\prime}$, the planet would appear to move eastroard through the angle $\mathrm{E}^{\prime} \mathrm{PE}^{\prime \prime}$, and
while the earth moves from $\mathbf{E}^{\prime}$ through $\mathbf{E}$ to $\mathrm{E}^{\prime \prime}$, it would appear to move westioard through the same angle.

Thus the effect of the earth's motion alone is to make the planet appear to move from east to west and from west to east alternately through a certain arc of the ecliptic, the length of which will depend on the relation between the distances of the earth and planet from the sun, the arc being in fact measured - by the angle which the earth's orbit subtends at the planet, and, consequently, this angle of apparent oscillation will decrease in the same ratio as the distance of the planet increases.

The times in which the two oscillations eastward and westward would be made are not equal, the time from the western to the eastern quadrature being less than the time from the eastern to the western quadrature in the ratio of the orbital $\operatorname{arc} \mathrm{E}^{\prime} \mathrm{EE}^{\prime \prime}$ to the arc $\mathrm{E}^{\prime \prime} \mathrm{E}^{\prime \prime \prime} \mathrm{E}^{\prime}$.

It is evident that the more distant the planet $P$ is the less unequal these arcs, and, consequently, the less unequal the intervals between quadrature and quadrature will be.

But, meanwhile, the earth being included within the orbit of the planet, the effect of the planet's orbital motion will be to give it an apparent motion in the ecliptic always in the same direction in which the sun would move when in the same place, and therefore always eastward or direct.

This apparent motion, though always direct, is not uniform, since it increases in the same ratio as the distance of the earth from the planet decreases, and vice versâ. This apparent motion thus due to the planet's own orbital motion is, therefore, greater from western to eastern quadrature than from eastern to western quadrature.

From eastern to western quadrature, through conjunction, the apparent motion of the planet is direct, because both its own orbital motion and that of the earth comoine to render it so. From western quadrature, as the planet approaches opposition, the effect of the earth's motion is to render the planet retrograde, while the effect of its own motion is to render it direct. On leaving quadrature the latter effect predominates, and the apparent motion is direct; but at a certain elongation, before arriving at opposition, the effect of the earth's motion increasing becomes equal to that of the planet, and, neutralising it, renders the planet stationary; after which, the effect of the earth's motion predominating, the planet becomes retrograde, and con-
tinues so until it acquires an equal elongation east, when it again becomes stationary, and is afterwards direct, and continues so.
2584. Apparent motion prajected on the ecliptic.-Let A, fig. 733., represent the place of a superior planet when moving fron:


Fig. 733,
its western quadrature towards conjunction, its apparent motion being then direct. Let $\boldsymbol{b}$ be the point where it becomes stationary after its eastern quadrature; its apparent motion then becoming retrograde, it appears to return upon its course and moves westward to c, where it again becomes stationary; after which it again returns on its course and moves direct or eastward, and continues so until it arrives at a certain point $d$ after its western quadrature, when it again becomes stationary, and. then again retrogrades, moving through the are DE , which will be equal to $\boldsymbol{B C}$; after which it will again become direct, and so on.

The places of the planet's opposition are the middle points of the arcs of retrogression bC, De, FG, \&c.; and the places of conjunction are the middle points of the arcs of progression CD, EF, GH, \&c.

It is evident, therefore, that the apparent motion of a superior planet projected on the ecliptic is, in all respects, similar to that of an inferior planet, the difference being, that in the latter the middle point of the arc of retrogression corresponds to infet rior conjunction, while in the former it corresponds to opposition.

It will be apparent from what has been explained that the angle which the earth gains upon the planet in the interval between $s$ western and eastern quadratures is the angle which the earth's orbit subtends at the planet, or twice the annual parallax (2442) of the planet.
2585. Conditions under which a planet is visible in the absence of the sun. - Yt is erident that to be visible in the absence of the sun a celestial object must be so far elongated from that luminary as to be above the horizon before the commencement of the morning twilight or after the end of the evening twilight. One or two of the planets have, nevertheless, an apparent magnitude so considerable, and a lustre so intense, that they are sometimes seen with the naked eye, even before sunset or after sunrise, and may, in some cases, be seen with a telescope when the sun has a considerable altitude. In general, however, to be visible without a telescope, a planet must have an elongation greater than $30^{\circ}$ to $35^{\circ}$.
2586. Evening and morning star.-Since the inferior planets can never attain so great an elongation as $90^{\circ}$, they must always pass the meridian at an interval considerably less than six hours before or after the sun. If they have eastern elongation they pass the meridian in the afternoon, and are visible above the horizon after sunset, and are then called evening stars. If they have western elongation they pass the meridian in the forenoon, and are visible above the eastern horizon before sunrise, and are then called morning stars.
2587. Appearance of superior planets at various elongations. -A superior planet, having every degree of elongation east and west of the sun from $0^{\circ}$ to $180^{\circ}$, passes the meridian during its synodic period at all hours of the day and night. Between conjunction and quadrature, its elongation east or west of the sun being less than $90^{\circ}$, it passes the meridian earlier than six o'clock in the afternoon in the former case, and later than six o'clock in the forenoon in the latter case, being, like an inferior planet, an evening star in the former and a morning star in the latter case.

At eastern quadrature it passes the meridian at six in the evening, and at western quadrature at six in the morning, appearing still as an evening star in the former and as a morning star in the latter case.

Between the eastern quadrature and opposition, the elongation being more than $90^{\circ}$ east of the sun, the planet must pass the meridian between six o'clock in the evening and midnight, and is therefore visible from sunset until some hours before sunrise. Between western quadrature and opposition, the elongation being more than $90^{\circ}$ west of the sun, the planet must pass the meridian at some time between midnight and six o'clock in the morning, and it is therefore visible from some hours after sunset until sunrise.

At opposition the planet passes the meridian at midnight, and is therefore visible from sunset to sunrise.
2588. To find the periodic time of the planet. -There are several solutions of this problem, which give results having different degrees of approximation to the exact value of the quantity sought.
2589. $]^{\circ}$. By means of the synodic period.-If the synodic period t be ascertained by observation, we shall have for an inferior planet (2577),

$$
\frac{1}{T}=\frac{1}{P}-\frac{1}{E},
$$

and consequently

$$
\frac{1}{P}=\frac{1}{E}+\frac{1}{T} ;
$$

and for a superior planet

$$
\frac{1}{T}=\frac{1}{E}-\frac{1}{P}
$$

and therefore

$$
\frac{1}{P}=\frac{1}{E}-\frac{1}{T} .
$$

In each case, therefore, $\mathbf{P}$ may be found, e and t being known.
This method gives a certain approximation to the value of the period; but the synodic time not being capable of very exact appreciation by observation, the method does not supply extremely accurate results.
2590. $2^{\circ}$. By observing the transit through the nodes.-The
periodic time may also be determined by observing the interval between two successive passages of the planet through the plane of the ecliptic.

It has been already stated that, although the planets move nearly in the plane of the ecliptic, they do not exactly do so. Their paths are inclined at very small angles to the ecliptic, and they consequently must pass from one side to the other of the plane of the earth's orbit twice in each revolution. If the moments of thus passing through the plane of the earth's orbit on the same side of the sun be observed twice in immediate succession, the interval will be the periodic time.

Owing to the very small inclination of the orbits in general, it is impossible to ascertain with great precision the time of the centre of the planet passing through the ecliptic, and therefore this method is only approximation.
2591. $3^{\circ}$. By comparing oppositions or conjunctions having the same sidereal place. -The periodic time of a planet being approximately found by either of the preceding methods, it may be rendered more exact by the following.

When a planet is in superior conjunction or in opposition its place in the firmament is the same, whether viewed from the earth or from the sun. Now, if two oppositions'or conjunctions separated by a long interval of time be found, at which the apparent place of the planet in the firmament is the same, it may be inferred that a complete number of revolutions must have taken place in the interval. Now the periodic time being found approximately by either of the methods already explained, it will be easy to find by it how many revolutions of the planet must have taken place between the two distant oppositions. If the periodic time were known with precision, it would divide the interval in question without a remainder; but being only approximate it divides it with a remainder. Now the nearest multiple of the approximate period to the interval between the two oppositions will be that multiple of the true period which is exactly equal to the interval. The division of the interval by the number thus determined will give the more exact value of the period.
2592. $4^{\circ}$. By the daily angular motion. - The daily angular geocentric motion may be observed, and the heliocentric motion thence computed. If the mean heliocentric daily motion $a^{\prime \prime}$ can be olbtained by means of a sufficient number
of observations, the period will be given by the formula (2568),

$$
P=\frac{1296000}{a^{\prime \prime}} .
$$

2593. To find the distances of the planets from the sun.One of the most obvious methods of solving this problem is by observing the elongation of the planet, and computing, as always may be done, the angle at the sun. Two angles of the triangle formed by the earth, sun, and planet, will thus be known, and a triangle may be drawn of which the sides will be in the same proportion as those of the triangle in question. 'Che ratio of the earth's distance from the sun to the planet's distance from the sun wiil thus become known (2296); and as the earth's distance has been already ascertained, the planet's distance may be immediately computed.

Other methods of determining the distances will be explained hereafter.
2594. Phases of a planet. - While a planet revolves, that hemisphere which is presented to the sun is illuminated, and the other dark. But since the same hemisphere is not presented generally to the earth, it follows that the visible hemisphere of the planet will consist of a part of the dark and a part of the enlightened hemisphere, and, consequently, the planet will exhibit phases, the varieties and limits of which will depend upon the relative directions of the lines drawn from the earth and sun to the planet. It is evident that the section of the planet at right angles to a line drawn from the suif to its centre is the base of its enlightened hemisphere, while the section at right angles to a line drawn from the earth to its centre, is the base of its visible hemisphere. The less the angle included between these lines is, the greater will be the por-


Fig. 734. tion of the visible hemisphere which is enlightened.

Let $p, f i g .734$. , be the centre of the planet, $p$ s the direction of a line drawn to the sun, and $p \mathrm{e}$ that of one drawn to the earth; $l l^{\prime}$ will then be the base of the enlightened, and $v v^{\prime}$ the base of the visible hemisphere of the planet. The point $m^{\prime}$ will be the centre of the former, and $m$ of the latter. The visible hemisphere
will then be enlightened over the space $v^{\prime} m^{\prime} m l$, the part $v l$ being dark. This dark part will be measured by the arc $v l$, which is evidently equal to $m m^{\prime}$, and therefore measured by the angle formed by the lines $p \mathrm{~s}$ and $\boldsymbol{p}_{\mathrm{e}}$ drawn from the planet in the directions of the sun and the earth.

When this angle $\mathrm{spe}_{\mathrm{e}}$ is less than $90^{\circ}$, as in fig. 734., the breadth of the enlightened part $\boldsymbol{v}^{\prime} \boldsymbol{m}^{\prime} \boldsymbol{m l} \boldsymbol{l}$ of the visible hemisphere is greater than $90^{\circ}$, and the planet appears gibbous, as the moon does when between opposition and quadratures.

When the angle spe is greater than $90^{\circ}$, as in fig. 735., the breadth $v^{\prime} l$ of the enlightened part of the visible hemisphere is less than $90^{\circ}$, and the planet appears as a crescent, like the moon between conjunction and quadrature.

When the angle $\mathrm{s} p \mathrm{E}=0$, which happens when the earth is between the sun and planet, as in fig. 736 ., the centre $m^{\prime}$ of the


Fig. 735.


Fig. 796.


Fig. 737.
enlightened hemisphere is presented to the earth, and the planet appears with a full phase, as the moon does in opposition. This always happens when the planet is in opposition.

When the angle $\mathrm{s} p \mathrm{e}$ becomes $=180^{\circ}$, as in fig. 737., the centre $m$ of the dark hemisphere is presented to the earth, and therefore the entire hemisphere turned in that direction is dark. This takes place when the planet is between the earth and sun,
which can only lappen when an inferior planet is in inferior conjunction.
2595. Phases of an inferior planet. - It will be evident from inspecting the diagram, fig. 730., representing the relative posi-tions of an inferior planet with respect to the sun and earth, that the angle formed by lines drawn from the planet to the sun and earth passes through all magnitudes from $0^{\circ}$ to $180^{\circ}$, and consequently such a planet exhibits every variety of phase. Passing from $c$ towards $e^{\prime}$, the angle $s b \mathrm{E}$ gradually decreases from $180^{\circ}$ to $90^{\circ}$, and therefore the phase, at first a thin crescent, increases in breadth until it is halved like the moon in quadrature. From $e^{\prime}$ to $c^{\prime}$ the angle $s b^{\prime} \mathrm{e}$ gradually decreases from $90^{\circ}$ to $0^{\circ}$, and the planet beginning by being gibbous, the breadth of the enlightened part gradually increases until it becomes full at $c^{\prime}$. From $c^{\prime}$ to $e$, and thence to $c$, these phases are reproduced for like reasons in the opposite order.
2596. Phases of a superior planet. - It will be evident on inspecting fig. 738., that in all positions whatever of a supe-


Fig. 758. rior planet, the lines drawn'from it to the earth are inclined at an angle less than $90^{\circ}$; and this angle is so much the smaller the greater the orbit of the planet is comparatively with that of the earth. The angle sat being nothing at $o$ increases until the planet is in quadrature at $q^{\prime}$, where it is greatest; and then the breadth of the enlightened part is least, and is equal to the difference between the angle $s q^{\prime}$ 区 and $180^{\circ}$. From $q^{\prime}$ to $c$ the angle $s b^{\prime} \mathrm{e}$ decreases, and becomes nothing at $c$. The planet is therefore full at opposition and conjunction, and is most gibbous at quadrature.

It will appear hereafter that, with one exception, all the superio' planets are at distances from the sun so much greater than that of the earth, that even at quadrature the angle $s q^{\prime} \mathrm{E}$ is so small, that the departure of the phase from fulness is not sensible.

- 2597. The planets are subject to a central attraction.-If a body in motion be not subject to the action of any external force,
it must move in a straight line. If, therefore, it be observed to move in any curvilinear path, it may be inferred that it is acted upon by some force or forces exterior to it, which constantly deflect it from the straight course which, in virtue of its inertia, it must follow if left to itself (220). This force must, moreover, be incessant in its operation, since, if its action were suspended for a moment, the body during such suspension would move in the direction of the straight line, which would be a tangent to the curve at the point where the action of the force was suspended.

Now, since the orbits of the planets, including the earth, are all curved, it follows that they are all under the incessant operation of some force or forces, and it becomes an important problem to determine what is the direction of these forces, whether they are one or several, and, in fine, whether they are of invariable intensity, or, if variable, what is the law and conditions of their variation.
2598. What is the centre to which this attraction is directed? - We are aided in this inquiry by a principle of the highest generality and the greatest simplicity, established by Newton, the demonstration of which forms the subject of the first two propositions of his celebrated work, entitled the "Princlifia."
2599. General principle of the centre of equal areas demonstrated. - If from any point taken as fixed a straight line be drawn to a body which moves in a curvilinear path, such line is called the radius vector of the moving body with relation to that point as a centre of motion. As the body moves along its curvilinear path, the radius vector sweeps over a certain superficial area, greater or less, according to the velocity and direction of the motion and the length of the radius vector. This superficial space is called the "area described by the radius vector," or, sometimes, the "area described by the moving body."

Thus, for example, if c, fig. 739., be the point taken as the centre of motion, and $\mathrm{B}_{\mathrm{B}} \mathrm{B}^{\prime \prime}$ be a part of the path of the moving body, CB and $\mathrm{CB}^{\prime}$ will be two positions of the " radius vector," and in passing from one of these positions to the other, it will sweep over or "describe" the superficial space or "area" included between the lines $\subset$ в and CB' $^{\prime}$, and the body
is said slortly to "describe this area round the point c as a


Fig. 739. centre."

Now, according to the principle established by Newton, it appears that whenever a body moves in a curvilinear orbit, under the attraction of a force directed to a fixed centre, such a body will describe round such centre equal areas in equal times; and it is proved also conversely, that if a point can be found within the curvilinear orbit of a revolving body, round which such body describes equal arcas in equal times, such body is in that case sulject to the action of a single force, always directed towards that point as a centre. It follows, in short, that "the centre of equable areas is the centre of force, and that the centre of force is the centre of equable areas."

As this is a principle of high generality and capital importance, and admits of demonstration by the most elementary principles of mechanics and geometry, it may be proper to explain it here.
If a body b move iodependently of the action of any force upon it, its motion must be in a straight line, and must be uniform. It must, therefore, move over equal spaces per second. Let its velocity be such, that in the first second it would move from $\boldsymbol{B}$ to $\mathrm{B}^{\prime}$. In the next second, if no force acted upon it, it would move through the equal space $B^{\prime} b^{\prime}$ in the same direction. But if at $\mathrm{a}^{\prime}$ it receive from a force directed to c , an impulse which in a second would carry it from $\mathrm{B}^{\prime}$ to $\boldsymbol{c}^{\prime}$, it will then be affected by two motions, one represented by $\mathrm{B}^{\prime} b^{\prime}$, and the other by $b^{\prime} c^{\prime}$, and it will move in the diagonal $\mathrm{B}^{\prime} \mathrm{B}^{\prime \prime}$ of the parallelogram, and at the end of the second second will be at $\mathrm{s}^{\prime \prime}$.

Now, in the first second, the radius vector described the area bCb', and in the next second it described the area $\mathrm{B}^{\prime} \mathrm{Cb}^{\prime \prime}$. It is easy to show that these areas are equal. For since $\mathrm{Br}^{\prime}=\mathrm{B}^{\prime} \boldsymbol{b}^{\prime}$, the areas $\mathbf{B C B} \boldsymbol{B}^{\prime}$ and $\boldsymbol{B}^{\prime} \mathbf{C} b^{\prime}$ are equal; and since $b^{\prime} \boldsymbol{B}^{\prime \prime}$ is parallel to $\mathrm{B}^{\prime} \mathrm{C}$, the areas $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{B}^{\prime} \mathbf{C} \mathrm{B}^{\prime \prime}$ are equal by the well-known
property of triangles. Therefore the areas $\boldsymbol{B C B}^{\prime}$ and $\mathrm{B}^{\prime} \mathrm{CB}^{\prime \prime}$, described by the radius vector in the first and second seconds, are equal.

If the body received no impulse from the central force at $\mathbf{B}^{\prime \prime}$, it would move over $\mathrm{B}^{\prime \prime} b^{\prime \prime} \doteq \mathrm{B}^{\prime} \mathrm{B}^{\prime \prime}$ in the third second, but receiving from the central force another impulse sufficient to carry it from $\mathrm{B}^{\prime \prime}$ to $\boldsymbol{c}^{\prime \prime}$, it again moves over the diagonal $\mathrm{s}^{\prime \prime} \mathrm{B}^{\prime \prime \prime}$ of the next parallelogram, and at the end of the third second is found at $\mathbf{B}^{\prime \prime \prime}$. It is shown in the same manner that the area of the triangle $\mathrm{B}^{\prime \prime} \mathrm{CB}^{\prime \prime \prime}$ is equal to $\mathrm{B}^{\prime} \mathbf{C B}^{\prime \prime}$ and to $\mathrm{BCB}^{\prime}$; so that in every succeeding second the radius vector describes round $c$ an equal area.

In this case it has been supposed that the force, instead of acting continuously, acts by a succession of impulses at the end of each second, and the body describes, not a curve, but a polygon. If the succession of impulses were by tenths, hundredths, or thousandtlis, or any smaller fraction of a second, the areas would still be in the ratio of the times, but the polygon would have more numerous and smaller sides. In fine, if the intervals of the action of the force be infinitely small, the sides of the polygon would be infinitely small in magnitude and great in number. The force would, in fact, be continuous, instead of being intermitting, and the path of the body would be a curve, instead of being a polygon. The areas, however, described by the radius vector round the centre of force $c$, would still be proportional to the time.

The converse of the principle is easily inferred by reasoning altogether similar. If c, fig. 739., be the centre of equal areas, it will be the centre of attraction; for let $\mathbf{s}^{\prime} b^{\prime}$ be taken equal to $\mathrm{BB}^{\prime}$. The triangular area $\mathrm{B}^{\prime} \mathrm{c} b^{\prime}$ will then be equal to the area BCB' by the common properties of triangles, and since the areas described round c in successive seconds are equal, we have the area $\mathrm{B}^{\prime} \mathbf{O} \boldsymbol{B}^{\prime \prime}=\mathrm{BCB} \boldsymbol{B}^{\prime}$, and therefore $=\mathrm{B}^{\prime} \mathrm{C} b^{\prime}$. Hence we infer that $\mathrm{B}^{\prime} \mathrm{CB}^{\prime \prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} b^{\prime}$, and therefure that the line $b^{\prime} \mathrm{B}^{\prime \prime}$ is parallel to $\mathrm{s}^{\prime} c$. The force therefore expressed by the diagonal $\mathrm{b}^{\prime} \mathrm{b}^{\prime \prime}$ of the parallelogram is equivalent to the forces expressed by the sides. The body at $\boldsymbol{s}^{\prime}$ therefore, besides the projectile force $\mathrm{br}^{\prime}$ or $\mathbf{a}^{\prime} b^{\prime}$, is urged by a central force directed to $\mathbf{c}$.
2600. Linear, angular, and areal velocity.- In the descrip: tion and analysis of the planetary motions, there are three
quantities which there is frequent occasion to express in reference to the unit of time, and to which the common name of "velocity" is consequently applied.
$1^{n}$. The linear velocity of a planet is the actual space,orer which it moves in its orbit in the unit of time. We shall invariably express this velocity by $v$.
$2^{\circ}$. The angular velocity is the angle (в с $\boldsymbol{B}^{\prime}$ in fig.739.), which the radius vector from the sun to the planet moves over in the unit of time. We shall invariably express this by the Greek letter $a$.
$3^{\circ}$. The areal velocity is the area (в с $\mathrm{B}^{\prime}$ in fg .739 .), which the radius vector from the sun to the planet sweeps over in the unit of time. We shall express this by $A$.
2601. Releation between angular and areal velocities.-If $\mathrm{B}^{\prime \prime} \boldsymbol{c}^{\prime}$, fig. 739., be supposed to be perpendicular to $B^{\prime} \dot{C}$, the area of the triangle $\mathrm{B}^{\prime} \mathrm{CB}^{\prime \prime}$ will be $\frac{1}{2} \mathrm{~B}^{\prime} \mathbf{C} \times \mathrm{B}^{\prime \prime} \boldsymbol{c}^{\prime}$. But since in this case $\mathbf{s}^{\prime \prime} \boldsymbol{c}^{\prime}$ may be considered as the arc of a circle, of which $\mathbf{c}$ is the centre and $\mathrm{B}^{\prime \prime} \mathrm{c}$ the radius, we shall have (2292),

$$
\mathrm{B}^{\prime \prime} \boldsymbol{c}^{\prime}=\frac{r \times a}{206265},
$$

where the distance $\mathrm{B}^{\prime \prime} \mathbf{C}$ of the planet from the sun, or the radius vector, is expressed by $r$. Hence we have

$$
\because A_{A}=\frac{1}{2} \mathrm{~B}^{\prime} \mathrm{C} \times \mathrm{B}^{\prime \prime} \mathrm{c}^{\prime}=\frac{-\frac{1}{2} r^{2} \times a}{206265} .
$$

Hence the areal velocity is always proportional to the product of the angular velocity and the square of the radius vector or distance.

To iscertain, therefore, whether any point within the orbit of a planet be the "centre of equal areas," and therefore the centre of attraction, it is only necessary to compare the angular velocity round such point with the square of the distance; and if their product be always the same, or, in other words, if the angular velocity inorease in the same ratio as the square of the distance or radius vector decreases, and vice versâ, then the point in question must be the centre of equal areas, and therefore the centre of attraction.
2602. Case of the motion of the earth. - In the case of the earth, the variation of its distance from the sun is inversely as the variation of the sun's apparent diameter, which may be accurately observed, as may also be the sun's apparent motion
in the firmament. Now, it is found that the apparent motion of the sun increases exactly in the same ratio as the square of its apparent diameter, and therefore inversely as the square of its distance; from which it follows that its centre is the centre of equal areas for the earth's motion, and therefore the centre of attraction.
2603. Case of the planets. - In the same manner, by calculating from observation the angular motions of the planets, and their distances from the sun, it may be shown that their angular motions are inversely as the squares of their distances, and consequently that the centre of the sun is the centre of the attraction which moves them.
2604. Orbits of the planets ellipses. - By comparing the variation of the distance of any planet from the sun with the change of direction of its raflius vector, it may be nscertained that its orbit is an ellipse, the centre of the sun being at one of the foci, in the same manner as has been already explained in the case of the earth.
2605. Perikelion, aphelion, mean distance.-That point of the elliptic orbit at which a planet is nearest to the sun is called perielelion, and that point at which it is most remote is called aphelion.

The mean distance of a planet from the sun_is half the sum of its greatest and least distances.
2606. Nfajor and minor axes, and eccentricity of the orbit.The fig. 740. represents an ellipse, of which $F$ is the focus and C the centre. :The line C F con-


Fig. 740. tinued to $P$ and $a$ is the major Axis, sometimes called the transverse axis . Of all the diameters which can be drawn through the centre $c$, terminating in the curve, it is the longest, while MCM', drawn at right angles to it, called the minor axis, is the shortest. The line $\mathrm{Fm}^{\prime}$, which is equal to $P C$, half the major axis, and therefore to half the sum of the greatest and least distances of the ellipse from its focus, is the mean distance.

A planet is, therefore, at its mean distance from the sun N 6
when it is at the extremities of the minor axis of its orbit.

There is another point $F^{\prime}$ on the major axis, at a distance $F^{\prime} \mathbf{c}$ from the centre, equal to FC , which has also the geometric properties of the focus. It is sometimes distinguished as the empty focus of the planet's orbit.

Ellipses may be more or less eccentric, that is to say, more or less oval. The less eccentric they are the less they differ in form from a circle. The degree in which they have the oval form depends on the ratio which the distance FC of the focus from the centre bears to PC, the semi-axis major. Two ellipses of different magnitudes in which this ratio is the same, have a like form, and are equally eccentric. The less the ratio of $\mathbf{C F}$ to $\mathbf{C P}$ is, the more nearly does the ellipse resemble a circle. This ratio is, therefore, called the ecceenthicity.

The eccentricity of a planet's orbit will, therefore, be that number which expresses the distance of the sun from the centre of the ellipse, the semi-axis major of the orbit being taken as the unit.
2607. Apsides, anomaly. - The points of permelion and arnelion, are called by the common name of apsides.

If an eye placed at the sun $F$ look in the direction of $P$, that point will be projected upon a certain point on the firmament. This is called the place of perimedion.

The angle formed by a line drawn from the sun to the place $p$ of a planet, and the major axis of its orbit, or, what is the same, the angular distance of the planet from its perihelion, as seen from the sun, is called its anomaly.

If an imaginary planet be supposed to move from perihelion to aphelion with any uniform angular motion round the sun in the same time that the real planet moves between the same points with a variable angular motion, the anomaly of this imaginary planet is called the mean anomaly of the planet.
2608. Place of perihelion. - The place of perimelion is expressed by indicating the particular fixed star at or near which the planet at $P$ is seea from $F$, or, what is the same, the distance of that point from some fixed and known point in the heavens. The point selected for this purpose is the vernal equinoxial
point, or the first point of Aries (2435). The distance of perihelion from this point, as seen from the sun, is called the longitude of perilielion, and is an important condition affecting the position of the planet's orbit in space.
2609. Eccentricities of orbits small. - The planets' orbits, like that of the earth, though elliptical, are very slightly so. The eccentricities are so minute, that if the form of the orbit were delineated on paper, it could not be distinguished from a circle except by very exactly measuring its breadth in different directions.
2610. Law of attraction deduced from elliptic orlit.-As the equable description of areas round the centre of the sun proves that point to be the centre of attraction, the elliptic form of the orbit and the position of the sun in the focus indicate the law according to which this attraction varies as the distance of the planet from the sun varies. Newton has demonstrated, in his Principia, that such a motion necessarily involves the condition that the intensity of the attractive force, at different points of the orbit, varies inversely as the square of the distance, increasing as the square of the distance decreases, and vice versâ.
2611. The orlit might be a parabola or hyperbola.-Newton also proved that the converse is not necessarily true, and that a bjdy may move in an orbit which is not elliptical round a centre of force which varies according to this law. But be showed that the orbit, if not an ellipse, must be one or other of two curves, a parabola or hyperbola, having a close geometric relation to the ellipse, and that in all cases the centre of force would be the focus of the curve.

These three sorts of curves, the ellipse, the parabola, and hyperbola, are those which would be produced by cutting a cone in different directions by a plane, and they are hence called the conic sections.
2612. Conditions which determine the species of the orbit. The conditions under which the orbit of a planet might be a parabola or hyperbola, depend on the relation which the velocity of the motion of the planet, at any given point of the orbit, bears to the intensity of the attractive force at that point. It is demonstrable that, if the velocity with which a planet moves at any given point of its orbit were suddenly augmented in a certain proportion, its orbit would become a
parabola, and if it were still more augmented, it would become an hyperbola.

The ellipse is a curve which, like the circle, returns into ilself, so that a body moving in it must necessarily retrace the same path in an endless succession of revolutions. This is not the character of the parabola or hyperbola. They are not closed curves, but consist of two branches which continue to diverge from each other without ever meeting. A planet, therefore, which would thus move, would pass near the sun once, following a curved path, but would then depart never to return.
2613. Law of gravitation general. - The elliptic form of the orbit of a planet indicates the law which governs the variation of the sun's attraction from point to point of such orbit; but beyond this orbit it prores nothing. It remains, therefore, to show from the planetary motions round the sun, and from the motions of the satellites round their primaries, that the same law of attraction by which the intensity decreases as the square of the distance from the centre of attraction increases, and vice $v e r s \hat{a}$, is universal.

The attraction exerted upon any body may be measured, in general, as that of the earth on bodies near its surface is measured, by the spaces through which the attracted body would be drawn in a given time. It has been shown, that the attraction which the earth exerts at its surface, is such as to draw a body towards it through 193 inches in a second. Now if the space through which the sun would, by its attraction at any proposed distance, draw a boly in one second could be found, the attraction of the sun at that distance could be exactly compared with and measured by the attraction of the earth, just as the length of any line or distance is ascertained by applying to it and comparing it with a standard yard measure.
2614. Method of calculating the central force by the velocity and curvature. - Now the space through which any central attraction would draw a body in a given time can be easily calculated, if the body in question moves in a circular or nearly circular orbit round such a centre, as all the planets and satellites do.

Let $\mathrm{E}, \mathrm{fig} .741$., be the centre of attraction, and $\mathrm{E} m$ the distance or radius vector. Let $m \boldsymbol{m}^{\prime}=\mathrm{v}$, the linear velocity. Let $m n$ and $m^{\prime} n^{\prime}$ be drawn at right angles to $\mathrm{E} m$, and therefore
parallel to each other. The velocity $m m^{\prime}$ may be considered as compounded of two (173), one in the di-


Fig. rection $m n^{\prime}$ of the tangent, and the other $m n$ directed towards the centre of attraction E . Now if the body were deprived of its tangential motion $m n^{\prime}$, it would be attracted towards the centre E , through the space $m n$, in the unit of time. By means of this space, therefore, the force which the central attraction exerts at $m$ can be brought into direct comparison with the force which terrestrial gravity exerts at the surface of the earth.

It follows, therefore, that if $f$ express the space through which such a body would be drawn in the unit of time, falling freely towards the centre of attraction, we shall have $f=m n$. But by the elementary principles of geometry,

$$
m n \times 2 \text { Е } m=m m^{i^{\prime}}
$$

Therefore,

$$
f=\frac{\mathrm{v}^{2}}{2 r} ;
$$

that is, the space through which a body would be drawn towards the centre of attraction, if deprived of its orbital motion, in the unit of time, is found by dividing the square of the linear orbital velocity by twice its distance from the centre of attraction.
Since $v=\frac{r \times a}{206265}$ (2601), we shall also have

$$
f=\frac{r \times u^{2}}{2 \times 206265} .
$$

The attractive force, or, what is the same, the space through which the revolving body would be drawn towards the centre in the unit of time, can, therefore, be always computed by these formulx, when its distance from the centre of attraction and its linear or angular velocity are known.

Since (2568)

$$
a=\frac{1296000}{P},
$$

this, being substituted for $\alpha$ in the preceding formula, will give

$$
f=412541 \times \frac{r}{\mathrm{p}^{2}} ;
$$

by which the attractive force may always be calculated when the distance and period of the revolving body are known.
2615. Law of gravitation shown in the case of the moon. The attraction exerted by the earth, at its surface, may be, compared with the attraction it exerts on the moon by these formulæ.

In the case of the moon $v=0 \cdot 6356$ miles, and $r=239,000$ miles, and by calculation from these data, we find

$$
f=0.0000008459^{\text {miles }}=0.0536^{\text {inch. }}
$$

The attraction exerted by the earth at the moon's distance would, therefore, cause a body to fall through 536 ten-thousandths of an inch, while at the earth's surface it would fail through 193 inches (247).

The intensity of the earth's attraction on the moon is, therefore, less than its attraction on a body at the surface, in the ratio of $1,930,000$ to 536 , or 3600 to 1 , or, what is the same, as the square of 60 to 1 .

But it has been shown that the moon's distance from the earth's centre is 60 times the earth's radius. It appears, therefore, that in this case the attraction of the earth decreases as the square of the distance from the attracting centre increases; and that, consequently, the same law of gravitation prevails as in the elliptic orbit of a planet.
2616. - Sun's attraction on planets compared-law of gravitation fulfilled.- In the same manner, exactly, the attractions which the sun exerts at different distances may be computed by the motions and distances of the planets. The distance of a planet gives the circumference of its orbit, and this, compared with its periodic time, will give the arc through which it moves in a day, an hour, or a minute. This, represented by $m i m^{\prime}, f i g$. 741., being known, the space $m n$ through which the planet would fall towards the sun in the same time may be calculated, and this being done for any two planets, it will be found that these spaces are in the inverse ratio of the squares of their distances.

Thus, for example, let the earth and Jupiter be compared in this manner. If $D$ express the distance from the sun in miles, $\mathbf{P}$ the period in days, $A$ the arc of the orbit in miles described by the planet in an hour, and H the space $m n$ in miles, through which the planet would fall towards the sun in an hour if the tangential force were destroyed, we shall then have

|  | D | $\boldsymbol{P}$ | A | H |
| :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { Earth - }}{\text { Jupiter - }}$ | $\begin{array}{r} 95,000,000 \\ 494,000.000 \end{array}$ | $\begin{array}{r} 363 \cdot 26 \\ 4332 \cdot 62 \end{array}$ | $\begin{aligned} & \text { 68,091 } \\ & 29,850 \end{aligned}$ | $\begin{array}{r} 24 \cdot 4020 \\ 0.9019 \end{array}$ |

Now, on comparing the numbers in the last column with the squares of those in the first column, we find them in almost exact accordance. Thus,

$$
(95)^{2}:(494)^{2}:: 24 \cdot 402: 0 \cdot 9024
$$

The difference, small as it is, would disappear, if exact values were taken instead of round numbers.
2617. The law of gravitation universal.-Thus is established the great natural law, known as the law of gravitation, at least, so far as the action of the sun upon the planets, and the planets on their satellites, is concerned. But this law does not alone affect the central attracting bodies. It belongs equally to the revolving bodies themselves. Each planet attracts the sun, and each satellite attracts its primary as well as being attracted by it; and this reciprocal attraction depends on the mass of the revolving as well as on the mass of the central body and their mutual distance.

The planets moreover, as well as the satellites, attract each other, and thus modify, to some small extent, the effects of the predominant central attraction.
2618. Its analogy to the general law of radiating infuences. - It will be observed that this law is similar to that which governs light, hent, sound, and other physical principles which are propagated by radiation; and it might thas be inferred that gravitation is an agency of which the seat is the sun, or other gravitating body, and that it emanates from it as other physical principles obeying the same law are supposed to do.
2619. Not, however, to be identified with them. - No such hypothesis as this, however, is either assumed or required in astronomy. The law of gravitation is taken as a general fact established by observation, without reference to any modus operandi of the force. The planets may be drawn towards the sun by an agency whose seat is established in the sun, or they may be driven towards it by an agency whose seat is outside and around the system, or they may be pressed towards it by an agency which appertains to the space in which they move. Nothing is assumed in astronomy which would be incompatible with any one of these modes of action. The law of gravitation
assumes nothing more than that the planets are subject to the agency of a force which is every where directed to the sun, and whose intensity increases as the square of the distance from the sun decreases, and vice vers $\hat{\alpha}$; and this, as has been shown, is proved as a matter of fact independent of all theory or hypothesis:
2620. The harmonic lavo. - A remarkable numerical relation thus denominated prevails between the periodic times of the planets and their mean distances, or major axes of their orbits. If the squares of the numbers expressing their periods be compared with the cubes of those which express their mean distances, they will be found to be very nearly in the same ratio. They would be exactly so if the masses or weights of the planets were absolutely insignificant compared with that of the sun. But although these masses, as will appear, are comparatively very small, they are sufficiently considerable to affect, in a slight degree, this remarkable and important law.

Omitting for the present, then, this cause of deviation, the harmonic law may be thus expressed. If $\mathbf{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}, \& \mathrm{c}$. be a series of numbers which express or are proportional to the periodic times, and $r, r^{\prime}, r^{\prime \prime}, \& \mathrm{cc}$. to the mean distances of the planets, we shall have

$$
\frac{r^{3}}{\mathbf{P}^{2}}=\frac{r^{\prime 3}}{\mathbf{P}^{\prime 2}}=\frac{r^{\prime \prime 3}}{\mathbf{P}^{\prime \prime 2}}, \& \mathrm{c} .
$$

that is, the quotients found by dividing the numbers expressing the cubes of the distances by the numbers which express the squares of the periods are equal, subject nevertheless to such deviations from the law as may be due to the cause above mentioned.
2621. Fulfilled by the planets.-Method of computing the distance of a planet from the sun when its periodic time is known. - To show the near approach to numerical accuracy with which this remarkable law is fulfilled by the motions of the planets composing the solar system, we have exhibited in the following table the relative approximate numerical values of their several distances and periods, and have shown that the quotients found by dividing the cubes of the distances by the squares of the periods are sensibly equal : -

|  |  | Ditunce. r | Period. <br> $\mathbf{P}$ | Cube of Dirtence. $r^{3}$ | Square of Period. $\mathbf{P}^{1}$ | Ratio of Cube of Distance to Sq. of lienod. $\frac{r^{3}}{p^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | - | 0387 | $0 \cdot 241$ | 57961 | 580 | 100 |
| Venis. | - | 0.723 | 0.615 | 377933 | 3782 | 100 |
| Farth - | - | 1.60 | $1 \cdot 00$ | 1000000 | 10000 | 100 |
| Mars | - | 1.52 | 3-48 | 3525688 | - 353344 | 100 |
| Planetoids | - | 2:50 | 4.00 | 15625000 | 160000 | 100 |
| Jupiter - | - | $5 \cdot 20$ | $11 \cdot 86$ | 140608000 | 1406596 | 100 |
| Saturn - | - | 9\%24 | 29.50 | 869250664 | 8702560 | 100 |
| Uranus - | - | $19 \cdot 18$ | 84.00 | 7055792632 | 705660000 | 100 |
| Neptune | - | 30.00 | 164.60 | 27000000000 | 270931600 | 100 |

In general, the distance of a planet from the sun can be computed by means of this law, when the distance of the earth and the periodic times of the earth and planet are known.
For this purpose find the number which expresses the periodic time $P$ of the planet, that of the earth being expressed by 1 ; and let D be the number which expresses the mean distance of the planet from the sun, that of the earth being also expressed by 1 . We shall then, according to the harmonic law, have

$$
1^{2}: \mathbf{P}^{2}:: 1^{3}: \mathbf{p}^{3} .
$$

But since

$$
1 \times 1=1 \quad 1 \times 1 \times 1=1
$$

we shall have

$$
\mathrm{P}^{2}=\mathrm{D}^{3} .
$$

To find the distance D , therefore, it is only necessary to find the number whose cube is the square of the number expressing the period, or, what is the same, to extract the cube root of the square of the period.
2622. Harmonic law deduced from the law of gravitation.It is not difficult to show that this remarkable law is a necessary consequence of the law of gravitation.

Supposing the orbits of the planets to be circular, which for this purpose they may be taken to be, let the distance, period, and angular velocity of any one planet be expressed by $r, P$, and $a$, and those of any other by $r^{\prime}, P^{\prime}$, and $a^{\prime}$, and let the forces with which the sun attracts them respectively be expressed by $f$ and $f^{\prime}$. We shall then, according to what has been proved (2614), have

$$
f=\frac{r \times a^{2}}{2 \times 206265} \quad f^{\prime}=\frac{r^{\prime} \times a^{\prime 3}}{2 \times 206265}
$$

and therefore

$$
f: f^{\prime}:: r \times a^{2}: r^{\prime} \times a^{\prime 2}
$$

But by the law of gravitation

$$
f: f^{\prime}:: r^{\prime 2}: r^{2}
$$

therefore

$$
r^{\prime 2}: r^{2} ;: r \times a^{2}: r^{\prime} \times a^{\prime 2}
$$

and consequently

$$
r^{\prime 3} \times a^{2}=r^{3} \times a^{2}
$$

But the angles described in the unit of time are found by dividing $360^{\circ}$ by the periodic times. Therefore,

$$
a=\frac{360^{\circ}}{P} \quad a^{\prime}=\frac{360^{\circ}}{P^{\prime}}
$$

and consequently

$$
\frac{r^{3}}{\mathbf{P}^{2}}=\frac{r^{\prime 3}}{\mathbf{p}^{\prime 2}}
$$

which is, in fact, the harmonic law.
It is easy, by pursuing this reasoning in an inverse order, to show that if the harmonic law be taken, as it may be, as an observed fact, the law of gravitation may be deduced from it.
2623. Kepler's laws. - The three great planetary laws explained in the preceding paragraphs - 1 . The equable description of areas; 2. The elliptic form of the orbits; and 3, the harmonic law - were discovered by Kepler, whose name they bear. Kepler deduced them as matter-of-fact from the recorded observations of himself and other astronomers, but failed to show the principle by which they were connected with each other. Newton gave their interpretation, and showed their connexion as already explained.
2624. Inclination of the orbits - nodes. - In what has been stated the planets are regarded as moving in the plane of the earth's orbit. If this were strictly true, no planet would ever be seen on the henvens out of the ecliptic. The inferior planets, when in inferior conjunction, would always appear as spots on the sun; and when in superior conjunction, they, as well as the superior planets, would always be behind the sun's disk. This is not the case. The planets generally, superior and inferior, are seldom seen actually upon the ecliptic, although they are never far removed from it. The centre of the planet,
twice in each revolution, is observed upon the ecliptic. The points at which it is thus found upon the plane of the earth's orbit are at opposite sides of the sun, $180^{\circ}$ asunder, as seen from that luminary. At one of them the planet passes from the south to the north of the ecliptic, and at the other from the north to the south.
2625. Nodes, ascending and descending. - Those points, where the centre of a planet crosses the ecliptic, are called its nodes, that at which it passes from south to north being called the ascending node, and the other the descending node.

While the planet passes from the ascending to the descending node it is north of the ecliptic; and while it passes from the descending to the ascending node, it is south of it.

All these phenomena indicate that the planet does not move in the plane of the ecliptic, but in a plane inclined to it at a certain angle. This angle cannot be great, since the planet is never observed to depart far from the ecliptic. With a few exceptions, which will be noticed hereafter, the obliquity of the planets' orbits do not amount to more than $7^{\circ}$.
-2626. The zodiac. - The planets, therefore, not departing more than about $8^{\circ}$ from the ecliptic, north or south, their motions are limited to a zone of the heavens bounded by tro parallels to the ecliptic at this distance, north and south of it.
2627. Methods of determining a planet's distance from the sun.- This problem may be solved with more or less approximation by a great variety of different methods. In all it is assumed that the earth's distance from the sun is previously ascertained, the immediate result being in every case the determination of the ratio which the planet's distance from the sun bears to the earth's distance.
2628. $1^{\circ}$. By the elongation and synodic motion. - This method has been already explained (2592).
2629. $2^{\circ}$. By the greatest elongation for an inferior planet.When an inferior planet is at its greatest elongation, the angle $r$, included by lines drawn from it to the sun and earth, will be $90^{\circ}$ (2576), and consequently the two angles at E and s taken together will be $90^{\circ}$. If the elongation E be observed, the angle at $s$ will be $90^{\circ}-\mathrm{E}$, and will therefore be known, and thus the distances $S P$ and Ep may be computed as in the first method.
2630. $3^{\circ}$. By the greatest and least apparent magnitudes. -

If $m$ and $m^{\prime}$ be the apparent magnitudes of an inferior planet when at inferior and superior conjunction, and $e$ and $p$ be thie distances of the earth and planet from the sun, $e-p$ will be the distance of the planet from the earth at inferior, and $e+p$ at superior conjunction (2577); and since the apparent magnitudes are in the inverse ratio of these distances (1118), we shall have

$$
-\frac{m}{m^{\prime}}=\frac{e+p}{e-p}
$$

and consequently

$$
p=\frac{m-m^{\prime}}{m+m^{\prime}} \times e
$$

If $m+m^{\prime}$ be the apparent magnitudes of a superior planct in opposition and conjunction, its distances at these points will be $p-e$ and $p+e$, and we shall have as before

$$
\frac{m}{m^{\prime}}=\frac{p+e}{p-e}
$$

and therefore

$$
p=\frac{m+m^{\prime}}{m-m^{\prime}} \times e .
$$

2631. $4^{\circ}$. By the harmonic law. - This law (2614) being deduced from the law of gravitation (2616), independently of the observation and comparison of times and distances, it may be used for the determination of the distances, the times being known. Let $E$ and $P$ be the periodic time of the earth and planet, and $e$ and $p$ their distances from the sun. We shall then, by the harmonic law, have

$$
\frac{p^{3}}{e^{3}}=\frac{\mathrm{P}^{2}}{\mathrm{E}^{\prime}}
$$

and therefore

$$
p^{\mathbf{2}}=\frac{\mathbf{P}^{2}}{\mathbf{E}^{2}} \times e^{3}
$$

and thus the distance $p$ may be found.
2632. To determine the real diameters and volumes of the bodies of the system. - The apparent diameter at a known distance being observad, the real diameter may be computed by the principle explained in 2299 . The linear value of $1^{\prime \prime}$ at the distance being known, the real diameter will be obtained by
multiplying such value by the apparent diameter expressed in seconds.

The discs of the inferior plancts not being visible at inferior conjunction when their dark hemispheres are presented to the earth, and being lost in the effulgence of the sun at superior conjunction, can only be observed between their greatest elongation and superior conjunction, when they appear gibbous. The distance of the planet from the earth is computed in this position by knowing the distances of the planet and the earth from the sun, and the angle under the lines drawn from the sun to the earth and planet, which can always be computed (2587). This distance being obtained, the linear value of $1^{\prime \prime}$ at the planet will be found (2298), which, being multiplied by the greatest breadth of its gibbous disk, the real diameter will be obtuined.

In the case of the superior planets, their diameters may be best obtained when in opposition, because then they appear with a full disk, and, being nearer to the earth than at any other elongation, lave the greatest possible magnitude. Their distance from the earth in this position is always the difference between the distances of the earth and planet from the sun.

When the real diameters are found the volumes will be obtained, since they are as the cubes of the real diameters.
2633. Methods of determining the masses of the bodies of the solar system. - The work of the astronomer is but imperfectly performed when he has only mentioned the distances and magnitudes, and ascertained the motions and velocities, of the great bodies of the universe. He must not only measure, bat weigh these stupendous masses.

The masses or quantities of matter in bodies upon the surface of the earth are estimated and compared by their weights-that is, by the intensity of the attraction which the earth exerts upon them. It is inferred that equal quantities of matter at equal distances from the centre of the earth are attracted by equal forces, inasmuch as all masses, great and small, fall with the same velocity (234).

The intensity of the attraction with which the earth thus acts upon a body at any given distance from its centre depends on the mass or quantity of matter composing the earth. If the mass of the earth were suddenly increased in any proposed ratio, the weights of all bodies on its surface, or at any given distance from its centre, would be increased in the same ratio,
and, in like manner, if its mass were diminished, the weights would be decreased in the same ratio. In fine, the weights of bodies at any given distance from the carth's centre would vary with, and be exactly proportional to, every variation in the mass of the earth.

This principle is general. If $m$ and $m^{\prime}$ be any two masses of matter, the attractions which they will exert upon any bodies, placed at equal distances from their centres of gravity, will be in the exact proportion of the quantities of ponderable matter composing them.

But it will be convenient to obtain the relation between the masses and the attractions they exert at unequal distances. For this purpose, let the attractions which they exert at equal distances be expressed by $f$ and $f^{\prime}$, and let the common distance at which those attractions are exerted be expressed by $x$, and let $F$ and $F^{\prime}$ express the attractions which they respectively exert at any other distances, $r$ and $r^{\prime}$, and we shall have, according to the general law of gravitation,

$$
\begin{aligned}
& f: \mathrm{F}:: \frac{1}{x^{2}}: \frac{\mathrm{J}}{r^{2}} \\
& f^{\prime}: \mathrm{F}^{\prime}:: \frac{1}{x^{2}}: \frac{1}{r^{\prime 2}},
\end{aligned}
$$

and consequently

$$
\frac{f}{\mathbf{F}} \times \frac{1}{r^{2}}=\frac{f^{\prime}}{\mathbf{F}^{\prime}} \times \frac{1}{r^{\prime 2}}
$$

from which it follows that

$$
\frac{f}{f^{\prime}}=\frac{\mathbf{F} \times r^{2}}{\mathbf{F}^{\prime} \times r^{\prime 2}}
$$

But since the masses m and $\mathrm{m}^{\prime}$ are proportional to the attiltions $f$ and $f^{\prime}$, we have

$$
\frac{f^{\prime}}{f^{\prime}}=\frac{\mathrm{Mr}}{\mathrm{Mr}^{\prime}}
$$

and therefore

$$
\frac{\mathbf{M}}{\mathbf{M}^{\prime}}=\underset{\mathbf{F}^{\prime}}{\mathbf{F} \times \boldsymbol{r}^{2}} \times
$$

that is, the attracting masses are proportional to the products obtained, by multiplying any two forces exerted by them by the squares of the distances at which such forces are exerted.

Hence in all cases in which the attractive forces exerted by
any central masses at given distances can be measured by any known or observable motions, or other mechanical effects, the proportion of the attracting masses can be determined.
2634. Method of estimating central masses round which bodies revolve. - If bodics revolve round central attracting masses as the planets revolve round the sun, and the satellites round their primaries, the ratio of the attracting forces, and therefore that of the central masses, can be deduced from the periods and distances of the revolving bodies by the principles and method explained in 2614.

Thus if $P$ and $P^{\prime}$ be the periods of two bodies revolving round different attracting masses m and $\mathrm{m}^{\prime}$ at the distances $r$ and $r^{\prime}$, we shall have

$$
\frac{\mathbf{F}}{\mathbf{F}^{\prime}}=\frac{r}{\mathbf{P}^{2}} \times \frac{\mathbf{P}^{\prime 2}}{r^{\prime}}=\frac{r}{r^{\prime}} \times \frac{\mathbf{P}^{\prime 2}}{\mathbf{P}^{2}} ;
$$

and substituting this for $\frac{\mathbf{F}}{\mathbf{F}^{\prime}}$ :n the formula found in 2633, we have

$$
\frac{\mathrm{M}}{\mathrm{Mr}^{\prime}}=\frac{\mathrm{r}^{\mathrm{B}}}{r^{\prime 3}} \times \frac{\mathrm{P}^{2}}{\mathrm{P}^{2}},
$$

By this principle the ratio of the attracting masses can always be ascertained when the periods of any bodies revolving round them at known distances are known.
2635. Method of determining the ratio of the masses of all planets which have satellites to the mass of the sun.-This problem is nothing more than a particular application of the principle explained above.

To solve it, it is only necessary to ascertain the period and distance of the planet and the satellite, and substitute them in the formula determined in 2634. The arithmetical operations being executed, the ratio of the masses will be determined.
2636. To determine the ratio of the mass of the earth to that of the sun. - Since the earth has a satellite, this problem will be solved by the method given in 2635.

If $r$ and $r^{\prime}$ express the distances of the earth from the sun and moon, and $P$ and $P^{\prime}$ the periods of the sun and moon, we shall have

$$
\frac{r}{r^{\prime}}=400 \quad \frac{\mathbf{P}^{\prime}}{\mathbf{P}}=\frac{27 \cdot 30}{365 \cdot 25}=\frac{1}{13 \cdot 38}
$$

III.

0

$$
\frac{r^{3}}{r^{\prime 3}}=64000000 \quad \frac{P^{\prime 2}}{P^{2}}=\frac{1}{179 \cdot 024}
$$

which being substituted, and the operations executed, gives

$$
\frac{\mathrm{M}}{\mathrm{M}^{\prime}}=357500 .
$$

2637. To determine the masses of planets which have no satellites. - According to what has been explained, the masses of the bodies composing the solar system are measured, and compared one with another, by ascertaining, with the necessary precision, any similar effects of their attractions, and allowing for the effects of the difference of distances. The effects which are thus taken to measure the masses and to exhibit their ratio to the mass of the sun in the case of planets attended by satellites, is the space through which a satellite would be drawn by its primary, and the space through which a planet would be drawn in the same time by the sun. These spaces indicate the actual forces of attraction of the planet upon the satellite and of the sun upon the planet, and when the effect of the difference of distance is allowed for, the ratio of the mass of the planet to the mass of the sun is found.

In the case of planets not attended by satellites, the effect of their gravitation is not manifested in this way, and there is no body smaller than themselves, and sufficiently near them to exhibit the same easily measured and very sensible effects of their attraction, and hence there is considerable difficulty, and some uncertainty, as to their exact masses.
2638. Mass of Mars estimated by its attraction upon the earth. - The nearest body of the system to which Mars approaches is the earth, its distance from which in opposition is nearly fifty millions of miles, or half the distance of the earth from the sun. Now, since the volume of Mars is only the eighth part of that of the earth, it may be presumed, that whatever be its density, its mass must be so small, that the effect of its attraction on the earth at a distance so great must be very minute, and therefore difficult to ascertain by observation. Nevertheless, small as the effect thus produced is, it is not imperceptible, and a certain deviation from the path it would follow, if the mass of Mars were not thus present, has been observed. To infer from this deviation, the mass of Mars is, however, a problem of much greater complexity than
the determination of the mass of a planet by observing its attraction upon its satellite. The method adopted for the solution of the problem is a sort of "trial and error." A conjectural mass is first imputed to Mars, and the deviation from its course which such a mass would cause in the orbital motion of the earth is computed. If such deviation is greater or less than the actual deviation observed, another conjectural mass, greater or less than the former, is imputed to the planet, and another computation made of the consequent deviation, which will come nearer to the true deviation than the former. By repeating this approximative and tentative process a mass is at length found, which, being imputed to Mars, would produce the observed deviation: and this is accordingly assumed to be the true mass of the planet.

In this way the mass of Mars has been approximatively estimated at the seventh part of the mass of the earth.

The smallness of this mass compared with its distance from the only body on which it can exert a sensible attraction will explain the difficulty of ascertaining it, and the uncertainty which attends its value.
2639. Masses of Venus and Mercury. - The same causes of difficulty and uncertainty do not affect in so great a degree the planet Venus, whose mass is somewhat greater than that of the earth, and which moreover comes when in inferior conjunction within about thirty millions of miles of the earth. The effects of the attraction of the mass of this planet upon the earth's orbital motion are therefore much more decided. The deviation produced by it is not only easily observed and measured, but it affects in a sensible manner the position of the plane of the earth's orbit. By the same system of "trial and error," the mass of this planet is ascertained to be greater by a twentieth than that of the earth.

The difficulties attending the determination of the mass of Mercury are still greater than those which affect Mars, and its true value is still very uncertain. Attempts have lately been made to approximate to its value, by observing the effects of its attraction on one of the comets.
2640. Methods of determining the mass of the moon.-Owing to its proximity and close relation to the earth, and the many and striking phenomena connected with it, the determination of the mass of the moon becomes a problem of considerable im-
portance. There are various observable effects of its attraction by which the ratio of its mass to those of the sun or earth may be computed.
2641. $1^{\circ}$. By nutation. - It will be shown hereafter that the attractions of the masses of the sun and moon upon the protuberant matter surrounding the equator of the terrestrial spheroid produce a regular and periodic change in the direction of the axis of the earth, and consequently a corresponding change in the apparent place of the celestial pole. The share which each mass has in these effects being ascertained, their relative attractions exerted upon the redundant matter at the terrestrial equator is found, and the effect of the difference of distance being allowed for, the ratio of the attracting masses is obtained.
2642. $2^{\circ}$. By the tides.-It has been shown (Chap. X.), that, by the attractions of the masses of the sun and moon, the tides of the ocean are produced. The share which each mass has in the production of these effects being ascertained, and the effect of the difference of distance being allowed for, the ratio of the masses of the sun and moon is obtained.
2643. $3^{\circ}$. By the common centre of gravity of the moon and the carth. - It has been stated that the centre of attraction round which the moon moves in her monthly course is the centre of the earth. This is nearly, but not exactly true. By the law of gravitation the centre of attraction is not the centre of the earth, but the centre of gravity of the earth and moon, that is, a point whose distance from the centre of the earth has to its distance from the centre of the moon the same ratio as the mass of the moon has to the mass of the earth (309). Around this point, which is within the surface of the earth, both the earth and moon revolve in a month, the point in question being always between their centres. If, then, the position of this point can be found, the ratio of its distances from the centres of the earth and moon will give the ratio of their masses.

Now, the monthly motion of the earth round such a centre would necessarily produce a corresponding apparent monthly displacement of the sun. Such displacement, though small (not amounting to more than a few seconds), is nevertheless capable of observation and measurement. The exact place of the sun's centre being therefore computed on the supposition of the absence of the moon, and compared with its observed place, the
motion of the earth's centre and the position of the point round which it revolves has been determined, and the relative masses of the earth and moon thus found.
2644. $4^{\circ}$. By terrestrial gravity.-By what has been already explained, the space through which the moon would be drawn towards the earth in a given time by the earth's attraction can be determined. Let this space be expressed by s . The linear velocity v of the moon in its orbit can also be determined. Now, if $r$ be the radius of the orbit, we shall have (2614)

$$
2 r \times s=v^{2},
$$

and consequently

$$
r=\frac{\mathrm{v}^{2}}{2 \mathrm{~s}}
$$

We find, therefore, the radius vector of the moon's orbit by dividing the square of its linear velocity by twice the space through which it would fall towards the earth in the unit of time. But this radius vector is the distance of the moon's centre from the common centre of gravity of the earth and moon. The distance of that point, therefore, from the centre of the earth, and consequently the ratio of the masses of the earth and moon, will be thus found.

All these methods give results in very near accordance, from which it is inferred that the mass of the moon is not less than the seventy-fifth, nor greater than the eightieth, part of the mass of the earth, and it is consequently the twenty-eighth millionth part of the mass of the sun.
2645. To determine the masses of the satellites. - The same difficulties which attend the determination of the masses of the planets not accompanied by satellites also attend the determination of the masses of satellites themselves, and the same methods are applicable to the solution of the problem. The masses of the satellites of Jupiter and the other superior planets are ascertained in relation to those of their primaries by the disturbing effects which they produce upon the motions of each other.
2646. To determine the densities of the bodies of the system.The masses and volumes being ascertained, the densities are found by dividing the masses by the volumes. Thus, if D and $\mathrm{D}^{\prime}$ be the densities of the earth and a planet, $m$ and $m^{\prime}$ their masses, and $v$ and $v^{\prime}$ their volumes, we shall have

$$
\mathrm{D}: \mathrm{D}^{\prime}:: \frac{\mathrm{M}}{\mathrm{~V}}: \frac{\mathrm{M}^{\prime}}{\mathrm{V}^{\prime}}
$$

2647. The method of determining the superficial gravity on a body. - When it is considered how important an element in all the mechanical and physical phenomena on the surface of the earth, the intensity of gravity at the surface is, it will be easily understood that in the investigation of the superficial condition and local economy of the other bodies of the solar system, the determination of the intensities of the forces with which they attract bodies placed on or near their surfaces, is a problem of considerable interest.

If the mass of the earth be expressed by m, its semidiameter by $r$, and the force of gravity on its surface by $g$, while $\mathrm{m}^{\prime}, r^{\prime}$, and $g^{\prime}$ express the same physical quantities in relation to any other body having the form of a globe, we shall have

$$
g: g^{\prime}:: \frac{\mathrm{M}}{r^{2}}:: \frac{\mathrm{m}^{\prime}}{r^{\prime 2}},
$$

because, by the general law of gravitation, the force is in the direct ratio of the masses and the inverse ratio of the square of the attracted body from their centre, and in this case the attracted body being supposed to be at their surfaces, those distances will be their semidiameters.

From the preceding proportion may be inferred the formula

$$
\frac{g}{g^{\prime}}=\frac{\mathrm{M}}{\mathrm{M}^{\prime}} \times \frac{r^{2}}{r^{\prime 2}},
$$

by which the superficial gravity may always be computed when the ratios of the masses and the diameters are known.
2648. Superficial gravity of the sun. - The mass of the sun being 355,000 times that of the earth, while its diameter is 110 times that of the earth, we shall have

$$
g: g^{\prime}:: 1: \frac{355,000}{12,100}=28 \cdot 9
$$

It appears, therefore, that the weight of a body placed at the surface of the sun is twenty-nine times its weight on the surface of the earth.

A man, whose average weight would be $1 \frac{1}{2} \mathrm{cwt}$. on the earth, would weigh 2 tons and 1-3d if transferred to the surface of the sun. The human frame, organised as it is, would be crushed under its own weight if removed there.

Muscular force is therefore 29 times more efficacious upon the earth than it would be upon the sun.
2649. Superficial gravity on the moon. - The mass of the moon has been ascertained to be the 80th part of that of the earth, while the diameter of the moon is about the fourth part of that of the earth. We have, therefore, in the case of the moon

$$
g: g^{\prime}:: 1: \quad \frac{16}{80}=\frac{1}{5} ;
$$

so that the superficial gravity on the moon is five times less than on the earth. A man weighing 1.5 cwt . on the earth would only weigh 0.3 cwt ., or $33 \frac{1}{2} \mathrm{lbs}$., if transferred to the moon.
2650. Classification of the planets in three groups. - First group - the terrestrial planets. - Of the planets hitherto discovered, three which present in several respects remarkable analogies to the earth, and whose orbits are included within a circle which exceeds the earth's distance from the sun by no more than one-half, have been from these circumstances denominated terrestrial planets. Two of these, Mercury and Venus, revolve within the orbit of the earth; and the third, Mars, revolves in an orbit outside that of the earth, its distance from the earth when in opposition being only half the earth's distance from the sun.
2651. Second group - the planetoids. - A chasm having a width measuring little less than four times the earth's distance, separated, for many ages after astronomy had made considerable progress, the terrestrial planets from the more remote members of the system. The labours of observers during the last half century, but chiefly during the last seven years, have filled this chasm with no less than twenty-three planets, distinguished from all the other bodies of the system by their extremely minute magnitudes, and by the circumstance of revolving in orbits very nearly equal. These bodies have been distinguished by the name of asteroids or planetoids, the latter being preferable as the most characteristic and appropriate.
2652. Third group - the major planets. - Outside the planetoids, and at enormous distances from the sun and from each other, revolve four planets of stupendous magnitude named Jupiter, Saturn, Uranus, and Neptune: the two former being visible to the naked eye, were known to the
ancients; the two latter are telescopic, and were discovered in modern times.

## CHAP. XIII.

## THE TERRESTRIAL PLANETS.

## I. Mercury.

2653. Period. - The nearest of the planets to the sun, and that which completes its revolution in the shortest time, is Mercury.

The synodic period of this planet, determined by immediate observation, is 115.88 days. Hence we shall have by the formula (2589).

$$
\frac{1}{P}=\frac{1}{115 \cdot 88}+\frac{1}{365 \cdot 25}=\frac{1}{87 \cdot 98}
$$

The period of Mercury is, therefore, $87 \cdot 98$, or very 'nearly 88 days.

By methods of calculation susceptible of stiil greater precision, the period is found to be 87.97 days.

If the earth's period be expressed by 1 , that of Mercury will, therefore, be 0.2408 .
2654. Heliocentric and synodic motions. - The mean daily heliocentric motion is, therefore (2568),

$$
a=\frac{1296000}{87 \cdot 97}=14732^{\prime \prime} \cdot 5=245^{\prime} \cdot 5=4^{\circ} .092
$$

The mean daily synodic motion is (2569) $\sigma=a-\varepsilon=14732^{\prime \prime} \cdot 5-3548^{\prime \prime} \cdot 2=11184^{\prime \prime} \cdot 3=186^{\prime} \cdot 4=3^{\circ} \cdot 11$.
2655. Distance determined by greatest elongation.- Owing to the ellipticity of the planet's orbit, its greatest elongation is subject to some variation. Its mean amount is, however, about $22^{\circ} \cdot 5$. If the radius $r$ of the planet's orbit, drawn from the sun to the planet at the point of its greatest elongation, were the arc of a circle, having the earth's distance from the sun as radius, we should have (2294)

$$
r=\frac{95,000,000}{57 \cdot 3} \times 22^{\circ} \cdot 5=37,303,000 \text { miles. }
$$

But the radius $r$ being, in fact, the sine of $22^{\circ} \cdot 5$, and not the arc itself, the value of $r$ is a little less, being about $36 \frac{3}{4}$ millions of miles.
2656. By the harmonic law. - If $r$ express the distance of the planet, that of the earth being 1 , we shall have (2621)

$$
r^{3}=0.2408^{2}=0.387^{3}
$$

The distance of the planet is, therefore, 0.387 . But the mean distance of the earth being 95 millions of miles, we shall have for the mean distance of the planet

$$
r^{\prime}=95,000,000 \times 0.387=36,770,000 \text { miles }
$$

2657. Mean and extreme distances from the earth. - The eccentricity of the orbit of Mercury is much more considerable than those of the planets generally, being a little more than $0 \cdot 2$, expressed in parts of the mean distance. The distance of the planet from the sun is, therefore, subject to a variation, amounting to so much as a fifth part of its mean value. The greatest and least distances from the sun are, therefore,

$$
\begin{aligned}
& 36 \frac{3}{4}+7 \frac{1}{3}=43 \frac{5}{5} \text { millions of miles in aphelion } \\
& 36 \frac{3}{4}-7 \frac{1}{3}=29 \frac{2}{3} \quad \# \quad \text { perihelion. }
\end{aligned}
$$

The distance is, therefore, subject to a variation in the ratio of 5 to 7 very nearly.

The mean distances of the planet from the earth are, therefore,

$$
\begin{aligned}
& 95-36 \frac{3}{4}=59 \frac{1}{4} \text { mill. of miles at inf. conj. } \\
& 95+36 \frac{3}{4}=131 \frac{3}{4} \quad \# \quad \text { sup. conj. }
\end{aligned}
$$

These distances are subject to an increase and diminution of seven and one-third millions of miles due to the eccentricity of the orbit of the planet, and one million and a-half of miles due to the eccentricily of the orbit of the earth.
2638. Scale of the orbit relatively to that of the earth.-The orbit of Mercury and a part of that of the earth are exhibited on their proper scale in fig. 742., where se is the earth's distance from the sun, and $m m^{\prime \prime} m$ the orbit of the planet. The lines $\mathrm{Em} m^{\prime \prime}$ drawn from the earth touching the orbit of the planet determine the positions of the planet when its elongation is greatest east and west of the sun. The points $m$ are the positions of the planet at inferior and superior conjunction.
2659. Apparent motion of the planet. - The effects of the combination of the orbital motions of the planet and the earth
upon the apparent place of the planet will now be easily comprehended.

Since the mean value of the


Fig. 742. greatest elongation $m^{\prime \prime} \mathrm{ES}=222_{1}^{\circ}$, the arc $m m^{\prime \prime}=67 \frac{1}{2}^{\circ}$ and therefore $m^{\prime \prime} m m^{\prime \prime}=67 \frac{1}{2}^{\circ} \times 2=135^{\circ}$. The times of the greatest elongations east and west therefore divide the whole synodic period into two unequal parts, in one of which, that from the greatest elongation east through inferior conjunction to the greatest elongation west, the planet gains upon the earth $135^{\circ}$; and in the other, that from the greatest elongation west, through superior conjunction to the greatest elongation east, it gains $360^{\circ}$ $135^{\circ}=225^{\circ}$. Since the parts into which the synodic period is thus divided are proportional to these angles, they will be (taking the synodic period in round numbers as 116 days),

$$
\begin{aligned}
& \frac{135}{360} \times 116=43 \frac{1}{2} \text { days } \\
& \frac{225}{360} \times 116=72 \frac{1}{2} \text { days. }
\end{aligned}
$$

And since the former interval is divided equally by the epoch of inferior, and the latter by the epoch of superior, conjunction, it follows, that the intervals between inferior conjunction and greatest elongation are $21 \frac{3}{4}$ days, and the intervals between superior conjunction and greatest elongation are $36 \frac{1}{4}$ days.

The interval between the times at which the planet is stationary, before and after inferior conjunction, is subject to some variation, owing to the eccentricities of the orbits both of the planet and the earth, but chiefly to that of the planet's orbit, which is considerable. If its mean value be taken at 22 days, the angle gained by the planet on the earth in that interval being

$$
3^{\circ} \cdot 11 \times 22=68^{\circ} \cdot 4
$$

the angular distances of the points at which the planet is stationary from inferior conjunction as seen from the sun would be $34^{\circ} \cdot 2$, which would correspond to an elongation of about $21^{\circ}$, as seen from the earth. This result, however, is subject to very great variation, owing to the eccentricity of the planet's orbit and other causes.
2660. Conditions which favour the observation of an inferior planet. - These conditions are threefold; 1. The magnitude of that portion of the enlightened hemisphere which is presented to the earth. 2. The elongation. 3. The proximity of the planet to the earth.

Since it happens that the positions which render some of these conditions most favourable render others less so, the determination of the position of greatest apparent brightuess is somewhat complicated. When the planet is nearest to the earth its dark hemisphere is presented towards us (2595); besides which, being in inferior conjunction, it rises and sets with the sun, and is only present in the day time. At small elongations in the inferior part of the orbit its distance from the earth is not much augmented, but it is still overpowered by the sun's light, and would only appear as a thin crescent when it would be possible to see it. At the greatest elongation, when it is halved, it is most removed from the interference of the sun, but is brightest at a less elongation, even though it moves to a greater distance from the earth, since it gains more by the increase of its phase than it loses by increased distance and diminished elongation.

Owing to the very limited elongation of Mercury, that planet, even when its apparent distance from the sun is greatest, sets in the evening long before the end of twilight; and when it rises before the sun, the latter luminary rises so soon after it that it is never free from the presence of so much solar light as to render it extremely difficult to see the planet with the naked eye.

In these latitudes Mercury is therefore rarely seen with the naked eye. It is said that Copernicus himself never saw this planet, a circumstance which, however, may have been owing, in a great degree, to the unfavourable climate in which he resided. In lower latitudes, where the diurnal parallels are more nearly vertical and the atmosphere less clouded, it is more
frequently visible, and there it is more conspicuous, owing to the short duration of twilight.
2661. Apparent diameter,-its mean and extreme values.Owing to the variation of the planet's distance from the earth, its apparent diameter is subject to a corresponding clíange. At its greatest distance its apparent diameter is $4 \frac{1}{2}{ }^{\prime \prime}$, and at its least distance $11 \frac{1_{2}^{\prime \prime}}{}$, its value at the mean distance being $6_{2}^{1 \prime \prime}$.

The apparent diameter of the moon being familiar to every eye supplies a convenient and instructive comparison by which the apparent magnitudes of other objects may be indicated, and we shall refer to it frequently for that purpose. The disk of the full moon subtends an angle of $1800^{\prime \prime}$ to the eye. It follows, therefore, that the apparent diameter of Mercury when it appears as a thin crescent near inferior conjunction is about the 150th part, near the greatest elongation it is the 280th part, and near superior conjunction the 400th part, of the apparent diameter of the moon. With a magnifying power of 140 , it would therefore, at its greatest elongation, appear with a disk half the apparent diameter of the moon.
2662. Real diameter. - The distance of Mercury in inferior conjunction being $36 \frac{3}{4}$ millions of miles, the linear value of $1^{\prime \prime}$ at it then is (2298)

$$
\frac{59,250,000}{206,265}=287 \cdot 2 \text { miles. }
$$

At this distance its apparent diameter is $11 \frac{1}{4}^{\prime \prime \prime}$; and if $\mathrm{D}^{\prime}$ express its real diameter we shall have

$$
\mathrm{D}^{\prime}=287 \cdot 2+11 \cdot 25=3231 \text { miles. }
$$

Other observations make the diameter somewhat less, and fix it at 2950 miles.
2663. Volume. -If $\mathrm{v}^{\prime}$ express the volume, that of the earth being $v$, we shall have

$$
\frac{v^{\prime}}{v}=\frac{D^{\prime 3}}{D^{3}}=\left(\frac{3231}{7912}\right)^{3} \cdot=\frac{1}{14 \cdot 6}
$$

The volume is therefore less than the 14th part of that of the earth. If the lesser estimate of the dia-


Fig. 743. meter of Mercury be adopted, it will follow that its volume is about the 17th part of that of the earth. The relative volumes are represented by $m$ and $E$, fig. 743.
2664. Mass and density.- Some uncertainty has hitherto attended the calculation of the density and mass of this planet, owing to the absence of a satellite. The disturbances produced by it upon the motion of Encke's comet (a body which will be described in another chapter) have, however, supplied the means of a closer approximation to it. By this means it has been found that if $m^{\prime}$ express the mass of the planet and $m$ that of the earth, we shall have

$$
\frac{\mathrm{M}^{\prime}}{\mathrm{M}}=\frac{100}{1225} ;
$$

so that the mäss is $12 \frac{1}{4}$ times less than that of the earth.
If $d^{\prime}$ and $d$ express the densities of the planet and the earth, we shall therefore have

$$
\frac{d^{\prime}}{d}=\frac{M^{\prime}}{M} \times \frac{V}{v^{\prime}}=\frac{100}{1225} \times \frac{147}{10}=\frac{1470}{1225}=1 \cdot 20 .
$$

Other estimates make it $1 \cdot 12$. So that it may be inferred that the density of Mercury exceeds that of the earth by an eighth to $a$ fifth.
2665. Superficial gravity. - If $g^{\prime}$ express the force of gravity on the surface of Mercury, $g$ being the force on the surface of the earth, we shall have (2639)

$$
\frac{g^{\prime}}{g}=\frac{\mathrm{M}^{\prime}}{\mathrm{M}} \times \frac{\mathrm{D}^{\prime 2}}{\mathrm{D}^{2}}=0.5
$$

The superficial gravity is therefore only half the same force on the earth. Muscular and other forces not depending on wgeght are therefore twice as efficacious. The height through Which a body would fall in a second would be $96 \frac{1}{2}$ inches, or a little more than eight fect.
2666. Solar light and heat. - The apparent magnitude of the sun is greater than upon the earth, in the same ratio as the distance is less; and owing to the considerable ellipticity of Mercury's orbit, it has apparent magnitudes sensibly different in different parts of Mercury's year. The apparent diameter of the sun as seen from the earth being $30^{\prime}$, its apparent diameter seen from Mercury will be

$$
\begin{array}{ll}
\text { in perihelion } & 30^{\prime} \times \frac{1000}{307}=92^{\prime} \cdot 5 \\
\text { in aphelion } & 30^{\prime} \times \frac{1000}{467}=64^{\prime} \cdot 2
\end{array}
$$

$$
\text { at mean distance } 30^{\prime} \times \frac{1000}{387}=78^{\prime}
$$

Thus the apparent diameter when least is twice, and when greatest tbree times, that under which the sun appears from the earth.

In fig. 744, 5., the relative apparent magnitudes of the sun, as


Fig. 744.


Fig. 745.
seen from the earth and from Mercury, at the mean distance and extreme distances, are represented at $\mathrm{E}, \mathrm{M}, \mathrm{m}^{\prime}$, and $\mathrm{m}^{\prime \prime}$. If E be supposed to represent the apparent disk of the sun as seen from the earth, ar will represent it as it appears to Mercury at the mean distance, $\mathrm{m}^{\prime}$ at aphelion and $\mathrm{m}^{\prime \prime}$ at perihelion.

Since the illuminating and heating power of the sun's rays, whatever be the physical condition of the surface of the planet, must vary in the same proportion as the apparent area of the sun's disk, it follows, that the light and warmth produced by the sun on the surface of the planet will be greater in perihelion than in aphelion, in the ratio of 9 to 4 , and, consequently, there must be a succession of seasons on this planet, depending exclusively on the ellipticity of the orbit, and having no relation to the direction of its axis of rotation or the position of the plane of its equator with relation to that of its orbit. The passage of the planet through its perihelion must produce a summer, and its passage through aphelion a winter, the mean temperature of the former ceteris parilus being above twice that of the latter.

If the axis of the planet be inclined to the plane of its orbit, another succession of seasons will be produced, dependent on such inclination and the position of the equinoctial points. If these points coincide with the apsides of the orbit, the summers and winters arising from both causes will either respectively coincide, or the summer from each cause will coincide with the winter from the other. In the former case the intensities of the seasons and their extreme temperatures will be augmented
by the coincidence, and in the latter they will be mitigated, the summer heat from each cause tempering the winter cold from the other.

If, on the other hand, the line of apsides be at right angles to the direction of the equinoxes, the summer and winter from each cause will correspond with the spring and autumn from the other, and a curious and complicated succession of seasons must ensue, depending on the degree of obliquity of the axis of the planet, compared with the effects of the eccentricity of its orbit.

In comparing the calorific influence of the sun on Mercury and the earth, it must be remembered that the actual temperature produced by the solar rays depends on the density of the atmosphere through which they pass, by which the heat is collected and diffused. The density of the sun's rays above the snow-line in the tropics is as great as at the level of the sea, but the temperatures of the air and surrounding objects are extremelydifferent. Notwithstanding, therefore, the greater density of the solar rays, the atmospheric conditions of the planet may be such that the superficial temperature may not be different from that of the earth.

The intensity of the solar light must be greater than at the earth in the ratio of four to one when the planet is in aphelion, and nine to one when in peribelion. Its effects on vision, however, may be rendered the same by the mere adaptation of the contractile power of the pupil of the eye. (1129.)
2667. Method of ascertaining the diurnal rotation of the planets. - One of the most interesting objects of telescopic inquiry regarding the condition of the planets is, the question as to their diurnal rotation. In general, the manner in which we should seek to ascertain this fact would be, by examining with powerful telescopes the marks observable upon the disk of the planet. If the planet revolve upon an axis, these marks, being carried round with it, would appear to move across the disk from one side to the other; they would disappear on one side, and, remaining for a certain time invisible, would reappear on the other, passing, as before, across the visible disk. Let any one stand at a distance from a common terrestrial globe, and let it be made to revolve upon its axis: the spectator will see the geographical marks delineated on it pass across the hemisphere which is turned towards him. They will successively disappear and reappear. The same effects must, of
course, be expected to be seen upon the several planets, if they have a motion of rotation resembling the diurnal motion of our globe.
2568. Difficulty of this question in the case of Mercury. This is a species of observation which has not yet been succesfully made in the case of Mercury. Sir.John Herschel, who has enjoyed more than common advantages for telescopic observation under different climates, affirms, that little more can be certainly affirmed of Mercury than that it is globular in form, and exhibits phases, and that it is too small and too much lost in the constant and close effulgence of the sun to allow the further discovery of its physical condition. Other observers, however, claim the discovery of indications not only of rotation but other physical characters. Schröter says, that by examining daily the appearance of the cusps of the crescent he ascertained that it has a motion of rotation in $24^{\text {h. }} 5^{\mathrm{m} \cdot} \cdot 28^{\mathrm{s} \cdot}$
2669. Alleged discovery' of mountains. - The same observer claims the discovery of mountains on Mercury, and even assigns their height, estimating one at 2132 yards, and another 18,978 yards.

These observations, not having been confirmed, must be considered apochryphal.

## II. Vends.

2670. Period. - The next planet proceeding outwards from the sun is Venus, which revolves in an orbit within that of the earth, and which, after the sun and moon, is the most splendid object in the firmament.

The synodic period, ascertained by observation, is 584 days. Her period deduced from this (2589) is, therefore,

$$
\frac{1}{P}=\frac{1}{365 \cdot 25}-\frac{1}{584}=\frac{1}{225}
$$

By the other methods it is more exactly determined to be $224 \cdot 7$ days.

If the earth's period be taken as the unit, that of Venus will, therefore, be 0.61 .
2671. Heliocentric and synodic motions. - The mean daily heliocentric motion of Venus is, therefore (2568),

$$
a=\frac{1296000}{224 \cdot 7}=5768^{\prime \prime}=96^{\prime} 13=1^{\circ} 6
$$

and the mean daily synodic motion is (2569)

$$
\sigma=\dot{\alpha}-\varepsilon=5768^{\prime \prime}-3548^{\prime \prime}=2220^{\prime \prime}=37^{\prime}
$$

2672. Distance, by greatest elongation.-The mean amount of the greatest elongation of Venus being found by observation to be about $45^{\circ}$ or $46^{\circ}$, it follows that in that position lines drawn to the earth and sun from the planet would form the sides of a square, of which the earth's distance from the sun is the diagonal. If, therefore, the earth's distance be expressed by $1 \cdot 0000$, that of Venus would be 0.7071 .
2673. By the harmonic law.-If $r$ express the mean distance of the planet from the sun (2621), we have

$$
r^{3}=0.61^{2}=0.719^{3}
$$

Therefore $r=0.719$; and since the mean distance of the earth is 95 millions of miles, we shall have

$$
r^{\prime}=95,000,000 \times 0.719=68,300,000
$$

By more exact methods the distance is found to be $68 \frac{3}{4}$ millions of miles.
2674. Mean and extreme distances from the earth.-Its distances from the earth at inferior conjunction, greatest elongation, and superior conjunction, are therefore

$$
\begin{aligned}
& 26,250,000 \text { miles at inf. con. } \\
& 65,000,000 \text { miles at greatest elon. } \\
& 163,750,000 \text { miles at super. con. }
\end{aligned}
$$

The eccentricity of the orbit of Venus being less than 0.007, these distances are subject to very little variation from that cause. The extreme distance of the planet from the sun will be

$$
\begin{aligned}
& 68 \frac{3}{4}-0 \frac{1}{2}=68 \frac{1}{4} \text { millions of miles in peribelion, } \\
& 68 \frac{3}{4}+0 \frac{1}{2}=69 \frac{1}{4} \Rightarrow \quad \text { aphelion. }
\end{aligned}
$$

These distances of the planet from the earth are subject therefore to an increase and diminution, amounting to half a million of miles, due to the eccentricity of the planet's orbit, and one and a half million of miles due to that of the earth's orbit.
2675. Scale of the orbit relative to that of the earth.一The relation of the orbit of Venus to the earth is represented in fig. 746., where se represents the earth's distance from the sun, and $v s v$ the mean diameter of the planet's orbit on the same scale. The angles $\mathbf{S E} v^{\prime \prime}$ represent the greatest elongation of
the planet, which is about $46^{\circ}$. The lesser elongations $\boldsymbol{v}^{\prime \prime \prime}$ es are


Fig. 746. those at which the planet appears with less than $a$ full disk, or gibbous, as at $v^{\prime \prime \prime}$, or as a crescent, as at $v^{v}$. (2595.)
2676. Apparent motion. Since the mean value of the greatest elongation is ascertained to be $46^{\circ}$, the angle at the sun, $v^{\prime \prime} \operatorname{se}=44^{\circ}$, and consequently the angle $v^{\prime \prime} s v^{\prime \prime}$, included between the greatest elongations east and west, is 88. ${ }^{\circ}$ Since the time taken by the planet to gain this angle upon the earth bears the same ratio to the synodic period as this angle bears to $360^{\circ}$, the intervals into which the synodic period is divided by the epochs of greatest elongation, are

$$
\begin{aligned}
& \frac{88}{360} \times 584=142 \cdot 8 \text { days. } \\
& \frac{272}{360} \times 584=441 \cdot 2 \text { days. }
\end{aligned}
$$

The intervals between inferior conjunction and greatest elongation are therefore $71 \frac{1}{2}$ days, and the intervals between superior conjunction and greatest elongation are $220 \frac{1}{2}$ days.
2677. Stations and retrogression. - From a comparison of the orbital motions and distances of the earth and planet, it is found that the epochs at which it is stationary are about twenty days before and after inferior conjunction. Now, since the planet gains $0^{\circ} \cdot 61$ per day upon the earth, this interval corresponds to an angle of

$$
20 \times 0^{\circ} .61=12^{\circ} \cdot 2
$$

at the sun, which corresponds to an elongation of $25^{\circ}$.
The arc of retrogression is little less than a degree.
2678. Conditions which favour the observation of Venus.This planet presents itself to the observer under conditions in many respects more favourable for telescopic examination than

Mercury. The actual diameter of Venus is more than twice that of Mercury. It approaches nearer to the earth in the inferior part of its orbit in the ratio of 13 to 30 . It elongates itself from the sun to the distance of $46^{\circ}$, while the elongation of Mercury is limited to $22 \frac{1}{2}^{\circ}$. The latter is never seen, except in strong twilight. Venus, especially in the lower latitudes, is seen at a considerable elevation long after the cessation of evening and before the commencement of morning twilight, and when she has a gibbous or a crescent phase. The planet appears brightest when its elongation is about $40^{\circ}$ in the superior part of her orbit.
2679. Evening and morning star.-Lucifer and Hesperus.This planet for these reasons is, next to the sun and moon, the most conspicuous and beautiful object in the firmament. When it has western elongation, it rises before the sun, and is called the morning star. When it has eastern elongation it sets after the sun, and is called the eventing star.

The ancients gave it, in the former position, the name Lucifer (the harbinger of day), and in the latter Hesperds.
2680. Apparent diameter.- Owing to the great difference between its distance from the earth at inferior and superior conjunctions, the apparent diameter of this planet varies in magnitude within wide limits. At superior conjunction it is only $10^{\prime \prime}$, from which to inferior conjunction it gradually enlarges until it becomes $62^{\prime \prime}$, and in some positions even so much as $76^{\prime \prime}$. At its greatest elongation its apparent diameter is about $25^{\prime \prime}$, and at its mean distance $16 \frac{1}{2}$.

Thus, when the planet appears as a thin crescent immediately before or after inferior conjunction, the magnitude is such that the line joining the cusps is the 30th part of the line joining the cusps of the crescent moon, and a telescope having a magnifying power no greater than 30 will show it with an apparent size equal to that of the crescent moon to the naked eye.

At or near the greatest elongation it requires a magnifying power of 70 , and near superior conjunction one of 180 , to produce a like effect.
2681. Difficulties attending the telescopic observations of Venus. - Notwithstanding this the greatest difficulties have attended the telescopic observation of this planet. Its intense lustre dazzles the eye, and aggravates all the optical imperfections of the instrument.

The low altitudes at which the observations are generally made constitute another difficulty, the irregular effects of refraction interfering materially with the appearance. Some observers have consequently contended that the best position for observations upon it is near superior conjunction, whén its phase is full, and when by proper expedients it may be observed at midday within a few degrees of the sun's disk.
2682. Real diameter.-The linear value of $1^{\prime \prime}$ at Venus, when she appears as a thin crescent near her inferior conjunction, is

$$
\frac{26,250,000}{206,265}=127 \cdot 2 \text { miles. }
$$

At this distance her apparent diameter is $61^{\prime \prime}$; and if $\mathrm{D}^{\prime}$ express her real diameter, we shall have

$$
\mathbf{v}^{\prime}=127 \cdot 2 \times 61=7760 \text { miles }
$$

The magnitude of Venus is, therefore, nearly equal to that of the earth.
2683. Mass and density. - By the methods explained in (2639), it has been ascertained that the mass of Venus is greater than that of the earth in the ratio of 113 to 100 ; and as the volumes are nearly equal their densities are also nearly equal.
2684. Superficial gravity. - All the conditions which affect the gravity of bodies on the surface of Venus being the same, or nearly so, as those which affect bodies on the earth, the superficial gravity is nearly the same.
2685. Solar light and heat.-The density of the solar rays is greater than upon the earth in the inverse ratio of the squares of the numbers 7 and 10 , which express their distances from the sun. The intensity is, therefore, greater at Venus in the ratio of 2 to 1 .

The relative apparent magnitudes of the sun's disk at Venus and the earth are represented


Fig. 747. at v and E , fig. 747. Owing to the very small eccentricity of the orbit this magnitude is not subject to any very sensible variation.
2686. Rotation - probable mountains. - Although there is very little doubt of the fact that this planet has a diurnal rotation analogous to that of the earth, the observations which might have been expected to demonstrate it in a satisfactory
manner have been obstructed by the causes already noticed (2681). Nevertheless Cassini, in the 17th century, and Schröter towards the close of the 18th, with instruments very inferior to the telescopes of the present day, deduced from the phases a period of rotation in complete accordance with the results of the most recent observations.

These astronomers found that the points of the horns of the crescent observed between inferior conjunction and greatest elongation appeared at certain moments to lose their sharpness, and to become as it were blunted. This appearance was, however, of very short duration, the horn after some minutes always recovering its sharpness. Such an effect would obviously be produced by a local irregularity of surface on the planet, such as a lofty mountain, which would throw a long sloadow over that part of the surface which would form the point of the horn. Now, admitting this to be the cause of the phenomenon, it ought to be reproduced by the same mountain at equal intervals, this interval being the time of rotation of the planet. Such a periodical recurrence was accordingly ascertained.
2687. Observations of Cassini, Herschel, and Schröter. From such observations the elder Cassini, so early as 1667, inferred the time of rotation of the planet to be $23^{\mathrm{h}} .16^{\mathrm{m}}$., a period not very different from that of the earth. Soon after this, Bianchini, an Italian astronomer, published a series of observations tending to call in doubt the result obtained by Cassini, and showing a period of 576 hours. Sir William Herschel resumed the subject, aided by his powerful telescopes, in 1780, but without arriving at any satisfactory result, except the fact that the planet is invested with a very dense atmosphere. He found the cusps (contrary to the observations of Cassini, and, as we shall see, of more recent astronomers) always sharp, and free from irregularities. Schröter made a series of most elaborate observations on this planet, with a view to the determination of its rotation. He considered not only that he saw periodical changes in the form of the points of the horns, but also spots, which had sufficient permanency to supply satisfactory indications of rotation. From such observations he inferred the time of rotation to be $23^{\mathrm{h}} .21^{\mathrm{m}} .7^{19} 98^{\text {s }}$. From observations upon the horns, he inferred also that the southern hemisphere of the planet was more mountainous than the northern; and he attempted, from observations on the bluntness periodically pro-
duced on the southern point of the crescent, to estimate the height of some of the mountains, which he inferred to amount to the almost incredible altitude of twenty-two miles.
2688. Observations of MM. Beer and Mädler-time of rotation. - Although the estimate of the planet's rotation resulting from the observations of Schröter, corroborating those of Cassini, has been generally accepted by the scientific world, the question was not regarded as definitively settled; and a series of observations was made by MM. Beer and Mädler, between 1833 and 1836, which went far to confirm the conclusions of Cassini and Schröter ; and the still more recent observations of De Vico at Rome may be considered as removing all doubt that the period of the planet's rotation does not vary much from $23 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$.
2689. Beer and Mädler's diagrams of Venus. - In fig. 748.,

| 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Fig. 748.
are represented a series of eighteen diagrams of the planet, selected from a much greater number made by MM. Beer and Mädler at the dates indicated above. These drawings were when taken the planet was approaching inferior conjunction, the planet being observed either before sunset or during twilight.

If the surface of the planet were exempt from considerable inequalities, the concave edge of the crescent would be a sensible ellipse, subject to no other deficiency of perfect regularity and sharpness, save such as might be explained by the gradual faintness of illumination due to the atmosphere of Venus. The mere inspection of the diagrams is enough to show that such is
not the appearance of the disc. Irregularities of curvature and of the forms of the cusps are apparent, which can only arise from corresponding irregularities of the surface of the planet. If the want of sharpness in the horns of the crescent arose from any effect produced by the terrestrial atmosphere on the optical image of the disc it would equally affect both cusps. Several of the diagrams, for example, figs. $1,2,3,7,8,15,17$, are at variance with such an hypothesis, the cusps being obviously different in form.

In corroboration of the observations of Schröter, it was ascertained that the southern cusp was subject to greater and more frequent changes of form than the northern, from which it was inferred that the southern hemisphere of the planet is the more mountainous. It is remarkable that the same character is found to prevail on the moon.

It was not only observed that the irregularities of the concave edge of the crescent were subject to a change visible from $5^{m}$. to $5^{\mathrm{m}}$., but that the same forms were reproduced after an interval of $231^{\text {h }}$., subject to an error not exceeding from 5 to 10 minutes.
2690. More recent observations of De Vico. - In fine, De Vico, observing at a still later date at Rome, favoured by the clear sky of Italy, made several thousand measurements of the planet in its phases, the general result of which is in such complete accordance with those of MM. Beer and Miadler, that the fact of the planet's rotation may be now regarded as satisfactorily demonstrated, and that its period does not differ much from $23^{\mathrm{h}} .15^{\mathrm{m}}$.
2691. Direction of the axis of rotation unascertained. - If such difficulties have attended the mere determination of the rotation, it will be easily conceived that those which have attended the attempts to ascertain the direction of the axis of rotation have been much more insurmountable. The observations above described, by which the rotation has been established, supply no ground by which the direction of the axis could be ascertained. No spot has been seen the direction of whose motion could indicate that of the axis. It was conjectured, with little probability, by some observers, that the axis was inclined to the orbit at the angle of $75^{\circ}$. This conjecture, however, has not been confirmed.
2692. Twilight on Venus and Mercury.-The existence of
an extensive twilight in these planets has been well ascertained. By observing the concave edge of the crescent which corresponds to the boundary of the illuminated and dark hemispheres, it is found that the enlightened portion does not terminate suddenly, but there is a gradual fading away of the light into the darkness, produced by the band of atmosphere illuminated by the sun which overhangs a part of the dark hemisphere, and produces upon it the phenomena of twilight.

Some observers have seen on the dark hemisphere of the planet Venus a faint reddish and grayish light, visible on parts too distant from the illuminated hemisphere to be produced by the light of the sun. It was conjectured that these effects are indications of the play of some atmospheric phenomena in this planet similar to the aurora borealis.

In fine, it may be stated generally, that so far as relates to the physical condition of the inferior planets, the whole extent of our certain knowledge of them is, that they are globes like the earth, illuminated and warmed by the sun; that they are invested with atmospheres probably more dense than that of the earth; and since observations render probable the existence of vast masses of clouds on Venus, if not on Mercury, analogy justifies the inference that liquids exist on these planets.
2693. Spheroidal form unascertained-suspected satellitc. - One of the phenomena from which the rotation, as well as the direction of the axis, might be inferred, is the spheroidal form of the planet. To ascertain this by observations of the disk, it would be necessary to see the planet with a full phase. But when the inferior planets have that phase, they are near superior conjunction, and therefore lost in the solar light. It has been nevertheless contended, that when Venus is most remote from her node, she is sufficiently removed from the plane of the ecliptic to be observed with a good telescope at noon when in superior conjunction. No observation, however, of this kind has ever yet been made, and the spheroidal form of the planet is unascertained.

Several observers of the last two centuries concurred in maintaining that they had seen a satellite of Venus. Cassini, the elder, imagined he saw such a body near the planet on the 25th of January, 1672, and again on 27th of August, 1686 ; Short, the well-known optical instrument maker, on 3d November, 1740; Montaigne, the French astronomer, in May, 1761 ; several ob-
servers in March, 1764, all agree in reporting observations of such a body. In each case the phase was similar to that of Venus, and the apparent diameter about a fourth of that of the planet. By collecting these observations, Lambert computed the orbit of the supposed satellite.

In opposition to all this, it may be stated that notwithstanding the immense improvement in optical instruments, and especially in the construction of telescopes of power far surpassing any of which the observers before the present century were in possession, no trace of such a body has been detected, although observers have increased in number, activity, and vigilance, in a proportion greater still than that of the improvement of telescopes. It must, therefore, be concluded, at least for the present, that the supposed appearances recorded by former observers were illusive.

## III. Mars.

2694. Position in the system.-Proceeding outwards from the sun, the third planet in the order of distance is the Earth. The fourth in order, whose orbit circumscribes that of the earth, is the planet Mars.
2695. Period. - The synodic period of Mars is' found by observation to be 780 days. It follows from this that if $\mathbf{P}$ express the periodic time of the planet in days, we shall have

$$
\frac{1}{p}=\frac{1}{365}-\frac{1}{780}=\frac{1}{687} .
$$

The periodic time of Mars is therefore 687 days, or, as appears by more exact methods of calculation and observation, 686.979 days.

The earth's period being taken as the unit, the period of Mars will therefore be $1-881$.
2696. Distance. - To compute by the Harmonic Law the mean distance of Mars from the sun, we have therefore

$$
1 \cdot 88^{2}=1 \cdot 5246^{3}
$$

The mean distance is therefore $1 \cdot 5246$, that of the earth being the unit, and the mean distance in miles is

$$
95,000,000 \times 1 \cdot 524=144,780,000
$$

or about $144 \frac{3}{4}$ millions of miles.
2697. Eccentricity - mean and extreme distances from the
earth. - The eccentricity of the orbit of Mars being about 0.09 , the distance is subject to a variation, the extreme amount of which is less than one-tenth of its mean value: The extreme distances are

$$
\begin{aligned}
& 144 \frac{3}{4}+13=157 \frac{3}{3} \text { million miles in aphelion. } \\
& 144 \frac{3}{4}-13=131 \frac{3}{4} \text { million miles in perihelion. }
\end{aligned}
$$

It appears, therefore, that the mean distances of the planet from the earth are

| In Opposition |  | - | $=493$ million |
| :---: | :---: | :---: | :---: |
| In Conjunction |  |  | $144 \frac{3}{4}+95=239 \frac{3}{3}$ million milc |
| In Quadrature | - | - | = 109 million miles |

These distances are subject to variation, whose extreme limit is about 15 millions of miles, owing to the combined effects of the eccentricities of the two orbits. Although the mean distance of the planet in opposition from the earth is about half the distance of the sun, it may in certain positions of the orbit come within a distance of 35 hundredths of the sun's distance. In the opposition which took place in September, 1830, the distance of the planet was only 38th hundredths of the sun's mean distance.
2698. Heliocentric and synodic motions.-The mean daily Heliocentric motion of Mars is (2568)

$$
a=\frac{1296000}{687}=18^{\prime \prime} 86=31^{\prime} \cdot 1
$$

The mean synodic motion is therefore (2569)

$$
\sigma=\varepsilon-a=3548-1886=16^{\prime \prime} 62=27^{\prime} \cdot 7
$$

2699. Scale of orbit relatively to that of the earth. -If s , fig. 749., represent the position of the sun, and sm the distance of Mars, the orbit of the earth will be represented by $E E^{\prime \prime} \mathrm{E}^{\prime \prime \prime} \mathrm{E}^{\prime}$.
2700. Division of the synodic period. - The earth is at $\mathrm{E}^{\prime \prime \prime}$ when Mars is in conjunction, at $\mathrm{E}^{\prime}$ when in quadrature west of the sun, at $\mathbf{E}$ when in opposition, and at $\mathrm{E}^{\prime \prime}$ when in quadrature east of the sun.

The angle of elongation $s E^{\prime} a$ being $90^{\circ}$, and the mean value of s m being $1 \cdot 52$, that of $\mathrm{SE}^{\prime}$ being expressed by 1 , it follows that the angle e'sm will be about $48^{\circ}$, and therefore $\mathbf{E}^{\prime} \mathbf{S E}^{\prime \prime \prime}=$ $180^{\circ}-48^{\circ}=132^{\circ}$.

Since the synodic period is 780 days, the mean time between quadrature and opposition will be


Fig. 749.
$\frac{48}{360} \times 780=104$ days $;$
and the mean time between quadrature and conjunction will be $\frac{132}{360} \times 780=286$ days.
2701. Apparent motion. - The various changes of the apparent positions of the planet and sun during the synodic period may, therefore, be easily explained. At conjunction the earth being at $\mathrm{E}^{\prime \prime \prime}$, the planet and sun pass the meridian toge-
ther. In this case, the planet being above the horizon only during the day, is not visible. After conjunction, the planet passes the meridian in the forenoon, and is therefore visible above the eastern horizon before sunrise. Before conjunction it passes the meridian in the afternoon, and is therefore visible above the western horizon after sunset.

At the time of the western quadrature, the earth being at $E^{\prime}$, the planet passes the meridian about $6 \mathrm{~A} . \mathrm{M}$., and at the time of western quadrature the earth being at $\mathrm{E}^{\prime \prime}$ it passes the meridian about 6 f.m. The planet has these positions about 286 days, more or less, after and before its conjunction.

At the time of opposition, the earth being at E , the planet passes the meridian at midnight; and is therefore above the horizon from sunset till sunrise. Before opposition it passes the meridian before midnight, and is above the horizon chiefly during the later part of the night, and after opposition it passes the meridian after midnight, and is therefore above the horizon chiefly during the earlier part of the night.

The interval during which it is visible more or less in the absence of the sun, being that during which it passes from western to eastern quadrature through opposition is, in the case of Mars, $104 \times 2=208$ days.
2702. Stations and retrogression. - The elongations at which Mars is stationary, and the lengths of his arc of retrogression, vary to some extent with the distances of the planet from the sun and earth, which distances depend on the ellipticity of the two orbits, and the direction of their major axes. In 1854 Mars will be in opposition on lst March, and will be stationary on the 17th January and 10th April. The right ascension on these days will be,


It follows, therefore, that the extent of retrogression in right ascension will then be $14^{\text {na }} 36^{\text {s }}$, which reduced to angular magnitude is

$$
\left(14^{\mathrm{m}} 36^{\mathrm{s}}\right) \times 15=219^{\prime}=3^{\circ}-39^{\prime}
$$

2703. Phases. - At opposition and conjunction the same hemisphere being turned to the earth and sun, the planet appears with a full phase. In all other positions the lines drawn from the planet to the earth and sun, making with each other an acute angle of greater or less magnitude, the phase will be deficient of complete fullness, and the planet will be gibbous, more so the nearer it is to its quadrature, in ${ }^{\circ}$ which position the lines drawn to the earth and sun make the greatest possible angle, which being the complement of $\mathrm{E}^{\prime} \mathrm{s} \mathrm{m}$, will be


Fig. 750 $90^{\circ}-48^{\circ}=42^{\circ}$. Of the entire hemisphere presented to the earth $138^{\circ}$ will therefore be enlightened and $42^{\circ}$ dark. The corresponding form of the disk, as can easily be deduced from the common principles of projection, will be that which is represented in fig. 750., the dark part being indicated by the dotted line.
The gibbosity will be less the nearer the planet approaches to opposition or conjunction.
2704. Apparent and real diameter. - The apparent diameter of Mars in opposition varies between rather wide limits, in con-
sequence of the variation of its distance from the earth in that position, arising from the causes explained above. When at its mean distance at opposition the apparent magnitude does not exceed $16^{\prime \prime}$, and at conjunction it is reduced to $3^{\prime \prime} \cdot 7$.

In 1830, soon after opposition, when its distance from the earth was $38 \frac{4}{10}$ million of miles, it exhibited a diameter of $22^{\prime \prime}$; the linear value of $1^{\prime \prime}$ at that distance being

$$
\frac{38400000}{206265}=185 \cdot 7 \text { miles, }
$$

the diameter $\mathrm{D}^{\prime}$ of the planet must be

$$
\mathrm{D}^{\prime}=185^{\circ} 7 \times 22=4085 \text { miles }
$$

2705. Volume. - If $\mathrm{v}^{\prime}$ be the volume, that of the earth being v , we have

$$
\stackrel{v^{\prime}}{v^{\prime}}=\left\{\frac{4085}{7900}\right\}^{3}=\frac{1}{7 \cdot 5}=0.133
$$

The volume is therefore less than the seventh part of that of the earth. The relative volumes of Mars and the earth are represented at an and E, fig. 746.
2706. Mass and density.-By the methods explained it has been ascertained that the mass of Mars is 145 , that of the earth being 1000.

We shall have for the density therefore,

$$
\frac{d^{\prime}}{d^{\prime}}=\frac{145}{133}=1.09 .
$$

The.density is very nearly equal, therefore, to that of the earth.
2707. Superficial gravity. - The superficial gravity being determined by the formula (2639), we shall have

$$
\frac{g^{\prime}}{g}=0.54
$$

It appears, therefore, that the force of gravity on the surface of Mars is a little more than half its intensity on the surface of the earth.
2708. Solar light and heat.- The mean distance of the earth from the sun being less than that of Mars in the ratio of 10 to 15 , the apparent diameter of the sun as seen from Mars will be less than its diameter as seen from the earth in the same
ratio. If $\mathrm{E}, \mathrm{fg} .747$., represent the apparent disk of the suri


Fig. 751. as seen from the earth, M will represent its apparent disk as seen from Mars.

Since the density of the solar radiation decreases as the square of the distance increases, its density at Mars will be less than at the earth in the ratio of 4 to 9 .

So far as the illuminating and heating powers of the solar rays depend on their density, they will, therefore, be less in the same proportion.
2709. Rotation. - There is no body of the solar system, the moon alone excepted, which has been submitted to so rigorous and successful telescopic examination as Mars. Its proximity to the earth in opposition, when it is seen on the meridian at midnight with a full phase, affords great facility for this kind of observation.

By observing the permanent lineaments of light and shade exhibited by the disk, its rotation on its axis can be distinctly seen, and has been ascertained to take place in $24^{\mathrm{h}} 37^{\mathrm{m}} 10^{\mathrm{s}}$, the axis on which it revolves appearing to be inclined to the plane of the planet's orbit at an angle of $28^{\circ} 27^{\prime}$. The exact direction of the axis is, however, still subject to some uncertainty.
2710. Days and nights. - It thus appears that the days and nights in Mars are nearly the same as on the earth, that the year is diversified by seasons, and the surface of the planet by zones and climates not very different from those which prevail on our globe. The tropics, instead of being $23^{\circ} 28^{\prime}$, are $28^{\circ} 27^{\prime}$ from the equator, and the polar circles are in the same proportion more extended.
2711. Seasons and climates. - The year consists of 668 Martial days and 16 hours, the Martial being longer than the terrestrial day in the ratic of 100 to 97.

Owing to the eccentricity of the planet's orbit, the summer on the northern hemisphere is shorter than on the southern in the ratio of 100 to 79 , but owing to the greater proximity of the sun, the intensity of its light and heat during the shorter
northern summer is greater than during the longer southern summer in the ratio of 145 to 100 . From the same causes, the longer northern winter is less inclement than the shorter southern winter in the same proportion.

There is thus a complete compensation in both seasons in the two hemispheres.

The duration of the seasons in Martial days in the northern hemisphere is as follows: - spring 192, summer 180, autumn 150, winter 147.
2712. Observations and researches of Messrs. Beer and Mädler. - It is mainly to the persevering labours of these eminent observers that we are indebted for all the physical information we possess respecting the condition of the surface of this planet. Their observations, commenced at an early epoch, were regularly organised at the time of the opposition of 1830, with a view to ascertain with certainty and precision the time of rotation of the planet, the position of its axis, and so far as might be practicable a survey of its surface. These observations have been continued during every succeed. ing opposition, in which the planet having northern declination rose to a sufficient altitude, and was made visible by a telescope by Fraunhoffer of four and a half feet focal length, parallactically mounted, and moved by clockwork, so as to keep the planet in the field of view notwithstanding the diurnal motion of the earth. With this instrument they were enabled to use a magnifying power of 300 , and as the disk of the planet sub.tended in 1830 a visual angle of $22^{\prime \prime}$, it was, when thus magnified, viewed under an angle of $6600^{\prime \prime}$ or $110^{\prime}$, being nearly four times the apparent diameter of the moon.
2713. Areographic character. - That many of the lineaments observed are areographic, and not atmospheric, is established beyond all contestation by their permanency. They are not always visible, and when visible not always equally distinct; but are observed to retain the same forms, no matter how distant may be the intervals at which they may be submitted to examination. The elaborate researches and observations of MM. Beer and Miadler, which commenced with the opposition of 1830 , were continued with unwearied assiduity in every succeeding opposition of the planet for twelve years, so far as the varying decliration and the state of the weather at the epochs of the oppositions permitted. The same spots, cha-
racterised by the same forms, and the same varieties of light and sbade, were seen again and again in each succeeding opposition. Changes of appearance were manifest, but through those changes the permanent features of the planet were always discerned; just as the seas and continents of the earth may be imagined to be distinguishable through the occasional openings in the clouds of our atmosphere by a telescopic observer of Mars.
2714. Telescopic views of Mars -areographic charts of the two hemispheres.-A large collection of drawings of the various hemispheres of Mars presented to the observer has been made by MM. Beer and Mädler. Thirty-five were made during the opposition of 1830, upwards of thirty during that of 1837, and forty during that of 1841 , from a comparison of which charts were made, showing the permanent areographic lineaments of the northern and southern hemisphere.

In Plate VII. we have given six views, selected from those of Beer and Mädler, with the dates subjoined. In Plate VIII. are given the areographic charts of the two hemispheres. It will be observed, that as each spot approaches the edge of the disk its apparent form is modified by the effect of foreshortening, owing to the obliquity of the surface of the planet to the visual ray.
2715. Polar snow observed. - All the lineaments exhibited in these drawings were found to be permanent, except the remarkable white spots which cover the polar regions. These circular areas presented the appearance of a dazzling whiteness, and one of them was so exactly defined and so sharply terminated, that it seemed like the full disk of a small and very brilliant planet projected upon the disk, and near the edge of a larger and darker one. The appearance, position, and changes of these white polar spots have suggested to all the observers who have witnessed them, the supposition that they proceed from the polar snows accumulated during the long winter, and which, during the equally protracted summer by exposure to the solar rays, more full by $7^{\circ}$ degrees than at the poles of the earth, are partially dissolved, so that the diameter of the snow circle is diminished.

The increase and diminution of this white circle takes place at epochs and in positions of the axis of the planet, such as are in complete accordance with this supposition.,


Teler opic profections of the two Femispheres by Müdler,
2716. Position of areographic meridians determined.—The leg and foot-shaped spot marked $p \pi$ in the southern hemisphere, was distinctly seen and delineated in all the oppositions. This was one of the spots from the apparent motion of which the time of rotation was deduced.

The spot $a$ in the southern hemisphere connected with a large adjacent spot by a sinuous line, was also one of those whose position was most satisfactorily established. This spot was selected as the observatory of Greenwich has been upon the earth, to mark the meridian from which longitudes are reckoned.

The spot efh, chielly situate in the southern, but projecting into the northern hemisphere between the 90th and 105th degrees of longitude, was also well observed on repeated occasions.

According to Mädler, the reddish parts of the disk are chiefly those which correspond to $40^{\circ}$ long. and $15^{\circ}$ lat. S.

The two concentric dotted circles marked round the south pole indicate the limits of the white polar spot as seen on different occasions in 1830 and 1837. The redness of this planet is much more remarkable to the naked eye than when viewed with the telescope. In some cases, during the observations of MM. Beer and Mädler, no redness was discoverable, and when it was perceived it was so faint that different observers at the same moment were not agreed as to its existence. It was found that the prevailing colour of the spots was generally yellow rather than red.

Independently of any effect which could be ascribed to projection or foreshortening, it was found that the lineaments were always seen with much greater distinctness near the centre of the disk than towards its borders. This is precisely the effect which might be expected from a dense atmosphere surrounding the planet.
2717. Possible satellite of Mars.-Analogy naturally suggests the probability that the planet Mars might have a moon. These attendants appear to be supplied to the planets in augmented numbers as they recede from the sun; and if this analogy were complete, it would justify the inference that Mars must at least have one, being more remote from the sun than the earth, which is supplied with a satellite. No moon has ever been discovered in connection with Mars. It has, however, been contended hat we are not therefore to conclude that the
planet isodestitute of such an appendage; for as all secondary planets are much less than their primaries, and as Mars is by far the smallest of the superior planets, its satellite, if such existed, must be extremely small. The second satellite of Jupiter is only the forty-third part of the diameter of the planet; and a satellite which would only be the forty-third part of the diameter of Mars, would be under one hundred miles in diameter. Such an object could scarcely be discovered even by powerful telescopes, especially if it do not recede far from the disk of the planet.

The fact that one of the satellites of Saturn has been discovered only within the last few years, renders it not altogether improbable that a satellite of Mars may yet be discovered.

## CHAP. XIV.

## the planetoids.

2718. A vacant place in the planetary series. - At a very early epoch in the progress of astronomy it was observed that the progression of the distances of the planets from the sun was characterised by a remarkable numerical harmony in which nevertheless a breach of continuity existed between Mars and Jupiter. This arithmetical progression was first loosely noticed by Kepler, but it was not until towards the close of the last century that the more exact conditions of the law and the close degree of approximation with which it was fulfilled, with the exception just noticed, was fully explained.

This numerical relation prevails between the distances of the successive orbits of the other planets measured from that of the first planet Mercury. It was observed that such distances formed very nearly a series in duple progression, so that each distance is twice the preceding one, with the sole exception already mentioned. Although this law is not fulfilled like those of Kepler, with numerical precision, there is nevertheless so striking an approximation to it as to produce a strong impression that it must be founded upon some physical cause and not merely accidental. To show the near appioximation to its
exact fulfilment we have placed in the following table the succession of calculated distances from Mercary's orbit, which will exactly fulfil it in juxtaposition with the actual distances of the planets, the earth's distance from the sun being the unit.


By comparing these numbers it will be apparent that although the succession of distances does not correspond precisely with a numerical series in duple progression, there is nevertheless a certain approach to such a series, and at all events a glaring breach of continuity between Mars and Jupiter.

Towards the close of the last century, professor Bode of Berlin revived this question of a deficient planet, and gave the numerical progression which indicated its absence in the form in which it has just been stated; and an association of astronomers was formed under the auspices of the celebrated Baron de Zach of Gotha, for the express purpose of organising and prosecuting a course of observation, with the special purpose of searching for the supposed undiscovered member of the solar system. The very remarkable results which have followed this measure, the consequences of which have not even yet been fully developed, will presently be apparent.
2719. Discovery of Ceres.-On the first day of the present century, Professor Piazzi observing in the fine serene sky of Palermo, noticed a small star of about the 7 th or 8th magnitude which was not registered in the catalogues. On the night of the 2nd again observing it, he found that its position relative to the surrounding stars was sensibly changed. The object appearing to be invested with a nebulous haze he took it at first for a comet, and announced it as such to the scientific world. Its orbit being however computed by Professor Gauss, of Göttingen, it was found to have a period of 1652 days, and a mean distance from the sun expressed by 2.735 , that of the earth being 1 .

By comparing this distance with that given in the preceding table at which a planet was presumed to be absent, it will be
seen that the object thus discovered filled the place with striking arithmetical precision.

Piazzi gave to this new member of the system the name Ceres.
2720. Discovery of Pallas. - Soon after the discovery of Ceres the planet passing into conjunction ceased to be visible. In searching for it after emerging from the sun's rays in March 1802, Dr. Olbers noticed on the 28th a small star in the constellation of Virgo, at a place which he had examined in the two preceding months, and where he knew that no such object was then apparent. It appeared as a star of the seventh magnitude, the smallest which is visible without a telescope. In the course of a few hours he found its position visibly changed in relation to the surrounding stars. In fine the object proved to be another planet bearing a striking analogy to Ceres, and what was then totally unprecedented in the system, moving in an orbit at very nearly the same mean distance from the sun, . and having therefore nearly the same period.

Dr. Olbers called this planet Pallas.
2721. Olbers' hypothesis of a fractured planet. - This čircumstance, combined with the exceptional minuteness of these two planets, suggested to Olbers the startling, and then, as it must have appeared, extravagantly improbable hypothesis, that a single planet of the ordinary magnitude existed formerly at the distance indicated by Bode's analogy, - that it was broken into small fragments either by internal explosion from some cause analogous to volcanic action, or by collision with a comet, -that Ceres and Pallas were two of its fragments, and in fine, that it was very likely that many other fragments, smaller still, were revolving in similar orbits, many of which might reward the labour of future observers who might direct their attention to these regions of the firmament.

In support of this curious conjecture it was urged that in the case of such a catastrophe as was involved in the supposition the fragments, according to the established laws of physics, would necessarily continue to revolve in orbits not differing much in their mean distances from that of the original planet; that the obliquities of the orbits to each other and to that of the original planet might be subject to a wider limit ; that the eccentricities might also have exceptional magnitudes; and, finally, that such bodies might be expected to have magnitudes,
so indefinitely minute as to be out of all analogy or comparison, not only with the other primary planets, but even with the smallest of the secondary ones.

Ceres and Pallas both were so small as to elude all attempts to estimate their diameters, real or apparent. They appeared like stellar points with no appreciable disk, but surrounded with a nebulous haziness, which would have rendered very uncertain any measurement of an object so minute. Sir W. Herschel thought that Pallas did not exceed 75 miles in diameter. Others have admitted that it might measure a few hundred miles. Ceres is still smaller.

The obliquity of the orbit of Ceres to the plane of the ecliptic is above $10 \frac{1}{2}^{\circ}$ and that of Pallas more than $34 \frac{1}{2}^{\circ}$. Both planets therefore when most remote from the ecliptic pass far beyond the limits of the zodiac, and differ in obliquity from each other by a quantity far exceeding the entire inclination of any of the older planets.

It was further observed by Dr. Olbers, that at a point near the descending node of Pallas the orbits of the two planets very nearly coincided.

Thus it appeared that all the conditions which rendered these bodies exceptional, and in which they differed from the other members of the solar system, were precisely those which were consistent with the hypothesis of their origin advanced by Dr. Olbers.
2722. Discovery of Juno.-A year and a half elapsed before any further discovery was produced to favour this hypothesis. Meanwhile observers did not relax their zeal and their labours, and on Sept. 1. 1804, at ten o'clock p. m., Professor Harding, of Lilienthal, discovered another minute planet, which observation soon proved to agree in all its essential conditions with the hypothesis of Olbers, having a mean distance very nearly equal to those of Ceres and Pallas, an exceptional obliquity of $13^{\circ}$, and a considerable eccentricity.

This planet was named Juno.
Juno has the appearance of a star of the 8th magnitude, and a reddish colour. It was discovered with a very ordinary telescope of 30 inches focal length and 2 inches aperture.
2723. Discovery of Vesta. - On the 29th of March, 1807, Dr. Olbers discovered another planet under circumstances precisely similar to those already related in the cases of the former
discoreries. The name Vesta was given to this planet, which, in its minute magnitude and the character of its orbit, was analogous to Ceres, Pallas, and Juno.
.Vesta is the brightest and apparently the largest of all this group of planets, and when in opposition may be sometimes distinguished by good and practised eyes without a telescope. Observers differ in their impressions of the colour of this planet. Harding and other German observers consider her to be reddish; others contend that she is perfectly white. Mr. Hind says that he has repeatedly examined her under various powers, and always received the impression of a pale yellowish cast in her light.
2724. Discovery of the other Planetoids. - The labours of the observers of the beginning of the century having been now prosecuted for some years without further results were discontinued, and it is probable that but for the admirable charts of the stars which have been since published, no other members of this remarkable group of planets would have been discovered. These, however, containing all the stars up to the 9th or 10th magnitude, included within a zone of the firmament $30^{\circ}$ in width, extending to $15^{\circ}$ on each side of the celestial equator, supplied so important and obvious an instrument of research, that the subject was again resumed with a better prospect of successful results. It was only necessary for the observer, map in hand, to examine, degree by degree, the zone within which such bodies are known to move, and to compare star by star the heavens with the map. When a star is observed which is not marked on the map, it is watched from hour to hour, and from night to night. If it do not change its position it must be inferred that it has been omitted in the construction of the map, and it is marked upon it in its proper place. If it change its position it must be inferred to be a planet, and its orbit is soon calculated from its observed changes of position.

By these means M. Henke, an amateur observer of Dreissen in Prussia, discovered on the 8th December, 1845, another of the small planets, which has been named Astrea.

Since that time the progress of planetary discovery in the same region has advanced with extraordinary rapidity. Three planets were discovered in 1847, one in 1848, one in 1849, three in 1850, two in 1851, and in fine, not less than eight in 1852 .'

In their exceptional minuteness of volume, their mean distances from the sun, and the very variable obliquities and eccentricities of their orbits, they all resemble the first four discovered in the beginning of the century, and are therefore in complete accordance with the conditions mentioned in the curious hypothesis of Olber's above stated.

In the following table is given a complete list of the planetoids discovered up to the close of the last year (1852), with the dates of their discovery, and the names of their discoverers.

The planet discovered by M. Gasparis, on the 17th of March, 1852, was observed by that astronomer at the Naples Observatory, on the $17 \mathrm{th}, 19 \mathrm{th}$, and 20th March. It appeared as a star of the 10 th or 11 th magnitude. The observations were published in the "Comptes Rendus" of the Academy of Sciences, Puris, tome xxxiv. p. 532.

The planet discovered by M. Luther was observed by that astronomer at Bilk near Dusseldorf, on the 17th April, and again by M. Argelander, on the 22d April, at Bonn. The observations were published in the "Comptes Rendus" of the Paris Academy, tome xxxiv. p. 647.
2725. Table showing the number of Planetoids discovered before 1st January, 1853, the names conferred upon them, their discoverers, and the dates of their discovery.

|  | Narne. | Disoverer. | When discovered. | Ptace of Obnervation. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Ceres. | Piazzi. | Jan. 1. 1801. | Palermo. |
| 2 | Pallas. | Olliers. | March 23. 1902. | Bremen. |
| 3 | Jutho. | Harding: | Sept. 1. 1804 | Lilienthal. |
| 4 | Vesta. | Olbers. | March 29. 1807. | Bremen. |
| 5 | Astriea. | Henke. | Dec. 8. 1815. | Dreissen (Prusila). |
| 6 | Hebe. | Henke. | July 1. 1847. | Dreissen. |
| 7 | Iris. | Hind. | Aug. 13. 1847. | London. |
| 8 | Flora. | Hind. | Oct. 18. 1847. | London. |
| 9 | Metis. | Graham. | April 25.1848. | Markree (Ireland). |
| 10 | Hygeia. | De Gasparls. | April 12. 1849. | Naples. |
| 11 | Parilienope. | De Gasparis. | May 11. 1850 | Naples. |
| 12 | Victoria (called Clio by A merican | Hind. | Sept. 13. 1850. | London. |
| 13 | Egeria. | De Gasparis. | Nov. 2. 1850. | Naples. |
| 14 | Irene* | Hind. | May 19. 1851. | Laniton. |
| 15 | Eunomia. | De Gasparis. | July 29.1851. | Naples. |
| 16 | Pysclie. | De Gasparis. | March 17. 3852. | Nuples. |
| 17 | Thetis. | Luther. | April 17. 1852. | Bilk (Dusseldorf). |
| 18 | Melpomene. | Hind. | June 24. 1852. | London. |
| 19 | Fortuna. | Hind. | Aug. 22. 1832. | London. |
| 20 | Massalia. | Chacornac. | Sspt. 20. 1852 | Marscilles. |
| 21 | Lutetia. | Goldschmit. | Nov. 15. 1852. | Paris. |
| 22 | Catllope. | Hind. | Nov. 16. 1853. | London. |
| 23 | Thalin. | Hind. | Des. 15, 1852 | London. |

[^15]2726. The discovery of these mainly due to amateur astro-nomers.-Dr. Olbers was a practitioner in medicine, Messrs. Henke, Luther, and Goldschmit amateur observers, Mr. Hind has been engaged in the private observatory of Mr. Bishop, in the Regent's Park, and Mr. Graham in that of Mr. Cooper, at ${ }^{\prime}$ Markree, in the county of Sligo, in Ireland. It appears, therefore, that of these twenty-three members of the solar system the scientific world owes no less than fourteen to amateur astronomers, and observatories erected and maintained by private individuals, totally unconnected with any national or public establishments, and receiving no aid or support from the state. Mr. Hind has obtained for himself the honourable distinction which must attach to the discoverer of eight of these bodies. Five are due to M. de Gasparis, assistant astronomer at the Royal Observatory at Naples.
M. Hermann Goldschmit is an historical painter, a native of Francfort on the Maine, but resident for the last eighteen years in Paris. He discovered the planet with a small ordinary telescope, placed in the balcony of his apartment, No. 12. rue de Seine, in the Faubourg St. Germain.
2727. Their remarkuble accordance with Dr. Olbers' hypothesis. - The orbits of several of those observed in 1852 have not yet been calculated, but all those which have been computed are comprised between the mean distances 2.2 and $3 \cdot 2$, that to the earth being $1 \cdot 0$. The magnitudes of all of these bodies, with one or two exceptions, are too minute to be ascertained by any means of measurement hitherto discovered, and may be inferred with great probability not to exceed 100 miles in diameter. The largest of the group is probably less than 500 miles in diameter. It cannot fail, therefore, to be observed in how remarkable a manner they conform to the conditions involved in the hypothesis of Dr. Olbers.
2728. Force of gravity on the planetoids. - From the minuteness of their masses, the force of gravity on the surfaces of these bodies must be very inconsiderable, and this would account for a much greater altitude of their atmospheres than is observed on the larger planets, since the same volume of air feebly attracted would dilate into a volume comparatively enormous. Muscular power would be more efficacious on them in the same proportion. Thus a man might spring upwaids sixty or eighty perpendicular feet, and return to the ground sustaining no
greater shock than would be felt upon the earth in descending from the height of two or three feet. "On such planets," observes Herschel, "giants might exist, and those enormous animals which on earth require the buoyant power of water to counteract their weight."

## CHAP. XV.

## THE MAJOR PLANETS.

## I. Jupiter.

2729. Jovian system.-Passing across the wide space which lies beyond the range of the three planets which, with the earth, revolve as it were under the wing of the sun, -a space which was regarded as an anomalous desert in the planetary regions until contemporary explorers found there what seem to be the ruins of a shattered world, - we arrive at the theatre of other and more stupendous cosmical phenomena. The succession of planets, broken by the absence of one in the place occupied by the planetoids, is resumed, and four orbs are found constructed upon a comparatively Titanic scale, each attended by a splendid system of moons presenting a miniature of the solar system itself, and revolving round the common centre of light, heat, and attraction, at distances which almost confound the imagination.
2730. Period. - The synodic period of Jupiter is ascertained by observation to be 398 days. Hence to obtain its periodic time P , we have (2589)

$$
\frac{1}{P}=\frac{1}{365 \cdot 25}-\frac{1}{398}=\frac{1}{4332 \cdot 6}
$$

The period is therefore 4332.6 days, or 11.86 years.
2731. Heliocentric and Synodic motions. - The daily angular heliocentric motion of Jupiter is therefore

$$
\frac{360^{\circ}}{4333}=0^{\circ} .083=5^{\prime}
$$

The mean angle gained daily by the earth or sun upon Jupiter, is therefore

$$
0^{\circ} \cdot 9856-0^{\circ} \cdot 093=0^{\circ} \cdot 9026=54^{\prime} \cdot 156
$$

2732. Distance. - The distance of Jupiter from the sun may be computed by means of the Harmonic Law (2621), the period being known. This method gives

$$
(11.83)^{2}=(5 \cdot 2028)^{3}
$$

The mean distance of Jupiter from the sun is therefore $5 \frac{1}{3}$ times that of the earth, and since the earth's mean distance is 95 millions of miles, that of Jupiter must be 494 millions of miles.

The eccentricity of Jupiter's orbit being 0.048 , this distance is liable to variation, being augmented in aphelion and diminished in perihelion by 24 millions of miles. The greatest distance of the planet from the sun is therefore 518, and the least 470, millions of miles.

The small eccentricity of the orbit of this planet, combined with its small inclination to the plane of the ecliptic, is of great importance in its effect in limiting the disturbances consequent upon its mass, which, as will hereafter appear, is greater than the aggregate of the masses of all the other planets primary and secondary taken together. If the orbit of Jupiter had an eccentricity and inclination as considerable as those of the planet Juno, the perturbations produced by his mass upon the motions of the other bodies of the system, would be twenty-seven times greater than they are with its present small eccentricity and inclination.
2733. Relative scale of the orbits of Jupiter and the Earth. The relative magnitudes of the distances of Jupiter and the earth from the sun, and the apparent magnitude of the orbit of the earth as seen from Jupiter, are represented in fig. 752., where the planct is at $J$, the sun at s , and the orbit of the earth E E'E $\mathbf{E}^{\prime \prime \prime} \mathbf{E}^{\prime \prime}$.

The direction of the orbital motions being represented by the arrows, it will be evident that when the earth is at E the planet is in opposition, at $\mathbf{E}^{\prime \prime \prime}$ in conjunction, at $\mathrm{E}^{\prime}$ in quadrature west, and at $\mathrm{E}^{\prime \prime}$ in quadrature east of the sun.
2734. Annual parallax of Jupiter. -To determine the angle sJE', which the semi-diameter of the earth's orbit subtends at Jupiter, or the annual parallax of the planet, it may be assumed without material inexactness that $\mathbf{S E}^{\prime}$ is nearly equal to an arc described with $J$ as centre, and $s J$ as radius, and consequently (2294)

$$
\mathbf{s J E}=\frac{57^{\circ} \cdot 3}{5 \cdot 2}=11^{\circ}
$$



Fig. 752.

The annual parallax of Jupiter is therefore $11^{\circ}$, and consequently the orbit of the earth subtends at the planet an angle of $22^{\circ}$.
2735. Variation of distance from the earth.-Since the greatest and least distances $\mathrm{JE}^{\prime \prime \prime}$ and JE of Jupiter from the' earth are the sum and difference of the distances of the planet and earth from the sun, we shall have

$$
\begin{aligned}
& \mathrm{JE}^{\prime \prime}=494+95=589 \text { millions of miles. } \\
& \mathrm{JE}=494-95=399 \text { millions of miles. } \\
& \mathrm{JE}^{\prime}=\sqrt{ }=\sqrt{ }\left(494^{2}-95^{2}\right)=485 \text { millions of miles. }
\end{aligned}
$$

The extreme distances of the planet are therefore in the ratio of 6 to 5 nearly.

By the ellipticity of the earth's orbit, the distances at opposition and conjunction may be increased or diminished by $1 \frac{1}{2}$ million of miles, and by that of the planet's orbit by 24 millions of miles. From both causes combined they may vary from their mean values more or less by $25 \frac{1}{2}$ millions of miles.
2736. Its prodigious orbital velocity. - The velocities with which the planets move through space in their circumsolar courses are on the same prodigious scale as their distances and magnitudes. It is impossible, by the mere numerical expression of these enormous magnitudes and motions, to acquire any tolerably clear or distinct notion of them. A cannon ball moving at the rate of 500 miles an hour, would take nearly a century to come from Jupiter to the earth, even when the planet is nearest to us, and a steam-engine moving on a railway at 50 miles an hour would take nine centuries to perform the same trip.

Taking the diameter of Jupiter's orbit at 1000 millions of miles, its circumference is above 3000 millions of miles, which it moves over in 4333 days. The distance it travels is, therefore, 700,000 miles per day, 30,000 per hour, 500 per minute, and $8 \frac{1}{3}$ per second, -a speed sixty times greater than that of a cannon ball.
2737. Intervals between opposition, conjunction, and qua-drature.-If the distance of the planet from the sun bore an indefinitely great ratio to that of the earth, the quadratures would divide the semi-synodic period into parts precisely equal, for in that case $\boldsymbol{J E}^{\prime}$ and $\mathrm{JE}^{\prime \prime}$ would be practically parallel, and the bent line $\mathrm{E}^{\prime} \mathrm{se}^{\prime \prime}$ would become straight, and would be a
diameter of the earth's orbit. Although this is not the case, the angle formed by $\mathrm{SE}^{\prime}$ and $\mathrm{se}^{\prime \prime}$ being less than $180^{\circ}$ by the magnitude of the angle $\mathrm{E}^{\prime} \mathrm{SE}^{\prime \prime}$ only, the intervals into which the semi-synodic period is divided are not very unequal.

We shall have the angle $\mathrm{E}^{\prime} \mathrm{S} \mathrm{E}^{\prime \prime}=180^{\circ}-22^{\circ}=158^{\circ}$, and it is evident that the time of gaining this angle will bear the same proportion to the synodic period which the angle itself bears to $360^{\circ}$. Hence, it follows, that if $t$ express the interval from the quadrature west to the quadrature east, and $t^{\prime}$ the interval from the quadrature east to the quadrature west, we shall have

$$
\begin{aligned}
& \because t=\frac{158}{360} \times 398=174 \frac{3}{3} \text { days } \\
& t^{\prime}=\frac{202}{360} \times 398=2 \overline{2} 3 \frac{1}{3} \text { days. }
\end{aligned}
$$

It follows, therefore, that the interval between opposition and quadrature is $87 \frac{1}{3}$ days, and the interval between conjunction and quadrature is $111 \frac{?}{3}$ days.

These are mean values of the intervals which are subject to variation owing to the eccentricities of the orbits of the earth and planet.
2738. Jupiter has no sensible phases. - The mere inspection of the diagram, fig.748., will show that this planet cannot be sensibly gibbous in any position. The position in which the enlightened hemisphere is in view most obliquely is when the earth is at $\mathbf{E}^{\prime}$ or $\mathbf{E}^{\prime \prime}$, and the planet consequently in quadrature, and even then the centre of the visible hemisphere is only $11^{\circ}$ distant from the centre of the enlightened hemisphere (2734).
2739. Appearance in the firmament at night.-Since between quadrature and opposition the planet is above the horizon during the greater part of the night, and appears with a full phase, it is thus favourably placed for observation during 6 months in 13 months.
2740. Stations and retrogression. - From a comparison of the orbital motions and distance of Jupiter and the earth it appears that the planet is stationary at about two months before and two months after opposition; and since the earth gains upon the planet at the daily rate of $0^{\circ} 907$, the angle it gains in two months must be

$$
0^{\circ} \cdot 907 \times 61=54^{\circ} \cdot 43
$$

The angular distance of the points of station from opposition, as seen from the sun, is therefore about $54^{\circ}$, which corresponds to an elongation of $114^{\circ}$.

The planet is therefore stationary at about $65^{\circ}$ on each side of its opposition.

Its arc of retrogression is a little less than $10^{\circ}$, and the time of describing it varies from 117 to 123 days.
2741. Apparent and real diameters. - The apparent diameter of Jupiter when in opposition varies from $42^{\prime \prime}$ to $48^{\prime \prime}$, according to the relative positions of the planet and the earth in their elliptic orbits. At its mean opposition distance from the earth its apparent magnitude is $45^{\prime \prime}$. In conjunction the mean apparent diameter is $30^{\prime \prime}$, its value at the mean distance from the earth being $37 \frac{1}{2}{ }^{\prime \prime}$.

At the distance of 399 millions of miles the linear value of $1^{\prime \prime}$ is

$$
\frac{399000000}{206265}=1934 \text { miles }
$$

and consequently, the planet's diameter $\mathrm{D}^{\prime}$ will be

$$
\mathrm{D}^{\prime}=1934 \times 45=87030 \text { miles }
$$

According to. more accurate methods, the mean diameter is ascertained to be 88640 miles. The diameter of Jupiter is therefore 11.18 times that of the earth.
2742. Jupiter a conspicuous object in the firmament-relative splendour of Jupiter and Mars. - Although the apparent magnitude of Jupiter is less than that of Venus, the former is a more conspicuous and more easily observable object, inasmuch as when in opposition it is in the meridian at midnight, and when its opposition takes place in winter it passes the meridian at an altitude nearly equal to that which the sun has at the summer solstice. By reason, therefore, of this circumstance, and the complete absence of all solar light, the splendour of the planet is very great, whereas Venus, even at the greatest elongation, descends near the horizon before the entire cessation of twilight.

The apparent splendour of a planet depends conjointly on the apparent area of its disk, and the intensity of the illumination of its surface. The area of the disk is proportional to the square of its apparent diameter, and the illumination of the surface depends conjointly on the intensity of the sun's light at
the planet, and the reflecting power of the surface. On comparing Mars with Jupiter, we find the apparent splendour of the latter planet much greater than it ought to be, as compared with the former, if the reflecting power of these surfaces were the same, and are consequently compelled to conclude that the surface of Mars is endowed with some physical quality, in virtue of which it absorbs much more of the solar light incident upon it than that of Jupiter does. When the apparent diameter of the latter is twice that of the former, its apparent area is fourfold that of the former. But the intensity of the solar light at Jupiter is at the same time about thirteen times less than at Mars; and if the reflective power of the surfaces were equal, the apparent splendour of Mars would be more than three times that of Jupiter. The reflective power must, therefore, be less in a sufficient proportion to explain the inferior splendour of Mars, unless, indeed, the very improbable supposition be admitted that there may be a source of light in Jupiter independent of solar illumination.
2743. Surface and volume. - If $s$ and $\nabla$ be the surface and volume of the earth, $s^{\prime}$ and $v^{\prime}$ being those of Jupiter, we shall have

$$
\mathrm{s}^{\prime}=125 \times \mathrm{s} \quad \mathrm{v}^{\prime}=1397.4 \times \mathrm{v} .
$$

The surface of Jupiter is therefore above 125 times, and its bolume about 1400 times, those of the earth.

To produce a globe such as that of Jupiter it would be necessary to mould into a single globe 1400 globes like that of the earth.

The relative magnitudes of the globes of Jupiter and the earth are represented in fig. 753. by $\mathbf{J}$ and E .


Fig. 75 .
2744. Solar light and heat. - The mean distance of Jupiter from the sun being 5.2 times that of the earth, the apparent diameter of the sun to the inhabitants of that planet will be less than its apparent diameter at the earth in the proportion of 5.2 to 1 . The relative apparent magnitudes of the disk of' the sun at Jupiter and at the earth are represented in fig. 754. at E and J .


Fig. 754.
The density of solar radiation being in the exact proportion of the apparent superficial magnitudes of the disks, the illuminating and heating powers of the sun will, ceteris paribus, be less in the same proportion at Jupiter than at the earth.

As has been already observed, however, this diminished power as well of illumination as of warmth, may be compensated by other physical provisions.
2745. Rotation and direction of the axis.—Although the lineaments of light and shade on Jupiter's disk are generally subject to variations, which prove them to be, for the most part, atmospheric, nevertheless permanent marks have been occasionally seen, by means of which the diurnal rotation and the direction of the axis have been ascertained within very minute limits of error. The earlier observers, whose instruments were imperfect, and observations consequently inaccurate comparatively with those of more recent date, ascertained nevertheless the period of rotation with a degree of approximation to the results of the most elaborate observations of the present day, which is truly surprising, as may appear by the following statement of the estimates of various astronomers:-


The estimate of Professor Airy is based upon a set of observations made at the Cambridge Observatory. That of Mädler is founded upon a series of observations, commencing on the 3rd of November, 1834, and continued upon every clear night until April, 1835, during which interval the planet made 400 revolutions. These observations were favoured by the presence of two remarkable spots near the equator of the planet, which retained their position unaltered for several months. The period was determined by observing the moments at which the centres of the spots arrived at the middle of the disk.

The direction of the apparent motion of the spots gave the position of the equator, and consequently of the axis, which is inclined to the plane of the planet's orbit at an angle of $3^{\circ} 6^{\prime}$.

The length of the Jovian day is therefore less than that of the terrestrial day in the ratio of 596 to 1440 , or 1 to $2 \cdot 42$.
2746. Jovian years. - Since the period of Jupiter is 4332.6 terrestrial days, it will consist of

$$
4332 \cdot 6=10484 \cdot 9
$$

Jovian days.*
2747. Seasons. - At the Jovian equinoxes the length of the day in terrestrial time must be $4^{\text {h. }} 57^{\mathrm{m}} \cdot \mathbf{4 3 \cdot 5}$. Owing to the very small obliquity of the plane of the planet's equator to that of its orbit, not much exceeding the eighth part of the obliquity of the earth's equator, the difference of the extreme length of the days at midsummer and midwinter, even at high latitudes, must necessarily be small. Thus at

| Lat. $40^{\circ}$ - $\begin{array}{r}\text { Longest day } \\ \text { Shortest day }\end{array}$ | - | - | - | H. 5 4 | M 6 49 | S. 26 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Difference | - | - | 0 | 17 | 12 |
| Lat. $60^{\circ}$. - Longest day | - | - | - | 5 | 15 | 47 |
| Shortest day | - | - | - | 4 | 39 | 53 |
|  | Difference | - | - | 0 | 35 | 54 |

* The day here computed is the sidereal day, which, in the case of the superior planets, differs from the mean solar day by a quantity so insignificant that it may be neglected in such illustrations as these.

The diurnal phenomena at midwinter and midsummer on the earth in latitudes higher than $66 \frac{1}{2}^{\circ}$ are only exhibited on Jupiter within a small circle circumscribing the pole at a distance of $3^{\circ} 6^{\prime}$.

The extremes of temperature, so far as they depend on the varying distance of the planet from the sun, being in the proportion of the squares of the aphelion and peribelion distances, are as

$$
518^{2}: 470^{2}:: 5 \text { : } 6 \text { nearly. }
$$

It appears, therefore, that except in the near neighbourhood of the poles the vicissitudes of temperature and season to which the surface of this planet is exposed, whether arising from the obliquity of its axis or the eccentricity of its orbit, are confined within extremely narrow limits.
2748. Telescopic appearance of Jupiter. - Of all the bodies of the system, the moon perhaps alone excepted, Jupiter presents to the telescopic observer the most magnificent spectacle. Notwithstanding its vast distance, such is its stupendous magnitude that it is seen under a visual angle nearly twice that of Mars. A telescope of a given power, therefore, shows it with an apparent disk four times greater. It has, consequently, been submitted to examination by the most eminent observers, and its appearances described with great minuteness of detail. The apparent diameter in opposition (when it is on the meridian at midnight) is about the fortieth part of that of the moon, and, therefore, a telescope with the very moderate magnifying power of forty, presents it to the observer with a disk equal to that with which the full moon is seen with the naked eje.
2749. Magnifying powers necessary to show the features off the dish. - A power of four or five is sufficient to enable the observer to see the planet with a sensible disk; a power of thirty shows the more prominent belts and the oval form of the disk produced by the oblateness of the spheroid; a power of forty shows it with a disk as large as that which the full moon presents to the naked eye; but to be enabled to observe the finer streaks which prevail at greater distances from the planet's equator, it is not only necessary to see the planet under favourable circumstances of position and atmosphere, but to be aided by a well-defining telescope with magnifying powers varying "; from 200 to 300 .
2750. Belts - their arrangement and appearance. - The planet, when thus viewed, appears to exhibit a disk, the ground of which is a light yellowish colour, brightest near its equator, and melting gradually into a leaden-coloured gray towards the poles, still retaining, nevertheless, somewhat of its yellowish hue. Upon this ground are seen a series of brownish-gray streaks, resembling in their form and arrangement the streaks of clouds which are often observed in the sky on $a$ fine calm evening after sunset. The general direction of these streaks is parallel to the equator of the planet, though sometimes a departure from strict parallelism is observable. They are not all equally conspicüous or distinctly defined. Two are generally strikingly observable, being extended north and south of the planet's equator, separated by a bright yellow zone, being a.part of the general ground of the disk. These principal streaks commonly extend around the globe of the planet, being visible without much change of form during an entire revolution of Jupiter. This, however, is not always the case, for it has happened, though rarely, that one of these streaks, at a certain point, was broken sharply off so as to present to the observer, an extremity so well defined and unvarying for a considerable time as to supply the means of ascertaining, with a very close approximation, the time of the planet's rotation. The borders of these principal streaks are sometimes sharp and even, but, sometimes (those especially which are further from the equator), rugged and uneven, throwing out arms and offshoots.
2751. Those near the poles more faint. - On the parts of the disk more remote from the equator, the streaks are much more faint, narrower, and less regular in their parallelism, and can seldom be distinctly seen, except by practised observers, with good telescopes. With these, however, what appears near the poles, in instruments of inferior power, as a dim shading of a yellowish gray hue, is resolved into a system of fine parallel streaks in close juxtaposition, which becoming closer in approaching the pole, finally coalesce.
2752. Disappear near the limb. - In general, all the streaks become less and less distinct towards either the eastern or western limb, disappearing altogether at the limb itself.
2753. Belts not zenographical features, but atmospheric. - Although these streaks have infinitely greater permanency than the arrangements of the clouds of our atmosphere, and are,
as we have seen, even more permanent than is necessary for the exact determination of the planet's rotation, they are nevertheless entirely destitute of that permanence which would characterise Zenographic features, such as are observed, for example, on Mars. The streaks, on the contrary, are subject to slow but evident variations, so that after the lapse of some months the appearance of the disk is totally changed.
2754. Telescopic drawings of Jupiter by Mädler and Herschel. - These general observations on the appearance of Jupiter's disk will be rendered more clearly intelligible by reference to the telescopic drawings of the planet given in plate X. In fig. 1. is given a telescopic view of the disk by Sir John Herschel, as it appeared in the 20 -feet reflector at Slough on the 23rd Sept. 1832. The other views were made by M. Miadler from observations taken in 1835, and 1836, at the dates indicated on the plate.
2755. Observations and conclusions of Mädler. - The two black spots represented in figs. 2, 3, and 4, were those by which the time of rotation was determined (2745.). They were first observed by Midler, on the 3rd of Nov. 1834. The effect of the rotation on these spots was so apparent that their change of position with relation to the centre of the disk, in the short interval of five minutes, was quite perceivable. A third spot, much more faint than these, was visible at the same time, the distances separating the spots being about $24^{\circ}$ of the planet's surface. It was estimated that the diameter of each of the two spots represented in the diagrams was 3680 miles, and the distance between them was sometimes observed to increase at the rate of half a degree, or 330 miles, in a month. The two spots continued to be distinctly visible from the 3 rd of November, 1834, when they were first observed, until the 18th of April, 1835; but during this interval the streak on which they were placed, had entirely disappeared. It became gradually fainter in January (see fig.4.), and entirely vanished in February; the spots, however, retaining all their distinctness. The planet, after April passing towards conjunction, was lost in the light of the sun; and when it reappeared in August, after conjunction, the spots had altogether vanished.

The observations being continued, the drawings, figs. 5. and 6., were made from observations, on the 16th and 17th of January; 1836, when the entire aspect of the disk was changed. The two
figures 5. and 6. represent opposite hemispheres of the planet. The former presents a striking resemblance to the principal belts in the drawing of Sir J. Herschel, fig. l.

It was remarked that the two spots, when carried round by the rotation, became invisible at $55^{\circ}$ to $57^{\circ}$ from the centre of the disk. This is an effect which would be produced if the spots were openings in the mass of clouds floating in the atmosphere of the planet, and would be explicable in the same manner as is the disappearance of spots on the sun in approaching the edges of the disk. A proper motion with a slow velocity, and in $\Omega$ direction contrary to the rotation of the planet, was observed to affect the spots, and this motion continued with greater uniformity in March and April, after the disappearance of the belt.

It was calculated that the velocity of their proper motion over the surface of the planet, was at the rate of from three to four miles an hour.

Although the two black spots were not observed by Miidler until the first days of November, they had been previously seen and examined by Schwabe, who observed them to undergo several curious changes, in one of which one of them disappeared for a certain interval, its place being occupied by a mass of fine dots. It soon, however, reappeared as before.

From all these circumstances, and many others developed in the course of his extensive and long-continued observations, Mädler considers it bighly probable, if not absolutely certain, that the atmosphere of Jupiter is continually charged.with vast masses of clouds which completely conceal his surface; that these clouds have a permanence of form, position, and arrangement to which there is nothing analogous in the atmosphere of the earth, and that such permanence may in some degree be explained by the great length and very small variation of the seasons. He thinks it probable that the inhabitants of places in latitudes above $40^{\circ}$ never behold the firmament, and those in lower latitudes only on rare occasions.

To these inferences it may le added that the probable cause assigned for the distribution of the masses of clouds in streaks parallel to the equator, is the prevalence of atmospheric currents analogous to the trades, and arising from a like cause, but marked by a constancy, intensity, and regularity exceeding those which prevail on the earth, inasmuch as the diurnal
motion of the surface of Jupiter is more rapid than that of the earth in the combined proportion of the velocity of the diurnal rotation and the magnitude of the circumference, that is, as 27 to 1 nearly.

It is also probable that the bright yellowish general ground of Jupiter's disk consists of clouds, which reflect light much more strongly than the most dense masses which are seen illuminated by the sun in our atmosphere; and that the darker streaks and spots observed upon the disk are portions of the atmosphere, either free from clouds and through which the surface of the planet is visible more or less distinctly, or clouds of less density and less reflecting power than those which float over the general atmosphere and form the ground on which the belts and spots are seen.

That the atmosphere has not any very extraordinary height above the surface of the planet, is proved by the sharply defined edge of the disk. If its height bore any considerable proportion to the diameter of the planet, the light towards the edges of the disk would become gradually fainter, and the edges would be nebulous and ill-defined. The reverse is the case.
2756. Spheroidal form of the planet.-The disk of Jupiter, seen with magnifying powers as low as 30, is evidently oval, the lesser axis of the ellipse coinciding with the axis of rotation, and being perpendicular to the general direction of the belts. This fact supplies a striking confirmation of the results attained in the measurement of the curvature of the earth; and, as in the case of the earth, the degree of oblateness of Jupiter is found to be that which would be produced upon a globe of the same magnitude, having a rotation such as the planet is observed to have.

At the mean distance from the earth, the apparent diameters of the disk are ascertained by exact micrometric measures to be-

| Equatorial Diameter - | - | - | $98^{*} 4^{\prime \prime}=92,080$ |
| :---: | :---: | :---: | :---: |
| Polar Diameter | - | - | $35 \cdot 6^{\prime \prime}=85,210$ |
| Mean Diameter | - | - | $=88,645$ |

The polar diameter is therefore less than the equatorial, in the ratio of 356 to 384 or 100 to 108 nearly. Other estimates give the ratio as 100 to 106.
2757. Jupiter's salellites. - When Galileo directed the first telescope to the examination of Jupiter, he observed four.
minute stars, which appeared in the line of the equator of the planet. He took these at first to be fixed stars, but was soon undeceived. He saw them alternately approach to, and recede from the planet, observed them pass behind it and before it; and oscillate, as it were, to the right and the left of it, to certain limited and equal distances. He soon arrived at the obvious conclusion that these objects were not fixed stars, but that they were bodies which revolved round Jupiter in orbits, at limited distances, and that each successive body included the orbit of the others within it; in short, that they formed a miniature of the solar system, in which, however, Jupiter himself played the part of the sun. As the telescope improved, it became apparent that these bodies were small globes, related to Jupiter in the same manner exactly as the moon is related to the earth; that, in fine, they were a system of four moons, accompanying Jupiter round the sun.
2758. Rapid change and great variety of phases. - But connected with these appendages there is perhaps nothing more remarkable than the period of their revolutions. That moon which is nearest to Jupiter, completes its revolution in forty-two hours. In that brief space of time it goes through all its various phases; it is a thin crescent, halved, gibbous, and full. It must be remembered, however, that the day of Jupiter, instead of being twenty-four hours, is less than ten hours. This moon, therefore, has a month equal to a little more than four Jovian days. In each day it passes through one complete quarter; thus, on the first day of the month it passes from the thinnest crescent to the half moon; on the second, from the half moon to the full moon; on the third, from the full moon to the last quarter; and on the fourth returns to conjunction with the sun. So rapid are these changes that they must be actually visible as they proceed.

The apparent motion of this satellite in the firmament of Jupiter is at the rate of more than $8^{\circ}$ per hour, and is the same as if our moon were to move over a space equal to her own apparent diameter, in rather less than four minutes. Such an object would serve the purpose of the hand of a stupendous celestial clock.

The second satellite completes its revolution in about eightyfive terrestrial hours, or about eight and a half Jovian days. It passes, therefore, from quarter to quarter in twenty-one hours,
or about two Jovian days, its apparent motion in the firmament being at the rate of about $4.25^{\circ}$ per hour, which is as if ourmoon were to move over a space equal to nine times its own diameter per hour, or over its own diameter in less than seven minutes.

The movements and changes of phase of the other two moons are not so rapid. The third passes through its phases in about 170 hours, or seventeen Jovian days, and its apparent motion is at the rate of about $1^{\circ}$ per hour. The fourth and last completes its changes in 400 hours, or forty Jovian days, and its apparent motion is at the rate of little less than $l^{\circ}$ per hour, being double the apparent motion of our moon.

Thus the inhabitants of Jupiter have four different months of four, eight, seventeen, and forty Jovian days, respectively.
2759. Elongation of the satellites.-The appearance which the satellites of Jupiter present when viewed with a telescope of moderate power, is that of minute stars ranged in the direction of a line drawn through the centre of the planet's disk nearly parallel to the direction of the belts, and therefore coinciding with that of the planet's equator. The distances to which they depart on the one side or the other of the planet, are so limited that the whole system is included within the field of any telescope whose magnifying power is not considerable; and their elongations from the centre of the planet can therefore be measured with great precision by means of the wire micrometers.

When the apparent diameter of the planet in opposition is $45^{\prime \prime}$, the greatest elongations of the satellites from the centre of the planet's disc are as follow: -

| I. | - | - | - |
| ---: | :--- | :--- | :--- |
| II. | - | - | - |
| $215^{\prime \prime}$ |  |  |  |
| III. | - | - | - |
| IV. | $346^{\prime \prime}$ |  |  |
|  | - | - | $585^{\prime \prime}$ |

It follows, therefore, that the entire system is comprised within a visual area of about $1200^{\prime \prime}$ in extent, being two-thirds of the npparent diameter of the moon. If, therefore, we conceive the moon's disk to be centrically superposed on that of Jupiter, not only would all the satellites be covered by it, but that which elongates itself most from the planet would not approach nearer to the moon's edge than one-sixth of its apparent diameter.
If all the satellites were at the same time at their greatest


JUPITER.
From Telceropic Drawings by Madier and Eerschel.
i. Sopt, ( 53.153 .
4. Jan. 2.1508
2. Dec, 53.1831
3 Deo. 53.283
6 Jan 17 1800.
elongations, they would, relatively to the apparent diameter of the planet, present the appearance represented in fig. 755.


Fig. 755.
2760. Distances from Jupiter. - The actual distances of the satellites from the centre of the planet may be immediately inferred, from a comparison of their greatest elongations with the apparent semi-diameter of the planet. Since, in the case above supposed, the apparent semi-diameter of the planet is $22 \cdot 5^{\prime \prime}$, the distances will be found expressed with reference to the semidiameter as the unit, by dividing the greatest elongations expressed in seconds by 22.5 . This gives for the distances : -

$$
\begin{array}{rccc}
\text { I. } & - & - & -\frac{135}{22 \cdot 5}=6 \cdot 0 . \\
\text { II. } & - & - & - \\
\frac{215}{22 \cdot 5}=9 \cdot 6 . \\
\text { III. } & - & - & - \\
\frac{346}{22 \cdot 5}=15 \cdot 4 . \\
\text { IV. } & - & - & - \\
\frac{585}{22 \cdot 5}=26 .
\end{array}
$$

Relatively to the magnitude of the planet, therefore, the satellites revolve much closer to it than the moon does to the earth. The distance of the moon is nearly 60 semi-diameters of the earth, while the distance of the most remote of Jupiter's moons is not more than 26 semi-diameters, and that of the nearest only six, from his centre.

Owing, however, to the greater dimensions of Jupiter, the actual distances of the satellites, expressed in miles, are (except that of the first) greater than the distance of the moon from the earth.
2761. Harmonic law observed in the Jovian system. -That the same law of gravitation which reigns throughout the material universe, prevails in this system, is rendered manifest by the accordance of the motions and distances of the satellites with the harmonic law. In the following table numerical relations establishing this are exhibited: -

|  | D | $\mathbf{P}$ | $\mathrm{D}^{3}$ | $\mathbf{P}^{2}$ | $\frac{\mathbf{P}^{2}}{D^{3}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I. | 6.0 | 43 | 216 | 1849 | $8 \cdot 6$ |  |
| -11. | $9 \cdot 6$ | 85 | 88.5 | 7225 | $8 \cdot 2$ |  |
| III. | 15.4 | 172 | 3652 | 29,584 | $8 \cdot 1$ | . |
| : 1V. | 27.0 | 100 | 19,643 | 160, 100 | 8.1 | , |

The want of exact equality in the numbers in the last column, by which the ratio of the squares of the periods to the cubes of the distances are expressed, is to be ascribed partly to using round numbers only, and partly to the effects of the mutual disturbances produced by the satellites upon each other and by the spheroidal form of the planet itself.
2762. Singular relation between the motions of the first three satellites. - On comparing the periods of the first three satellites, it is evident that they are in the ratio of the numbers 1 , 2, and 4. For we have-

$$
43: 86: 171:: 1: 2: 4
$$

Since the mean angular velocities, or, what is the same, the mean apparent motions as seen from Jupiter, are found by dividing $360^{\circ}$ by the periodic times, it follows that these motions for the three satellites are in the inverse ratio of 1 , 2 , and 4 , that is, as $1, \frac{1}{2}$, and $\frac{1}{4}$; and, therefore, that the mean apparent motion of the second satellite is half, and that of the third one-fourth of the mean apparent motion of the first.

- It follows, also, that if twice the mean motion of the third be added to the mean motion of the first, the sum will be three times the mean motion of the second. This will be rendered evident by expressing these motions by general symbols. Let $m^{\prime}, m^{\prime \prime}$, and $m^{\prime \prime \prime}$ express the mean hourly apparent motions. We shall have-

$$
m=\frac{1}{2} m^{\prime} \quad m^{\prime \prime \prime}=\frac{1}{4} m^{\prime} ;
$$

and consequently

$$
m^{\prime}+2 m^{\prime \prime \prime}=m^{\prime}+\frac{1}{2} m^{\prime}=\frac{3}{2} m^{\prime}=3 m^{\prime \prime}
$$

2763. Corresponding relation between their mean longitudes. - The longitudes of satellites are referred to their primaries as visual centres. Thus the mean longitudes of Jupiter's satellites are their mean angular distances from the first point of Aries as seen from Jupiter. Now, it follows that the relation which has been shown to prevail between the mean motions of
the first three satellites, also prevails between their mean longitudes. Let these longitudes at any proposed time be $l^{\prime}, l^{\prime \prime}, l^{\prime \prime \prime}$; and after a given interval, during which all the satellites will have augmented their longitudes, let them be $\mathrm{L}^{\prime}, \mathrm{L}^{\prime \prime}, \mathrm{I}^{\prime \prime \prime}$. The angles or arcs moved through in the interval will be $\mathrm{I}^{\prime}-l^{\prime}$, $\mathrm{L}^{\prime \prime}-l^{\prime \prime}, \mathrm{x}^{\prime \prime \prime}-l^{\prime \prime \prime}$; and since these will represent and be proportional to the mean apparent motions we shall have-

$$
\left(\mathrm{x}^{\prime}-l^{\prime}\right)+2\left(\mathrm{~L}^{\prime \prime \prime}-l^{\prime \prime \prime}\right)=3\left(\mathrm{x}^{\prime \prime}-l^{\prime \prime}\right) ;
$$

from which is inferred-

$$
3 \mathrm{~L}^{\prime \prime \prime}-\left(\mathrm{I}^{\prime}+2 \mathrm{I}^{\prime \prime \prime}\right)=3 l^{\prime}-\left(l^{\prime}+2 l^{\prime \prime \prime}\right)
$$

It appears, therefore, that the difference between three times the longitude of the second and the sum of the longitude of the first and twice that of the third is invariable; but what this invariable difference is does not appear from the mere relation of the periods. A single observation of the positions of the three satellites at any proposed moment, is sufficient to ascertain this difference; since whatever it may be at any one moment, it must always continue to be. Now, it may be thus easily ascertained by observations made at any proposed time, that this difference is exactly $180^{\circ}$. We shall thus have, as a permanent relation between the positions of these three satellites -

$$
3 \mathrm{~L}^{\prime \prime}-\left(\mathrm{L}^{\prime}+2 \mathrm{~L}^{\prime \prime \prime}\right)=180^{\circ} ;
$$

so that, whenever the positions of any two of them are given, the position of the other can be found.

It follows from this relation, that the three satellites can never have at the same time the same phase; for if they had, they must necessarily have the same visual direction, and consequently the same longitude, which would be incompatible with the preceding relation. If two of them have nearly the same phase, the third must have a phase differing from it by $180^{\circ}, 90^{\circ}$, or $60^{\circ}$, according to the satellites which agree in their phase.

If the second and third have nearly the same phase, we shall have $\mathrm{L}^{\prime \prime}=\mathrm{L}^{\prime \prime \prime}$; and therefore-

$$
3 \mathrm{~L}^{\prime \prime}-\mathrm{L}^{\prime}-2 \mathrm{~L}^{\prime \prime}=\mathrm{L}^{\prime \prime}-\mathrm{L}^{\prime}=180^{\circ} .
$$

The first will have a position, and therefore a phase, in direct opposition to the common phase of the second and third. If one be new, the other will be full, and vice versâ.

If the first and second have a common phase, we shall have $\mathbf{L}^{\prime}=\mathrm{I}^{\prime \prime}$; and therefore-

$$
\begin{gathered}
3 \mathrm{~L}^{\prime}-\mathrm{L}^{\prime}-2 \mathrm{~L}^{\prime \prime \prime}=2\left(\mathrm{~L}^{\prime}-\mathrm{I}^{\prime \prime \prime}\right)=180^{\circ} . \\
\mathrm{L}^{\prime}-\mathrm{L}^{\prime \prime \prime}=90^{\circ} .
\end{gathered}
$$

The third satellite will therefore be $90^{\circ}$ from the common direction of the other two, and will therefore have a phase different from theirs by $90^{\circ}$. If one be full or new, the other will be in the quarters, and vice versa.

In fine, if the first and third have a common phase, we shall have $\mathrm{L}^{\prime}=\mathrm{L}^{\prime \prime \prime}$; and, consequently-

$$
3 \mathrm{~L}^{\prime \prime}-3 \mathrm{~L}^{\prime}=180^{\circ}, \quad \mathbf{L}^{\prime \prime}-\mathrm{L}^{\prime}=60^{\circ}
$$

The second will therefore have a position $60^{\circ}$ different from the common direction of the other two, and its phase will differ in the same degree from their common phase. If one be full, the other will be gibbous; and if one be new, the other will be a crescent; the breadth of the gibbous phase being $120^{\circ}$, and that of the crescent $60^{\circ}$.

The student will find no difficulty in tracing the effects of this relation in all other phases.

An attempt has been made to trace the remarkable relation between the periods here noticed to the effects of the mutual gravitation of the satellites; and Laplace bas shown that, if such a relation prevailed nearly at any one epoch, the mutual gravitation of the satellites would render it in process of time exact. There would seem, therefore, to be a tendency to such a relation, as a consequence of the general law of gravitation.
2764. Orbits of satellites. - The orbits of the satellites are ellipses of very small ellipticity, inclined to the plane of Jupiter's orbit at very small angles, as is made apparent by their motions being always very nearly coincident with the plane of the planet's equator, which is inclined to that of its orbit at the small angle of $3^{\circ} 5^{\prime} 30^{\prime \prime}$.
2765. Apparent and real magnitudes. - The satellites; although reduced by distance to mere lucid points in ordinary telescopes, not only exhibit perceptible disks when observed by instruments of sufficient power, but admit of pretty accurate measurement. At opposition, when the apparent diameter of the planet is $45^{\prime \prime}$, all the satellites subtend angles exceeding $1^{\prime \prime}$,
and the third and fourth appear under angles of $1 \frac{3}{4}^{\prime \prime}$ and $1 \frac{1}{2}^{\prime \prime}$. By observing these apparent diameters with all practicable precision, and multiplying them by the linear value of $1^{\prime \prime}$, as already determined (2741.), their real diameters may be ascertained as follows:-

| I. | - | - | - | $1^{\prime \prime} \cdot 194 \times 1934=2309$. |
| ---: | :---: | :---: | :---: | :---: |
| II. | - | - | - | $1^{\prime \prime} \cdot 070 \times 1934=2069$. |
| IIL. | - | - | - | $1^{\prime \prime} \cdot 747 \times 1934=3378$. |
| IV. | - | - | - | $1^{\prime \prime} \cdot 495 \times 1934=2891$. |

It appears, thercfore, that with the exception of the second, which is exactly equal in magnitude to the earth's moon, all the others are on a much larger scale; and one of them, the third, is greater than the planet Mercury, while the fourth is very nearly equal to it.
2766. Apparent magnitudes as seen from Jupiter.-By comparing their real diameters with their distances, the apparent diameters of the several satellites, as seen from Jupiter, may be easily ascertained. By dividing the actual distances of the satellites from Jupiter by 206,265 , we obtain the linear value of $1^{\prime \prime}$ at such distance; and by dividing the actual diameters of the satellites respectively by this value, we obtain, in seconds, their apparent diameters as seen from Jupiter.

In making this calculation, however, it is necessary to take into account the magnitude of the semi-diameter of the planet; since it is from the surface, and not from the centre, that the satellite is viewed.

It follows, from a calculation made on these principles, that the apparent magnitudes of the four satellites, seen from any part of the surface not far removed from the equator of the planet, are, for the first $35^{\prime} 30^{\prime \prime}$, for the second $19^{\prime} 30^{\prime \prime}$, for the third $18^{\prime} 16^{\prime \prime}$, and for the fourth $8^{\prime} 58^{\prime \prime}$.

The first satellite, therefore, has an apparent diameter equal to that of the moon; the second and third are nearly equal and about half that diameter; and the apparent diameter of the other satellite is about the fourth part of that of the moon.

It may be easily imagined what various and interesting nocturnal phenomena are witnessed by the inhabitants of Jupiter, when the various magnitudes of these four moons are combined
with the quick succession of their phases, and the rapid apparent motions of the first and second.

By the relation (2763) between the mean motions of the first three satellites, they never can be at the same time on the same side of Jupiter; so that whenever any one of them is absent from the firmament of the planet at night, one at least of the others must be present. The Jovian nights are, therefore, always moonlit, except during eclipses (which take place at every revolution), and often enlightened at once by three moons of different apparent magnitudes and seon under different phases.
2767. Parallax of the satellites. - Owing to the small proportion which the distanoes of the satellites bear to the semidiameter of the planet, the effects of their parallax as observed from the surface of Jupiter, are out of all analogy with any phenomena of a like kind upon the earth. The nearest body in the universe to the earth, the moon, is at the distapce of sixty semidiameters, and its horizontal parallax is consequently less than $1^{\circ}$; while the most remote of Jupiter's satellites is only twenty-seven, and the nearest only six semidiameters from his centre.

By the method explained in 2327, the horizontal parallaxes, $\pi, \pi^{\prime}, \pi^{\prime \prime}, \pi^{\prime \prime \prime}$, of the four satellites, may be determined, and are -

$$
\begin{gathered}
\pi=\frac{57 \cdot 3^{\circ}}{6}=9 \cdot 5^{\circ} . \quad \pi^{\prime}=\frac{57 \cdot 3^{\circ}}{9 \cdot 6}=6^{\circ} . \quad \pi^{\prime \prime}=\frac{57 \cdot 3^{\circ}}{15 \cdot 4}=3 \cdot 6^{\circ} . \\
\pi^{\prime \prime \prime}=\frac{57 \cdot 3^{\circ}}{27}=2 \cdot 1^{\circ} .
\end{gathered}
$$

2768. Apparent magnitudes of Jupiter seen from the satellites. - Since the apparent diameter of the planet seen from a satellite, is twice its horizontal parallax (2327), it follows that the apparent diameter of Jupiter seen from the first satellite is $19^{\circ}$, from the second $12^{\circ}$, from the third $7^{\circ}$, and from the fourth $4 \cdot 25^{\circ}$. The disk of Jupiter, therefore, appears to the first with a diameter eighteen times greater, and a surface 320 times greater than that of the full moon.
2769. Satellites invisible from a circumpolar region of the planet. - It is easy to demonstrate in general that an object cannot be seen from any part of the surface of a planet, which is at a distance from its pole less than the horizontal parallax
of the object. Let NPs, fig. 756., be a meridian of the planet, ns its axis, o an object at a dis-


Fig. 756. tance, o c, from its centre. Suppose a line $O P$ drawn from 0 , touching the meridian at $P$, the angle $\mathbf{P O C}$ will be the horizontal parallax of $o$; and since the angle orc $=90^{\circ}$, the angles $P C O$ and $P O C$ taken together are $90^{\circ}$. But since the angle NCO is also $90^{\circ}$, it follows that the angle NCP , and, therefore, the arc NP which it measures, is equal to the horizontal parallax poc.

Now, it is evident, that $o$ is not visible from any part of the meridian between $P$ and $N$. If, therefore, a parallel of latitude be supposed to be described round the pole at a distance from it equal to the horizontal parallax of any object, such object cannot be seen from any part of circumpolar region included within such parallel.

It follows from this, from the values of the horizontal parallaxes of the satellites found above (2732), and in fine from the fact the satellites move nearly in the plate of the planet's equator, that the first satellite is invisible at all parts within a parallel described round the pole at a distance of $9.5^{\circ}$, the second at $6^{\circ}$, the third at $3 \cdot 6^{\circ}$, and the fourth at $2 \cdot 1^{\circ}$.
2770. Rotation on their axes. - One of the peculiarities in the motion of our moon which distinguishes it in a remarkable manner from the planets, is its revolution upon its axis. It will be remembered, that the planets generally rotate on their axes in times somewhat analogous to that of the earth. Now, on the contrary, the moon revolves on its axis in the same time that it takes to revolve round the earth; in consequence of which adjustment of its motions, it turns the same hemisphere continually towards the earth.

Some observations of Sir William Herschel have rendered it probable, that the Jovian moons also revolve on their axes once, in the time of their respective revolutions round the planet. These observations cannot be repeated without the aid of telescopes as powerful as those of the elder Herschel, and it may be expected that those of Lord Rosse and others may supply further evidence on this question.
2771. Mass of Jupiter.-The ratio of the mass of Jupiter to that of the sun, can be deduced from the motion of any of the satellites, by the method explained in (2635).

If $r$ and $\mathbf{r}$ express the distance and period of the planet, $r^{\prime}$ and $\mathrm{P}^{\prime}$ those of the satellite, and ar and $\boldsymbol{a}^{\prime}$ the masses of the sun and planet, we shall have-

$$
\frac{\mathbf{M}}{{\overline{I^{\prime}}}^{\prime}}=\left(\frac{r}{r^{\prime}}\right)^{3} \times\left(\frac{\mathrm{P}^{\prime}}{\mathrm{P}}\right)^{2}
$$

By substituting in this formula the distances and periods for each of the four satellites, we shall find the following values of $\frac{\mathrm{M}}{\mathrm{M}^{\prime}}$
I. $\frac{\mathrm{M}}{\mathrm{M}^{\prime}}=1130$. II. $\frac{\mathrm{M}}{\mathrm{m}^{\prime}}=1123$. III. $\frac{\mathrm{M}}{\mathrm{M}^{\prime}}=1121$. IV. $\frac{\mathrm{M}}{\mathrm{M}^{\prime}}=1095$.

The small discrepancy letween these values is due chiefly to the causes, already explained, for the departure of the harmonic law from absolute precision.

The following are the estimates of the mass of the planet obtained by processes susceptible of greater precision :-

| Laplace - | - | - | - | 1070. |
| :--- | :--- | :--- | :--- | :--- |
| Nicolai | - | - | - | - |
| Airy | 1054. |  |  |  |
| - | - | - | - | 1048.69. |
| Santini | - | - | - | 1050. |
| Bessel | - | - | - | 1046. |

The last three computations were conducted on principles such as to secure the greatest attainable precision, and these estimates are confirmed by observations on the perturbations produced by Jupiter on the smaller planets.

Since the mass of the sun is about 355,000 times that of the earth, while it is only 1050 times that of Jupiter, it follows, that the mass of Jupiter exceeds that of the earth in the ratio of 3550 to $10 \cdot 50$, or 338 to 1.

The comparatively great mass of Jupiter explains the very short periods of his satellites compared with that of the moon.

At greater distances from Jupiter than that of the moon from the earth, they nevertheless revolve in periods much shorter than that of the moon, and are affected by centrifugal forces, which exceed that of the moon in a ratio which may be determined by the periods and distances, and which must be resisted
by the attraction of a central mass proportionally greater than that of the earth. It would be easy to show that, if the earth were attended by a similar system of moons, at like distances from its centre, their periods would be about eighteen times greater than those of Jupiter's satellites.
2772. Their mutual perturbations.-The mutual attractions of the masses of the satellites, and the inequality of the attraction of the sun upon them, produce an extremely complicated system of disturbing actions on their motions, which has nevertheless been brought with great success under the dominion of analysis by Laplace and Lagrange. This is especially the case with the three inner satellites, whose motions, but for this cause, would be sensibly uniform. The effect of these disturbing forces is nevertheless mitigated and limited by the very small excentricities and inclinations of the orbits of the satellites.
2773. Density. - The volume of Jupiter being greater than that of the earth in the ratio of 1400 to 1 , while its mass is greater in the inferior ratio of 338 to 1 nearly, it follows, that the density of the matter composing the planet, is less than the mean density of the earth in the ratio of the above numbers. We have, therefore-

$$
\frac{d^{\prime}}{d}=\frac{338}{1400}=0.2415
$$

Its mean density is, therefore, less than one-fourth of that of the earth; and since the mean density of the earth is 5.67 times that of water, the density of Jupiter is 1.37 times that of water.
2774. Masses and densities of the satellites. - The masses of the satellites are determined by their mutual disturbances, by means of the general principle explained in (2637), and the densities are deduced as usual from a comparison of these masses with their volumes. In the following table are given the masses as compared with the primary and with the earth, and their densities as compared with the earth and with water.

|  | $\stackrel{\text { Mass, that of }}{=1}$ | Mfacs, that of Earth $=1$. | Denaity, that of Eaxth | Denalty, that of Water $=1$. |
| :---: | :---: | :---: | :---: | :---: |
| II. | 00000173 | $0 \cdot 00576$ | 0.02016 | $0 \cdot 1143$ |
| 111. | 0.0001232 | 0.01773 | $0 \cdot 6015$ | 0.1710 |
| 1 V. | $0 \cdot 0000885$ | 0-0:947 | 0.06994 | $0 \cdot 3970$ |
|  | 00000427 | 0.01422 | 0.03925 | 0.2225 |

Thus it appears that the density of the matter composing these satellites, is much smaller than those of any other bodies of the system, whose densities are known.

It follows, therefore, that the first satellite must be composed of matter which is twice as light as cork, the density of which is 0.240 ; and that of the third, which consists of the heaviest matter, is not more dense than the lightest sort of wood, such, for example, as the common poplar, whose density is 0.383 (787).

It is remarkable that this extremely small degree of density is not found in the earth's satellite, the density of which, though less than that of the earth, is still more than twice the density of water.

The planets Mercury and Mars, which are so nearly of the same magnitudes as the third and fourth satellites, show, in a striking manner, the difference of the matter composing them by the great difference of their densities. The mean specific weight of the materials composing these planets, is nearly the same as that of those which compose the earth, while the materials of the third satellite are thirteen times, and that of the fourth twenty-five times lighter.
2775. Superficial gravity on Jupiter.-The gravity by which bodies placed on the surface of this planet are affected, omitting the consideration of the modifying effects of its spheroidal form and its rotation, may be computed by means of its mass, and its mean semi-diameter by the method already explained.

Let $\boldsymbol{m}^{\prime}=$ Jupiter's mass, that of the earth being $=1$;
$r^{\prime}=$ Jupiter's mean semi-diameter, that of the earth being $=1$;
$g^{\prime}=$ superficial gravity, that of the earth being $=1$;
we shall then have (2647), (2771) -

$$
g^{\prime}=\frac{m^{\prime}}{r^{\prime 2}}=\frac{338}{11 \cdot 45^{2}}=2 \cdot 6
$$

2776. Centrifugal force at Jupiter's equator. - In the case of Jupiter, owing to the great degree of its oblateness and its rapid rotation, this force of superficial gravitation is subject to much greater variation than on the earth. To determine this variation, it will be necessary to compute the centrifugal force by which bodies placed on the equator of the planet are affected.

Let $\mathrm{c}=$ centrifugal force related to the terrestrial gravity as the unit,
$g=16.08$ feet,
$v=$ the velocity of Jupiter's equator in feet per second due to his rotation,
we shall then have (313) -

$$
\mathrm{c}=\frac{\mathrm{v}^{2}}{2 r^{\prime} \times g}
$$

The value of $v$ deduced from the equatorial diameter of the planet (2756) and the time of rotation (2747) is 42760 ; and it follows, therefore, that $c=0.234$. Deducting this from the superficial gravity undiminished by rotation, already computed (2775), we shall find the effective equatorial superficial gravity

$$
2.616-0.234=2.382
$$

2777. Variation of superficial gravity from equator to pole. -The well-known theorem of Clairault, already quoted (2384), by which the oblateness, the variation of superficial gravity, and the centrifugal force are connected, supplies the means of determining this.

Let $e$ and $w$, as in 2384, express respectively the fraction of its whole length by which the equatorial exceeds the polar diameter, and the fraction of its whole weight by which the weight of a body and the pole exceeds the weight of the same body at the equator, and in fine, let $c$ express the equatorial centrifugal force as a fraction of the effective equatorial superficial gravity. By the theorem of Clairault, these three quantities are related in the manner expressed in the following formula :-

$$
e+v=2.5 c
$$

But from what has been already explained $e=0.08$,

$$
c=\frac{\mathrm{c}}{g^{\prime}}=\frac{0.234}{2.382}=0.096 ;
$$

and consequently $w=0.16$.
From whence it follows that the weights of bodies are increased by 16 per cent. when transferred from the pole to the equator.

A mass of matter, therefore, which upon the earth's surface would weigh 1000 pounds, would weigh, if placed upon Jupiter's equator, 2382 pounds, and if placed at his pole, would weigh 2763 pounds.

The height through which a body would fall in a second would be $16.08 \times 2.382=38.3$ feet at its equator, and $44 \cdot 4$ at the pole.

The length of a seconds pendulum varies in the exact ratio of the forces of gravity which produce its vibration (542); and if the length of the seconds pendulum on the surface of the earth be taken in round numbers as 39 inches, that of a seconds pendulum at Jupiter's equator would be $39 \times 2.382=92.91$ inches, and at the poles $107 \cdot 77$ inches.
2778. Density must increase from the surface to the centre.It is eany to show that the oblateness of Jupiter is incompatible with the supposition of his uniform density. It was demonstrated by Newton that, if the earth's density were uniform, its oblateness would be $\frac{1}{3} \delta$; and the same would be true of any spheriod of uniform density, revolving on its axis in the same time. But the oblateness will be increased in the same ratio as the square of the time of rotation and as the density are diminished. If, therefore, $\mathbf{r}$ express the time of rotation of Jupiter, that of the earth being 1 , and $d$ the mean density of Jupiter, that of the earth being 1 , the oblateness which the planet would have if its density were uniform would be-

$$
e=\frac{1}{230} \times \frac{1}{\mathrm{R}^{2}} \times \frac{1}{d} .
$$

But $\mathrm{R}=\frac{1}{2406}$ and $d=0.228$; therefore

$$
e=\frac{2.406^{2}}{230 \times 0.228}=0.1104
$$

But the oblateness deduced from observation being only 0.08 , it follows that the density cannot be uniform.

It is easy to perceive that, if the density augmented from the centre to the surface, the effect of the centrifugal force upon the component parts of the mass would have a tendency to render the oblateness still greater than it would be with the same mass having an uniform density. Since, therefore, the actual oblateness is incompatible either with an uniform density, or with a density decreasing from the surface to the centre, it follows that the density must increase from the surface to the centre.

The mean density of the planet being $0 \cdot 228$, it follows, therefore, that the mean density of the superficial stratum must be
less than this, though in what proportion cannot be determined by these data.

If the mean superficial density of Jupiter bear the same proportion to the mean density of its entire mass, as the mean superficial density of the earth bears to the mean density of its entire mass, it will follow, that the mean superficial density of Jupiter will be lialf its mean density, and will, consequently, be $0 \cdot 114$; and since the mean density of the earth related to that of water as the unit, is $5 \cdot 67$, it would follow upon this supposition, that the actual mean density of the superficial stratum of Jupiter would be $0.114=5.67=0.645$.

Water, which discharges so many important functions in the physical economy of the earth, has a specific gravity 2.8 times less than the mean specific gravity of the superficial stratum of the globe. If a like fluid on Jupiter, serving like purposes, be similarly related to the mean density of its surface, its specific would therefore be-

$$
\frac{0.645}{2 \cdot 8}=0.23,
$$

which would be more than three times lighter than sulphuric ether, the lightest known liquid, and nearly equal in kevity to cork.
2779. Utility of the Jovian system as an illustration of the solar system.-It is not merely as a model on a small scale of the solar system, so far as relates to the analogy presented by the motions of the satellites round Jupiter to the motion of the planets round the sun, and the striking confirmation of the theory of gravitation afforded by the exhibition of the play of Kepler's Laws, that the Jovian system is to be regarded with interest by the physical astronomer. All the effects of the reciprocal gravitation of the planets one upon another, which mathematicians have succeeded in explaining upon the principles of the theory of gravitation, all the perturbations and inequalities, many of which, in the case of the planets, will take thousands of centuries to complete their periodsand re-commence their course, all these are exhibited on a greatly reduced scale in the Jovian system. As the central mass is reduced in a thousand-fold proportion, and the distances of the bodies revolving round it in a still greater ratio, the cycles of the perturbations and inequalities are similarly reduced. Millions of years are reduced to thousands, centuries to months, months to days, days to hours. Phenomena, the periods of
which would far surpass, not the life of man only, but the whole extent of time embraced within human records and traditions, are reproduced and completed in this miniature system, within such moderate limits of time as to bring them within the scope of actual observation. The analyst is thus enabled to see practically verified, those conditions of equilibrium and stability, which it would take countless ages to develope in the solar system.

## II. Saturn.

2780. Saturnian system. - Beyond the orbit of Jupiter a space but little less in width than that which separates that planet from the sun is unoccupied. At its limit we encounter the most extraordinary object in the system, - a stupendous globe, nearly nine hundred times greater in volume than the earth, surrounded by two, at least, and probably by several thin flat rings of solid matter, outside which revolve a group of eight moons; this entire system moving with a common motion so exactly maintained, that no one part falls upon, overtakes, or is overtaken by another, in their course around the sun.

Such is the Saturnian system, the central body of which was known as a planet to the ancients, the annular appendages and satellites being the discovery of modern times.
2781. Period. - By the usual methods the period of Saturn has been ascertained to be $10759 \cdot 22$ days, or $29 \cdot 48$ years.
2782. Heliocentric motion. - The mean heliocentric motion is therefore

$$
\begin{aligned}
\frac{360^{\circ}}{29 \cdot 48} & =12.23^{\circ} \text { annually. } \\
& =1 \cdot 018^{\circ} \text { monthly. } \\
& =0.033^{\circ} \stackrel{ }{=} 2^{\prime} \text { daily. }
\end{aligned}
$$

2783. Synodic motion. - The apparent mean daily motion of the sun being $0.9856^{\circ}$, the mean daily synodic motion, or it 9 mean daily increment of elongation, is

$$
0.9856^{\circ}-0.033^{\circ}=0.9526^{\circ}:
$$

and the synodic period is therefore

$$
\frac{360}{0.9526}=377.9 \text { days. }
$$

The interval between the successive oppositions of the planet is therefore a year and thirteen days.
2784. Distance. - The mean distance from the sun may be determined by the harmonic law. We have

$$
(24 \cdot 48)^{2}=(9 \cdot 54)^{3}
$$



Fig. 757.

The distance is therefore 9.54 ; or more exactly $9 \cdot 5387861$, that of the earth being $=1$.

Taking the earth's mean distance as 95 millions of miles, that of $\mathrm{Sa}-$ turn will then be 906 millions of miles.

The eccentricity of Saturn's orbit being 0.056 , this distance is liable to variation, being augmented in aphelion, and diminished in perihelion by a twentieth of its whole amount. The greatest distance of the planet from the sun is therefore 950 , and the least is 850 , millions of miles.
2785. Relative scale of orbit and distance from the earth. - The relative proportion of the orbits of Saturn and the earth are represented in fig. 757., where EE's' ${ }^{\prime \prime}$ is the earth's orbit, and $s s^{\prime}$ Saturn's distance from the sun. The four positions of the earth indicated are,

E when the planet is in opposition.
$\mathbf{E}^{\prime \prime \prime}$ when the planet is in conjunction.
$E^{\prime}$ in quadrature west of the sum, $E^{\prime \prime}$ in quadrature east of the sun.
2786. Annual parallax of Saturn.-Since $s s^{\prime}$ is 9.54 times $\mathbf{S}_{E^{\prime}}$, we shall have for the angle $s^{\prime} \mathbf{S} \mathrm{E}^{\prime}$,

$$
\mathrm{s} \mathrm{~s}^{\prime} \mathrm{E}^{\prime}=\frac{\frac{57 \cdot 30}{9 \cdot 54}}{{ }^{*} \mathrm{Q} 12}=6^{\circ} .
$$

The semi-diameter of the earth's orbit therefore subtends at Saturn an angle of only $6^{\circ}$. The apparent diameter of a globe, " which would fll the entire orbit of the earth seen from Saturn, would, therefore, be no more than $12^{\circ}$, or twenty-four times the apparent diameter of the sun as seen from the earth.
2787. Great scale of the orbital motion: - The distance of Saturn from the sun is therefore so enormous, that if the whole earth's orbit, measuring nearly 200 millions of miles in diameter, were filled with a sun, that sun seen from Saturn would. be only about twenty-four times greater in its apparent diameter than is the actual sun seen from the earth. A cannon ball, moving at 500 miles an hour, would take about 200 years, and a railway train, moving 50 miles an hour, would take about 2000 years to move from Saturn to the sun. Light, which moves at the rate of nearly 200,000 miles per second, takes 1 hour 15 minutes to move over the same distance. Yet to this distance solar gravitation transmits its mandates, and is obeyed with the utmost promptitude and the most unerring precision.

Taking the diameter of Saturn's orbit at 1800 millions of miles, its circumference is 5650 millions of miles, over which it moves in $\mathbf{1 0 , 7 5 9}$ days. Its daily motion is therefore 525,140 miles, and its hourly 21,880 miles.
-2788. Division of synodic period. -Since the angle $\varepsilon^{\prime} s^{\prime} s=$ $6^{\circ}$, the angle esce $=84^{\circ}$ and $\mathrm{E}^{\prime} \mathbf{s} \mathrm{E}^{\prime \prime \prime}=96^{\circ}$. Since the synodic period is 378 days, the intervals between

$$
\begin{aligned}
& \text { opposition and quadrature }=\frac{84}{360} \times 378=88 \cdot 2 . \\
& \text { conjunction and quadrature }=\frac{96}{360} \times 378=100 \cdot 3 .
\end{aligned}
$$

It appears, therefore, that in 88 days after its opposition the planet is in its eastern quadrature, and passes the meridian about 6 in the afternoon: After a further intervg of 101 days it arrives at conjunction : after which it acquires whtern elongation, passing the meridian in the forenoon; and at 101 days from conjunction it attains its western quadrature, passing the meridian at about 6 um . After another interval of 88 day it returns to opposition.
2789. No phases. - It is evident from what has been e.
plained in relation to Jupiter (2738), that neither Saturn nor any more distant planet can have sensible phases.
2790. Variation of the planet's distance from the earth. The distances of Saturn from the earth are therefore

$$
\begin{aligned}
& \mathbf{s}^{\prime} \mathbf{E}=906-95=811 \text { millions of miles in opposition. } \\
& \mathbf{s}^{\prime \prime} \mathbf{E}^{\prime \prime \prime}=906+95=1001 \text { millions of miles in conjunction. } \\
& \mathbf{s}^{\prime} \mathbf{E}^{\prime}=\cdots \cdot .=900 \cdot 6 \text { millions of miles in quadrature. }
\end{aligned}
$$

These distances are subject to some variation, owing to the eccentricities of the orbits of Saturn and the earth. The amount of this variation, arising from the eccentricity of Saturn's orbit, is, as has been shown, 100 millions of miles. The variation due to the earth's orbit is comparatively small, being under two millions of miles.
2791. Stations and retrogression. - From a comparison of the orbital motion and varying distance between the earth and Saturn, it appears that the stations of the planet take place at about 65 days before and after opposition. Since the earth gains upon the planet at the mean rate of $0.9526^{\circ}$ per day, the angle at the sun corresponding to 65 days will be

$$
0.9526^{\circ} \times 65^{\circ}=61.92^{\circ} ;
$$

which corresponds to an elongation of $113^{\circ}$. The planet is therefore stationary at elongation $67^{\circ}$ east and west of opposition.
Its arc of retrogression varies from $6^{\circ} 41^{\prime}$ to $6^{\circ} 55^{\prime}$.
2792. Apparent and real diameter. -This planet appears as a star of the first magnitude, with a faint reddish light. Its apparent brightness, compared with that of Mars, is greater than that which is due to their apparent magnitudes and distances, a circumstance which is explained, as in the case of Jupiter, by the more feebly reflective power of the surface of Mars.

The disk is visibly oval, and traversed like that of Jupiter by streaks of light and shade parallel to its greater axis; but these belts are much more faint and less pronounced than those of Jupiter. One principal grey belt, which lies along the greater axis of the disk, is almost unchangeable.
sir William Herschel imagined that the diṣk had the form of a oblong rectangle, rounded at the corners, the length being 1 the direction of the belts. More recent observations and山ı.
micrometrical measurements made at Konigsburg, by Professor Bessel, and at Greenwich by Mr. Main, have shown, however, the true form to be an ellipse. According to these measures the apparent magnitude of the greater axis of the disk is $17.053^{\prime \prime}$, and that of the lesser axis $15.394^{\prime \prime}$. The observations of Professor Struve, made with the Dorpat instruments, give 17.991 for the greater axis; the difference of the two estimates 0.938 being less than a second.

At the mean distance of Saturn the linear value of a second is

$$
\frac{906000000}{2 \cdot 06265}=4392 \cdot 5
$$

The actual magnitude of the greater axis would therefore be

$$
\begin{aligned}
& 4392.5 \times 17.053=74900 \text { Bessel. } \\
& 4392.5 \times 17.991=79160 \text { Struve }
\end{aligned}
$$

The oblateness expressed as a fraction of the greater axis is 0.097 , or a little less than a tenth.

The lesser axis of the planet therefore, according to, Struve, measures 71,100 miles, and the mean diaméter 75,000 miles.
2793. Surface and volume. - Taking the mean diameter of the planet as $9 \cdot 46$, that of the earth being 1 , the surface will be $9 \cdot 46^{2}=89 \cdot 5$, and the volume $9 \cdot 46^{3}=847$ times greater than those of the earth.

The relative volumes of Saturn and the earth are represented in $f i g .758$.


Fig. 758.
2794. Diurnal rotution. - From observations on the appa rent motion of spots on the disk of the planet it has been ascer"
tained to have a motion of rotation upon the shorter axis of the ellipse formed by its disk in $10^{\mathrm{h}} \cdot 29^{\mathrm{m}} \cdot 7^{\mathrm{s} \cdot}$ A terrestrial day is therefore equal to $2 \cdot 3$ Saturnian days.
2795. Inclination of the axis to the orbit. - The general direction of the motion of rotation has been ascertained to be such, that the inclination of the equator of the planet to the plane of the orbit is $26^{\circ} 48^{\prime} 40^{\prime \prime}$, and its inclination to the plane of the ecliptic is $28^{\circ} 10^{\prime} 47 \cdot 7^{\prime \prime}$.

The axis, like that of the earth, and those of the other planets, whose rotation has been ascertained, is carried parallel to itself in the orbital motion of the planet.

The consequence of this arrangement is that the year of Saturn is varied by the same succession of seasons subject to the same range of temperature as those which prevail on our. globe.
2796. Saturnian days and nights. Year. - The alternation of light and darkness is therefore nearly the same as upon Jupiter. This rapid return of day, after an interval of five hours night, seems to assume the character of a lavo among the major planets, as the interval of twelve hours certainly does among the minor planets.

The year of Saturn is equal in duration to 10,759 terrestrial days, or to 258,192 hours. But since a terrestrial day is equal to $2 \cdot 3$ Saturnian days, the number of Saturnian days in the $\mathrm{Sa}-$ turnian year must be 247,457 .
2797. Belts and atmosphere. - Streaks of light and shade, parallel in their general direction, to the planet's equator have been observed on Saturn similar, in all respects, to the belts of Jupiter, and affording like evidence of an atmosphere surrounding the planet, attended with the like system of currents analogous to the trades. Such an inference involves, as in the former case, the admission of liquid producing vapour to form clouds and other meteorological phenomena.
2798. Solar light and heat. - The apparent diameter of the sun as seen from Saturn is 9.54 times less than as seen from the earth; and since its mean apparent diameter, as seen from the earth, is $1923^{\prime \prime}$, its apparent diameter, as seen from Saturn, must be

$$
\frac{1923^{\prime \prime}}{9 \cdot 54}=201^{\prime \prime} \cdot 57=3^{\prime} 21^{\prime \prime} \cdot 57
$$

The comparative apparent magnitudes are represented in E 2
fig. 759 ., where E represents the disk of the sun as seen from the earth, and $s$ as seen from Saturn.


Fig. 759.
The intensity of solar light is less in the ratio of 1 to $9.54^{2}$ $=91$; and its optical and calorific influences with this reduced intensity are subject to the observations already made in the case of Jupiter (2744).
2799. Rings.-Theinvention of the telescope having invested astronomers with the power of approaching, for optical purposes, hundreds of times closer to the objects of their observation, one of the earliest results of the exercise of this improved sense was the discovery that the disk of Saturn differed in a remarkable manner from those of the other planets in not being circular. It seemed at first to be a flattened oblong oval, approaching to the form of an elongated rectangle, rounded off at the corners. As the optical powers of the telescope were improved, it assumed the appearance of a great central disk, with two smaller disks, one at each side of it. These lateral disks, in fine, took the appearance of handles or ears, like the landles of a vase or jar, and they were accordingly called the anse of the disk, a name which they still retain. At length, in 1659, Huygens explained the true cause of this phenomenon, and showed that the planet is surrounded by a ring of opaque solid matter, in the centre of which it is suspendea, and that what appear as anse are those parts of the ring which lie beyond the disk of the planet at either side, which by projection are reduced to the form of the
parts of an ellipse near the extremities of its greater axis, and that the open parts of the ansæ are produced by the dark sky visible through the space between the ring and the planet.

The improved telescopes and greatly multiplied number, and increased zeal and activity of observers, have supplied much more definite information as to the form, dimensions, structure, and position of this most extraordinary and unexampled appendage.

It has been ascertained, that it consists of an annular plate of matter, the thickness of which is very inconsiderable compared with the supericies. It is nearly, but not precisely concentric with the planet and in the plane of its equator. This is proved by the coincidence of the plane of the ring with the general direction of the belts, and with that of the apparent motion of the spots by which the diurnal rotation of the planet has been ascertained.

When telescopes of adequate power are directed to the ring presented under a favourable aspect, dark streaks are seen upon its surface similar to the belts of the planet. One of these having been observed to bave a permanence which seemed incompatible with the admission of the same atmospheric cause as that which has been assigned to the belts, it was conjectured that it arose from a real separation or division of the ring into two concentric rings placed one within the other. This conjecture was converted into certainty by the discovery, that the same dark streak is seen in the same position on both sides of the ring. It has even been affirmed by some observers that stars have been seen in the space between the rings; but this requires confirmation. It is, however, considered as proved, that the system consists of two concentric rings of unequal breadth, one placed outside the other without any mutual contact.

The plane of the rings, being always at right angles to the axis of the planet, is, like the axis, carried by the orbital motion of the planet parallel to itself, so that during the jear of Saturn, it undergoes changes of position in relation to the radius vector of the planet, or to a line drawn from the sun analogous to those which the earth's equator undergoes. Since the plane of the rings coincides with that of the Saturnian equator, therefore, it will be directed to the sun at the epochs of the Saturnian equinoxes; and, in general, the angle which the radius vector from
the sun makes with the plane of the ring, will be the sun's declination as seen from Saturn. This angle, therefore, at the Saturnian solstices will be equal to the obliquity of Saturn's equator to his orbit, that is, to $26^{\circ} 48^{\prime} 40^{\prime \prime}$ (2795), and at the Saturnian equinoxes will be $0^{\circ}$.
2800. Position of nodes of ring and inclinaticn to ecliptic.The investigation of the position of the plane of the ring in space was undertaken and conducted with great ability and success by Prof. Bessel, by means of an elaborate comparison of all the recorded observations on the phases of the ring from 1701 to 1832. The result proved that the line of intersection of the plane of the ring, and, therefore, that of the equator of the planet, with the plane of the ecliptic, is parallel to that diameter of the celestial sphere, which connects the two opposite points ${ }^{\circ}$ whose longitudes are $166^{\circ} 53^{\prime} 8.9^{\prime \prime}$ and $346^{\circ} 53^{\prime} 8.9^{\prime \prime}$, the former being the longitude of the point at which the rings pass from the sogth to the north of the ecliptic, and which is, therefore, the ascending node of the rings. It also resulted from this investigation that the angle formed by the plane of the rings, and, therefore, of the Saturnian equator with the plane of the ecliptic, is $28^{\circ} 10^{\prime} 44^{\prime \prime} 7^{\prime \prime}$.

These longitudes and obliquity were those which corresponded' to the lst of January, 1800. It was shown that the nodes of the ring have a retrograde motion on the ecliptic at the mean rate of $46 \cdot 462^{\prime \prime}$ per annum.

It resulted from the observations of Professor Struve, made with the great Dorpat refractor, that the obliquity of the plane of the ring to that of the ecliptic is $28^{\circ} 5^{\prime} 54^{\prime \prime}$, subject to a possible error of $6^{\prime} \mathbf{2 t} t^{\prime \prime}$.

- The observations and measurements of these two eminent astronomers are, therefore, in as perfect accordance as the degree of perfection to which the instruments of observation have been brought admits.

2801. Obliquity of ring to the planet's orbit. - The position of the plane of the ring in relation to the ecliptic being thus determined, its position in relation to that of Saturn's orbit can be ascertained; and this is the more necessary to be done, inasinuch as considerable discrepancy prevails between the statements of different authorities respecting this element.

Let A, fig. 760., be' the ascending node of Saturn's orbit and ' $A$ ' the ascending node of the ring, $A A^{\prime}$ being consequently an arc
of the ecliptic. Let $r r^{\prime}$ be the direction of the plane of the ring, $n^{\prime}$ its intersection with the orbit of the planet, of which, there-


Fig. 760.
fore, $A n$ is an arc, and $n$ the point where the plane of the ring intersects that of the orbit. It has been found that the longitude of $A$ is $111^{\circ} 56^{\prime} 37 \cdot 4^{\prime \prime}$; and since that of $A^{\prime}$ is $166^{\circ} 53^{\prime}$ $8 \cdot 9^{\prime \prime}$, we have $\Delta A^{\prime}=54^{\circ} 56^{\prime} 31 \cdot 5^{\prime \prime}$. The angle $n \Delta \Delta^{\prime}$, which is the obliquity of Saturn's orbit, being $2^{\circ} 29^{\prime} 35 \cdot 7^{\prime \prime}$, and the angle $n A^{\prime} x$, the obliquity of the ring to the orbit being $28^{\circ}$ $10^{\prime} 44^{\prime \prime} 7^{\prime \prime}$, it follows, by formulx of spherical trigonometry, that $A n A^{\prime}$ or the obliquity of the ring to the orbit of the planet, is $26^{\circ} 48^{\prime} 40^{\prime \prime}$; that $\Delta n$, or the distance of the intersection of the plane of the ring with the plane of the planet's orbit from the ascending node of the planet, is $58^{\circ} 57^{\prime} 30^{\prime \prime}$; and, in fine, the distance $n \Delta$ of the same point from the ascending node of the ring is $4^{\circ} 32^{\prime} 30^{\prime \prime}$.
2802. Conditions which determine the phases of the ring. The relation between the phases of the ring and the position of the planet is easily ascertained. Let $a$ be the semidiameter of the rings as seen undiminished by projection; let $b$ be the lesser semi-axis of the ellipse produced by the projection of the ring; and let D be the angle which the visual ray makes with the plane of the ring. We shall then have, by the common principles of projection,

$$
b=a \times \sin . \mathrm{D} .
$$

But since the visual ray is the line drawn from the planet to the earth, it is evident that the angle D will be the declination of the earth as seen from the planet. Now, if $x$ express the are of the ecliptic between the earth and the ascending node of the ring as seen from the planet, and o the obliquity of the plane of the ring to the ecliptic, we shall have, by the common principles, of trigonometry,

$$
\operatorname{Sin} D=\sin .0 \times \sin . L ;
$$

and consequently

$$
\frac{b}{a}=\sin .0 \times \sin \mathrm{c}_{m}
$$

But since the distance of the earth from the ascending node as seen from the planet is equal to $180^{\circ}$, diminished by the distance of Saturn from the same point as seen from the earth, $x$ may be taken in the preceding formula to express the latter digtance, the sine being the same.

If the position of the planet with relation to the ascending node of the ring be known, the preceding formula will therefore serve to deduce the obliquity from the phase of the ring, orvice versấ.

Since $0=28^{\circ} 10^{\prime} 44 \cdot 7^{\prime \prime}$, we shall have Sin. $0=0.4722$. We shall therefore have

$$
\frac{b}{a}=0.4722 \times \sin . x_{?} .
$$

by which the phases of the ring for any given distance from its: node may be computed.

In the following table the ratio $\frac{b}{a}$ of the semiraxis of the el-: lipse formed by the projection of the ring, and the ratio $\frac{b}{r}$ of the lesser semi-axis to the semi-diameter of the planet are given for every $10^{\circ}$ from the node.

| $L$ | $10^{0}$ | 200 | 300 | 409 | 500 | 600 | 700 | 800 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{b}{4}$ | 0.082 | $0.36!$ | 0236 | 0.303 | 0.362 | 0.409 | 0.444 | 0.465 | 0.472 |
| $\frac{b}{r}$ | 0.183 | 0.360 | 0.526 | 0.676 | 0.806 | 0.911 | 0.989 | 1.04 | 1.05 |

' From this table it nppears that the lesser semi-axis increases as the planet moves from the ascending node of the ring until it is $90^{\circ}$ from that point, at which its ratio to the major semi-axis is that of 472 to 1000 , being a little less than half the major semi-axis. From the numbers given in the third line of the table it appears that the lesser semi-axis becomes equal to the equatorial semidiameter of the planet at about $71^{\circ}$ from thes ascending node of the ring, and exceeds it by a twentieth of its
length at $90^{\circ}$. But as the polar diameter of the planet is less by a tenth than the equatorial, it follows, that at $90^{\circ}$ from the; node of the ring the lesser semi-axis exceeds the polar semidiameter of the planet by an eighteenth of its length, it follows, therefore, that a corresponding breadth of the ring will, in this case, be visible above the disk of the planet.

Since the entire breadth of the rings is three-fourths of the semi-diameter of the planet, and since they are reduced one-half by foreshortening their apparent breadth measured in the direction of the lesser axis of the ellipse at $90^{\circ}$ from the node is three-eighths of the semidiameter of the planet, 'it follows, therefore, that a seventh part of the entire breadth of the rings is visible above the disk of the planet at $90^{\circ}$ from the node, the entire upper segment of the disk being projected upon the ring.

From $90^{\circ}$ to the descending node of the ring the like phases are presented in a contrary order ; and while the planet moves from the descending to the ascending node a similar series of phases are presented; the position of the plane of the ring with relation to the poles of the planet, however, being reversed, that which is in one case interposed between the observer and the northern hemispliere of the planet will be interposed in the other cases between him and the southern hemisphere.

In the diagrams figs. 761-765., the phases of the rings indicated in the preceding table are exhibited.

If the thickness of the ring were uniform and sufficiently great to subtend a sensible visual angle at Saturn's distance, the phase presented to the planet at the nodes of the ring would be such as that represented in fig. 761. The phases at $1,2,4$, and 6-7 years, after passing the nodes, are roughly sketched in figs. 761-765,


Fig. 761.


Fig. 762.


Fig. 763.

l-ig. 764.

lig. 765.
2803. Apparent and real dimensions of the rings. - The breadth of the rings as well as of the intervals which separate
them from each other and from the planet, have been submitted to very precise micrometric observations; and the results obtained by different observers do not differ from each other by a fortieth part of the whole quantity measured. In the following table are given the results of the micrometric observations of Professor Struve, reduced to the mean distance.

|  |  | Apparent Mapnitude Dutance Dictance. | In Semis diameters of the Planer. | Afices |
| :---: | :---: | :---: | :---: | :---: |
| Semi-diameter of the planet - - | F | $8^{\prime \prime} 9895$ | 1.000 | 39,580 |
| Exterior semidiameter of exterior ring - | ${ }^{\boldsymbol{a}}$ | 20.047 | 2229 | 88,209 |
| Interior do. do. - | ${ }^{a^{\prime}}$ | $17 \cdot 614$ | $\cdot 1.961$ | 77,636 |
| Breadth of exterior ring - - | $a-a^{\prime}$ | 2.403 17.237 | 0.268 0.916 | 10,573 75,845 |
| Fxterior semi.diameter of finterior sing : | $\stackrel{b}{6}$ | 17.237 13.334 | 1.916 1.482 | 75,845 $\mathbf{5 8 , 6 6 9}$ |
| Interior do. ${ }_{\text {dreadth of }}$ Interior ring - do. | $b^{b^{\prime}} b^{\prime}$ | 13.334 3.913 | 1.482 0.434 | 88,669 17,176 |
| Wideh of interval between the rings | $a^{\prime}-b$ | 0.407 | 0.045 | 1,791 |
| Width of interval hetween planet and interior riag | $b^{\prime}-5$ | 4.339 | 0.482 | 19.089 |
| Breadth of the double ring, including interval - | $a-b^{\prime}$ | 6.713 | 0747 | 29,540 |

The relative dimensions of the two rings, and of the planet within them, are represented in fig. 766., projected upon the

common plane of the rings and the planet's equator. Eack division of the subjoined scale represents 5,000 miles.

The visual angle subtended at the earth by the extreme diameter of the external ring, when the planet is in opposition, is 48", which is about one thirty-seventh part of the moon's ap- , parent diameter.
2804. Thickness of the rings. -The thickness of the rings is so extremely minute, that the nicest micrometric observations have hitherto failed to supply the data necessary to determine it with any degree of precision or certainty. It is so inconsiderable, that when the plane of the ring is directed to the earth, and, consequently, the edge alone is presented to the eye, it is invisible even with telescopes of great power, or, if seen, it is so imperfectly defined as to elude all micrometric observation. When it was in this position in 1833, Sir J. Herschel observed it with a telescope, which would certainly have rendered distinctly visible a line of light one twentieth of a second in breadth. Since the linear value of $1^{\prime \prime}$ at Saturn's mean distance is about 4400 miles, it would follow that the thickness is less than 220 miles. Sir J. Herschel admits, however, that it may possibly be so great as 250 miles.

The thickness is, therefore, certainly less than the 100th part of the extreme breadth of the two rings, and, according to the scale on which the fig. 752. is drawn, it would be represented by the thickness of a leaf of the volume now before the reader, 2805. Illumination of the ring.-Heliocentric phases. -The illumination of the rings is determined by the phases under which they would be viewed from the sun. There the illuminating and the visual rays are identical, and their direction is that of the radius vector of the planet. The angle which this line makes with the plane of the Saturnian equator, is the declination of the sun as seen from Saturn, Let this angle be expressed by $\mathrm{D}^{\prime}$, the distance of the same from the Saturnian vernal equinoxial point $x^{\prime}$, and the inclination of the Saturnian equator to the orbit $0^{\prime}$. We shall then, as in the former case, have

$$
\operatorname{Sin} \mathrm{D}^{\prime}=\sin \mathrm{o}^{\prime} \times \operatorname{Sin} \mathrm{L}^{\prime} ;
$$

and if $b^{\prime}$ express lesser semi-axes of the ellipse to which the major is reduced by projection, as seen from the sun, we shall have..'

$$
\frac{b}{a^{\prime}}=\operatorname{Sin} .0^{\prime} \times \sin . I^{\prime}
$$

By this formula the ratios of $s^{\prime}$ to $A$ and $r$ may be determined for all values of $L^{\prime}$, as in the former case. In the following table these are given as they have been computed, for $0^{\prime}=26^{\circ} 48^{\prime} 40^{\prime \prime}$.

| $L$ | 100 | 200 | 200 | 400 | 500 | 600 | 700 | 800 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{b}{a}$ | 0.078 | 0.154 | 0.226 | 0.230 | 0.346 | 0.300 | 0.424 | 0.444 | 0.451 |
| $\frac{b}{r}$ | 0.175 | 0.34 | 0.503 | 0.646 | 0.770 | 0.870 | 0.945 | 0.950 | 1.005 |

2806. Shadow projected on the planet by the rings. - Since the lines by which these phases are determined are those of the solar rays, it is evident that the parts of the rings intercepted by the planet, and those of the planet intercepted by the rings, are exactly those which reciprocally bound the shadows projected on them.

The preceding table of Heliocentric phases will therefore serve for the determination of the limits of the shadows.

At the equinoxes, the edge of the rings being presented to the sun, the shadow projected on the equator of the planet will depend altogether on the thickness of the rings, and the apparent diameter of the sun, as seen from the planet. The latter being only $3 \frac{1}{2}$, the solar rays which touch the edge of the thickness may be considered as nearly parallel, and the breadth of the shadow will be nearly equal to the thickness of the ring. The shadow will therefore, in this case, be in a thin dark line, extending along the equator of the planet, fig. 767., covering a


Fig. 767,


Fig. 768.
zone of the firnament whose breadth must be about fifteen
times greater than the apparent diameter of the sun. A total solar eclipse at the equator of the planet would, therefore, be produced by the shadow of the ring, and would continue until the sun would gain or lose $44^{\prime}$ declination.

When the planet presents the phase represented in fig. 763.,' its enlightened hemisphere would be traversed by the shadow represented in fig. 768., and in like manner the shadows pro-


Fig. 769.


Fig. 770.
duced under the phases figs. 764, 765, are represented in figs. 769, 770.
2807. Shadow projected by the planet on the ring.-The shadow projected on the surface of the ring by the globe of the planet will vary with the sun's declination, as seen from the planet, because the angle at which the plane of the ring is inclined to the axis of the shadow of the planet is equal to the declination.

At the equinoxes, the declination being $0^{\circ}$, the plane of the ring passes through the axis of the shadow, and the breadth of the are of the ring on which the shadow falls is nearly equal to the diameter of the planet, the angle of the cone of the shadow not exceeding 3 ', since it is very nearly equal to the apparent diameter of the sun as seen from Saturn.

If a express the arc of the external edge of the ring on which the shadow falls, it is evident that

$$
\text { Sin. } \frac{1}{2} a=\frac{r}{a}
$$

$r$ expressing, as before, the equatorial semi-diameter of the planet, and $a$ the semi-diameter of the outer edge of the ring. The values already determined being given to these, we have

$$
\operatorname{Sin} \cdot \frac{1}{2} a=\frac{10,000}{22,287}=0 \cdot 4486
$$

Hence it appears that $\alpha=53^{\circ} 18^{\prime} 48^{\prime \prime}$; and in like manner it may be shown that the shadow covers $84^{\circ} 52^{\prime}$ of the inner edge of the inner ring.

- The lateral edges of the shadow in this case are rectilinear and sensibly parallel, a consequence due to the angle of the cone being insignificant, fig: 771.
As the declination of the sun increases the section of the corre of the shadow by the plane of the ring becomes elliptical, and the edges of the shadow on the ring are curved, fig. 772., while its breadth is more contracted. When the sun comes to the Satur-


Fig. 771.


Fig. $7 \boldsymbol{7} 2$.


Fig. 773.
nian solstice, and its declination-is $26^{\circ} 48^{\prime} 40^{\prime \prime}$, the vertex of the elliptic section of the cone falls upon the' outer edge of the ring, and the shadow has the form of an elliptic segment ut the extremity of the major axis of the ellipse, fig. 773.
2808. Thie shadows partially visible from the earth.-It is
evident that, the visual ray of an observer placed on the sun coinciding with the luminous ray, none of the shadows produced by the projection of the ring on the planet or of the planet on the ring, could be visible to him, since the object producing the shadow would be interposed with geometrical precision between his eye and the shadow. But if the observer be transferred to the earth, the visual ray will form an angle with the luminous ray, which, though it cannot in any case exceed $6^{\circ}$, is sufficient, under certain circumstances of relative position, to remove the observer from the direction of the luminous ray to such an extent as to disclose to him a part, though a small part, of the shadow which to an observer at the sun is wholly intercepted.

In this manner, when the planet is in quadrature, a small part of the shadow it projects upon the ring is visible on the east or on the west side of the disk, according as the sun is west or east of the planet; and in like manner, the difference between the angles which the visual and luminous rays form with the plane of the ring discloses, in certain cases, a small breadth of the shadow projected on the planet's disk by the ring, which is accordingly seen as a thin dark streak crossing the disk of the planet in contact with the ring.

These phenomena prove that both the planet and the ring consist of matter having no light of their own, and deriving their entire illumination from the sun.
2809. Conditions under which the ring becomes invisible from the earth. -The rings of Saturn viewed from the earth may become invisible, either because the parts presented to the eye are not illuminated by the sun, or, heing illuminated, have dimensions too small to subtend a sensible visual angle.

It has been explained that, in every position assumed by the planet in its orbital motion, one side or the other of the rings is illuminated with more or less intensily, except at the Saturnian equinoxes, when, the plane of the ring passing through the sun, its edge alone is illuminated. Owing to the extreme thinness of the plate of matter composing the rings, they cease in this case to be visible, except by feeble and uncertain indications observed with high magnifying powers, which will be noticed hereafter. It has been inferred by Sir John Herschel, from observations made with telescopes of great power, that the major limit of their possible thickness is 250 miles, The visual
angle which this thickness would subtend at the distance of Saturn in opposition, is (2790)

$$
\frac{250}{800,000,000} \times 206,265^{\prime \prime}=0.064^{\prime \prime}
$$

The visual angle would, therefore, be less than the fifteenth part of a second.

The rings, therefore, disappear from this cause at Saturn's equinoxes, which occur at intervals of $14 \frac{3}{4}$ years.
When the dark side of the rings is exposed to the earth it is evident that the sun and earth must be on opposite sides of the plane of the rings, and therefore that plane must have such a: position that its direction would pass
 between the sun and the earth. This can only happen within a certain limited distance of the planet's equinoxes.

Let s, fig. 774., represent the place of the sun, EE' the orbit of the earth, and $p$ the place of Saturn at the time of either of his equinoxes. From what has been already explained, it appears that in this position the edge of the ring is presented to $s$. Since the ring is carried parallel. to itself in the orbital motion of the planet, the edge of the ring, before arriva ing at the point $p$, must have been directed successively to the points of the earth's orbit between $E$ and the diameter $e e^{\prime}$, and, after passing $p$, must be directed successively to the points between the diameter $e e^{\prime}$ and $\mathrm{E}^{\prime}$. If lines $\mathrm{E} P$ and $\mathrm{E}^{\prime} \mathbf{P}^{\prime}$. be drawn from E and $\mathrm{E}^{\prime}$ parallel to $\mathrm{s} p$, the edge of the ring will be directed across some part of the earth's orbit, sa long as the planet is passing between $P$ and $P^{\prime}$. At $P$ it will be directed to $E$, and at $P^{\prime}$ to $E^{\prime}$. Before arriving at $P$, the edge of the ring will be directed to the left of the earth's orbit, and after passing $P^{\prime}$, to the right of it.
Fig. 774,
It is evident, therefore, that before the
planet arrives at $p$, whatever be the position of the earth in its orbit, the earth, as well as the sun, must be to the right of the direction of the edge of the rings, and consequently on their illuminated side; and after passing $P^{\prime}$, the earth, as well as the sun, must be to the left of the edge of the rings, and therefore still on the illuminated side. The rings, therefore, must everywhere be visible, except when the planet is at or between the points $P$ and $P^{\prime}$.

When the planet is at either of the points P or $\mathrm{P}^{\prime}$, it may happen that at the same moment the earth is at the corresponding point E or $\mathrm{E}^{\prime}$. In that contingency the edge of the ring, being the only part exposed to the observer, would be invisible because of its minuteness, in the same manner as when the planet is at $p$. In that case the disappearance of the planet would be of short duration, because' the orbital motion of the earth would soon bring it on the enlightened side of the ring. Thus, if when the planet is at $P$ the earth is at $E$, the latter, moving much faster:than the planet, advances before it, and being then on the same side of the ring with the sun, the illuminated side is exposed to the earth, and therefore visible; and if when the planet is at $\mathbf{P}^{\prime}$ the earth is at $\mathrm{E}^{\prime}$, the latter moving towards $e^{\prime}$ while the planet advances to the right of $p^{\prime}$, the earth and planet are both on the left of the edge of the rings, and, as before, the enlightened side of the rings is exposed to the earth, and they are therefore risible.

If, while the planet is between $P$ and $p$, the earth, moving from $e^{\prime}$ towards E , pass through the point to which the edge of the rings is directed, the rings will after such passage cease to be visible, because the earth will then be on their dark side. It is possible that after this, and before the planet arrives at $p$, the earth, moving from E towards $e$, overtaking the direction of the edge, may again pass through the point to which it is directed. If this happen the rings will again become visible, becaise the earth will thus pass from their dark to their illuminated side.

If in this case, while the earth moves towards $\mathrm{E}^{\prime}$ and $e^{\prime}$, the planet pass through $p$, the rings will again become invisible, because, their edge passing from one side of the sun to the other, the side presented towards $\mathbf{E}^{\prime}$ will be dark, and that towards $\mathbf{E}$ illuminated. If in this case the earth, moving from $\mathrm{E}^{\prime}$ towards $\epsilon^{\prime}$, again pass through the point to which the edge of the rings
is directed, it will again pass from the dark to the enlightened side, and the rings will again become visible.

The angle $\mathrm{e} p \mathrm{~s}$, being the annual parallax of Saturn (2744), is $6^{\circ}$, and consequently $\mathrm{E} p \mathrm{E}^{\prime}$ or $\mathrm{PSP} \mathrm{P}^{\prime}$ is $12^{\circ}$. But since the annual heliocentric motion of Saturn is $12^{\circ} \cdot 22$, the time of moving from $P$ to $P^{\prime}$ is

$$
\frac{12}{12 \cdot 22} \times 365=358 \frac{1}{2} \text { days; }
$$

or about $6 \frac{1}{2}$ days less than the time the earth takes to make $a$ complete revolution, so that while the planet moves from $\mathbf{P}$ to $\mathrm{P}^{\prime}$ the earth moves through about $354^{\circ}$ of its orbit.
It appears, therefore, that the interval during which the planet is within such a distance of its equinoctial point as to render the disappearance of the rings from one or other of these several causes possible, the earth makes very nearly a complete revolution, and is therefore at one time or other in'a position to meet the direction of the edges at least once, and the relative position of it and the planet may be such as to cause several disappearances of the rings within six months before and after the Saturnian equinox.

All these various phenomena were witnessed at the last Saturnian equinox in 1848. The northern surface of the ring had then been visible for nearly fifteen years. The motions of the planet and the earth brought the plane of the ring to that position on the 22nd of April in which, its edge being presented to the earth, it became invisible, the sun being still north of the plane: : On the 3rd of September the sun, passing through the plane of the ring, illuminated its southern surface, and, the earth being on the same side, the ring was visible. On the 12th, the earth again passing through the plane of the ring, its northern surface was exposed to the observer, which was inrisible, the sun being on the southern side. The ring continaed thus to be invisible until the 18th of January; 1849, when, the earth once more passing through the plane of the ring, the southern surface illuminated by the sun came into view. This side of the ring will continue to be exposed to both the earth and the sun until 1861-2, the epoch of the next equinox, when a like succession of appearances and disappearances will take place, - the sun and earth eventually passing to the northern side, on which they will continue for a like interval.
2810. Schmidt's olservations and drawings of Saturn with the ring seen edgetoays. - At the last Saturnian equinox, which took place in 1848, a series of observations was made at Bonn, the results of which have demonstrated the existence of great inequalities of surface on the rings, having the character of mountains of considerable elevation. The observations were made and published, accompanied by seventeen drawings of the appearance of the planet; its belts, and ring, by M. Julius Schmidt, of the Bonn Observatory.*

We have selected from these drawings four, which are given in Plate XI.

On the 26th of June, the planet presented an appearance, fig.1., closely resembling that of Jupiter, except that a dark streak was seen along its equator, produced by the shadow of the ring, the earth being then a little above the common plane of the ring and the sun. A few feeble streaks, of a greyish colour, were visible on each hemisphere, which however disappeared towards the poles. A very feebliè star was seen at the western extremity of the ring, which was supposed to be one of the nearer satellites. The ring exlibited the appearance of a broken line of light projecting from each side of the planet's disk. -

After this day the shadow across the planet disappeared; but was again faintly seen on the 25th of July,

The ring continued to be invisible until the 3rd of September, when a very slight indication of it was seen, buf on the next night it became distinctly visible with an interruption in two places, as represented in fig. 2. The bright equatorial belt was divided into two unequal parts by the ring, the northern portion being the narrower. Three small satellites were seen in the prolongation of the direction of the ring.

On the 5th, the ring was symmetrically broken on both sides, fig. 3,

On the 7th, the western side was divided into three parts.
On the 11 th, the ring and planet presented the appearance represented in fig. 4.

The broken and changing appearances of the ring on this occasion, can only be explained by the admission of great inequalities of surface rendering some parts of the ring so thick

[^16]

## SATURN.

As seen at his equibox in 131s. by Bchmidt.
1.Juno: $\quad$ \& Sept. 4 3. S.pt. 's 4 Sept. 11
as to be visible, and others so thin as to be invisible, when presented edgeways to the observer.
2811. Olservations of Herschel. - These observations of Schmidt are corroborative of those made at a much earlier epoch by Sir W. Herschel, who discovered the existence of appearances on the surface of the rings indicating mountainous nequalities.
2812. Supposed multiplicity of rings.—Some observations made at Rome and elsewhere gave grounds for the conjecture, that the outer ring, instead of being double, is quintuple, and that instead of having a single division, there are four. It was even affirmed with some confidence, that the ring was septuple, and consisted of seven concentric rings suspended in the same plane. These conjectures were founded upon the supposed permanence of the black circular and concentric streaks which are observed upon the surface of the rings, and which are quite analogous to the belts of the planet. This assumed permanence has not, however, been re-observed, although the planet has been examined by numerous observers, with telescopes of very superior power to those with which the observations were made which formed the ground of the conjecture.

The passage of Saturn diametrically across any fixed star of sufficient magnitude, at the epoch of the Saturnian solstice, when the plane of the ring is inclined at the greatest angle to the visual line, would supply the most eligible means of testing the multiple structure of the rings; for in that case the light of the star would be seen with the telescope to flash through each suceessive opening between ring and ring, provided that the width of such opening were sufficient to allow the visual ray to clear the thickness of the rings.
2813. Ring probably triple-observations of Messrs. Lassell and Dawes. - Nevertheless, there are well ascertained appearances on the surface of the outer ring, which have been thought to indicate a second division, and that the ring is triple. So early as 1838 Professor Encké noticed an appearance which indicated a division, and even made drawings in which such a division is indicated. (See Berlin Trans. 1838.) On the 7th September, 1843, Messrs. Lassell and Dawes, unaware apparently of Encke's observations, with a nine-feet Newtonian reflector constructed by Mr. Lassell, saw what they considered to be a division of the outer ring: The observation was made
under a magnifying power of 450 , which gave a sharply defined disk to the planet, and exhibited the principal division of the rings as a continuous, distinctly seen, black streak, extending all round the surface of the ring. A dark line on the outer ring, near the extremities of the ellipse, was not only distinctly seen, but an estimate of its breadth compared with that of the principal division was made by both these observers from which it appeared that this breadth was about one-third of the space which separates the two principal rings. Its place upon the outer ring was a little less than half the entire width of the ring from the outer edge, and it was equally visible at both ends of the ellipse. No appearances could be discovered of any other divisions, although the shading of the belts on the inner ring was distinguished.
2814. Researches of Bessel corroborate these conjectures. Bessel compared all the observations made on the rings from 1700 to 1833 , with the view of determining with nore precision the nodes of the ring, and found that the ring has frequently been seen when it ought to have been invisible, if the several concentric rings of which it consists were all in the same 'plane and had a uniform surface. He found that the appearances and disappearances had no certain or regular epochs, and did not correspond with each other, even to the same observer, using the same instrument. Thus Schwabe, at Dessau, saw the line of light formed by the rings near their equinox, resolve itself into a series of points. Schmidt, as has been stated, saw it become a broken line, changing from night to night its formOther observers saw the ring disappear on one side of the disk, while it was apparent on the other. From all these phenomena, it is inferred, that probably the rings are in planes slightly different; that their edge is not regularly circular, but notched and dinged; and, in fine, that their surfaces are characterisel by considerable mountainous undulations.
2815. Discovery of an inner ring imperfectly reflective and partially transparent. - But the most surprising result of recent telescopic observations of this planet has been the discovery of a ring, composed, as it would appear, of matter reflecting light much more imperfectly than the planet or the rings already described; and what is still more extraordinary, transparent to such a degree, that the body of the planet can be seen through it. .

In 1838, Dr. Galle, of the Berlin observatory, noticed a phenomenon, which he described as a gradual shading off of the inner ring towards the surface of the planet, as if the solid matter of the ring. were continued beyond the limit of its illuminated surface, this continuation of the surface being rendered visible by a very feeble illumination such as would attend a penumbra upon it ; and measures of this obscure surface were published by him in the "Berlin'Transactions" of that year.
'The subject, however, attracted very little attention until towards the close of 1850, when Professor Bond, of Boston, and Mr. Dawes in England, not only recognised the phenomenon noticed by Dr. Galle, but ascertained its character and features with great precision. The observations of Professor Bond were not known in England until the 4th of December; but the phenomenon was very fully and satisfactorily seen and described by Mr. Dawes, on the 29th of November. That astronomer, on the 3rd December, called the attention of Mr. Lassell to it, who also witnessed it on that evening at the observatory of Mr. Dawes; and both immediately published their observations and descriptions of it, which appeared in Europe simultaneously with those of Professor Bond.

It was not, however, until 1852 that the transparentey was fully ascertained. From some observations made in September, Mr. Dawes strongly suspected its existence, and about the same time it was clearly seen at Madras by Captain Jacob, and in October by Mr. Lassell at Malta, whither he had removed his observatory to obtain the adrantages of a lower latitude and more serene sky. The result of these observations has been the conclusive proof of the unique phenomenon of a semi-transparent annular appendage to this planet.
2816. Dravoing of the planet and rings as seen by Mr. Dawes.-The planet surrounded by this compound system of rings is represented in Plate XII. The drawing is reduced from the original sketch, made by Mr. Dawes, of the planet as seen with his refractor of $6 \frac{1}{3}$ inch aperture, at Wateringbury, in November 1852. Another representation of the planet as seen by Mre Lassell at Malta, in December 1852, has been lithographed, and is almost identical with that of Mr. Dawes. In both, the form and appearance of the obscure ring and its partial transparency are rendered quite manifest. The princi-
pal division of the bright rings is visible throughout its entire circumference. The black line, supposed to be a division of the outer ring, is visible in the drawing of Mr. Dawes; but was not at all seen by Mr. Lassell.

A remarkably bright thin line, at the inner edge of the inner bright ring, which appears in the Plate XII., was distinctly seen by Mr. Dawes in 1851 and 1852.

The inner bright ring is always a little brighter than the planet. It is not, however, uniformly bright. Its illumination is most intense at the outer edge, and grows gradually fainter towards the inner edge, where it is so feeble as to render it somewhat difficult to ascertnin its exact limit. It would seem as if the imperfectly reflective quality there approaches to that of the obscure ring recently discovered. The open space between the ring and the planet has the same colour as the surrounding sky.
2817. Bessel's calculation of the mass of the rings.-Bessel has attempted to determine the mass of the system of rings by the perturbation they produce upon the orbit of the sixth satellite. He estimates it at 1-118th part of the mass of the planet. The thickness of the rings being too minute for measurement, no estimate of the density of the matter composing them can be hence obtained; but if the density be assumed to be equal to that of the planet (which will be explained hereafter), it would follow that the thickness of the rings would be about 138 miles, which is not far from the estimate of their thickness made by observers. If this thickness be admitted; the edge of the rings would subtend an angle of the 1-32nd part of a second at Saturn's mean distance. Hence it will be understood that the ring must disappear, even in powerful telescopes, when presented edgeways.
2818. Stability of the rings. - One of the circumstances attending this planet, which has excited most general astonishment, is the fact that the globe of the planet, and two, not to say more, stupendous rings, carried round the sun witli a velocity of 22,000 miles an hour, subject to a periodical variation not inconsiderable, due to the varying distance of the planet from the sun, should nevertheless maintain their relative position for countless ages undisturbed, the globe of the planet remaining still poised in the middle of the rings, and the rings, two or several as the case may be, remaining one within the other

without material connection or apparent contact, no one of the parts of this most marvellous combination having ever gained or lost ground upon the other, and no apparent approach to collision having taken place, notwithstanding innumerable disturbing actions of bodies external to them.
2819. Cause assigned for this stability. - The happy thougbt of bringing the rings under the common law of gravitation, which gives stability to satellites, has supplied a striking and beautiful solution for this question. The manner in which the attraction of gravitation, combined with centrifugal force, causes the moon to keep revolving round the earth without falling down upon it-by its gravity on the one hand, or receding indefinitely from it by the centrifugal force on the other, is well understood. In virtue of the equality of these forces, the moon keeps continually at the same mean distance from the earth while it accompanies the earth round the sun. Now it would be easy to suppose another moon revolving by the same law of attraction at the same distance from the earth. It would revolve in the same time, and with the same velocity, as the first. We may extend the supposition with equal facility to three, four, or a hundred moons, at the same distance. Nay, we may suppose as many moons placed at the same distance round the earth as would complete the circle, so as to form a ring of moons touching each other. They would still move in the same manner and with the same velocity as the single moon.

If such a ring of moons were beaten out into the thin broad flat rings which actually surround Saturn, the circumstances would be somewhat changed, inasmuch as the periods of each concentric zone would vary in a certain ratio, depending on its distance from the centre of Saturn, so that each such zone would have to revolve more rapidly than those within it, and less rapidly than those outside it. But if the entire mass were coherent, as the component parts of a solid body are, the comr plete ring might revolve in a periodic time less than that due to its exterior and longer than that due to its interior parts. In fact, the period of its revolution would be the period due to a certain zone lying near the middle of its breadth, exactly as the time of oscillation of a compound pendulum is that which is proper to the centre of oscillation (543). Indeed, the case of the oscillation of a pendulum and the conditions which deter-
mine the centre of oscillation afford a very striking illustration of the physical phenomena here contemplated.
2820. Rotation of the rings. - Now the observations of Sir William Herschel on certain appearances upon the surface of the rings led to the discovery that they actually have a revo lution round their common centre and in their own plane, and that the time of such revolution is very nearly equal to the periodic time of a satellite whose distance from the centre of the planet would be equal to that of the middle point of the breadth of the rings.

But if the principles above explained be admitted, it would follow that each of the concentric zones into which the ring is divided would have a different time of revolution, just as satellites at different distances have different periodic times; and it is extremely probable that such may be the conse, because no observations hitherto made afford results sufficiently exact and conclusive as to either establish or overturn such an hypo ${ }^{-}$ thesis.

It appears, therefore, in fine, that the stability of the rings is explicable upon the same principle as the stability of a satellite.
2821. Eccentricity of the rings. - The fact that the system of rings is not concentrical with the planet resulted from some cobservations made by Messrs. Harding and Schwabe; after which the subject was taken up by Professor Struve, who, by 'delicate micrometric observations and measurements executed with the great Dorpat instrument, fully established the fact, that the centre of the rings moves in a small orbit round the centre of the planet, being carried round by the rotation of the rings.
2822. Arguments for the stability founded on the eccentricity. - Sir John Herschel has indicated, in this deviation of the centre of the rings from the centre of the planet, another source of the stability of the Saturnian system. If the rings were " mathematically perfect in their circular form, and exactls concentric with the planet, it is demonstrable that they would form (in spite of their centrifugal force) a system in a state of unstable equilibrium, which the slightest external power would subvert - not by causing a rupture in the substance of the rings - but by precipitating them, unbroken, on the surface of the planet. For the attraction of such a ring or rings on a
point or sphere eccentrically situate within them is not the same in all directions, but tends to draw the point or sphere toward the nearest part of the ring, or away from the centre. Hence, supposing the body to become, from any cause, ever so little eccentric to the ring, the tendency of their mutual gravity is, not to correct but to increase this eccentricity, and to bring the nearest parts of them together. Now, external powers, capable of producing such eccentricity, exist in the attractions of the satellites; and in order that the system may be stable, and possess within itself a power of resisting the first inroads of such a tendency, while yet nascent and feeble, and opposing them by an opposite or maintaining power, it has been shown tbat it is sufficient to admit the rings to be loaded in some part of their circumference, either by some minute inequality of thickness, or by some portions being denser than others. Such a load would give to the whole ring to which it was attached somewhat of the character of a heavy and sluggish satellite, maintaining itself in an orbit with a certain energy sufficient to overcome minute causes of disturbance, and establish an average bearing on its centre. But even without supposing the existence of any such load - of which, after all, we have no proof and granting, therefore, in its full extent, the general instability of the equilibrium, we think we perceive, in the periodicity of all the causes of disturbance, a sufficient guarantee of its preservation. However homely be the illustration, we can conceive nothing more apt in every way to give a general conception of this maintenance of equilibrium, under a constant tendency to subversion, than the mode in which a practised hand will sustain a long pole in a perpendicular position resting on the finger, by a continual and almost imperceptible variation of the point of support. Be that, however, as it may, the observed oscillation of the centres of the rings about that of the planet is in itself the evidence of a perpetual contest between conservative and destructive powers - both extremely feeble, but so antagonising one another as to prevent the latter from ever acquiring an uncontrollable ascendancy, and rushing to a catastrophe."

Sir J. Herschel further observes, that since "the least difference of velocity between the planet and the rings must infallibly precipitate the one upon the other, never more to separate (for, once in contact, they would attain a position of
stable equilibrium, and be held together ever after by an immense force), it follows either that their motions in their common orbit round the sun must have been adjusted to each other by an external power with the minutest precision, or that the rings must have been formed about the planet while sulject to their common orbital motion, and under the full and free infuence of all the acting forces."
2823. Satellites. - Saturn is attended by eight satellites, seven of which move in orbits whose planes coincide very nearly with that of the equator of the planet, and therefore with the plane of the rings. The orbit of the remaining satellite, which is the most distant, is inclined to the equator of the planet at an angle of about $12^{\circ} 14^{\prime}$, and to the plane of the planet's orbit at nearly the same angle.
2824. Their nomenclature. - In the designations of the satellites, much confusion has arisen from the disagreement of astronomers as to the principle upon which the numerical order of the satellites should be determined. Some name them first, second, third, \&c., in the order of their discovery; while others designate them in the order of their distances from Saturn. It has been proposed to remove all confusion, by giving them names, taken, like those of the planets, from the heathen divinities. The following metrical arrangement of these names, in the order of their distances, proceeding from the most distant inwards, has been proposed, as affording an artificial aid to the memory: -

> Iapetus, Titan ; Rhea, Dione, Tethys *;
> Enceladus, Mimas
2825. Order of their discovery. - Since this was suggested, the eighth satellite situate between Iapetus and Titan has been discovered, and called Hyperion.

The order of their discovery was as follows: -

| Name. | Discorerers. | When discoreed. |
| :---: | :---: | :---: |
| Inpetus. | Hugaens. | 1655. |
| Titan. | D. Cassini, |  |
| Dione. | Do. | $16^{44 .}$ |
| Encrlatus. | Sir W. Herschel. | 1789. |
| Myperion. | Messrs. Lassell and Bond. | 1789. 189. |

- Pronounced Tĕthys.
'Hyperion was discovered on the same night, 19th Sept. 1848, by Mr. Lassell of Liverpool, and Professor Bond of the University of Cambridge in the United States.

2826. Their distances and periods.-The periodic times and mean distances of these bodies from the centre of Saturn, ascertained by the same kind of observations as already explained in the case of the satellites of Jupiter, are as follows: -



Fig. 775.
2827. Harmonic law observed. - By comparing the numbers expressing the ratio of the periods and distances, it will be found that the numbers expressing these fulfil the harmonic luw, subject to such deviations from its rigorous observance as are due to the influence of small disturbing causes already noticed. Thus, if $p$ express the mean distance of any satellite from the centre of the planet, and $\mathbf{P}$ its period, it will be found that the relation

$$
\frac{\mathrm{D}^{3}}{\mathrm{p}^{2}}=74
$$

will be very nearly true for all the satellites.
2828. Elongations and relative distances. - The greatest elongations of the satellites from the primary, and the scale of their distances in relation to the diameters of the planet and its rings, are repre. sented in fig. 775.

It appears, therefore, that the orbit of the most remote of the satellites subtends a visual angle of only $1286^{\prime \prime}$ at the earth, being about two-thirds of the apparent diameter of the sun or moon, and - within this small visual space all the vast physical machinery and phenomena swhich we have here noticed are in operation, and within such a space have these extraordinary discoveries been made.

The apparent diameter of the external edge of the rings is only $44^{\prime \prime}$, or the fortieth part of the apparent diameter of the sun or moon; yet within that small circle have been observed and measured the planet, its belts, atmosphere, and rotation, and the two rings, their magnitude, rotation, and the lineaments. of their surface.
2829. Various phases and appearances of the satellites to observers on the planet. - All that has been said of the phases and appearances of the moons of Jupiter, as presented to the inhabitants of that planet, is equally applicable to the satellites of Saturn, with this difference, that instend of four there are eight moons continually revolving round the planet, and exlibiting all the monthly changes to which.we are accustomed in the case of the solitary satellite of the earth.

The periods of Saturn's moons, like those of Jupiter, are short, with the exception of those most remote from the pri- mary. The nearest passes through.all its phases in $22 \frac{1}{2}$ hours, and the fourth, counting outwards, in less than 66 hours. The next tliree have months varying from 4 to 22 terrestrial days.

These seven moons move in orbits whose planes are nearly coincident with the plane of the rings. The consequence of this arrangement is, that they are always visible by the inhabitants of both hemispheres when they are not eclipsed by the shadow of the planet.

The two inner satellites are seen making their rapid course along the external edge of the ring, within a very small apparent distance of it. The motion of the nearest is so rapid as to be perceivable, like that of the hour-hand of a colossal timepiece. It describes $360^{\circ}$ in $22 \frac{1}{2}$ hours, being at the rate of $16^{\circ}$ per hour, or $16^{\prime}$ per minute, so that in two minutes it moves over a space equal to the apparent dinmeter of the moon.

The eighth, or most remote satellite, is in many respects exceptional, and different from all the others. Unlike these, it moves in an orbit inclined at a considerable angle to the plane of the rings.

It is exceptional also in its distance from the primary, being removed to the distance of 64 semidiameters of Saturn. The only case analogous to this presented in the solar syatem is that of the earth's moon, the distance of which is 60 semidiameters of the primary.
2830. Magnitudes of the satellites. - Owing to the great
distance of Saturn, the dimensions of the satellites have not been ascertained. The sixth in order, proceeding outwards, is, however, known to be the largest, and it appears certain that its volume is little less than that of the planet Mars. The three: satellites immediately within this, Rhea, Dione, and Tethys, are smaller bodies, and can only be seen with telescopes of great power. The other two, Mimas and Enceladus, require instru-. ments of the very highest power and perfection, and atmospheric conditions of the most favourable nature, to be observable at all. Sir J. Herschel says, that at the time they were discovered by his father "they were seen to thread, like beads, the almost infinitely thin fibre of light to which the ring, there seen edgeways, was reduced, and for a short time to advance off. it at either end, speedily to return, and hastening to their habitual concealment behind the body."
2831. Apparent magnitudes as seen from Saturn. - The real magnitudes of the satellites, the eighth excepted, being unascertained, nothing can be inferred with any certainty re-: specting their apparent magnitudes as seen from the surface of Saturn, except what may be reasonably conjectured upon analogies to other like bodies of the system. The satellites of Jupiter being all greater than the moon, while one of them exceeds Mercury in magnitude, and another is but little inferior. in volume to that planet, it may be assumed with great probability of truth that the satellites of Saturn are at least severally, greater in their actual dimensions than our moon.

If this be admitted, their probable apparent magnitudes as seen from Saturn may be inferred from their distances. The distance of the first,' Mimas, from the nearest part of the surface of the planet, is only 94,000 miles, or about $2 \frac{1}{2}$ times less than the distance of the moon; the distance of the second is, about half that of the moon; that of the third about two-thirds, and that of the fourth about five-sixths, of the moon's distance.: If these bodies, therefore, exceed the moon in their actual dimensions, their apparent magnitudes as seen from Saturn will, exceed the apparent magnitude of the moon in a still greater ratio than that in which the distance of the moon from the earth exceeds their several distances from the surface of Saturn. Of the remaining satellites, little is as yet known of the seventh, Hyperion, which has only been recently discovered; and the great magnitude of the sixth, Titan, renders it probable that,
notwithstanding its great distance from Saturn, it may still appear with a disk not very much less than that of the moon.
2832. Horizoneal parallax of the satellites. - The horizontal parallax is determined in the same manner as for the satellites of Jupiter (2767). Let the values of it, for the eight satellites proceeding outwards, be expressed by $\pi_{1}, \pi_{2}, \pi_{2}, \& c$., and we shall have

$$
\begin{aligned}
& \pi_{1}=\frac{570 \cdot 3}{3 \cdot 36}=170 \quad \pi_{2}=\frac{570 \cdot 3}{4 \cdot 3}=130 \cdot 3 \quad \pi_{3}=\frac{570 \cdot 3}{5 \cdot 34}=1007 \quad \quad_{4}=\frac{570 \cdot 3}{6 \cdot 44}=80 \cdot 4 \\
& \sigma_{3}=\frac{570 \cdot 3}{5 \cdot 55}=60 \quad \pi_{6}=\frac{570 \cdot 3}{22 \cdot 14}=20 \cdot 6 \quad \pi_{7}=\frac{570 \cdot 3}{28}=20 \quad \pi_{8}=\frac{570 \cdot 3}{6 \cdot \cdot 36}=00 \cdot 9 .
\end{aligned}
$$

2833. Apparent magnitudes of Saturn seen from the satellites. - It follows, therefore, that the disk of Saturn, seen from the satellites respectively, subtends visual angles varying from $34^{\circ}$ subtended at the nearest to $2^{\circ}$ at the most remote.
2834. Satellites not visible in the circumpolar regions of the planet. - From what has been explained in (2769), combined with the observed fact that all the satellites except Iapetus move in the plane of the equator of the planet, it follows that they are severally invisible within distances of the poles of the planet expressed by their horizontal parallaxes. Thus, the first cannot be seen at latitudes higher than $73^{\circ}$; the second, $76^{\circ} 4$; the third, $79^{\circ} \cdot 3$, and so on.
2835. Remarkable relation between the periods. -The periods of the four satellites nearest to the planet have a very remarkable numerical relation. If they are expressed by $\mathbf{P}, \mathbf{P}^{\prime}, \mathbf{P}^{\prime \prime}$, and $\mathbf{r}^{\prime \prime \prime}$, we shall find that

$$
\mathbf{P}^{\prime \prime}=2 \mathrm{P}, \quad \mathbf{P}^{\prime \prime \prime}=2 \mathrm{P}^{\prime} ;
$$

that is, the periods of the third and fourth are respectively double those of the first and second.
2836. Rotation on their axes. - The case of the moon, and the observations made on the satellites of Jupiter, raise the presumption that it is a general law of secondary planets to revolve on their axes in the times in which they revolve round their primary. The great distance of Saturn has deprived observers hitherto of the power of testing this law by the Saturnian system. Certain appearances, however, which have been observed in the case of the great satellite Titan indicate, at least with regard to it, such a rotation. The variation of its apparent brightness in different parts of its orbit is very conspicuous, and
the changes have a fixed relation to its elongation, the same degree of brightness always corresponding to the same position of the satellite in relation to its primary. Now this is an effect which would be explicable on the supposition that different sides of the satellite reflect light with different degrees of intensity, and that it revolves on its axis in the same time that it revolves round its primary. It has been observed that, when the satellite has eastern elongation, it has ceased to be visible, from which it has been inferred that the hemisphere then turned to the earth has so feeble a reflective power that the light proceeding from it is insufficient to affect the eye in a sensible degree. The improvement of telescopes has enabled observers to follow it at present through the entire extent of its orbit, but the diminution of its lustre on the eastern side of the planet is still so great, that it is only seen with the greatest difficulty.
2837. Mass of Saturn. - The mass of Saturn is ascertained by the motion of his satellites by the method already explained (2635).

If $r$ express the distance of the planet from the sun in semidiameters of the orbit of a satellite, $P$ the period of the plauet taking that of the satellite for the unit, and m the mass of the sun taking that of the planet for the unit, we shall have

$$
\mathrm{M}=\frac{\boldsymbol{r}^{3}}{\mathbf{p}^{2}} .
$$

By substituting for these symbols the numbers which they represent in the case of Saturn and his satellites, values will be found for ar, a mean of which is about 3500 , showing that the mass of Saturn is the 3500 th part of the mass of the sun.

Since the earth is the 350,000 th part of the mass of the sun, it follows that the mass of Saturn is 100 times that of the earth.
2838. Density. - Since the mass of Saturn is only 100 times that of the earth, while his volume is about 1000 times greater, it follows that this planet is composed of matter whose mean density is about ten times less than that of the earth ; and since the density of the earth is five and a half times greater than that of water, it follows that the density of Saturn is a little more than half that of water. This is the density of the light sorts of wood, such as cedar and poplar, and is about twice the density of cork (787).
2839. Superficial gravity. - The gravity by which bodieg on the surface of Saturn are attracted, omitting for the moment all consideration of the effects of the spheroidal form and rotation, may be computed by the principles already explained by its mass and mean diameter.

Let $m^{\prime}=$ the mass, that of the earth being 1 ;
$r^{\prime}=$ the mean semidiameter, thint of the earth being 1 ;
$g^{\prime}=$ superficial gravity, that of the earth being 1.
We shall then have

$$
g^{\prime}=\frac{m}{r^{\prime 2}}=\frac{101 \cdot 6}{9 \cdot 48^{2}}=1 \cdot 13
$$

Superficial gravity, therefore, on Saturn exceeds that upon the earth by thirteen per cent., omitting the effects of form and rotation.
2840. Centrifugal force at Saturn's equator. - The force of' gravity on 'Saturn, as on Jupiter, is subject to considerable variation, arising from the counteracting effects of centrifugal force.

Let $c=$ centrifugal force at the planet's equator related to tervestrial gravity as the unit;
$g=16.08$ feet;
$\mathrm{v}=$ velocity of Saturn's equator in feet per second.
We slall then have (313)

$$
c=\frac{v^{2}}{21^{\prime} \times g}
$$

The value of $v$ deduced from the equatorial diameter of the planet and the time of its rotation is 34,775 , and it follows, therefore, that $\mathrm{C}=0.1799$.

Deducting this from the superficial gravity, undiminished by rotation already computed (2839), we shall have

$$
g^{\prime}-\mathrm{c}=1 \cdot 13-0 \cdot 1799=0.9501 ;
$$

which is, therefore, the effective gravity at Saturn's equator related to terrestrial gravity as the unit.
2841. Variation of gravily from equator to pole. - Let $e, w$, and $c$ retain their former significations (2777) (2384), and by the theorem of Clairaut, already noticed, we shall have

$$
e+w=2 \cdot 5 c
$$

But, by what has been proved, we have

$$
e=0.097 \quad c=\frac{\mathrm{c}}{g^{\prime}-\mathrm{c}}=\frac{0.1799}{0.9501}=0.189
$$

from which it follows that

$$
w=2.5 \times 0.189-0.097=0.3755
$$

It follows, therefore, that a body which weighs $10,000 \mathrm{lbs}$. at Saturn's equator would weigh $13,755 \mathrm{lbs}$. if transported to his pole; and a body which weighs 100 lbs. placed upon the earth would weigh 95 lbs on Saturn's equator.

The height through which a body would fall in a second upon Saturn will be

$$
\begin{aligned}
& 16.08 \times 0.95=15.28 \text { feet at the equator; } \\
& 15.28 \times 1.375=21.01 \text { feet at the pole. }
\end{aligned}
$$

The relative heights through which bodies would fall, and the lengths of pendulums, may be determined in the same 'manner as already explained (2777).
2842. Prevailing errors respecting the uranography of Saturn. - The rings must obviously form a most remarkable object in the firmament of observers stationed upon Saturn, and must play an important part in their uranography. The problem to determine their apparent magnitude, form, and position, in relation to the fixed stars, the sun, and Saturnian moons, has, therefore, been regarded as a question of interesting speculation, if not of great scientific importance; and has, accordingly, more or less engaged the attention of astronomers, It is nevertheless a singular fact, that, although the subject has been discussed and examined by various authorities for threequarters of a century, the conclusions at which they have arrived, and the views which have been generally expressed and adopted respecting it, are completely erroneous.

In the Berlin Jahrbuch for 1786, Professor Bode published an essay on this subject, which, sulject to the imperfect knowledge of the dimensions of the rings which bad then resulted from the observations made upon them, does not seem to diffir materially in principle from the views adopted by the most eminent astronomers of the present day.
2843. Views of Sir J. Herschel. --Sir John Herschel, in his Outlines of Astronomy, edit. 1849, states that the rings as.
seen from Saturn appear as vast arches spanning the sky from horizon to horizon, holding an almost invariable situation among the stars; and that, in the hemisphere of the planet which is on their dark side, a solar eclipse of fifteen yeara' duration takes place.

This statement, which has been reproduced by almost all writers both in England and on the Continent, is incorrect in both the particulars stated. First, the rings do not hold an almost invariable position among the stars. On the contrary, their position with relation to the fixed stars is subject to a change so rapid that it must be sensible to obscrvers on the planet, the stars seen on one side of the rings passing to the other side from hour to hour. Secondly, no such phenomenon as a solar eclipse of fifteen years' duration, or any phenomenon bearing the least analogy to it, can take place on any part of the globe of Saturn.
2844. Theory of Mädler. - Among the continental astronomers who have recently reviewed this question, the most eminent is Dr. Mädler, to whose observations and researches science is so largely indebted for the information we possess respecting the physical character of the surface of the Moon and Mars.

This astronomer maintains, like Herschel, that the rings hold a fixed position in the firmament, their edges being projected on parallels of declination, and that, consequently, all celestial objects are carried by the diurnal motion in circles parallel to them, so that in the same latitude of Saturn the same stars are always covered by the rings, and the same stars are always seen at the same distance from them.

This is also incorrect. The zones of the firmament covered by the rings are not buunded by parallels of declination, but by curves which intersect these parallels at various angles.

Dr. Mädler enters into elaborate calculations of the solar eclipses which take place during the winter half of the Saturnian year. According to him, at a certain epoch after the autumnal equinox in each latitude, the sun passes under the outer ring and is eclipsed by it, and continues to be thus eclipsed until, by its increasing declination, it emerges from the lower edge of that ring and passes into the opening between the rings, where it continues to be visible for an interval greater or less according to the latitude of the observer,
until the further increase of its declination causès it to pass under the edge of the inner ring, where it is again eclipsed. The further increase of its declination in certain latitudes would, according to this astronomer, carry it beyond the lower edge of the inner ring, after which it would be seen below the ring uneclipsed. After the solstice in such latitudes, when the sun returns towards the celestial equator, its deoreasing declination would carry it successively first under the inner and then under the outer ring. There would thus be, according to Mädler, in such latitudes two solar eclipses of long duration, one by each ring before the winter solstice, and two others of like duration, but in a contrary order, after the winter solstice. In certain Intitudes, however, the declination of the lower edge of the inner ring being greater than the obliquity of the orbit to the Saturnian equator, the sun would not emerge from the inner ring, and in this case there would be, only one. eclipse by the inner ring, and that at mid-winter; but, as before, two, one before and the other after the solstice, by the outer ring, separated from the former by the time during which the sun passes across the interval between the rings.

Dr. Mädler computes the duration of these various eclipses in the different latitudes of Saturn, and gives a table, by which it would appear that the solar eclipses which take place behind the inner ring vary in length from three months to several years, that the duration of the eclipses produced by the outer ring is still greater, and that the duration of the appearance of the sun in the interval between the rings varies in different latitudes from ten days to seven and eight months.*
2845. Correction of the preceding views. - These various conclusions and computations of Dr. Mädler, and the reasoning on which they are based, are altogether erroneous; and the solar phenomena which he describes have no correspondence with, nor any resemblance to, the actual uranographical phenomera.

We shall now explain, so far as the necessary limits of the present volume will admit, what the actual phenomena are which would be witnessed by an observer stationed at different parts of the surface of Saturn. It will not, however, be possible to enter into the details of the reasoning upon which the conclusions are based. For this we must refer to a memoir by the

[^17]author of this volume, read before the Royal Astronomical Society of London, and which will be seen in their Transactions.
2846. Phenomena presented to an observer stationed at Saturn's equator-Zone of the firmament covered by the ring. - The station of the observer in this case being in the plane of the ring, and the heavens having the character of a right sphere, the ring will cover a zone of the firmament coinciding with the prime vertical, which, in this case, is also the celestial equator. It will therefore pass through the zenith of the observer at right angles to his meridian, descending to the horizon at the east and west points. The only part of the system of rings exposed to view is the inner edge of the inner ring. This edge is illuminated at night by the sun at all times, except at the equinox, when the sun, being in the plane of the ring, one semicircle of the ring throws its shadow on the other; and excepting, also, that arc of the ring on which the shadow of the planct falls. In the day-time the edge of the ring is rather strongly illuminated by light reflected from the extensive and not very remote surface of the planet.

The thickness of the ring not being exactly ascertained, the apparent width of the zone of the firmament which it covers cannot be determined with precision.

If, however, the major limit of 250 miles, assigned to the thickness by Sir J. Herschel, be adopted, the corresponding limit of the apparent width, obtained by the usual method of calculation, by comparing this thickness with its distance from the observer, will give $45^{\prime}$ as the apparent breadth of the zone occupied by the ring at the zenith ; and since the observer, being stationed at a point $o$ (fig. 776.) considerably removed from


Fig. 776. the centre $c$ of the ring, is at a greater distance o $\mathbf{r}^{\prime \prime}$, o $p^{\prime \prime}$ from those points of the ring which meet the horizon than from that which is at the zenith, the apparent breadth of the ring will gradually decrease from the zenith $z$ to the horizon in the same proportion as the dis'tance of successive points $P, P^{\prime} \& c$. of the ring from the station of the observer increases. From the known values of the diameters of the planet and the ring already given, it is easy to
show that the apparent breadth of the ring at the horizon will be less than its apparent breadth at the zenith in the ratio of. 9 to 4 very nearly, that being the inverse ratio of the distance of the two points from the observer. If, therefore, the apparent breadth of the ring at the zenith $z$ be $45^{\prime}$, its apparent breadth at the horizon $\mathrm{P}^{\prime \prime} \boldsymbol{p}^{\prime \prime}$ will be 20 .

It appears, therefore, that a zone of the firmament is in this case covered by the ring extending $22^{\prime \frac{1}{2}} \mathrm{~N}$. and S . of the. equator at the zenith, and $10^{\prime} \mathrm{N}$. and S . of it at the horizon, and gradually decreasing in width from the one point to the other. It follows that two parallels of declination at $22^{\prime} \frac{1}{2} \mathrm{~N}$. and S . touch this zone at the points where it intersects the meridian, and lie elsewhere altogether clear of it; and two other parallels, whose declination $N$. and $S$. is $10^{\prime}$, meet it at the horizon, and lie elsewhere altogether within it. The intermediate parallels intersect the edges of the zone at certain points between the zenith and the horizon, and pass outside it, below and under it, nbove those points. It follows from this, that all objects situate in such parallels rise clear of the ring, pass under it at a certain altitude, and culminate occulted by it. All parallels of declination, whose distance from the equator is less than 10 , are entirely covered by the ring from the horizon to the zenith ; and all objects placed on such parellels are, consequently, occulted by the ring through the whole period of their diurnal motion.
2847. Solar eclipses at Saturn's equator. - These observations are applicable, of course, not only to the sun, but to all objects of changeable declination. As to the sun, its apparent diameter at Saturn being $3^{\prime} \cdot 3$, its disk will be in external contact with the ring at the zenith, when the declination of its centre is $24^{\prime} \frac{1}{4}$, and in internal contact with it when its declination is $21^{\prime}$.

From a calculation of the rate at which the sun changes its declination at and near Saturn's equinox, derived from the ascertained obliquity of his equator to his orbit, it may be shown that it will have the declination $24^{\frac{1}{4}}$ at twenty-two days before the equinox, and the declination $21^{\prime}$ at nineteen days before it. At twentystwo days before the equinox, therefore, a partial eclipse of the sun by the ring at the zenith will commence, which will become total at nineteen days before it.

But though total at the zenith it will still be only partial at.
lower altitudes, and the sun's disk will be clear of the ring altogether when still nearer to the horizon.

When the sun's declination still decreasing becomes $11^{\prime} 65$, its disk will be in external contact with the ring at the point where it rises and sets; and when its declination becomes $8^{\prime} \cdot 35$ it will be in internal contact, and therefore totally eclipsed. The sun will have the former declination at ten days and a half, and the latter at seven days and a half, before the equinox.

It follows, therefore, that the sun will be totally eclipsed from rising to setting seven days and a half before, and seven days and a half after, the equinox, to an observer stationed on the efjuator of the planet.

- 2848. Eclipses of the satellites.-The orbits of the six inner satellites being exactly or nearly in the plane of the ring, they will be permanently eclipsed by the ring to an observer stationed on the planet's equator, unless, indeed, the apparent magnitudes of their disks exceed the apparent width of the ring. The real magnitude of the satellites being unascertained, it is impossible to determine their apparent magnitudes; from analogy it would appear improbable that they should be so great as the apparent width of the ring even at the horizon, and unless they depart to some extent, by reason of small obliquities in their orbits, from the plane of the ring, all view of them must be permanently intercepted from an observer thus stationed.

The eighth satellite, however, whose orbit is inclined to the plane of the ring at an angle of about $13^{\circ}$, departs N . and S . of the ring to this extent, and is subject to eclipses similar to those of the sun already described.
2849. Phenomena presented to an observer at other Saturnian latitudes. - If an observer be stationed at any point on one of the meridians of the planet, on the same side of the ring as the sun, the ring will present to him the appearance of an arch in the heavens, bearing some resemblance in its form to a rainbow, the surface, however, having an appearance resembling that of the moon.

The vertex or highest point of this arch will be upon his meridian, and the two portions into which it will be divided by 'the meridian will be equal and similar, and will descend to the horizon at points equally distant from the meridian. The apparent breadth of this illuminated bow will be greatest upon the
meridian, and it will decrease in descending on either side to-: wards the horizon, where it will be least. The division between the two rings will be apparent, and, except at places within' a very short distance of the equator, the firmament will be: visible through it.
2850. Edges of the rings seen at variable distances from celestial equator.- The distance of the edge of the bow from the celestial equator will not be every where the same, as it has been erroneously assumed to be. That part of the bow which is upon the meridian will be most remote from the celestial equator; and in descending from the meridian on either side towards the horizon, the declination of its edge will gradually decrease, so that those points which rest upon the horizon will be nearer to the equator than the other points.
2851. Parallels of declination, therefore, intersect them.-It follows from this that the parallel of declination which passes through the points where the upper edge of the bow meets the horizon will lie every where above, and the parallel which passes through the point where the upper edge crosses the meridian will lie every where below, that edge. This necessarily follows from the fact, that the declination of the points where the edge meets the horizon is less, and that of the point where it meets the meridian greater, than that of any other point upon it.

It appears from this, that all parallels whose declinations are greater than those of the points where the edge meets the horizon, and less than that of the point where it crosses the meridian, must intersect the edge between the horizon and the meridian, and must therefore lie below it under the point of intersection, and above it over the point of intersection.

These conditions are equally applicable to each of the edges of each of the rings, and will serve to determine in all cases those parallels which will intersect them respectively.
2852. Edges placed symmetrically in relation to meridian and horizon. - From the symmetrical position of each of the edges, with relation to the meridian and horizon, it will be apparent that the points at which each parallel intersects them will be similarly placed on each side of the meridian, having equal altitudes and equal azimuths $\mathbf{E}$. and W.

- 2853. Form of the projection at different latitudes. - The general form and position of the bow formed by the projection of the rings upon the firmament in each latitude may be.
easily determined by elementary geometrical principles. Let $\mathbf{P E}$. (fig. 777.) be the quadrant of the meridian of the planet passing through the station of the observer 0 , and let $\mathrm{Rr}^{\prime} r$ represent one of the edges of the rings reduced by perspective to an oval,


Fig. 777.
but shown as a circle in the lower figure. It will be easily per-, ceived, that the visual ray passing through o to a carried round the circle $\mathrm{r}, \mathrm{n}^{\prime} \mathrm{r}^{\prime \prime}$, \&cc., will describe the surface of an oblique cone, whose base is the plane of the ring, and whose axis oc is inclined to the base at an angle $0 C \mathrm{Cr}$, equal to the latitude of the station. The projection of the edge of the bow upon the firmament will then be the intersection of the surface of this oblique cone with the celestial sphere; and it can be demon1 strated, that the point of this which is most remote from the celestial equator is the projection of the point $R$, where the plane of the meridian intersects the plane of the ring, that
the other points of the projection approach nearer to the celestial equator as their distance from the meridian increases, and that they have equal declinations at equal distances east and west of the meridian.
'To_illustrate this still more fully, let w ce, fig. 778., be a


Fig. 778.
quadrant of $-\Omega$ meridian of the planet, $c$ being its centre and $c e$ its semidiameter. Let $\mathbf{r} \mathbf{r}^{\prime}$ be a section of the inner ring, made by the plane of the meridian continued through the ring, and lett $r r^{\prime}$ be a like section of the exterior ring.
2854. Rings invisible above lat. $63^{\circ} 20^{\prime} 38^{\prime \prime}$. - If we suppose an observer to travel upon the meridian from the pole N , towards the equator, it is evident that at first all view of the rings will be intercepted by the convexity of the planet. If a líne be drawn from $r$, the external point of the external ring, touching the planet, it can be proved that the point of contact will be at the latitude of $63^{\circ} 20^{\prime} 38^{\prime \prime}$; and it is evident, that when the observer has descended to this latitude the point $r$ will be in his horizon, and consequently at all higher latitudes it will be below his horizon, and therefore invisible. It appears, therefore, that no part of the outer ring is visible from any latitude nbove $63^{\circ} 20^{\prime} 38^{\prime \prime}$, and that at this latitude a single point of the exterior ring is visible just touching the southern point of the horizon.
2855. Appearance at lat. $59^{\circ} 20^{\prime} 25^{\prime \prime}$. - If the observer now descend to lower latitudes, the exterior ring will begin to rise above his horizon at the southern point; and it can be shown that when he has descended to the latitude $59^{\circ} 20^{\prime} 25^{\prime \prime}$, his horizon will just touch the inner edge $r^{\prime}$ of the exterior ring, cutting off a segment of that ring, which will be seen above the lhorizon.

The position of the ring thus visible abore the horizon, will have the appearance of a lunar segment.
2856. Appearance at lat. $58^{\circ} 32^{\prime} 20^{\prime \prime}$. - If the observer continue to descend to a lower latitude, the ring will continue to rise to a greater elevation, and the interval between the rings will become visible. When he has descended to the lat. $58^{\circ}$ $32^{\prime} 20^{\prime \prime}$ his horizon will just touch the outer edge of the inner ring, and a segment of the interval between the rings will be visible under the arch of the outer ring, which will appear projected upon the southern firmament.

The outer ring, therefore, is presented to the observer in this case as a lunar bow spanning the southern firmanent. It must be remembered that the declinations of the points at which each of the edges intersect the meridian being greater, and the declination of the points where they meet the horizon less, than that of any intermediate points, all parallels having declinations between these will intersect the edges severally, while all parallels whose declination is beyond these limits will pass altogether above or altogether below them, respectively, as the case may be,
2857. Appearance at lat. $47^{\circ} 33^{\prime} 51^{\prime \prime}$. - When the observer has descended to this latitude, the horizon will just touch the inner edge of the inner ring, cutting off a segment of it, of which the horizon is the base, the outer ring appearing as a bow above it, as represented in fig. 779. The same observation as to the


Fig. 779.
varying declination of the edges of both rings will be applicalle in this as in the former case, and certain parallels will accordingly intersect each of the edges of the rings, and others will be entirely covered by them.
2858. Appearance at lower latitudes. - In descending to still lower latitudes, the elevation of the bow formed by the projection of the rings increases; and the lower ring, which hitherto has presented itself as a mere segment, having the horizon as a base, now assumes the form of a bow, inclosing below it a plane segment of the firmament, as represented in fig. 780.:


Fig. 780.
As the latitude decreases, the amplitude and elevation of this how also increase, but its apparent breadth diminishes, as in figs. 781, 782, 783. The obliquity of its several edges to the direction of the parallels of declination still continues, and it is consequently still intersected by them at every point, so that the
parallels which interlace it will lie alternately above and below its edges as already described, some parallels, however, lying


Fig. 781.


Fig. 782.


Fig. 783.
entirely above and others entirely below it, as represented in fig. 784. It will be easy to perceive by this, without rendering the diagrams complicated by multiplying upon them the arcs of the parallels, that they will be curiously interlaced by these parallels, which will pass alternately abose and below the rings, being at one place covered by them, and at another uncovered; at one point crossing the interval between the rings, and at another
lying above or below it; some parallels lying entirely abové, others entirely below, either ring, while some may be alto-


Fig 784.
gether covered by the one ring or the other. I have ascertained, by an investigation of the dimensions and form of the bow in different latitudes, that the only latitudes in which a parallel lies altogether within the interval between the rings are those included between the latitudes $58^{\circ}$ and $56^{\circ}$. At all other latitudes of the planet from which the interval between the rings is visible, the parallels which pass between the ring will lie partly within the interval, and partly above or below it.
2859. Occullations of celestial objeots by the rings. - It follows, from all this, that, in general, celestial objects are carried by their diurnal motion alternately above and below ench of the edges of the rings; and if a parallel intersects all the edges, which happens in many cases, then the object in such a parallel will rise below the rings, will pass successively under them: will be occulted by each of them, will be visible in crossing the interval between them, and will culminate above them, and this will take place in precisely the same manner, and at precisely the same altitudes and azimuths E. and W. of the meridian, so that such an object will be occulted four times by the rings between - rising and setting, that is to say, twice between the borizon and meridian gast and west of the latter. In rising, it will be first occulted by the inner ring, then passing across the interval will be occulted by the outer ring, after which it will culminate clear of the rings; and in descending on the west towards the horizon,
it will be successively occulted by the outer and inner rings in the same manner and at the same altitudes as it was occulted before culmination, and will finally set clear of the rings.

When, as happens in some cases, the parallel which 'comes under these conditions falls within the range of the sun's declination, that is to say, when its declination is less than $26^{\circ} 48^{\prime} 40^{\prime \prime}$, the sun, attaining this particular declination, will suffer four such eclipses between rising and setting,-two before and two after culmination.

In some cases a parallel of declination will be covered by the lower ring at the meridian, but will be clear of it near the horizon. This will take place when the declination of the parallel is greater than that of the points where the lower edge of the ring meets the horizon, and less than that of the point where it meets the meridian. In that case, an object in such a parallel will rise and set clear of the ring, but will he occulted by it at culmination. Such an object, therefore, will be occulted only once between rising and setting.

An object may in like manner be occulted at or a little above the horizon by the inner ring, and may culminate in the inter:val, or it may, after being occulted by the inner ring, pass under the outer ring and culminate occulted by it.

In fine, all these various phenomena, and many others too numerous and complicated to be explained here, are manifested in the Saturnian firmament, and the sun itself is subject to most of them. It happens, in some cases, that a certain number of parallels of declination are entirely covered by the outer and others by the inner ring, and when the sun is found on any one of these parallels it will be eclipsed constantly from rising to setting by one or the other ring.
2860. Zone visible between the rings. - The zone of the heavens visible between the rings is found by calculating the visual angle subtended at the station of the observer by lines drawn to the inner edge of the outer and to the outer edge of the inner ring, supposing that the thickness of the outer ring bears an inconsiderable proportion to the width of the space which separates them; and it is evident that the magnitude of this visual angle will gradually and indefinitely decrease as the 'observer approaches the equator, inasmuch as the obliquity of the visual ray to the plane of the rings indefinitely increases. . 2861. Effect of the thickness of the rings on this zone. -If,
however, the thickness of the outer ring be supposed to bear any considerable ratio to the width of the space between the rings, it will intercept a portion of the visual rays included within the angle formed by the rays drawn to the edges of the two rings, and the effective opening will be found by subtracting the visual angle subtended by the thickness of the outer ring from the visual angle subtended by the space between the rings; and since the obliquity of the visual rays bounding the former gradually diminishes in approaching the equator, while the obliquity of the visunl rays bounding the latter gradually increases, it is evident that the visual angle subtended by the thickness of the outer ring continually increasing will, at some certain latitude, become equal to the visual angle subtended by the space between the rings, and at that latitude accordingly, as well as at all inferior latitudes, the thickness of the outer ring will altogether intercept the opening, and no zone of the heavens will be visible through it . I have found by calculation that if 250 miles be admitted as the major limit of the rings, all view of the heavens through the opening will be intercepted at latitudes below $8^{\circ}$; and if the probable minor limit of 150 miles be assumed, all view will be intercepted at and below the latitude of $5^{\circ}$.
2862. Solar eclipses by the rings. - The principles upon which solar eclipses by the rings in each latitude are culculated are, therefore, easily understood. By comparing the parallel of declination of the sun at any time with the parallels of declination of the points where each of the edges of each of the rings meets the horizon and the meridian, the conditions under which it will intersect the edges severally will be determined, and hence it will appear that a most curious and interesting body of solar phenomena not anticipated in any of the works in which the uranography of Saturn bas been investigated are brought to light. In the lower latitudes the sun undergoes at certain epochs four eclipses per day, two in the forenoon and two in the afternoon, and between each pair of eclipses is seen shining through the space between the rings. In higher latitudes, at certain eeasons, it does not emerge from one or other of the rings, and suffers only three eclipses, two by one ring and one by the other. At other latitudes, at certain times, it is only eclipsed at rising and setting, and at others only in culminating.

Our limits, however, preclude us from giving these details,
and others not less curious, for which the reader is referred to ${ }^{\circ}$ the paper already mentioned.
2863. Eclipses of the satellites. - The inner satellites being


Fig. 784. in the plane of the rings, they will necessarily be projected on a zone of the heavens outside the exterior ring, and can never be intercepted or eclipsed by the rings (fig.784.).
The eighth satellite, however, whose orbit has an obliquity of $12^{\circ}$ or $13^{\circ}$ to the plane of the rings, will be eclipsed at those latitudes at which the edges of the rings have declinations less than those which it attains. These eclipses are calculated and explained on the same principles exactly as those of the sun, mutatis mutandis.
2864. Saturnian seasons.-It has been shown (2795) that the axis of the planet is inclined to the plane of its orbit at an angle of $26^{\circ} 48^{\prime} 40^{\prime \prime}$, and is, like the axis of the earth, carried parallel to itself round the sun. The obliquity therefore which, so far as the sun is concerned, determines the extremes of the Suturnian seasons, differs by no more than $3^{\circ}$ from that of the ecliptic. The tropics are parallels of latitude $26^{\circ} 48^{\prime} 40^{\prime}$ north and south of the equator. The parallels within which the sun remains in winter below the horizon during one or more revolutions of the planet are at the latitude $63^{\circ} 11^{\prime} 20^{\prime \prime}$. These circles, therefore, affect the Saturnian climatology in the same manner as the tropics and polar circles affect that of the earth. The slow motion of the sun in longitude, and its rapid diurnal motion, however, must produce important differences in its effects as compared with those manifested on the earth. While the sun, as seen from the earth, changes its longitude at the mean rate of very nearly $1^{\circ}$ per day, its change of longitude for Saturn is little more than $2^{\prime}$ per day; and while, as seen in the terrestrial firmament, it is carried by the diurnal motion over $1^{\circ}$ in four minutes, a Saturnian observer sees it move over the same space in less than two minutes. If the heating and illuminating power of the sun be diminished in a high ratio by the greater distance of that luminary, some compensation may perhaps arise from the rapid alternations of light and darkness.

## III. Uranus.

2865. Discovery. - While occupied in one of his surveys of the heavens on the night of the 13th March, 1781, the attention of Sir William Herschel was attracted by an object which he did not find registered in the catalogue of stars, and ruhich presented in the telescope an appearance obviously different from that of a fixed star. On viewing it with increased magnifying powers, it presented a sensible disk; and after the lapse of some days, its place among the fixed stars was changed. This object must, therefore, be either a comet or a planet; and Sir W. Herschel, in the first instance, announced it as the former. When, however, submitted to further and more continued observation, it was found to move in an orbit nearly circular, inclined at a small angle to the plane of the ecliptic, and to have a disk sensibly circular.

It appeared, therefore, to have the characters, not of a comet, but a planet revolving outside the orbit of 'Saturn. It was named the "Georgium Sidus" by Sir W. Herschel, in compliment to his friend and patron George III. This name not being accepted by foreign astronomers, that of "Herschel" was proposed by Laplace, and to some extent for a time adopted. Definitively, however, the scientific world has agreed upon the name "Uranus," by which this member of the system is now universally designated.
2866. Period, by synodic motion. - Owing to the great length of the period of this planet, those methods of determination which require the observation of one or more complete revolutions could not be applied to it. The synodic period, however, or the interval between two successive oppositions, being only $369 \cdot 4$ days, supplied a means of obtaining a first approximation. This gives

$$
\frac{1}{P}=\frac{1}{365 \cdot 25}-\frac{1}{369 \cdot 40}=\frac{1}{30643}
$$

which gives a period of 30,643 days.
2867. By the apparent motion in quadrature. - When a planet is in quadrature, its visual direction being a tangent to the earth's orbit, its apparent place is not affected by the earth's orbital motion. In the quadrature which precedes opposition, the earth moves directly towards the planet; and in the quadrature which follows opposition, it moves directly from the
planet. In neither case, therefore, would its motion produce any apparent change of place in the planet. It follows, therefore, that when a planet is in quadrature, its apparent motion is, due exclusively to its own motion, and not at all to that of the earth. The daily motion of the planet as then observed is, therefore, the actual daily increment of its geocentric longitude.

But-in the case of a planet such as Uranus, or even Saturn, whose distance from the sun bears a large ratio to the earth's distance, the geocentric motion of the planet will not differ sensibly from the heliocentric motion; and, therefore, the geocentric daily increment of the planet's longitude observed when in quadrature may, to obtain an approximative value of the period, be taken as the daily increment of the heliocentric longitude. If this increment be expressed by $l$, we shall have

$$
\mathbf{P}=\frac{360^{\circ}}{l}
$$

Now, it is found that the apparent daily increment of the planet's longitude when in quadrature is $42^{\prime \prime} \cdot 23$. If $360^{\circ}$ be reduced to seconds, we shall then have

$$
P=\frac{1296000}{42 \cdot 23}=30689
$$

By more accurate calculation, the periodic time has been determined at 30,686:82 days, or 84 years.
2868. Heliocentric motions. - The mean heliocentric motion of the planet is therefore, more exactly,

$$
\begin{aligned}
\frac{360^{\circ}}{84} & =4^{\circ} 17^{\prime} 8^{\prime \prime} \cdot 5 \text { yearly } ; \\
\frac{360^{\circ}}{84 \times 12} & =21^{\prime} 25^{\prime \prime} \cdot 7 \text { montbly; } \\
\frac{1296000}{30687} & =42^{\prime \prime} 233 \text { daily } .
\end{aligned}
$$

2869. Synodic motion. - The mean daily apparent motion of the sun being $0^{\circ} \cdot 9856$, or $3548^{\prime \prime} 16$, the mean daily synodic motion or increment of elongation of Uranus will be

$$
3548 \cdot 16-42^{\prime \prime} \cdot 23=3505^{\prime \prime} \cdot 93=58^{\prime} \cdot 43=0^{\circ} \cdot 975
$$

The synodic period is therefore, more exactly,

$$
\frac{360}{0.975}=369 \cdot 23 \text { days. }
$$

The earth, therefore, in $4 \frac{1}{4}$ days overtakes the planet, after com* pleting each sidereal revolution.
2870. Distaince. - The mean distance $r$ of the planet from the sun, determined by the harmonic law, is therefore

$$
\begin{aligned}
& r^{3}=842=7056 \\
& r=19 \cdot 18
\end{aligned}
$$

The mean distance is therefore $19 \cdot 18$ times that of the earth, and, consequently, the actual distance is

$$
\cdot 95,000,000 \times 19 \cdot 18=1,822,100,000 \text { miles }
$$

The distance of Uranus from the sun is therefore 1822 millions of miles, and its distance from the earth, when in opposition, is therefore 1727 millions of miles.

The eccentricity of the orbit of Uranus being 0.046 , these
 distances are liable to only a very small variation. The distance from the sun is increased in aphelion, and diminished in perihelion by less than a twentieth of its entire amount. The plane of the orbit coincides very nearly with that of the ecliptic.

2871: Relative orbit and distance from the earth. - The relative proportion of the orbits of Uranus and the earth are represented in fig. 785, where $\mathrm{EE}^{\prime} \mathrm{E}^{\prime \prime}$ is the orbit of the earth, and $\mathbf{s o}$ the distance of Uranus from the sun. The four positions of the earth, corresponding to the opposition, conjunction, and quadratures of the planet, are represented as in the former cases.
2872. Annual parallax.-Since so is 19.18 times se , we shall have for the angle

$$
\operatorname{suE}^{\prime}=\frac{57^{\circ} \cdot 30}{19 \cdot 18}=3^{\circ}
$$

The diameter of the earth's orbit, measuring as it does nearly 200 millions of miles, therefore subtends at Uranus a visual angle of only $6^{\circ}$; and a globe which would fill it, seen from the planet, would have an apparent diameter only twelve times greater than that of the moon.
2873. Vast scale of the orbital motion. - The distance of Uranus from the sun being above nineteen times that of the earth, and the earth being at such a distance that light, moving at the rate of nearly 200,000 miles per second, takes about eight
minutes to come from the sun to the earth; it follows that it will take $19 \times 8=152$ minutes, or two hours and a half, to move from the sun to Uranus. Sunrise and sunset are, therefore, not perceived by the inbabitants of that planet for two hours and a half after they really take place, for the sun does not appear to rise or set until the light moving from it, at the moment it touches the plane of the horizon, reaches the eye of the observer.

The diameter of the orbit of Uranus measuring, in round numbers, 3600 millions of miles, its circumference measures 11,300 millions of miles, orer which the planet moves in 30,687 days. Its mean daily motion is therefore 368,000 miles, and its hourly motion, consequently, about 15,300 miles.
2874. Apparent and real diameters. - The apparent diameter of Uranus in opposition exceeds $4^{\prime \prime}$ by a small fraction. At the distance of the planet from the earth, in that position, the linear value of $1^{\prime \prime}$ is

$$
\frac{1757000000}{206265}=8421 \text { miles. }
$$

The actual diameter of the planet is therefore

$$
8421 \times 4 \cdot 1=34,526 \text { miles }
$$

being about half that of Saturn, and a little more than $4 \frac{1}{3}$ times that of the earth.
2875. Surface and volume. - The surface of Uranus is therefore 19 times, and its volume 82 times, that of the earth.
2876. Diurnal rotation and physical character of surface unascertained. - The vast distance of this planet, and its consequent small apparent magnitude and faint illumination, have rendered it hitherto impracticable to discover any indications of its diurnal rotation; the existence of an atmosphere, or any of the other physical characters which the telescope has disclosed in the case of the nearer of the great planets.
2877. Solar light and heat. - The apparent diameter of the sun, as seen from Uranus, is less than as seen from the earth in the ratio of 1 to 19 . The magnitude of the sun's disk at the earth being supposed to be represented by E , fig. 786., its magnitude seen from Uranus would be J .
Fig. 786.
The illuminating and warming
powers of the solar rays, under the same physical conditions, are therefore $19^{2}=361$ times less at Uranus than at the earth.
2878. Suspected rings. - It was at one time suspected by Sir W. Herschel that this planet was surrounded by two systems of rings with planes at right angles to each other. Subsequent observation has not realised this conjecture.
2879. Satellites. - It has been ascertained that Uranus, like the other major planets, is attended by a system of satellites, the number of which is not yet certainly determined, and which, from the great remoteness of the Uranian system, cannot be seen at all except by the aid of the most perfect and powerful telescopes.

Sir W. Herschel, soon after discovering this planet, announced the existence of a system of six satellites attending it, having the periods and distances expressed in the following Table: -


Subsequent observations have confirmed this discovery so far only as relates to the four inner satellites. The fifth and sixth not having been re-observed, notwithstanding the vast improvement which has taken place in the construction of telescopes, and the greatly multiplied number and increased activity and zeal of observers, must be considered, to say the least, as problematical.

Of the four which have been re-observed, the second and fourth are by far the most conspicuous, and their distances and periods have been ascertained with all desirable accuracy and certainty. The first was re-observed by Mr. Lassell at Liverpool, and by M. Otto Struve at Dorpat, in 1847. The fourth was observed about the same time by Mr. Lassell.
2880. Anomalous inclination of their orbits. - Contrary to the law which prevails without any other exception in the motions of the bodies of the solar system, the orbits of the satellites of Uranus are inclined to the plane of the orbit of the planet, and therefore to that of the eccliptic, at an angle of $78^{\circ} 58^{\prime}$, being little less than a right angle, and their motions
in these orbits are retrograde, that is to say, their longitudes as seen from Uranus continually decrease.

When the earth has such a position that the visual direction is at right angles to the line of nodes, the angle under the plane of the orbit and the visual line will be $78^{\circ} 58^{\prime}$; and in certain positions of the planet they will be seen, as it were, in plan. Being nearly circular, the satellites will in such a position be tisible revolving round the primary throughout their entire orbits, the projections not sensibly differing from circles.
2881. Apparent motion and phases as seen from Uranus. The diurnal rotation and the direction of the axis of the planet being unascertained, the inclination of the orbits to the planet's equator is consequently unknown. It appears, however, that all the orbits have the same line of nodes, and are in a common plane or nearly so. Twice in each revolution of the planet this plane passes through the sun, when the satellites exhibit the same succession of phases to the planet as the moon presents to the earth, except so far as they are modified by the effects of the diurnal parallax, which are considerable, especially in the case of the nearer satellites.

Twice in each revolution of the planet, at epochs exactly intermediate between the former, the line of nodes being at right angles to the line joining the sun and planet, the plane of the satellites' orbits is nearly perpendicular to the same line. In this case the satellites, during their entire revolution, suffer no other change of phase than what may be produced by the diurnal parallax, and appear continually with the same plases as that which the moon presents at the quarters.

In the intermediate position of the planet a complicated variety of phases will be presented, which may be traced and analysed by giving due attention to the change of direction of the line of nodes of the satellites' orbits to the line joining the planet with the sun.
2882. Mass and density of Uranus. - Some uncertainty still attends the determination of the elements of these more distant and recently discovered planets. The mass and density of Uranus are only provisionally determined. The mass is assumed to be the 24,900 th part of that of the sun, and the density the sixth of that of the earth.

## IV. Neptune.

2883. Discovery of Neptune. - The discovery of this planet constitutes one of the most signal triumphs of mathematical science, and marks an era which must be for ever memorable in the history of physical investigation.

If the planets were subject only to the attraction of the sun, they would revolve in exact ellipses, of which the sun would be the common focus; but being also subject to the attraction of each other, which, though incomparably more feeble than that of the presiding central mass, produces sensible and measurable effects, consequent deviations from these elliptic paths, called perturbations, take place, which will be more fully explained in a subsequent chapter. The masses and relative motions of the planets being known, these disturbances can be ascertained with such accuracy that the position of any known planet at any epoch, past or future, can be determined with the most surprising degree of precision.

If, therefore, it should be found, that the motion which a planet is observed to have is not in accordance with that which it ought to have, subject to the central attraction of the sun, and the disturbing actions of the surrounding planets, it must be inferred that some other disturbing attraction acts upon it, proceeding from an undiscovered cause, and, in this case, a problem novel in its form and data, and beset with difficulties which might well appear insuperable, is presented to the physical astronomer. If the solution of the problem, to determine the disturbances produced upon the orbit of a planet by another planet, whose mass and motions are known, be regarded as a stupendous achievement in physical and mathematical science, how much more formidahle must not the converse question be regarded, in which the disturbances are given to find the planet!

Such was, nevertheless, the problem of which the discovery of Neptune has been the astonishing solution.

Although no exposition of the actual process by which this great intellectual achievement has been effected, could be comprehended without the possession of an amount of mathematical knowledge far exceeding that which is expected from the readers of treatises much less elementary than the present volume, we may not be altogether unsuccessful in attempting
to illustrate the principle on which an investigation, attended with so surprising a result, has been based, and even the method upon which it has been conducted, so as to strip the proceeding of much of that incomprehensible character which, in the view of the great mass of those who consider it without being able to follow the steps of the actual investigation, is generally attached to $i t$, and to show at least the spirit of the reasoning by which the solution of the problem has been accomplished.

For this purpose, it will be necessary, first, to explain the nature and character of those disturbances which were observed and which could not be ascribed to the attraction of any of the known planets; and, secondly, to show in what manner an undiscovered planet revolving outside the known limits of the solar system could produce such effects.
2884. Unexplained disturbances observed in the motion of Uranus. - The planet Uranus, revolving at the extreme limits of the solar system, was the object in which were observed those disturbances which, not being the effects of the action of any of the known planets, raised the question of the possible existence of another planet exterior to it, which might produce them.

After the discovery of the planet by Sir W. Herschel, in 1781, its motions, being regularly observed, supplied the data by which its elliptic orbit was calculated, and the disturbances produced upon it by the masses of Jupiter and Saturn ascertained, the other planets of the system, by reason of their remoteness, and the comparative minuteness of their masses, not producing any sensible effects. Tables founded on these results were computed, and ephemerides constructed, in which the places at which the planet ought to be found from day to day for the future were duly registered.

The same kind of calculations which enabled the astronomer thus to predict the future places of the planet, would, as is evident, equally enable him to ascertain the places which had been occupied by the planet in times past. By thus examining, retrospectively, the apparent course of the planet over the firmament, and comparing its computed places at particular epochs with those of stars which had been observed, and which had subsequently disappeared, it was ascertained that several of these stars dhad in fact been Uranus itself, whose planetary character had not been recognised from its appearance, owing
to the imperfection of the telescopes then in use, nor from its apparent motion, owing to the observations not having been sufficiently continuous and multiplied.

In this way it was ascertained, that Uranus had been observed, and its position recorded as a fixed star, six times. by Flamstead; viz., once in 1690, once in 1712, and four times in 1715; -once by Bradley in 1753, once by Mayer in 1756, and twelve times by Lemonnier between 1750 and 1771 .

Now, although the observed positions of these objects, combined with their subsequent disappearance, left no doubt whatever of their- identity with the planet, their observed places deviated sensibly from the places which the planet ought to have had according to the computations founded upon its motions after its discovery in 1781. If these deviations could have been shown to be irregular and governed by no law, they would be ascribed to errors of observation. If, on the other hand, they were found to follow a regular course of increase and decrease in determinate directions, they would be ascribed to the agency of some undiscovered disturbing cause, whose action at the epochs of the ancient observations was different from its action at more recent periods.

The ancient observations were, however, too limited in num. ber and too discontinuous to demonstrate in a satisfactory manner the irregularity or the regularity of the deviation. Nevertheless, the circumstance raised much doubt and misgiving in.the mind of Bouvard, by whom the tables of Uranus, based upon the modern observations, were constructed; and he stated that he would leave to futurity the decision of the question whether these deviations were due to errors of observation, or to an undiscovered disturbing agent. We shall presently be enabled to appreciate the sagacity of this reserve.

The motions of the planet continued to be assiduously observed, and were found to be in accordance with the tables for about fourteen years from the date of the discovery of the planet. About the year 1795, a slight discordance between the tabular and observed places began to be manifested, the latter being a little in adrance of the former, so that the observed longitude L of the planet was greater than the tabular longitude 1.' After, this, from year to year, the advance of the observed upon the tabular place increased, so that the excess $\mathrm{L}-\mathrm{y}^{\prime}$ of the observed above the tabular longitude was continually
augmented. This increase of $\mathrm{L}-\mathrm{L}^{\prime}$ continued until 1822, when it became stationary, and afterwards began to decrease. This decrease continued until.about 1830-31, when the deviation $\mathrm{L}-\mathrm{L}^{\prime}$ disappeared, and the tabular and observed longitudes again agreed. This accordance, however, did not long prevail. The planet soon began to fall behind its tabular place; so that its observed longitude x , which before 1831 was greater than the tabular longitude x , was now less; and the distance $\mathrm{x}^{\prime}-\mathrm{x}$ of the observed behind the tabular place increased from year to year, and still increases.

It appears, therefore, that in the deviations of the planet from its computed place, there was nothing irregular and nothing compatible with the supposition of any cause depending on the accidental errors of observation. The deviation, on the contrary, increased gradually in a certain direction to a certain point; and having attained a maximum, then began to decrease, which decrease still continues.

The phenomena must, therefore, be ascribed to the regular ngency of some undiscovered disturbing cause.
2885. A planet exterior to Uranus would produce a lihe effect. - It is not difficult to demonstrate that deviations from its computed place, such as those described above, would be produced by a planet revolving in an orbit having the same or nearly the same plane as that of Uranus, which would be in heliocentric conjunction with that planet at the epoch at which its advance beyond its computed place attained its maximum.

Let abcdef, fig. 787., represent the arc of the orbit of

F.g. 787. Uranus described by the planet during the manifestation of the perturbations. Let $\mathrm{N} \mathrm{N}^{\prime}$ represent the orbit of the supposed undiscovered planet in the same plane with the orbit of Uranus. Let $a, b, c, d, e$, and $f$ be the positions of the latter when Uranus is at the points $A, B, C, D, E$, and $F$. It is, therefore, supposed that Uranus when at $\mathrm{D}_{\mathrm{s}}$ is in heliocentric conjunction with the supposed planet, the latter being then at $d$.

The directions of the orbital motions of the two planets are
jadicated by the arrows beside their paths; and the dicections of the disturbing forces* exercised by the supposed planet on Uranus are indicated by the arrows beside the lines joining that planet with Uranus.

Now, it will be quite evident that the attraction exerted by the supposed planet at $a$ on Uranus at a tends to accelerate the lutter. In like manner, the forces exerted by the supposed planet at $b$ and $c$ upon Uranus at B and c tend to accelerate it. But as Uranus approaches to D the direction of the disturbing force, being less and less inclined to that of the orbital motion, has a less and less accelerating influence, and on arriving at D , the disturbing force being in the direction $D d$ at right angles to the orbital motion, all accelerating influence ceases.

After passing $D$ the disturbing force is inclined against the motion, and instead of accelerating retards it; and as Uranus takes successively the positions F, F, \&c. it is more and more inclined, and its retarding influence more and more increased, ns will be evident if the directions of the retarding force and the orbital motion, as indicated by the arrows, be observed.

It is then apparent, that from $A$ to $D$ the disturbing force, accelerating the orbital motion, will transfer Uranus to a position in advance of that which it would otherwise have occupied; and after passing $\mathbf{D}$, the disturbing force retarding the planet's motion will continually reduce this advance, until it bring back the planet to the place it would have occupied had no disturbing force acted; after which, the retardation being still continued, the planet will fall belind the place it would hare had if no disturbing force had acted upon it.

Now it is evident that these are precisely the kind of disturbing forces which act upon Uranus; and it may, therefore, be inferred that the deviations of that planet from its computed place are the physical indications of the presence of a planet exterior to it, moving in an orbit whose plane either coincides with that of its own orbit or is inclined to it at a very small angle, and whose mass and distance are such as to give to its attraction the degree of intensity necessary to produce the alternate acceleration and retardation which have been observed.

[^18]Since, however, the intensity of the disturbing force depends conjointly on the quantity of the disturbing mass and its distance, it is easy to perceive that the same disturbance may arise from different masses, provided that their distances are so varied as to compensate for their different weights or quaintities of matter. A double mass at a fourfold distance will exert precisely the same attraction. The question, therefore, under this point of view, belongs to the class of indeterminate problems, and admits of an infinite number of solutions. In other words, an unlimited variety of different planets may be assigned exterior to the system which would cause disturbances observed in the motion of Uranus, so nearly similar to those observed as to be distinguishable from them only by observations more extended and elaborate than any to which that planet could possibly have been submitted since its discovery.
2886. Researches of Messrs. Le Verrier and Adams.-The idea of taking these departures of the observed from the computed place of Uranus as the data for the solution of the problem to ascertain the position and motion of the planet which could cause such deviations; occurred, nearly at the same time, to two astronomers, neither of whom at that time had attained either the age or the scientific standing which would have raised the expectations of achieving the most astonishing discovery of modern times.
M. Le Verrier, in Paris, and Mr. J. C. Adams, Fellow and Assistant Tutor of St. John's College, Cambridge, engaged in the investigation, each without the knowledge of what the other was doing, and believing that he stood alone in his adventurous and, as would then have appeared, hopeless attempt. Nevertheless, both not only solved the problem, but did so with a completeness that filled the world with astonishment and admiration, in which none more ardently shared than those who, from their own attainments, were best qualified to appreciate the difficulties of the question.

The question, as has been observed, belonged to the class of indeterminate problems. An infinite number of different planets might be assigned which would be equally capable of producing the observed disturbances. The solution, therefore, might be theoretically correct, but practically unsuccessful. To strip the question as far as possible of this character, certain conditions were assumed, the existence of which might be regarded as in the highest degree probable. Thus, it was assumed that the dis-
turbing planet's orbit was in or nearly in the plane of that of Uranus, and therefore in that of the ecliptic; that its motion in: this orbit was in the same direction as that of all the other planets of the system, that is, according to the order of the signs; that the orbit was an ellipse of very small eccentricity; and, in fine, that its mean distance from the sun was, in accordance with the general progression of distances noticed by Bode, nearly double the mean distance of Uranus. This last condition, combined with the harmonic law, gave the inquirer the advantage of the knowledge of the period, and therefore of the mean heliocentric motion.

Assuming all these conditions as provisional data, the problem was reduced to the determination, at least as a first approximation, of the mass of the planet and its place in its orbit at a given epoch, such as would be capable of producing the observed alternate acceleration and retardation of Uranus.

The determination of the heliocentric place of the planet at a given epoch would have been materially facilitated if the exact time at which the amount of the advance ( $L-L^{\prime}$ ) of the observed upon the tabular place of the planet had attained its maximum were known; but this, unfortunately, did not admit of being ascertained with the necessary precision. When a varying quantity attains its maximum state, and, after increasing, begins to diminish, it is stationary for a short interval; and it is always a matter of difficulty, and often of much uncertainty, to determine the exact moment at which the increase ceases and the decrease commences. Although, therefore, the heliocentric place of the disturbing planet could be nearly assigned about 1822, it could not be determined with the desired precision.

Assuming, however, as nearly as was practicable, the longitude of Uranus at the moment of heliocentric conjunction with the disturbing planet, this, combined with the mean motion of the sought planet, inferred from its period, would give a rough approximation to its place for any given time.
2887. Elements of the sought planet assigned by these geometers. - Rough approximations were not, however, what MM. Le Vervier and Adams sought. They aimed at more exact results; and, after investigations involving all the resources and exhausting all the vast powers of analysis, these eminent geometers arrived at the following elements of the undiscovered planet:-

2888. Its actual discovery by Dr. Galle of Berlin.—On the 23rd of September, 1846, Dr. Galle, one of the astronomers of the Royal Observatory at Berlin, received a letter from M. Le Verrier, announcing to him the principal results of his calculations, informing him that the longitude of the sought planet must then be $326^{\circ}$, and requesting him to look for it. Dr, Galle, assisted by Professor Encké, accordingly did "look for it," and found it that very night. It appeared as a star of the 8th magnitude, having the longitude of $326^{\circ} 52^{\prime}$, and consequently only $52^{\prime}$ from the place assigned by M. Le Verrier. The calculations of Mr. Adams, reduced to the same date, gave for its place $329^{\circ} 19^{\prime}$, being $2^{\circ} 27^{\prime}$ from the place where it was actually found.
2889. Its predicted and observed places in near proximity.


Fig. 788. -To illustrate the relative proximity of these remarkable predictions to the actual observed place, let the arc of the ecliptic, from long. $323^{\circ}$ to long. $330^{\circ}$, be represented in fig. 788. The place assigned by M. Le Verrier for the sought planet is indicated by the small circle at L , that assigned by Mr. Adams by the small circle at a, and the place at which it was actually found by the dot at $N$. The distances of $L$ and $A$ from $N$ may be appreciated by the circle which is described around the dot N , and which represents the apparent disk of the moon.

The distance of the observed place of the planet from the place predicted by M. Le Verrier was less than two diameters, and from that predicted by Mr. Adams less than five diameters, of the lunar disk.
2890. Corrected elements of the planet's orbit. -In obtaining the elements given above, Mr. Adams based his calculations on the observations of Uranus made up to 1840 , while the calcu-
lations of M. Le Verrier were founded on observations con. tinued to 1845 . On subsequently taking into computation the five years ending 1845, Mr. Adams concluded that the mean distance of the sought planet would be more exactly taken at 33.33 .

After the planet had been actually discovered, and observations of sufficient continuance were made upon it, the following proved to be its more exact elements : -

2891. Discrepancies between the actual and predicted elements explained. - Now it will not fail to strike every one who devotes the least attention to this interesting question, that considerable discrepancies exist, not only between the elements presented in the two proposed solutions of this problem, but between the actual elements of the discovered planet and both of these solutions. There were not wanting some who, viewing these discordances, did not hesitate to declare that the discovery of the planet was the result of chance, and not, as was claimed, of mathematical reasoning, since, in fact, the planet discovered was not identical with either of the two planets predicted.

To draw such a conclusion from such premises, however, betrays a total misapprehension of the nature and conditions of the problem. If the problem had been determinate, and, consequently, one which admits of but one solution, then it must have been inferred, either that some error had been committed in the calculations which caused the discordance between the observed and computed elements ${ }_{2}$ or that the discovered planet was not that which was sought, and which was the physical cause of the observed disturbances of Uranus. But the problem, as has been already explained, being more or less indeterminite, admits of more than one, -nay, of an indefinite number of different solutions, so that many different planets might be assigned which would equally produce the disturb-
ances which had been obserred; and this being so, the discordance between the two sets of predicted elements, and between both of them and the actual elements, are nothing more than might have been anticipated, and which, except, by a chance against which the probabilities were millions to one, were, in fact inevitable.

- So far as depended on reasoning, the prediction was verified; so far as depended on chance, it failed. Two planets were assigned, both of which lay within the limits which fulfilled the conditions of the problem. Both, however, differed from the true planet in particulars which-did not affect the conditions of the problem. All three were circumscribed within those limits, and subject to such conditions as would make them produce those deviations or disturbances whịch were observed in the motions of Uranus, and which formed the immediate subject of the problem.

2892. Comparison of the effects of the real and predicted planets. - It may be satisfactory to render this still more clear,


Fig. 789.
by exhibiting in immediate juxtaposition the motions of the hypothetical planets of MM. Le Verrier and Adams and the planet actually discovered, so as to make it apparent that any one of the three, under the supposed conditions, would produce the observed disturbances. We have accordingly attempted this in fig. 789., where the orbits of Uranus, of Neptune, and of the planets assigned by MM. Le Verrier and Adams are laid down, with the positions of the planets respectively in them for every fifth year, from 1800 to 1845 inclusively. This plan is, of course, only roughly made; but it is sufficiently exact for the purposes of the present illustration. The places of Uranus are marked by $O$, those of Neptune by $\odot$, those of M. Le Verrier's planet by $\Theta$, and those of Mr. Adams's planet by $\in$.

It will be observed that the distances of the two planets as signed by MM. Le Verrier and Adams, as laid down in the diagram, differ less from the distance of the planet Neptune than the mean distances given in their elements differ from the mean distance of Neptune. This is explained by the eccen: tricities of the orbit, which, in the elements of both astronomers, are considerable, being nearly an eighth in one and a ninth in the other, and by the positions of the supposed planets in their respective orbits.

If the masses of the three planets were equal, it is clear that the attraction with which Le Verrier's planet would act upon Uranus, would be less than that of the true planet, and that of Adams's planet still more so, each being less in the same ratio as the square of its distance from Uranus is greater than that of Neptune. But if the planets are so adjusted that what is lost by distance is gained by the greater masses, this will be equalised, and the supposed planet will exert the same disturbing force as the actual planet, so far as relates to the effects of variation of distance. It is true that, throughout the arcs of the orbits over which the observations extend, the distances of the three planets in simultaneous positions are not every where in exactly the same ratio, while their masses must necessarily be so; and, therefore, the relative masses, which would produce perfect compensation in one position, would not do so in others. This cause of discrepancy would operate, however, under the actual conditions of the problem, in a degree altogether inconsiderable, if not insensible.

But another cause of difference in the disturbing action of the
real and supposed planets would arise from the fact that the directions of the disturbing forces of all the three planets are different, as will be apparent on inspecting the figure, in which the degree of divergence of these forces at each position of the planets is indicated; but it will be also apparent that this divergence is so very inconsiderable that its effect must be quite insensible in all positions in which Uranus can be seriously affected. Thus, from 1800 to 1815 , the divergence is very small. It increases from 1815 to 1835 ; but it is precisely here, near the epoch of heliocentric conjunction, which took place in 1822, that all the three planets cease to have any direct effect in accelerating the motion of Uranus. When the latter planet passes this point sufficiently to be sensibly retarded by the disturbing action, as is the case after 1835, the divergence again becomes inconsiderable.

From these considerations it will therefore be understood, that the disturbances of the motion of Uranus, so far as these were ascertained by observation, would be produced without sensible difference, either by the actual planet which has been discovered, or by either of the planets assigned by MM. Le Verrier and Adams, or even by an indefinite number of others which might be assigned, either within the path of Neptune, or between it and that of Adams's planet, or, in fine, beyond this - within certain assignable limits.
2893. No part of the merit of this discovery ascribable to clance. - That the planets assigned by MM. Le Verricr and Adams are not identical with the planet to the discovery of which their researches have conducted practical observers is, therefore, true; but it is also true that, if they or either of them had been identical with it, such excessive amount of agreement would have been purely accidental, and not at all the result of the sagacity of the mathematician. All that human sagacity could do with the data presented by observation was done. Among an indefinite number of possible planets capable of producing the disturbing action, two were assigned, both of which were, for all the purposes of the inquiry, so nearly coincident with the real planet as inevitably and immediately to lead to its discovery.
2894. Period. - After a complete revolution of the earth, Neptune is found to adrance in its course no more than $2^{\circ} \cdot 187$, and consequently its period is $\longrightarrow$

$$
P=\frac{360}{2 \cdot 187}=164 \cdot 6 \text { years, }
$$

or, more exactly, 164.618 years.
2895. Distance. - Its mean distance $\mathrm{r}_{\text {, }}$ therefore, may be determined by the harmonic law :

$$
\mathrm{R}^{3}=(164 \cdot 6)^{2}=27093=(30 \cdot 04)^{3}
$$

2896. Relative orbits and distances of Neptune and the


Fig. 790. earth. - It appears, then, in fine, that the system possesses another member still more remote from the common centre of light, heat, and attraction. In fig. 790. the earth's orbit is represented at $\mathrm{EE}^{\prime \prime \prime}$; and a part of that of Neptune, on the same scale, is represented at N . The actual distance of N from $s$ is thirty times that of $E$ from $s$.

The mean distance of Neptune from the sun is, therefore,
2,850,000,000 miles.
2897. Apparent and real diameter. - The apparent diameter of the planet, seen when in oppor sition, is about $2^{\prime \prime} 8$. Its distance from the earth being, then,

$$
2850-95=2755 \text { mill. miles }
$$

and the linear value of $1^{\prime \prime}$ at this distance being

$$
\frac{2755000000}{206265}=13,313 \text { miles, }
$$

the actual diameter of the planet will be

$$
13313 \times 2 \cdot 8=37276 \text { miles. }
$$

The diameter of the planet is, therefore, a little greater than that of Uranus, about half that of $\mathrm{Sa}-$ turn, and about four and a half times that of the earth. is only $2 \cdot 6$, and the real diameter 31,000 miles, numbers which, he says, are deduced from careful measurements with some of the most powerful European telescopes.
2898. Satellite of Neptune. - A satellite of this planet was discovered by Mr: Lassell in October, 1846, and was afterwards observed by other astronomers both in Europe and the United States. The first observations then made raised some suspicions as to the presence of another satellite as well as of a ring analogous to that of Saturn. Notwithstanding the numerous observers, and the powerful instruments which have been directed to the planet since the date of these observations, nothing has been detected which has had any tendency to confirm these suspicions.

The existence of the satellite first seen by Mr. Lassell has, however, not ouly been fully established, but its motion, and the elements of its orbit, have been ascertained, first by the observations of M. O. Struve in Sept. and Dec. 1847, and later and more fully by those of his late relative M. Auguste Struve, in 1848-9.

From these observations it appears that the distance of the satellite from the planet at its greatest elongation subtends an angle of $18^{\prime \prime}$ at the sun; and since the diameter of the planet subtends an angle of 2.8 at the same distance, it follows, therefore, that the distance of the satellite from the centre of the planet is equal to fourteen semidiameters of the latter.

The mean daily angular motion of the satellite round the centre of the planet is, according to the observations of Struve, $61^{\circ} \cdot 2625$, and consequently the period of the satellite is

$$
\frac{360}{61 \cdot 2625}=5.8763 \text { days, }
$$

or $5^{\text {d. }} 21^{\text {b. }} 1.8^{\mathrm{m}}$, a result which is subject to an error not exceeding 5 minutes.

- If the semidiameter of the planet be 18,750 miles, the actual distance of the satellite is

$$
18,750 \times 12=225,000 \text { miles, }
$$

being a little less than the distance of the moon from the earth's centre.
2899. Mass and density. - This discovery of a satellite has supplied the means of determining the mass, and therefore the density, of the planet. M. Struve, calculating by tie principles already explained, has found that the mass of Neptune is the $14,446 \mathrm{th}$ part of the mass of the sun s . and since its diameter is
about the 20th, and its volume the 8000th, part of that of the sun, its density will be about five-ninths that of the sun, and about the seventh part of the density of the earth.

Other estimates make the mass less. According to Professor Bond it is the 19,400th, and according to Mr. Hind the 17,900th, of the mass of the sun.
2900. Apparent magnitude of the sun at Neptune.-The apparent diameter of the sun, as seen from Neptune, being 30. times less than from the earth, is,

$$
\frac{1800^{\prime \prime}}{30}=60^{\prime \prime}
$$

The sun, therefore, appears of the same magnitude as Venus seen as a morning or evening star.

The relative apparent magnitudes are exhibited in fig. 791. at E and $\mathbf{x}$.


Fig. 791.
It would, however, be a great mistake to infer that the light of the sun at Neptune approaches in any degree to the faintness of that of Venus at the earth. If Venus, when that planet appears as a morning or evening star, with the apparent diameter of $60^{\prime \prime}$, had a full disk (instead of one halved or nearly so, like the moon at the quarters), and if the actual intensity of light on its surface were equal to that on the surface of the sun, the light of the planet would be exactly that of the sun at Neptune. But the intensity of the light which falls on Venus is less than the intensity of the light on the sun's surface in the ratio of the square of Venus' distance to that of the sun's semi-
diameter, upon the supposition that the light is propagated according to the same law as if it issued from the sun's centre; that is, as the square of 37 millions to the square of half a million nearly, or as $37^{2}: \frac{1}{4}$, that is, as 5476 to l. If, therefore; the surface of Venus reflected (which it does not) all the light incident upon it, its apparent light at the earth (considering that little more than half its illuminated surfuce is seen) is about ${ }_{m}$ 11,000 times less than the light of the sun at Neptuna

Small, therefore, as is the apparent magnitude of the sun at Neptune, the intensity of its daylight is probably not less than that which would be produced by about 20,000 stars shining at once in the firmament, each being equal in splendour to Venus when that planet is brightest.

In addition to these considerations, it must not be forgotten that all such estimates of the comparative efficiency of the illuminating and heating power of the sun is based upon the supposition that his light is received under like physical conditions; and that many conceivable modifications in the physical state of the body or medium on or into which the light falls, and in the structure of the visual organs which it affects, may render light of an extremely feeble intensity as efficient as much stronger light is found to be under other conditions.
2901. Suspected ring of Neptune. - Messrs. Lassell and Challis have at times imagined that indications of some such appendage as a ring, seen nearly edgewise, were perceptible upon the disk of Neptune. These conjectures have not yet received any confirmation. When the declination of the planet will have so far increased as to present the ring, if such an appendage be really attached to the planet, at a less oblique angle to the visual ray, the question will probably be decided.

# |||||||||||||||||||| 00052061 

Digitized with financial assistance from the Government of Maharashtra on 26 March, 2016



[^0]:    * See a Memoir, by the Author, on the Uranography of Saturn, in Vol. XXIL. of the Memoirs of the Royal Astronomical Sucicty, London, Sept. 1853.

[^1]:    * "Notice on the Suow-line," Ann. de Ch. et Phys. tom. xir. p. I.

[^2]:    * For sea water the freczing point is $28 \frac{1}{2}^{\circ}$.

[^3]:    * Unus, one, ánd versuss, turning, or rotation, - turning with one common motion of rotation,

[^4]:    * The teacher will find it advantageous to exercise the student in the subject of the preceding paragraphs, aided by an armillary sphere, or, if that be not accessible, by a celestial globe, which will serve nearly as wellMany questions will suggest themselves, arising out of and deducible from what has been explained above, with respect to the various altitudes of the phere in different latitudes.

[^5]:    * Different values are assigned to this - Sir John Hersehel prefers $\mathrm{I}_{3}$, the Astronomer Royal ter. We have taken a mean between these estimates.

[^6]:    * This law may be demonstrated as follows:-The angle of incidence of the visual ray is equal to the zenith distance $z$ of the object. If $r$ express the refraction, the angle of refraction will be $z-r$. Let the index of refraction (980) be $m$. By the general law of refraction we have, therefore,

[^7]:    * For an explanation of the great apparent magnitude of the solar and lunar disks in rising and setting, see (1170).

[^8]:    * Sce Chapter on the tides and trade winds.

[^9]:    * It must be observed that the chart represents the moon's disk as it is seen on the south meridian in an astronomical telescope. As that instrument produces an inverted image, the south pole appears at the highest and

[^10]:    * The geographical mile, or the sixtieth part of a degree of the earth's meridia,

[^11]:    * This ingenious expedient is suggested by Mädler. It must be remembered, however, that, while Plate II. represents the region as it appears in a telescope which inverts, Plate III. represents it as if it were reflected in a mirror, or as it wouk be seen with a telescope"having a prismatic eyepiece.

[^12]:    * Other sexual phenomena, such as the period of gestation, vulgarly supposed to have some relation to the lunar month, have no relatiou whatercr to that period.

[^13]:    * Herschel's Cape Observations, p. 434.

[^14]:    * From the Greek words $\boldsymbol{\gamma}^{\boldsymbol{n}}$ (gè) and $\mathrm{F}_{\mathrm{n}} \mathrm{cos}$ (helios), signifying the earth and the sun.

[^15]:    - This planet was discovered by M. de Gasparts four days later, at Naples, before that gstronomer had receired the information of the discovery of Mr. Hind.

[^16]:    : Astrọn. Nachr. Schumacher, Vol xxviii. No. 650,

[^17]:    * See Populäre Astronomic, von Dr. J. H. Mädler. Berlin, 1852.

[^18]:    * To simplify the explanation, the effect of the attraction of Uranus on the sun is omityed in this illustration. In the chapter on Perturbations the method of determining the exact direction of the disturbing force will be explained.

