
RADC-TR-88-81
Final Technical Report
Apri! 1988

D- A199 351

CRONUS, A DISTRIBUTED OPERATING 7
SYSTEM: REVISED SYSTEM/SUBSYSTEM
SPECIFICAIION

BBN Laboratories Incorporated

Richard E. Schantz, Robert H. Thomas, K. Schroder, M. Barrow,
G. Bono, M. Dean, R. Gurwitz, R. Sands and K. Lebowitz

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.'i./j

SEP 2 6 9880

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Gr;ffiss Air Force Base, NY 13441-5700

0 e%

Thi:. reolort hna been reviewed by the RADC Public Affairs Division (PA)
:mis j. uclc::,blc to the National Technical Information Service (NTIS). At

N1 'N it will he releasable to the general public, including foreign nations.

APPROVED:/

/ THOMAS F. LAWRENCE

Project Engineer

APPROVED: J4gY//~

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: (J 4
JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mail-
Ing list, or if the addressee is no longer employed by your organizatioh,
please notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

4

SECRYCLSIIATIN OF TH15PAUF

REPORT DOCUMENTATION PAGE OM No 7*08

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
MIA Approved for public release; distribution

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Unlimited.
N/A___________________ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

5884 RADC-TR-88-81P

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION

BBN Laboratories Incorporated (fapibl) Rome Air Development Center (COTD)
6. ADDRESS (City, Stott, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

10 Moulton Street Gifs F Y14150
Cambridge MA 02238

&a. NAME OF FUNDING/ SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Center uTD F30602-81-C-0132

&.ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Grifis AB Y 344-500PROGRAM PROJECT TASK WORK UNIT S
GrfisABN 34-70ELEMENT NO. No. NO ACCESSION NO.

63728F 2530 01 07
11. TITLE (include Security Classification)

CRONUS, A DISTRIBUTED OPERATING SYSTEM: REVISED SYSTEM/SUBSYSTEM SPECIFICATION

12. PERSONAL AUTHOR(S) Richard W. Schantz, Robert H. Thomas, K. Schroder, 14. Barrow,
G. Bono. M. Dean. R. Gurwitz. R. Sands and K. Lebowitz

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM TOSn R4 April 1988 250

16. SUPPLEMENTARY NOTATION
NIA

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Distributed Operating System System Monitoring

12 07 IInteroperability and Control
I IHeterogeneous Distributed System Survivable Avlication

19. ABSTRACT (Continue on reverse If necessary and identify by block number)
This report presents the current design for CRONUS, the system being developed under the
Distributed Operating System Design and Implementation project sponsored by Rome Air
Development Center. It is Intended as an overview of the system structure and as a
synopsis of the current system/subsystem decomposition and specification.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIE DIUNLIMI[TED K) SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Thomas F. Lawrence 1 (315) 330-2 158 1 RADC (COTD)

DD Form 1473, JUN 86 Previous editions are obsolete SECUR~IITYTIS PACE.

III~ 'V 1

111 111 1.111 4 ,
Lard

Table of Contents

1 Introduction............................. 1
2 Cronus Project Overview............................... 4
2.1 Project Objectives 4
2.2 Points of Emphasis 4
2.3 System Phases 6
2.4 The Cronus Hardware Architecture 6
2.4 1 System Environment. 6
2.4.2 Host Classes................-. 7
2.4 3 System Access 8
2.4.4 Local Area Network 8
2 4 5 Types of Hosts--.. -10
2.4.6 Cronus Clusters and the Internet 11
2.4.7 The Advanced Development Model 11
3 System Overview............................. 12
3.1 System Concept........ - 12
3.2 The Cronus Object Model................. 14
3.3 System Objects................................. 17
3.4 Cronus Name Spaces and Catalogs................ ...18
3.5 The Cronus File System............................... 21
3.6 Cronus Process Management............................ 22
3.7 Device Integration................................... 23
3.8 User Identities and Access Control................... 23
3.9 Process Support Library 24
3.10 Important Subsystems 24
3.11 The Layering of Protocols in Cronus..................25
4 Object Management...................................... 27
4.1 Introduction... 27
4.2 General Object Model.................... 28
4.3 Object Naming............................... 32
4.4 Generic Operations On Objects 34
4.5 Object System Implementation- ... -36
4.6 Object Manager Structure 41
5 Process Management..................................... 44
5.1 Introduction................ 44
5.2 Objects of type CTHost 46
5.3 The Operations on Objects of Type
CTPrimal _Process

. 4 8
5.4 Program Carrier 51

%

0

5.5 Process Support Library 54
6 Interprocess Communcation and Messages 56
6 .1 O v e r v i ew ... 5 6
6 .2 Messages in the IPC 57

6.3 Programming Interface 58
6 .4 IPC Implementation 62
6.5 Object Operation Protocol 65
6 .6 Message Structure 66 S
7 Authentication, Access Control, and Security 69
7 .1 In trodu c ti on 6 9
7.2 The Cronus Access Control Concept. 70
7.2.1 Decomposition of the Access Control

Problem

..I.......700
7 .2 .2 Au thoriza tion 7Z
.2.3 Identification in Cronus 74

7.3 Access Control List Initialization 77
7.4 Authentication Manager 78
,.5 Objects Related to Authorization 78
7.6 Operations on Authorization Related Objects 80 0

7.7 Operation of the Access Control
Authorization Function

. . .. 8 1

7 .8 Host Registration 83
7.9 Survivable Authorization Design 84
7 .9. 1 Ob jec tives 84 0
7.9.2 Observations .. 85
7 .9.3 App roach 86
8 Cronus File System 89
8 .1 File System Overview 89

8 .2 Cronus Primal Files 90
8.2.1 Cronus Primal Files 90
8.2 2 Crash Recovery Properties 95
8.2 3 Operations for Objects of type
CTPrimalFile

96

8 3 R e liab le F ile s 9 6
8 3 .1 Ob jec t ive s 97
8 3.2 Reliable Files as Composite Objects 98

8 3.3 Synchronization Considerations 100
8.3.4 Interactions Among Reliable File Managers 103
8 3.5 Operations on Reliable Files 104
8 3.5.1 Creating Reliable Files 105
8.3.5.2 Reading Reliable Files 107

ie% I %
~ Z~Z"

* 0

8.3 5.3 Writing Reliable Files 108

8.3 5.4 Other Operations 109
8.3 6 Use of Version Vectors 110
8.4 Elementary File System 112
8 .4 1 In trodu c t ion 112
8 4 .2 F ile Form a ts 114
8 4 3 Disk Salvaging 119
9 Sym b o lic N am ing 120
9 1 The Cronus Symbolic Name Space 120
9 2 Objects Related to the Catalog 125
9 2 1 Objects of Type CTCatalogEntry 126
9 2 2 Objects of Type CTDirectory. 126
9 2 3 Objects of Type CTSymbolic_Link 126
9.2.4 Objects of Type CTExternal _ Linkage 127
9.3 Catalog Operations 1. 127
9.3.1 Objects of Type CTCatalogEntrv. . 127
9.3.2 Objects of Type CT_Directory 128
9.3.3 Objects of Type CTSymbolic Link 128
9.3.4 Objects of Type CTExternal_Linkage 128
9.3.5 Access Control for Catalog Operations 128
9.4 Catalog Implementation 129
9.4.1 Introduction 129
9.4.2 Cronus Catalog Managers 130
9.4.3 Implementation of the Catalog Hierarchy 130
9.4.4 Distribution of the Catalog 131
9.4.4.1 Principles Affecting Distribution 131
9.4.4.2 Dispersal Of The Catalog 132
9.4.4.3 Replication of Catalog Information 135
9.4.4.4 Synchronization Among Catalog Managers 138
9.4.4. 5 Rep licate 140
9.4 .4.6 Derep licate 144
9 .4 .4.7 M od ify .. 144
9 .4.4. 8 Update 145 F

9.4.4.9 Failure Analysis........... 147
9.4.4.10 Other Operations 148

10 Inpu t/ Ou tpu t 150
10 .1 In troduction 150
10.2 Operations on devices 150
10.3 Implementation overview 152
10.3.1 The use of large messages for device I/O 152
10 3.2 Reasonable defaults for unspecified
options

10.3.3 Naming 153

... 3 . a l....
.

....

153

- 111 -

11 User In t e r f a ce... 154
11.1 Introduction................ 154
11.2 User Interface Design for a Distributed

System
. 155

11.3 Overview of a User Session......................... 158
11.4 Terminal Manager................................... 162
11.5 Session Manager...................... 164
11.6 Session Record Manager............................. 165
11.7 Command Language Interpreter. 166
11.8 User Processes..................................... 169
12 Monitoring and Control.... 173

12.1 System Capabilities................................ 173
12.2 System Mode] for Monitoring and Control 173
12.3 S-tructure of the MCS............................. 175
12.4 Host Probes, Service Probes. and Network
Monitoring

............. 177
12.5 Loading and Debugging Support...................... 178
12.6 Cronus Initialization.............................. 179
12.7 Siting the Monitoring and Control System18D
12.8 Phased Implementation.............................. 181
13 Scenarios of Operation............................... 182
13 1 Basic User Commands and Functions.................. 152
13.2 Registering a New User............................. 183
13.3 Login... 183
13.4 Accessing a File................................... 185
13.5 Creating a File........... 186
13.6 Deleting a File.................................... 188
13.7 Listing a Symbolic Catalog Directory189
13.8 Running a Program........ 189
13.9 Starting a Cronus Service.......................... 192 '

14 Primal System Hardware............................... 195
15 Virtual Local Network................................ 199
15.1 Purpose and Scope.................................. 199
15.2 The VLN-to-Client Interface....................... 201
15.3 A VLN Implementation Based on Ethernet 206
15.4 VLN Operations..................................... 212
16 Generic Computing Element Operating System214

IVS

FIGURES

Object System Components 3
OpeatonSwitch Interfaces................................ 39

Schematic of the Operation Switch.......................... 60
Retrieving Access Control Data............................. 76

EFS File Table... ... 116
EFS File Types.. 117
Catalog Hierarchy... 123
Implementation of Cronus Catalog.......................... 124
Dispersal of the Catalog.................................. 134 *_
Secondary Symbolic Access Path 137 _

Replication in the Cronus Catalog 141
Structure of the MCS...................................... 174
Cronus Protocol Layering.......................... 200
A Virtual Local Network Ciuster 202

AS

Ap*

v5

m TA~ X

TABLES

Cronus Objects.................................... 15
Message Transport Summary............. 63
Access State Compatibility................................. 94
Access Rights Required for Catalog Operations129
Software Development Hosts.................... 196
Generic Computing Elements -- Typical

Configurations
... 197

Gat eway Configuration.................... 198
Internet Address Formats.................................. 204
VLN Local Address Modes................................... 205
An Encapsulated Internet Datagram......................... 208

V1S

* S

C -

1 Introduction

This report presents the current design for Cronus, the
system being developed under the Distributed Operating System
Design and Implementation project sponsored by Rome Air
Development Center(1). It is intended as an overview of the
system structure and as a synopsis of the current
system/subsystem decomposition and specification.

This report is a revision to two earlier drafts, BBN Report
No. 5260, November 1962, and BBN Report No. 5646, May 1984. A
previous report. "Cronus, A Distributed Operating System.
Functional Definition and System Concept", BBN Report No. 5884 is
intended as a companion to the current report, and the reader is
assumed to be familiar with its contents. S

In Section 2, we briefly review a few of the areas covered
in the Functional Definition. and extend them to cover current
development plans.

Section 3 presents an overview of the Cronus operating
system, stressing the common framework into which its components
will fit and the functional decomposition of the system.

Sections 4 through 12 present the design for the various
system functions. In a number of areas the design is only
partially complete. These sections will form the basis of a
continuing and evolving subsystem specification for the various
components, throughout the life of the project.

Section 13 sketches how the system supports some common
functions. Other Sections contain a description of the system
environment, including hardware, Virtual Local Network, GCE
software, and system utilities and libraries.

(1). This work is being performed under RADC contract No.

F30602--1-C-0132

-1-1-2-A

- * -.-.- --- * -~ %

* 0

*

In previous versions of this document, detailed descriptions
of the commands and functions in this system, as well as of the 0
objects, operations, and formats used in the decomposition. were
included. Much of this material is more appropriate to the
Cronus User's Manual. Many details which were included in the
earlier versions of the System/Subsystem Description have been
removed from this report to the User's Manual. In addition, '

detailed design notes made during the implemention of the system
are included there. Cross references to this document appear
throughout the Svstem/'Subsystem.Description. These are of the
form (see Cronus User's Manual topic(number)). where topic is the
name of a page in the manual, and number is the section number
within the Cronus User's Manual where one may find the page.

Many people, in addition to the current Cronus project "" "* "

development staff listed as authors of this report, have
contributed both ideas and enthusiastic effort in designing and
constructing the system described. These people include William
MacGregor, Benjamin Woznick, David Mankins, Robert Walsh, Ed S 0

Burke, Steve Toner, Mort Hoffman and Steve Geyer.

* 0

%

N . . ,

Z"

3-~m~~~xi

~ ~INV

2 Cronus Project Overview

2.1 Project Objectives

The objective of the Cronus project is to develop a testbed
for evaluating distributed system technology. To do this we are
establishing a prototype local area network based hardware

architecture, and building an operating system and software
architecture to organize and control this distributed system.
The architecture was partially specified by the statement of
work, and further defined during early stages of the project' It
is described in the Cronus Functional Description [BBN 5041], and
is summarized in Section 2.4.-91n addition to establishing a

system architecture, the other major aspects of the Cronus
project activities are', -

1') Select off-the-shelf hardware and software components as

}'a basis for an Advanced Development Model (ADM) prototype
configuration for the distributed system testbed'

) •!

2) ,Design the system A'.

3) Implemeni a version of the basic system components

4) ,Test and evaluate the concepts and realization of the DOS
in the Advanced Development Model, ,,-

The orientation we have chosen is both experivental through

construction of working system components, and evolutionary
through pre-planned continuation of design and development
activities.}] 77- -,' '. S .

2.2 Points of Emphasis

The Cronus design is intended to introduce a coherence and

uniformity to a set of otherwise independent and disjoint
computer systems. This grouping of machines, operating under the
control of a distributed operating system, is called a Cronus

cluster. The aim is to provide for the cluster configuration as
a whole features comparable to those found in a modern
centralized computer utility There are various ways of viewing

-4-

5% 5j i

this uniformity and coherence, each plays a role in the Cronus
design.

From an end user's point of view, the Cronus DOS provides a

single account with access to all integrated system services, a
uniform distributed filing system and a uniform program execution
facility, which is independent of the site of the activity. From

a programmer's point of view, Cronus provides a uniform interface

and access path to the distributed system resources, and supports
the initiation and control of distributed computations. More
importantly, from both an end user's and programmer's
perspective. Cronus provides a common system framework for

applications. This means that otherwise independent computerized
activities can be constructed so that they are more easily made

to work together, despite implementations which cross host and

processor-type boundaries.

From an operations and administrative perspective Cronus

provides a logically centralized facility for monitoring and
controlling all of the connected systems. Functions such as
account authorization, user priority, and access control can be
applied system-wide rather than individually to each host.

In addition to coherence and uniformity, there are a number

of other system design goals. These are.

o Survivability and integrity of Cronus itself,

o Scalability to accommodate both small and large
configurations,

o Experimentation with resource management strategies that
effect global performance, S

o Component substitutability to allow easy use of alternate
functionally equivalent hardware, and

o Convenient operation and maintenance procedures.

-5-

%e 0. , %, .. .,,%

% ~IR J" ;~

2.3 System Phases

System development consists of three phases. The first
phase, coincident with the development of the functional
definition, included component selection, installation,
interconnection and testing. The second phase includes the
design and implementation of the basic system that will provide
the uniformity and coherency to the collection of machines. It
also provides the framework for the in-depth design,

implementation, and experimentation in the other areas of
interest (e.g. survivability), which are to occur as the third
phase. The second phase design is the principal subject of the
remaining sections of this report. In certain areas, elements
the third phase design are sketched as well

2.4 The Cronus Hardware Architecture

2.4.1 System Environment

The Cronus environment consists of several parts: the local
area network which provides the communications substrate for a
Cronus cluster, the set of hosts upon which the Cronus system
operates, and a mechanism for connecting a Cronus cluster to the
Internet environment and to other Cronus clusters.

Cronus enables a variety of constituent computer systems to
operate in an integrated manner. Cronus is distinguished from
other distributed operating systems by one or more of the
following characteristics:

1. Cronus will run on a group of heterogeneous hosts.

2. Cronus hosts will run operating systems which are largely

unmodified. The Cronus distributed operating system
software runs as an adjunct rather than a replacement for
the hosts' primary operating systems.

3. Hosts will be included in Cronus with varying degrees of

system integration. Some support limited subsets of the
services defined by the Cronus environment.

-6-

7

4. The interconnection network is designed on a hierarchical
model. A Cronus cluster includes a set of hosts

connected by a high-speed, low-latency local network. A
set of Cronus clusters may be connected over slower
long-haul networks.

The Cronus architecture provides a flexible environment for
connecting hosts so that facilities available on one host may be

conveniently used from other hosts. It provides two alternative

host integration schemes. A host may implement the Cronus
Interprocess Communication (IPC) mechanism and have efficient
communication and operations with the rest of the Cronus hosts,

or it may access the other Cronus hosts through a front end
access machine, which is a simpler, less expensive option for
connection of a host, but which may be more limited from a

flexibility and performance viewpoint.

2.4.2. Host Classes

Cronus hosts can be divided into four groups. mainframe

hosts. Generic Computing Elements (GCEs), workstations, and
internet gateways.

The collection of mainframe hosts, each of which serves a
number of users simultaneously, includes a variety of machines
with unrelated architecture. A mainframe host may be tightly

integrated into the system, both offering and using Cronus

services and fully implementing Cronus interprocess
communication. Alternatively, they may be loosely integrated,
offering no services, possibly connecting into Cronus through an

access machine which provides communication with the rest of

Cronus.

GCEs are small, dedicated-function microprocessor based

computers of a single architecture but varying configuration.
Each GCE provides a basic service. For example, a GCE can be a
file manager, a terminal manager, an access machine or it might

carry out a more complex system function as an authorization
manager. Since all GCEs have the same architecture, they provide
a replicated resource which, with the appropriate software,
enhances the reliability of basic Cronus functions.

-7-

Workstations are powerful, dedicated computers which provide
substantial computing power and graphics capability at the
disposal of a single user. They differ from mainframes in that
they support a single user. They differ from terminals in that
they offer significant computational resources.

An internet gateway is a computer used to interface
communication between multiple networks. The Cronus gateway 0
integrates the Cronus cluster into the collection of networks
known as the ARPA internet and provides a base for supporting
remote access and intercluster communication.

2.4.3 System Access

There are a variety of user access paths to Cronus. One is
a connection by means of a Cronus terminal concentrator. Users
may gain access through the internet gateway from remote points.
Cronus also supports access through terminal access mechanisms on
its mainframe hosts. These latter two access paths provide the
same interface to the user as the terminal concentrator. Access
from a workstation may be different than from a terminal, since
the workstation defines the user interface. The user has 6

immediate access to the workstation's capabilities.

2.4.4 Local Area Network 0

The set of hosts is connected by a local area network. The
characteristics of the network are crucial to the success of
Cronus, since they determine the kinds of communication and
operations that are feasible across host components of Cronus.

The selection of an Ethernet for the local area network for
the Advanced Development Model has been described in a recent
report [BBN 5086]. This choice was motivated by criteria in the
project's statement of work:

I. The network should be suitable to support a distributed

-,-

wft or o

operating system,

2. The network should be currently available and economical.

Since the Advanced Development Model will not be operated

in a stressed environment, certain constraints applicable

to a field-deployable version were considerably relaxed.

The Ethernet was chosen for the local area network substrate
for the following reasons.

o The network must be "high-speed". For the ADM, the
network should operate at rates of Megabits per second

(MBits) with low latency, with higher speeds desirable.

The Ethernet operates at 10 MBits.

o Network interfaces to all or most of the computer systems

in the DOS ADM should be available. With the exception
of the C70. whose Ethernet interface has been constructed
under the present contract, this was the case.

o The local network must provide a datagram-style service. .

The Ethernet fulfills all three requirements and we believe is,

at the present time, the most cost-effective network technology
which does. In addition, the Ethernet provides broadcast and

multicast capabilities which, have been extensively exploited in

the system design.

The raw Ethernet layer will not be used directly To

achieve convenient substitutability of alternate communication
substrates, Cronus will use an abstraction of the Ethernet*
capabilities which is provided by a Virtual Local Net (VLN)

software layer, described in Section 14.2. The VLN represents an
enhancement of the DOD standard IP protocol to provide for

features common to local area communication. We anticipate that

future versions of Cronus will need to be built upon a different
local network, such as the Flexible Interconnect, which have
reliability, communication security, and ruggedization not
available in current commercial products. By designing the VLN

layer and building Cronus upon it, it should be easy to
substitute any local network that provides the basic transport

services required by Cronus. N
090

2.4.5 Types of Hosts

GCEs are implemented in the ADM system by Multibus computers
with Sun processor board (the current vendor, one of several, is
Forward Technology) processors. large main memories, an Ethernet
controller, and additional hardware (disks, RS-232 ports, etc)

needed to support specific functions(2). The Multibus computers
were chosen because

1 They are relatively inexpensive. permitting low cost

incremental system growth.

2. The Multibus standard guarantees the ability to package
individual GCEs in different ways with components from a
variety of vendors.

3. New processors and devices are expected to evolve for the
Multibus over time.

]0

Utility hosts provide the program development and
application execution environments for Cronus. In the ADM. this
function will be supported by C70 UNIX systems, VAX-UNIX Systems
and a VAX-VMS System. UNIX was chosen due to the rich set of
development tools already available for it and the ease of
developing new tools and applications. The C70 was chosen
because it was one of the least expensive computers which
supports a multi-user UNIX, and because of the in-house expertise

and support for the hardware base. The UNIX support will be
gradually shifting to VAX-UNIX. A VAX running the VMS operating

system was chosen to demonstrate the handling of heterogeneous
systems.

p.

(2). One of the functions we would normally install on a GCE is

the Cronus Internet Gateway, which will be installed on an DEC I
LSI-11 computer instead, because the standard Internet Gateway
implementation uses the LSI-ll.

-10-

' p1.W• I I& W

2.4.6 Cronus Clusters and the Internet

The goal of the Cronus project is development of a local
area network-based distributed operating system. The Cronus
cluster will operate in the Internet environment as a class B
network. Cronus hosts will support the DoD Internet Protocol
(IP) for datagram traffic, and, where connections are required,
the DoD Transmission Control Protocol (TCP).

A Cronus cluster is expected to use the Internet environment
in two ways. First, access will be provided to Cronus from
points in the Internet external to the cluster. Second, the
Internet will support communication between distinct Cronus
clusters.

2.4.7 The Advanced Development Model

The Advanced Development Model (ADM) of Cronus is the first
instantiation of the Cronus hardware and software. It is, as its
name suggests, the development testbed for Cronus. The ADM is
experimental and can be expected to undergo rapid change as
Cronus is developed, software is implemented, altered, and

improved.

The ADM is being assembled using many off-the-shelf
commercial hardware and software component building blocks. This
reduces the cost of its components. permits the use of newly
available state-of-the-art hardware, and enables us to be more
flexible in its design. We are developing a design with the
sufficient flexibility to permit later substitution of more
suitable hardware and software for deployable configurations.

LML

U
-11- S

3 System Overview

A distributed operating system manages the resources of a
collection of connected computers and defines functions and
interfaces available to application programs on system hosts.
Cronus provides functions and interfaces similar to those found
in any modern, interactive operating system (see the Cronus

Functional Definition and System Concept Report [BBN 5041]).
Cronus functions, however, are not limited in scope to a single
host. Both the invocation of a function and its effects may
cross host boundaries. The distributed functions which Cronus
supports are.

o generalized object management 0
o global name management
o authentication and access control
o process and user session management
o interprocess communication
o a distributed file system
o input.,output processing
o svstem access

o user interface

o system monitoring and control.

In this section, we introduce the Cronus design and briefly
discuss the major elements of the system decomposition.

3.1 System Concept

The primary design goal for Cronus is to provide a
uniformity and coherence to its system functions throughout the
cluster. Host-independent, uniform access to data and services
forms the cornerstone for resource sharing. The design of Cronus
is based on an abstract object model. In this model, we treat

the system as a collection of objects organized in classes.
files, processes, directories, and so forth. Only a limited
number of well-defined operations can be invoked on an object,
and the only information that a client can have about the
structure or content of the object is obtained through these
operations. The system structure is defined by the objects which
consitute the system, the operations on these objects, and the
responses which the objects give to the operations. The

-12-

underlying structure of the system, which is essentially hidden
from the clients, consists of the primitives which deliver the
operations to active objects (processes), or to processes which
are responsible for passive objects like files.

The Cronus distributed operating system is built from a
number of concurrently existing objects called processes that
reside on hosts which are part of the cluster. Some of them,
called object managers, play a special role in implementing other
objects of the system. Other processes provide services and

functions for the clients of the system. Still other processes
run user programs. Processes communicate with each othe. to form

larger abstractions and build more complex objects. At the most
fundamental level, communication between processes is through -
messages sent over a local area network connecting the hosts of -
the cluster.

There are four interrelated parts to the Cronus system
model.

o A kernel which supports the basic elements of the object

model, processes, communication between objects. object
addressing, and the relationship between objects and
their manager processes. This part of the system

includes facilities for locating an object and

controlling access to it.

" A set of basic obiect types . along with the object

managers which implement them. There are two groups of
basic object types. One group is fundamental to the
development of new object managers in Cronus. This group
of object types includes processes, user records and

symbolic name directories. Another group of basic
objects is provided to support various application
domains and processing requirements. Initially for
Cronus this includes files and I/O devices.

" A paradigm for building and accessing new types of
objects, which spells out the methods for integrating new

object managers.

0o Userx interfaces and related utility programs to provide
convenient access for both people and programs to the

system objects and services.

IL

3.2 The Cronus Object Model

The object model provides a coherent and uniform framework
for the system components of Cronus, and potentially for

application programs in a Cronus cluster. Since a distributed
operating system is itself a distributed application, the
methodology used in its construction should apply equally well to

the construction of other distributed applications. The 0
references [Xerox 1981, Rentsch 1982] discuss the object-oriented
model of programming. The following are the key features of the
object-oriented model that Cronus supports.

" Each Cronus object is a member of a well-defined class,
which is called the t of the object. The names of
Cronus types begin with the string 'CT_'. a list of some
of the more important types may be found in Table 1.

" There is a set of operations (often called methods in the
literature) defined for each Cronus type. These define

the only ways that an object can be examined or modified.

" Every Cronus object has a unique identifier (UZD) name.
References to the object are generally through its UID,
which is a bitstring uniquely identifying the object over
the entire Cronus cluster Cronus also has a symbolic
catalog for cataloging UID's to provide convenient
reference to objects.

" The primitive Invoke causes a named operation to be

performed on a named object.

" There is a basic set of operations (called generic
operations) which are defined for all objects; these
operations promote a unity among the various object types
of the system and constitutes a limited form of
inheritance of the operations defined for the basic type

CTObject. These operations include those which create
and remove objects, and those which control access. Each
Cronus type then has its own operations, and may redefine
operations which are known to its parent class.

o An object has one or more parts that are visible to the
outside world. These may include data, an object
descriptor, and an active (or process) component. All

-14-

6E'IS,

Cronus objects have at least an object descriptor, which
is the repository for such information as access rights.

Object Name See Section

CT Object 4.2

CTHost 5.1.4
CTCronus Process 5.1.2
CTPrimal Process 5.1.3
CTProgramCarrier 5.2 0

CTCronusCatalog 9.2
CTCatalogEntry 9.2.1
CT_Directory 9.2.2
CTSymbolic Link 9.2 3
CTExternal_Link 9.2.4

CTCronus_File 8.1
CTPrimal File 8 1
CTMigratory_File 8.1
CT_DzspersedFile 8.1
CTExecutable_File 8.1 0

CTPrincipal 7.5.2
CTGroup 7.5.3
CTAuthenticationData 7.5.1
CTSessionData 11

CT Line Printer 10

Table 3.1 Cronus Objects

Fundamentally. the implementation of the Cronus system kernel

consists of the implementation of the primitive Invoke. Each

object is associated with an abiect manager, which knows all the
internal details of the construction and location of the object. •

-15-

When an operation is invoked on an object, the Cronus kernel is
responsible for delivering the operation to the appropriate
object manager, which performs the task requested in the
operation, and, if appropriate, responds to the invoker.

The operation switch in the Cronus kernel supports both
invocations of operations on objects and message communication
between processes. Since processes are system objects with
defined operations to send and receive messages, the operation •

switch provides a host-independent interprocess communication
(IPC) facility for both the system implementation and application
programs. Further details of the object model and the design of
the operation switch are described in Section 4.

Some of the attractiveness of a distributed architecture is
the potential to utilize redundancy and configuration flexibility
interest in the hardware architecture. Cronus supports a unified %
approach to these attributes through its object orientation. In
general, three somewhat different classes of objects will be
accessed in Cronus. These are.

I. Primal Objects

These are forever bound to the host that created them.
There is no simpler form of Cronus object. An example
would be a Primal File, which is permanently bound to its

storage site.

2. Migratory Objects

These are objects that may move from host to host as
situations and configurations change. A standard Cronus
mechanism can locate the current site to complete an 0
object access.

3. Structured and Replicated Objects

These are objects which have more internal structure than
a single uniquely identified object. For example, a

replicated file would have a number of primal files as
its constituent parts. The UID would be recognized by

manager processes on each of the sites for the more
primitive elements. Replicated objects are a key element

in Cronus system survivability.

-16-

.mr

Cronus can be extended by adding new object types to support

new requirements or functions. Certain features are required for
each object type including supporting the generic operations. In

addition, the object model and its associated system components
define a number of system conventions such as. integration with

the monitoring and control software which may be adopted by
subsystem designers, on a case-by-case basis. A subsystem
designer can depend upon the existence of required features in 0
other system components, and is obligated to provide them in each
new component. On the other hand, the Cronus system design
minimizes the number of required features for system entities.
which. in turn. reduces the buy-in costs for new hosts and object

types

Maintaining the integrity of complex objects is the

responsibility of the managers for the type. This means that
techniques can be tailored to the patterns of access to the
object being maintained.

Since the generic operations include those which manage
access permissions. uniform access control is a basic part of the
Cronus object model The object managers control access to the
objects they maintain through the use of access control lists

(ACL) The operation switch reliably stamps the UID of the
invoking process on each of its messages, so the process making
the request can be reliably identified.

The conventions for communication are based on the message

structure library (MSL). A message consists of key-value pairs.
*There are also conventions that provide simple transaction
protocols, and other features to support flexible message
handling and processing. The MSL also standardizes the 0
representation of data types, which allows the common
interpretation of data items across a Cronus cluster. The MSL

design is discussed in Section 6.

3.3 System Objects

To provide the initial operating capability, a number of
basic system object types and their managers are being developed
to support the functions outlined in the Cronus Functional

Definition [BBN 5041] They include. 0

-17-

S

o Process objects and process managers that support the
Cronus system and user programmable processes. They may

be linked together across the cluster, and connected
through interprocess communication to form a user
sess ion.

0 User identity objects and a permanent user data base that

support authentication and access control.

0 Directory objects and catalog managers that implement the
global symbolic name space.

o File objects and file managers that provide a distributed
filing system which can be used in providing non-volatile
storage for developing portable object managers, as well
as for satisfying application program data storage 9
requirements.

o Device objects and device managers that support the
integration of I'O devices into Cronus.

Much of the Cronus design has been decomposed into the ,
subprobiems of developing the Cronus distributed object model and
of designing the components which provide these basic system
objects The design of these components is described in detail
in Sections 4-12 and in the Cronus User's Manual.

.

3.4 Cronus Name Spaces and Catalogs

Cronus has two system-wide name spaces for referencing
objects. The unique identifier (UID) for an object is the basic
name. Unique identifiers are fixed-length, numeric quantities,
intended for use by programs but unsuitable for people to read,
remember, and type. The unique identifier has internal structure
which Cronus uses. but is normally invisible to applications. It

contains the name of object's type and the name of the host that
generated it. The host name is useful as a hint for locating•
certain objects which do not migrate.

The Cronus system also includes a global symbolic name space
oriented toward human use. Normally. the accessing agent would
interact with the Cronus symbolic catalog manager to look up the

-18-

" ."N " " "

unique identifier for the object. After it obtains the UID, the
accessing agent can then invoke operations on the object.

Although there is no single identifiable catalog supporting
the UID name space, the notion of a catalog for UIDs is a useful
abstraction. This catalog will be referred to as the UID Table,
in practice, the functions that it supports are implemented by
object managers for different object types by means of UID-to-
object-descriptor tables, which can be thought of as fragments of
the UID Table When a Cronus object is assigned a UID an entry
is created in a UID table. This entry contains the information
that the manager needs to access the object. Object managers
support two kinds of operations. The generic operations. for
example. those used to create or remove an object, to modify the
access control list, and to examine the object descriptor, are
defined for all objects. Other operations may be defined only on
a particular type, these are often called type-dependent
operations.

The Cronus operation switch provides client processes with
addressing based on the UID, so if a client process has the UID,
it can communicate with the object. The UID is a universal name
that can be used from any one of the hosts in the cluster to
refer to the object, no matter where in the cluster it is stored.
Although it may not happen often in practice, objects may move
(or be moved) from one host to another. When an object is
relocated in this fashion, its UID does not change. A replicated
object also has a single, unique identifier for client access to
any of its images. Replicated objects may be developed out of
more primitive, non-replicated objects which are usually accessed

directly only by the replicated object manager.

A Cronus unique identifier actually consists of a pair

<UNO, Type>

where UNO is an 80-bit unique number, and T is a 16-bit value ,f

naming the type of the object. The UNO portion of the UID is
uniquely associated with a particular object. Each Cronus
service is assigned a type. In the current design, all types are
statically well-known. Since the type field can encode as many
as 65,536 distinct types, there is room for expansion to dynamic
types at a later time.

-19-I

Each Cronus type has a generic name associated with it, this

is a UID that has the type portion set to the type of the object

and UNO portion set to zero. Cronus generic names are used for a
variety of purposes. They act as class names in many of the

places one would expect, particularly when an object is being
created. That is, the creation of an instance of a class is

treated as an operation on the generic name. In addition, the
generic name is used when the system is interrogating the
operation switch to find a manager for the type. In the current
implementation, the manager itself is implemented from a Cronus

primal process, which has a UID of type CTPrimal Process that
was selected when the process was created. The operation switch

is responsible for identifying the process that manages objects
of a particular type. It does this by examining the type portion

of the UID name on which the operation has been invoked.

The facility that generates unique numbers may be regarded
as existing continuously throughout the life of a Cronus
configuration. and is accessible to system and application
processes. No two requests by client processes for a UNO ever
obtain the same UNO. Hence the unique number generator is an
example of a survivable distributed program. The generator must
be survivable, because UIDs must be unique over the lifetime of
the cluster, and it must be distributed, because without it new
objects cannot be created, so it cannot depend on any single host
being up. 0

The UNO consists of three fields. a HostNumber, a

Hostlncarnation and a SequenceNumber. The HostNumber is the
Internet address of the host that generated the UNO. The

SequenceNumber is incremented for each request. The
HostIncarnation is incremented if the SequenceNumber overflows .

its field. It is also incremented whenever a host that has been

down comes up. In order to assure the uniqueness of the UNOs
which are generated. the HostIncarnation is kept in stable
storage, either on the host itself or on some other host that
supports stable storage.

The UNO size. 80 bits, was derived from assumptions about
the number of UNOs that could be generated over the lifetime of
the Cronus implementataion and the mean rate at which systems
enter or and leave a cluster. The current field sizes will allow
a mean generation rate of about 10,000 UNOs per host per second
and a mean crash rate of once every 3 minutes for 100 years.

-20-

• WON 3

these numbers are assumed to be adequate for reasonable system
activities.

The principal design consideration for the symbolic name
space is to make it easy for people to use. Names for Cronus
objects are uniform and host independent. Symbolic names are
supported by a catalog that provides a mapping between symbolic
names and the UIDs. This name space is a tree, composed of nodes
and directed labeled arcs. There is a node called the root.
Each node has exactly one arc pointing to it, and can be reached
by traversing exactly one path of arcs from the root node. Nodes

in the tree generally represent Cronus objects which have
symbolic names. A complete symbolic name begins with the
pinctuation mark colon (.), followed by the names of the arcs,

separated by colons For example. a:b:c is the symbolic name of
an object

Not all Cronus objects have symbolic names, and those that
do may have more than one. When an object is given a symbolic
name. an entry is made in the Cronus Catalog, and when the name
for an object is removed, its entry is removed from the Cronus
Catalog. The Cronus Catalog supports Enter, Lookup. and Remove
operations. In addition, operations are provided to read and to
modify the contents of catalog entries.

The catalog is distributed, different hosts manage different
parts of Ithe name space. The implementation is logically
integrated, however, so that any catalog manager process can be

asked to perform any of the catalog operations. The upper
portion of the hierarchy is replicated to support efficient

access to different parts of the name space. The symbolic*
catalog is implemented out of more primitive directory objects,
which adhere to the general Cronus object paradigm. The Cronus 0
catalog is described in detail in Section 9.

3.5 The Cronus File System

The collection of all Cronus files constitutes the Cronus
distributed file system. Within this file system, Cronus
supports several file types. The most basic file is a primal
file, which is stored entirely within a single host and is bound
to that host throughout its lifetime. Other types of Cronus

C-21-

files are built from primal files. A replicated (or multi-copy)

file, which has multiple instances replicated across Cronus hosts

for increased availability or enhanced responsiveness, is
constructed from several primal files. Therefore, if a host
contributes storage resources to Cronus. it must support primal

files.

There is no single table that lists all file objects.
Rather, each file manager owns all of the data for the file
objects it manages. The Cronus object addressing facilities make
possible a client interface in which knowledge of a UID is
sufficient to access the file regardless of its location.
Clients may make file placement decisions themselves if they

wish. Alternatively, placement decisions will be made
automatically,

Ordinary read and write operations may be performed on file
objects. The expected mode of access to Cronus files is to
transfer the file data as needed. much like conventional
filesystem access to disk files. Copies of Cronus files are made
only to satisfy explicit user requests or to support other system
requirements The design for the Cronus File System can be found
in Section 8.

3.6 Cronus Process Management

There is more than one type of process object in Cronus.
Primal processes are the simplest process entities. They are

constructed from the process abstraction that exists in the
constituent host operating system. This simple form of process
is used as a building block for the system implementation,

minimizing integration costs for new Cronus host types. Since
primal processes cannot be loaded dynamically with user programs
and lack flexible process control functions, they are too

inflexible to be used as vehicles for general application
programming, but are used as object managers and in other well-

defined system roles.

To satisfy the requirements of application programs, primal
processes are augmented with a subtype, the program carrier

process, which supports a richer process environment. Program
carrier processes can be loaded remotely and started in a manner

-Z2-

that is uniform across the cluster. In addition, program

carriers support. in a host-independent manner, the kind of
flexible control and interconnection of related processes found

in modern operating systems.

Cronus processes have most of the features natural to the

host on which they are built, and no attempt is made to hide
these features. An application builder has the choice of when to
use locally-supported features and when to use standardized
Cronus features. To the extent that applications choose to adopt

Cronus process features, they will be better integrated with the
other cluster processing activities. On the other hand. the
judicious use of local features will enhance the efficiency of
the activity. Cronus processes are described in Section 5.

3.7 Device Integration

Special purpose devices, such as line printers and tape
drive devices are important elements in a system configuration.
As Cronus objects. these devices are available to the entire
cluster through an object manager. In some cases, more elaborate

interfaces can provide an access path with specialized features.

For example, a line printer service, can be provided that
supports spooling. Device integration is discussed in Section

10.

3.8 User Identities and Access Control

Users are represented by system objects, known as

principals. A principal object contains data that describes the
manner in which the user may use the system. This information
supports operations such as authentication and session

initialization. The object manager for the principal objects and
for other access-related objects is called the Authentication

Manager. The Authentication Manager component services the
entire cluster.

The purpose of Cronus access control is to prevent

unauthorized access to Cronus objects. This is done uniformly by
associating an access control list (ACL) with each object.

-23-

Access is then either granted or denied based on the identity of
the principal associated with the accessing agent and the
contents of the access control list for the object.

The operations of the Authorization Manager and the access
control sytem are discussed in Section 7.

3.9 Process Support Library

The Process Support Library (PSL) is a collection of
functions, that may be bound into the load image of a Cronus
process

PSL routines are considered part of the Cronus system and
are generally supplied with the system and maintained by system
programmers. The PSL fills the following major roles.

I It provides a convenient interface to Cronus operations.

2 It provides access to special Cronus features such as the
facilities which generate UNOs and structure messages,

and to the elementary file system that underlies the
primal file sytem; It also provides a uniform interface
tb the interprocess communication facility. These
features are not normally accessed though the Operation
Switch.

3. It provides COS interface and utility routines necessary
to support the production of portable programs. This
includes format conversion routines and machine-dependent •
constants, for example.

3.10 Important Subsystems

Subsystems are components which use system-provided features
to support user services. Two important subsystems in the
initial implementation of the Cronus systems are the user
interface and the monitoring and control subsystem.

-24-

0

0

The user interface consists of several components, ihcluding

the session manager. command interpreter and terminal manager.

The user may gain access to the system from dedicated terminal

access concentrators, from one of the shared hosts, or over the

internet. The interactive processes which are controlled by the

user interface will be distributed across the cluster as required
either by the application itself or under the direction of the

user. A discussion of the user interface may be found in Section

11. In addition, examples of user interaction are shown in

Appendix A (Scenarios of Operation).

The monitoring and control subsystem (MCS) makes it possible
for an operator to monitor and control the entire cluster

configuration from a single console. The functions of the MCS

include starting or restarting parts of the Cronus configuration, S

monitoring its facilities and components, and collecting error

reports and statistics. The MCS monitors object managers and

collects statistics based on a functional decomposition across

the Cronus configuration rather than a site-based decomposition.

The monitoring and control design is described in Section 12.

3 11 The Layering of Protocols in Cronus

The underlying support for the Cronus cluster architecture

is a high-speed local area network. The Ethernet standard has

been selected for an inter-host transport medium within the

initial Cronus configuration. The Cronus design does not,

however, depend directly on this. so later versions may use a

different local network. Furthermore, the design does use the

DoD standard protocols at higher levels, and requires an

interface between them and the physical local network. •

To accomplish these objectives, we have developed a Virtual

Local Network based on DoD Internet Protocol (IP) conventions and

a representative set of local area network capabilities. The
Virtual Local network is an interhost message transport medium
which is independent of the physical local network. •

The Virtual Local Network layer is described in Appendix C.

It provides a primitive datagram service, compatibility with
Internet addressing, and independence from the details of the

physical local network. VLN datagrams can be specifically

-25-

addressed, broadcast, or multicast. The VLN guarantees that
datagrams are delivered in order (sequenced) when they are
delivered at all, and that a datagram is received once or not at
all by each intended recipient (non-duplication).

-6

4 Object Management

4.1 Introduction

In this section, we outline the Cronus object model and show
how it is used to structure the kernel of the system. This
discussion consists of the following elements.

" A short discussion of the object model in general, and of

its relationship to Cronus objects.

o A general description of the basic objects that are

included in the first implementations of Cronus.

" The system primitives that Cronus uses to cause
operations to take place on objects.

o The role of special processes, called obect managers. in

the implemention of objects.

o The mechanization of the Cronus primitives, and the role
of the operation switch in this mechanization.

" The definition of generic operations that are defined for
all Cronus objects.

o The structure of object managers.

In the course of this section. it will be necessary to refer to
the characteristics of Cronus processes, and to the methods of

communicating between such processes. Those elements of process
management and interprocess communication which are needed for
the understanding of the Cronus object model and for the
construction of object managers will be sketched in this section,
while the details have been placed in Sections 5 and 6.

-27-

4.2 General Object Model

There is a considerable and growing literature concerning
object models and object-oriented programming, and it is not our
purpose to describe these methods in detail. On the other hand,
the conceptual framework and terminology of object-oriented
programming and system decomposition has not fully stablized, and
any system, like Cronus, that claims to use this methodology is
actually selecting from a range of ideas and applying then to a 0
specific situation; in this case, to the design and
implementation of a distributed operating system.

The basic idea of object-oriented systems is that all
interactions can, at some level, be described in terms of a set
of defined operations on objects. These methods are strongly

associated with the development of the Smalltalk-80 system
[Goldberg 19831. but are also an outgrowth of work in the

manipulation of data abstractions [Liskov 1977], [Robinson 1977],
and recent developments in programming languages. There are
useful. brief introductions to the use of these methods in [Jones
1978], [Weinreb 19811 and [Rentch 1982].

At first glance. one might consider it enough to think of an
object as an instance of a data abstraction. If the internal

structure of the data object is suitably hidden from the outside
world and the proper operations provided to manipulate the

object, we can find out everything we need to know about it and.
equally important, nothing about how the object is actually put
together. This is a strong application of the hiding principle
of software engineering, combined with a set of methods to
examine and modify the part of the data object which is of

interest to the outside world.

The object model is this and more, however. There are
several extensions to this basic idea which have been made in
various systems. One of the most important is inheritance, which
we will discuss below. Another is the addition of objects which

are more than instances of a data abstraction; for example, in

Cronus we have process objects as well as pure data objects.

In Cronus, all the objects which are alike in their
structure and in the operations which they respond to are members
of a Cronus type (in other systems. this is often referred to as
a class). Inheritance describes a relationship between types.

-28-

S

We can say that a particular type is a subtype S of some other
type T. In saying this, we are saying that an instance of the
type S is like an instance of type T in some important way.
Usually this is described by noting that any operation which may
be invoked on an instance of T may also be irvoked on an instance
of S. This does not mean that exactly the same procedure will be
applied to exactly the same kind of entity. For example, all
Cronus objects inherit the properties of the basic Cronus object
type CTObject. There are a set of operations defined on this
object. including Remove, which causes the object to go away. A
very different procedure is used to Remove a primal file object
(whose type is CTPrimal.File) than the one which removes a user
process (whose type is CTProgram_Carrier). But there is some
clear intuitive feeling which we have of what Remove means if we
think of primal files and user processes as objects.

It is worth noting that the inheritance relationship is
rather different from the relationship which one finds in
composite objects. For example, the Authorization Manager
supports the type CTGroup, which is a composite object that is
built out of principals (objects of type CTPrincipal, which is a
representation of a system user) and other objects of type
CTGroup. Groups are not subtypes of principals, but are
constructed from them. Some operations that can be invoked on a
principal, such as the ones which manipulate the group expansion
list have no analogue in the definition of a group, and make no
sense if they are invoked on a group.

The following are the basic object types that constitute the
initial implementation of Cronus.

CTObject. This is the most basic type, and the generic
operations that create and remove objects and maintain -
the access control lists and object descriptors (see
Section 4.4 and Cronus User's Manual object(3)) are
defined for objects of this type. In Cronus this is an
entirely abstract form, and there are no instances of
objects of type CTObject.

CTHost. The Cronus system is made up of a series of hosts
which provide services for users. This object has a

process component that creates and manages the primal I
processes that, in turn. actually perform the services
and manage the other objects of the system. The CTHost

-®9-

object is sometimes called the Primal Process Manager for
the host, because that is its most visible function. The
CTHost object is closely allied with the operation
switch, which is used to implement the invocation of

operations on objects.

CTPrimal_File. The initial implementation of Cronus supports
files which are bound to a specific host. All ordinary
user data is stored in objects of type CTPrimal File.
In addition. a number of other object types are
constructed from primal files.

CTCatalog' The Cronus catalog is made up a series of entries
which translate symbolic names into the corresponding

UID.

CTDirectory. The Cronus catalog entries are organized into
objects of type CTDirectory. These are built from
objects of CTPrimal File. but this structure is entirely
hidden from the user by the Catalog Manager.

CTPrincipal. A principal is the system's representation of a
user or a system service which requires access to some
other service or object manager. The access control

system depends on identifying the objects of type
CTPrincipal which are permitted to carry out an
activity.

CTProgramCarrier A program carrier is a process shell that
is prepared to receive a user program. The basic primal
process is too simple an object to be effectively used
for applications, even though it is adequate for long-
lived independent processes like object managers.

There are a number of other object types which are associated
with the Catalog Manager (such as CTSymbolicLink) and with the
Authorization Manager (such as CT_Group), but the system could

function without them.

In object-oriented programming, a client invokes operations
on an object, often called the receiver, which is identified by a

UID, ObiectUID(3). The operation itself may be represented as a

(3). There are a few cases in Cronus where objects are

-30-

Y VJ JUVU.WW~ W.U WUWM *w

pair

<OperationName, Parameters>

In Cronus the basic primitive which causes an operation to be
invoked on an object is InvokeOnHost. This causes Operation to
take place on the object named by ObjectUlD on a host at a
specified network address. The operation switch of the Cronus
kernel provides the mechanization of this primitive (see Section
4.5)

While the primitive InvokeOnHost is sufficient to support
the system. the relatively large number of reply messages suggest
that there should be a more efficient method for answering a
request(4). A second message primitive, SendToProcess is
provided for this purpose. When a message from a client is
delivered, the ProcessUID for the client is included. The
manager may then use SendToProcess to reply directly to the
client.

In a distributed system, the client does not usually know
which host has the object manager which is responsible for a
particular object. Each object must be willing to say whether it

is on a particular host. that is, there is a particular
operation. called Locate that is among the operations which is
defined for every object in Cronus. When this operation is
invoked on the object ObjectUID at some HostAddress. the object ,
manager for that type will reply if it manages that object (5).

If the client does not specify the host when invoking the

operation, the PSL performs the required Locate operations to
determine where to send the operation. These Locate operations

identified by other means, for example, a specific catalog entry
may be identified by the symbolic name which is being
manipulated. The argument presented is analogous, so it is
sufficient to consider the cases where the object actually has a
UID.
(4). If InvokeOnHost is all that is available, the reply must be
passed through the manager of the process to which the reply is

directed.
(5). Actually, if the client wants the negative acknowlegement,
it will also reply if it doesn't anage the object.

S

-31-

a~t~ M 441

are often performed using the broadcast facilities of the VLN.
The PSL (or the client) may cache locations of specific objects
and object managers for increased efficiency. In addition,
primal objects, which are bound to the host which creates them,
can be found quite easily. The PSL looks at the HostAddress

portion of the UID, which contains the address of the host which
generated the UNO portion of the UID. For the current
implementation, the UN is generated on the host that creates the
object, and that also currently holds the object if it still
exists.

Subtype relationships are not a primitive concept in the
implementation of Cronus There is no direct implementation of
inheritance, there is, instead, a discipline which says that the
manager of each subtype must implement the inherited operations. S
Subtype relationships are statically realized in Cronus, through
the cooperation of the object managers and the operation switch.
In addition to simple re-implementation of the inherited
operations (which is used for the generic operations), there are
several static implementation techniques that can achieve
inheritance. A manager may register several type values with the S
operation switch, and implement some as subtypes of the others
internally. Alternatively, one manager may invoke another
through the standard mechanisms.

4.3 Object Naming

The Cronus object model requires a mechanism for delivering
messages addressed to objects. This mechanism, outlined briefly
in Section 4.2 and described in detail in Section 4.5, is called
the operation switch. The operation switch, in turn, requires •
the client to identify the object which is being modified or
examined. The standard identifier for an object s its UID,
which is a bit-string containing 96 bits. This bit string

consists of two components: a unique number (UNO) that is
different for each object which has ever existed in the cluster,.NN
and the Cronus type. It is useful to think of the UID as having 0
four fields (see Cronus User's Manual uid(4), uno(4)):

HostAddress. the 32-bit Internet address of the host which
created the object. If the object is a primal object,
the HostAddress is also the actual address of the object,

-32- j

if it still exists.

IncarnationNumber: a field containing an integer which is
incremented whenever the host is loaded or reset, or when
the associated SequenceNumber field overflows.

SequenceNumber; a simple counter field which is used to

assure the uniqueness of each UNO that is used to name an
object.

CronusType. the 16-bit integer specifying the Cronus type of
the object

Between them, the IncarnationNumber and SequenceNumber fields
contain 48 bits, but the subdivision of this string may vary from 0

host to host, for the hosts in in the initial implementation.
each field is 24 bits long.

It should be observed that the object is actually identified
uniquely by the UNO portion of the UID, and that the the Cronus
type is added so the operation switch can find the object 6
manager. In particular, it is possible to think of an object as
having more than one UID, consisting of the same UNO paired with
different types. The current system does not make any
interesting use of this possibility.

There are also generic (or logical) names, which consist of
a zero UNO and a type field specifying the type of the generic
name. Specific names are used for objects which can be created
and destroyed, and have private state information which is
important to the accessor (e.g., a particular file). Generic
names are used for special purposes. For example, the client can
find out if there is an object manager for a particular type on a S
host by performing an InvokeOnHost to Locate the generic name.
Generic james are also used in operations, like Create, in which
there is no object name available, the generic names act like
class objects in other object oriented systems like Smalltalk, or
like the generic addressing facility in NSW's MSG, which is used
to address an instance of a service. _

The PSL provides a pair of functions which convert between a
type name and the generic name for that type (see Cronus User's
Manual uidtype(2)). Generic names, like types. can be referred
to symbolically By convention, logical names begin with the

%

-33-

%

S

prefix "CL-". For example, CLPrimal_File is the generi6 name of

an object of type CTPrimal_File.

Accessing agents interact with object managers using Cronus

Interprocess Communication. The client may initiate access by
giving either the UID for the object or by giving its symbolic
name The PSL provides functions which will accept either name.
If the accessing process has the UID of the object, the PSL
simply constructs a message that invokes an operation upon it.
The operation switch delivers the requested operation code, the
UID, and any other parameters to the appropriate object manager.

The object manager consults its fragment of the b;D Table to

access the object as necessary to perform the requezed
operation. If, on the other hand, the accessing process does not

have the UID, the PSL first consults the Cronus catalog; then,
when it knows the associated UID. it composes the message and

sends it on its way.

This means that we allow the symbolic catalog to be by-

passed when an object is accessed, and the accessing process
knows the UID. This improves performance and enhances the
flexibility of using primitive objects to build complex objects.
since the object manager for the complex object can use the UIDs
of its components directly. The cost of achieving these benefits
is primarily one of increased implementation complexity:

1. Access control is performed in a decentralized fashion by
all of the object managers.

2. Information about objects is distributed among object
managers and catalog managers. Care must be taken to
ensure that the information about an object is

consistent, or if it is not, that the system can operate

properly.

4.4 Generic Operations On Objects

The generic operations are defined for all system objects.
These operations fall into several groups:

Create and Remove. These bring the object into existence and
destroy it. The operation Create is invoked on the

-34-

W r

generic name for the object. These operations mu'st be

defined for all objects.

Locate. If the object exists and is managed by the object

manager which receives the message, the manager replies
that it knows about the object. This operation must be

defined for all objects.

ReadACL and Write_ACL: These manipulate the access control 0

list of the object. These operations must be defined for
all objects which are separately access controlled.
There are a few objects whose access is controlled
through another object. For example, objects of type
CTCatalogEntry are controlled through the permissions
on the containing object of type CTDirectory. 0

Read_Sys_Parms, WriteSysParms, ReadUserParms,
WriteUserParms. Every object has an associated object

descriptor. The object descriptor contains various
pieces of information about the object that are made
visible to the outside through these Read operations, and _

may be modified by the Write operations. Access is
controlled separately for the User and Sys portions of

the object descriptor.

ReportStatus: This operation is normally performed on a
generic name associated with an object type. For 0
example, ReportStatus is invoked on the generic name
CLPrimal_File to find out how much space there is

available on the associated file system.

For some operations, such as Create, the exact list of parameters
and responses will vary from object type to object type. Other
operations, such as those which operate on the access control

list, perform in the same way for all object types. For details,
see the appropriate sections of the Cronus User's manual,
especially object(3), acl(3), the descriptions of the objects
below and in Section 3 of the Cronus User's manual, and the
descriptions of the PSL routines in Section 2 of the Cronus

User's Manual.

-35-

1r' .

4.5 Object System Implementation

In order to describe the design of the operation switch and
its role in message-oriented interprocess communication, we must
briefly introduce Cronus processes (the Cronus process is
described in detail in Section 5).

Cronus processes are constructed from constituent host
processes (CHPs). The properties of a CHP are defined by the
machine architecture and the constituent host operating system
(COS). The Cronus process is constructed from one or more CHPs,
with the addition of Cronus process features. The simplest type

of Cronus process is the primal process JPP). A primal process
is a CHP which can invoke operations on objects through the
Cronus Interprocess Communication facility and can be controlled •

by the Primal Process Manager. In addition, a primal process can
use the Cronus primitive Receive to receive messages sent through
the Cronus IPC by either InvokeOnHost or SendToProcess.

The implementation of Receive employs CHP-specific
synchronization facilities, described in the appendixes on the
interface to the COS. to build an asynchronous Receive operation.

This section describes the framework of the object system
implementation on Cronus hosts. Figure 4.1 illustrates the
relevant components on a single host. The boxes in the figure
represent abstract modules of the implementation, and do not
necessarily map one-to-one into CHPs or address spaces.

-36-

2 3 4

IPrimal Processi IPrimal Fulel JProgram Carrierl I Program I
Manager I Manager I Manager I Carrier 0

I Operation
Swit ch

IMessage
IService

IF

I VLN 0

Figure 4.1 Object System Components

In Figure 4.1. boxes 1-4 are Cronus process objects; box 5
is the operation switch, which accepts messages from and delivers
messages to the Cronus processes on this host, box 6 is the IF
protocol demultiplexing service, and box 7 is the Virtual Local
Network layer.

-37-

Mai=

The operation switch is table-driven. This table contains

routing information that the operation switch uses to direct

messages from process to process. The sender and receiver may

both be on a single host. or the message service may be involved

in a host-to-host message transfer. The operation switch does
not retain information about the messages, although it may gather
statistics and transmit them to the Monitoring and Control System
(see Section 12).

Since the invoker can request reliable message transport,

and ordinarily does so for InvokeOnHost applied to a specific
host address. a failure of an operation invocation is not likely

to be due to a transient communication fault, with high

probability, either the network or the target host. or both, are
down (see Section 6 for a detailed description of the IPC and 0
these services).

The invocation sequence for an operation is.

o The Cronus Process Support Library (PSL), which is the
component of the system that appears within the client S
process. formats a message which contains the name of the

object. the operation. its parameters. and other

information which is needed by the system.

o The message. which is marked as an invocation of the
operation, is handed to the local host's operation .
switch. If HostAddress specifies the local host, it

processes the message itself, otherwise, it forwards the
message to the specified host. (These functions are
directly supported by the Cronus Interprocess
Communication facility, which is described in detail in

Section 6.)

o The receiving operation switch examines the ObjectUID,
determines the type of the object, and hands it to the
object manager for that type, if there is one.

o The object manager for the object type then performs the

processing associated with the operation and its

parameters.

o Although it is not necessary for an operation to follow a
request-reply paradigm. most do. If a reply is needed,

-35-I

the object manager prepares a message that is returned

using the SendToProcess primitive.

Fxgure 2 illustrates the transmission of an operation from

the invoking process, through the local operation switch, to the

remote operation switch, and finally to the receiving process.

This section describes the calls and the representation of data

structures at the interfaces 1, 2, and 3.

-- 3-------- 3

I Invoking 1--->l Local I I Remote I--->1 Receiving

I Process I OS I I OS I I Process I

Figure 4.2 Operation Switch Interfaces

When the client performs an InvokeOnHost primitive on the

Cronus object. a message is generated that is ultimately directed

to a manager process and accepted by a Receive in that process

Information crosses interfaces (1) and (3) by means of Cronus

system calls, which are representations of the primitive

functions, made by the invoking and receiving processes, these

calls may be represented as;

InvokeOnHost(TargetAddress,ObjectUID,Operation)

Receive(SourceAddress,SenderUID,ObjectUID,Operation)

where the function parameter Operation includes both the intended

operation and its parameters. (6).

(6). The calling sequences for these functions have been

modified for purposes of presentation clarity. see the Cronus

User's Manual send(2) and receive(2) for a description of the

actual calling sequence.

-39-

I. Ila I I

Interface (2) is peer-to-peer communication between

operation switches, which is discussed in greater detail in
Section 6. Messages exchanged between operation switches are
octet sequences. The Operation parameter of the InvokeOnHost
call is not interpreted by the operation switch, and is treated

simply as data to be moved. The message has several header
fields that are visible to both operation switches; these include
the UID of the object being operated upon (ObjectUID) and of the

client (ProcessUlD).

When the InvokeOnHost message arrives at the target host,
the operation switch tries to map the type to a manager process
on the host. The table of possible destinations consists of a
list of generic UIDs for ordinary managers and specific UIDs for

objects which are managed separately (7). The operation switch
first checks the ObjectUID against the list of specific UIDs,
then the Type field against the list of generic UIDs. If the
mapping is not successful, the invocation is discarded, but will
generate an exception reply. If the mapping is successful, the
message is transmitted to the manager process. The manager
obtains the information by initiating an ordinary Receive

request, when the Receive completes. the SourceAddress,

InvokerUID, Objec4 UID and Operation have been made available to

the manager process.

Although one can reply by invoking the Send operation on the
object ProcessUID, replies are usually sent by means of the

alternative SendToProcess primitive. This primitive hands
messages addressed to a specific process across interface (1).
The operation switch then marks the message which it ships across
interface (2) as a SendToProcess message. The receiving
operation switch then places the message on the queue for the

target process, bypassing its object manager. The mechanism for
delivery, Receive, is independent of the transmission mode of the
original message.

(7). Currently, the only example of such a separately managed

object is the virtual terminal in the user interface (see Section

-40-

4.6 Object Manager Structure

Object managers are asynchronous independent processes.
They are asynchronous because they interleave the processing of
messages. An object manager often invokes operations on other
objects to satisfy the requests it receives, it does not wait for

the reply to such a request, but moves on to the next request or
reply from a previous operation. They are independent processes
because they are daemon processes which are started by the system 0
(or its monitoring and control section) or by another daemon

process. They receive messages, originate requests to satisfy
the client requests, and reply to the original messages.

The asynchronous character of the object manager has a
significant impact on its structure. Managers receive messages •
which cause them to undertake actions. These actions may be of

two types. The first type occurs entirely within the manager's
own address space (or within a single Cronus process that may

consist of more than one COS process), and is called a local
action. The second type requires the manager to perform one or ILI

more operations. called secondary requests, on objects that it S
does not manage. It must be able to keep track of a number of

these actions. On the other hand. the manager cannot wait for
the response from a secondary request before it accepts its own
next request. The processing that comprises the operation is
divided into portions that are performed before and after the
secondary request is issued. When the manager issues the G

secondary request, it saves components of its state that are

needed to complete the processing when the reply arrives.

There are a number of common elements in the construction of
object managers.

A manager normally consists of an initialization section and
a main loop which is driven by the arrival of requests

through the Cronus interprocess communication facility.

Since a manager normally runs forever (until the system

crashes), there may not be code for wrap-up.

The manager parses incoming messages, and dispatches on the
message class, which takes on the values Request, Re..ly, and

A new Request message causes the manager to set up a control

-41-

Emil

block for the operation.

A Reply message causes the manager to identify the control
block associated with the message, and to continue
processing as required by that message.

In the case of a local action, the manager receiving the
message will (normally) process the request to completion and
compose a reply to the originating process.

If a secondary request is necessary, the situation is
similar to that found at the originator. A request can be put
into the form.

InitialPortion
Op(Obj) -> Reply

PostProcessing

That is, a secondary request is basically some operation (Op) on
an object fObi? which generates a Reply. Before we invoke this S
operation, we usually have some initialization beyond composing
the message (InitialPortion) and after we get the reply, we often
need to do some PostProcessing.

The procedure that invokes the operation also creates a
control block that contains the information required for reply
processing After it passes the invocation to the IPC mechanism,
it returns without waiting. The manager then processes the next
IPC message (which may be a Reply from a secondary request, or a
new Request), if there is one available. Otherwise, it goes to
sleep until the next message arrives (see Section 6 and
ipcmisc(2) in the Cronus User's manual for details). When a
Reply for a secondary request arrives, the manager finds the
control block associated with it, and performs the reply
function. When the reply processing returns normally, the
PostProcessing routine is invoked if the message is marked OK,
and an alternate error-handling routine is invoked if the message
is marked NOTOK.

The independent character of the object manager principally
effects the way errors are handled. When a process is
interactive, it makes some sense to report the error to the user.
If an independent process detects an error condition, it may be 0

-42-

1 1 1 F I

0=

necessary to report the error to the client that issued the
request, to the monitoring and control station (MCS, see Section
12), or to both. In addition, Cronus managers keep statistics on
the kinds of errors which have been detected, and report them to
the MCS periodically.

A manager that encounters a failure during an operation,
particularly when there are secondary operations involved, must
take steps to assure that the information which is retained
across host crashes (the permanent state of the system) and any
internal status information (the temporary state of the system)
are correct and consistent.

Changes in the permanent state of the system are made by
atomic transactions. If it is necessary to make several changes
in the recorded data to perform an operation. the manager that
receives the operation assures the client all the changes will
take place or none of them will. That is, in the case of a
failure, the atomic transaction mechanism either forces the
transaction to completion by carrying out the intentions which
have been posted. or undoes those portions of the intentions list 0
(see Cronus User's Manual intent(2)) already marked as performed.

When a manager (or any other process, for that matter) is
carrying out a composite action consisting of more than one
operation on one or more objects, there are often other changes
in temporary state which must be undone if an error is detected.
The process maintains a work-in-process list that contains an
entry for each action that is not yet complete. For example, if
a process has acquired locks on several files, and discovers that
an additional lock which is needed cannot be acquired, the
original set must be released. The work-in-process list also
contains entries for additional special processing that is •

required if the action does not complete (see Cronus User's

Manual wip)).

-43-

5 Process Management

5.1 Introduction

Processes are the active portion of any system. Each host
and constituent operating system in a Cronus cluster has at least
one natural concept of the process. More generally, several
different kinds of processes are present in each host, fulfilling
different roles. In the absence of a distributed operating
system, the processes on two hosts are unrelated to each other.
This section describes how Cronus processes work and how they
communicate with each other. The details of how processes are

constructed from constituent host processes (CHPs) are discussed
in Appendixes D. E, and F. In the following discussion. it is

usually safe to visualize a Cronus process as being built from a
single CHP with the addition of an object descriptor and some
specialized facilities which make Cronus work. On the other
hand, the implementation might be quite different in reality.
That is. a Cronus process might be made up of several CHPs, or a

CHP might include more than one Cronus process (8).

If we wish to build a system of cooperating processes on a
cluster of computers, and to use it as a base for a distributed
operating system, we must do the following.

" Define a standard method for communicating among the
processes. Cronus treats processes as objects, and uses
the standard Cronus IPC facility and the primitives

InvokeOnHost and SendToProcess for all interprocess
communication. All procedures developed for structuring

and parsing messages for operations on objects, such as
those described in Section 6, may be used for
manipulating process objects as well.

o Establish mechanisms for creating and controlling
processes on hosts of different sorts. Again, since
Cronus processes are objects, this reduces to the
definition of the operations which may validly be applied

(8). In fact, a Cronus process might even span hosts. In the
current system design, all Cronus process are primal processes.

that is, they are bound to a single host. Later implementations I.
may relax this restriction.

•0

-44-

J t

to the process objects.

o Provide a method for organizing the process objects to
perform tasks. This is accomplished by defining other

objects which reflect the required organization. The
collection of processes on a host, for example, is
represented by an object of type CTHost, which will be
described below. Another example are those processes

that make up a user session, which are represented by an 0
object of type CTSessionData (see Section II).

The following three Cronus types are discussed in this
section:

" CTHost. the organizing object for the primal processes 0

associated with a physical host.

o CTPrimal-Process. the most fundamental type of process.

Object managers are normally constructed from processes

of this type.

" CT_Program_Carrier: a subtype of CT_PrimalProcess that

has augmented process control facilities that make it
more suitable for implementing user processes.

There is one object of type CTHost associated with each physical

host, and it is the object manager of the processes of type
CTPrimal _Process on that host. It is responsible for starting

up Cronus services, which are also object managers for the basic
system objects; it is also responsible for gathering the
information which the operation switch needs to route messages to
the other object managers and to specific processes when the ,,*

primitive SendToProcess is used. •

There are two basic Cronus process types. CTPrimal_Process

and CTProgramCarrier(9). The type CTProgramCarrier is a
subtype of CTPrimal Process. Ordinary primal processes lack
essential process control functions and other desirable
characteristics needed for application programming. The subtype

(9). Future system versions will introduce additional process

types which may be distributed in extent and have special

reliability properties.

-45- I

0

CTProgramCarrier provides an environment tailored to the

requirements of application programs.

Primal processes and program carriers never migrate; once
created, the process remains on the same host until it is
destroyed. The HostAddress in a UID for a primal process or
program carrier tells where the process is, so an operation
switch can tell exactly where to deliver a message addressed to
it.

0

Every host participating in the system must support an
object of type CTHost, which is also referred to as a Primal
Process Manager (PPM), and primal processes. In their minimal
forms, the host object and primal processes are relatively
simple. This keeps the cost of integrating a host type into a
Cronus cluster low for those minimally integrated hosts that can
obtain system services from other hosts, but do not provide

system services.

A primal process which plays a well-defined functional role
within the system is called a Cronus service. Cronus services S
are object managers for system-defined object types, for example.
a Primal File Manager or Program Carrier Manager.

Cronus processes may make use of some or all of the

functions in the Process SuRnort Library (PSL), which provides
high level interfaces to many system functions as well as general
purpose utilities for interfacing to and manipulating the Cronus
environment. Portability is a major goal for the PSL, so that it
can be implemented readily in whole or in part on new host types.
The PSL is discussed further in Section 5.4.

5.2 Objects of type CT_Host

-

The basic organizational elements of Cronus are objects of

type CTHost. These objects correspond to the intuitive physical

hosts that make up the Cronus cluster. A CTHost object consists
of the the Primal Process Manager for the host and the basic

tables which are used by the operation switch in routing
operation invocations. In some sense, it is reasonable to think
of the operation switch itself as a part of CTHost. When a host
joins the Cronus network, only the lowest level of network

-46- j

-~ ~ TO ~V
~~'- MAK

software is functioning; the Monitoring and Control System (See
Section 12) engages in a dialog with this primitive host element,
and brings up the object CTHost. The MCS is therefore the
object manager for the objects of type CTHost.

The Primal Process Manager (PPM) component of a CTHost
object implements operations concerning primal processes as a
class. The tables that identify the object managers and S

processes that are on a particular host, and that therefore are
used to implement the Cronus primitives InvokeOnHost and

SendToProcess, are maintained by the Register and Delete
operations on the CTHost object.

In addition to the generic operations (see Cronus User's S

Manual object(3)), the following operations are defined on
objects of type CTHost (see Cronus User's Manual crhost(3)).

CronusRestart

Service_ List
Process_ List
Register
Delete

The CronusRestart operation is used to shutdown all
activity on the CTHost object. It removes all active processes.

including the process implementing the CTHost object itself.
After a Cronus Restart, the host is in a state from which it may
be bootstrapped.

The ServiceList operation is used to find out what kinds of
service the host is prepared to support, and which ones are in 0
fact being supported. The names of these services, which are
called role designators, are used to start primal processes that
perform the service (see Section 5.3).

The ProcessList operation tells what processes are active
and what roles they are playing, this is the information which

the operation switch has about processes active on this host.
Whenever a process is created or removed, the tables must be

updated. These tables contain the following entries.

o generic names for objects paired with the specific UID of

the Cronus process, J

-47-

o specific UIDs for process objects that will receive
messages through SendToProcess. and

o specific UIDs for those objects whose manager cannot be
identified by reference to a generic name (see Section
11).

The tables also coutain any COS specific information needed to
communicate with the process. They are automatically updated for
processes which are created by the CTHost object itself, such as
the object managers. Other processes are created by other
managers. for example. the program carrier manager. These inform
the CTHost of changes thruugh the Register and Delete
operations

5.3 The Operations on Objects of Type CTPrimal Process

Objects of type CTPrimalProcess are among the most basic
in Cronus. The three system primitives (InvokeOnHost,
SendToProcess. and Receive} are defined for these objects In
addition. the generic operations (see Section 4.4 and Cronus
User s Manual object(3)' are defined. The particular
characteristics of these operations, when invoked on primal

process objects. are described in detail in the Cronus manual

(see Cronus Users Manual p-process(3)).

The Create operation takes a role designator as an argument,
and starts a new primal process performing this role. The role
designator may be in one of the following forms.

1. A Cronus generic UID name for the service.

2. A Cronus symbolic service name These are character

strings containing the literal characters of a logical I
name, for example "CLPrimal_File".

3. A host dependent role designator. These are arbitrary

strings, which have meaning only to the PPM on a specific
host.

Role designators of kinds (1) and (2) are paired, and are
registered with the Cronus system administrator as the names of

-48-

.%

S

standard Cronus functional units. The allowable list of'role
designators of these kinds for a particular host object may be
obtained by invoking the operation ServiceList on the object.
These primal processes are automatically registered, which makes
the logical name known to the operation switch on the host, so
that the process can be generically addressed.

Designators of kind (3) provide for the activation of host-
specific programs or devices. The host dependent role designator 0

might be a COS-dependent file that is executed as a result of the
Create operation. Primal processes created with a host-dependent
role designator generally have no associated logical name, and
cannot be generically addressed.

The primal process will initialize its state entirely from 0
non-volatile storage (local or remote disks).

A process may invoke any operations on itself as the target
object. A process may send itself messages, remove itself, or
read or change its descriptor in the same way it performs these
operations on other objects. S

The operations defined on primal processes provide process
control functions. For example, Remove is invoked to "destroy"
or "kill" the process. It erases all record of the process state
from the system and frees any resources dedicated to the process.

A process which is removed is not notified of the operation,
and has no opportunity to terminate cleanly. Only the resources
actually used to implement the process object are freed '
resources held as a result of the computational activity of the

process (e.g., locks on remote files) are not freed. Some primal
processes may possess dedicated resources, and Remove disables S
the process, without releasing these resources.

A reply will be generated to the invoker to indicate that
the process has been removed. After receiving the reply, the
invoker knows that operations using the UID of the process will

not succeed.

The process descriptor is the object descriptor portion of

the Cronus process. It is useful to think of the process II
descriptor as a list of (key, value) pairs, in the sense of the
MSL (See Section 6.2 and the list of standard key names in the

-49-

%".

S

Cronus User's Manual keys(4)). Some of the values implement

process control. For example. the pair (Key-Priority,5) would

indicate the importance of a process relative to other processes

for competing resources. Some keys must be present in the list
("required keys"), while others are optional (see Cronus User's

Manual p-process(3). process(4)).

All process objects must respond to the required keys in a.,

uniform way. If an object supports a standard optional kgy,, the •
process must apply it in a uniform, system-wide manner.

Additional, elective keys may be present. Their interpretation
is not specified by Cronus. but is the responsibility of the

process and the other processes with which it interacts.

Currently, the required keys for Primal Processes are

Key_MyUID. Key_MyAGS. and KeyIPCEabled.

The value associated with Key.MyUID is placed in the

descriptor when the process is created, and is never changed

thereafter. It is the specific UID of the process, and has type
CTPrimalProcess (or CTProgram_Carrier, in the case of program
carrier objects).

The value of Key_MvAGS is the access group set, used with
access control lists to determine access rights to objects at

operation invocation time. The initialization and use of access

control and authentication data is discussed in detail in section

The value of KeyIPCEnabled controls communication through

the operation switch. If the value is true, the process can send

and receive messages in the normal fashion. If it is false, the

process may not send or receive messages, or invoke operations on S
Cronus objects. This feature can be used for managing access to

network resources.

Currently, the only optional key defined for a Primal

Process is Key-Priority, but others may be defined later.

The generic operations on object descriptors permit a

process to inspect or modify the descriptor of another process.

If several processes invoke these operations on another process
at the same time, the effect will be as if the operations were
processed sequentially. i.e., they are atomic with respect to

-50-

each other.

Since the CTHost object is implemented by a Primal Process,
these process control operations apply to it. One of the
operations, Remove, has a special meaning when applied to the
CTHost. Because it is the manager of Primal Processes, removing
the CTHost removes all Cronus processes on the host. This
forces a shutdown of the Cronus system on the host.

5.4 Program Carrier

The type CTProgramCarrier, which is designed to support S
user programs. is a subtype of CT_Primal_Process, and all of the
characteristics of primal processes are inherited by program
carriers. Additional operations can be invoked on program
carrier objects, and the set of required keys in the process

descriptor is enlarged. The program carrier

" provides a process which can be created. loaded with a
program. started, and stopped under remote control,

o provides uniform monitoring and debugging support; and

o provides application developers with the ability to _
control a collection of user written (possibly
distributed) processes.

A Cronus host is not required to support the CTProgram_Carrier

process type; however, hosts which are not dedicated to system
service roles usually support program carriers. 0

The generic operations (see Cronus User's Manual object(3))

are all defined on objects of type CT-Program_Carrier. In
addition, the special operation SearchAllDescriptors is defined
on the generic program carrier object.

Create creates a new process of type CTProgramCarrier and

returns the UID to the invoker. The program carrier manager
initializes the process descriptor of the new process. Several
of the fields have default values, in particular the standard

input, output. and error output, and the access rights will be

-51-

inherited from the invoker if they are set for that process.

Once a process has been created, the parent (or another
process) may alter values in its process descriptor, using the
generic operations on the object descriptor, if it has the
appropriate permissions.

The Report-Status operation may be invoked on the generic
name CLProgramCarrier to test for the availability of resources 0

before performing the Create operation. Resources may include
processor type, primary memory size, and special processor
capabilities, such as floating point hardware. This operation is

used as part of the scenario for selecting a site at which to run
a program (see Appendix A.8.

The SearchAllDescriptors operation may be invoked on the
generic name CLProgramCarrier to find all program carrier
processes on a host with the designated key-value pairs in their
descriptors. Two important uses of this operation are: 1) a
search on the KeySession key-value pair, to locate all process

associated with a user session. 2) a search on the KeyThread •
key-value pair. to locate all processes belonging to a thread.

Cronus supports several kinds of relationships among program
carrier processes. All processes belonging to a session are
related, and can be located as a group; processes are related in
parent-child relationships. and processes are bound together by
the data streams that connect standard input and standard output
(and by other streams that may be explicitly opened by the

processes).

The knowledge that a group of processes belong to the same
session is useful for coarse-grained error recovery (killing the 0
session). Streams are used primarily to provide continuous data
paths between processes.

The parent-child relationship supports the flow of control
information among processes. When a program carrier is created

at the request of another program carrier, the list of children
in the requesting process's descriptor is updated. and the
requesting process's UID is entered as the parent in the new
process's descriptor. When a process is removed, a message is
sent to its parent. The parent can then use that information to
notify or terminate other children that were communicating with

-52-

-s.,

the first process. As a result, the processes form a tree; any
subtree of this is called a process go. and the program
carrier manager supports operations on process groups as well as
on processes. these operations are applied to each process in the
subtree named by the process that the operation is invoked upon.
These operations reduce synchronization requirements at process
start-up. and still provide an easy mechanism to control all the
children of a process.

The operations defined on objects of type CTProgramCarrier
are described in the Cronus Manual (see Cronus User's Manual
prog-carr(3)). in addition, the operations on its supertype,
CT-PrimalProcess (see Cronus User's Manual pprocss(3)) and the
generic operations (see Cronus User's Manual object(3)) can be
invoked on program carrier objects. The operations that are
specific to the program carrier objects are.

ClearProgram
LoadProgram
Proceed
Suspend
Stop
Report-State
Change-State
Breakpoint
StopGroup
SuspendGroup
ProceedGroup

These operations are sufficient to meet two basic
objectives: 1) It is possible to load a binary image into a new
program carrier object, start it, and allow the process to
complete or be cleanly stopped; and 2) the Suspend, Proceed,
ReportState, Change-State, and Breakpoint operations, together
with the Primal Process operations, will support general remote
process control.

The required keys for the object descriptor of a program
carrier are described in the Cronus User's Manual, on

prog-carr(3) and process(4). These include.

0 KeyMyUID, Key_MvAGS, KeyIPCEnabled, and Key-Priority,
all of which have the same meaning for program carriers

-53-

as for primal processes.

o KeyState, which informs other processes of the current

state or mode of a process. The states reflect only the
interactions of Cronus operations and the process object,
and do not capture finer state subdivisions which are
host or local operating system dependent.

o KeyStlnput, KeyStOutput, and KeyStErr identify the
data streams that are used for standard input, output and
error reporting The streams are used in a manner

analogous to the standard input and standard output of
the UNIX process model. See prog-carr(3) for a detailed
discussion of the mechanism for input/output redirection.

o Key_Parent. which is the UID of the process which

requested the creation of this process.

o hey_Children, which are the processes, if any, created

directlv at the request of this process.

o KeyThread, which is a UID identifying the portion of the
user session in which this process was created. A user

session may consist of one or more threads of activities

that may be running in parallel.

o KeyTerminal, which is the UID of the virtual terminal,

if any, that is associated with this process.

Since the program carrier object is designed primarily to support
user processes, many of the details of the use of these keys are
described in Section II.

5.5 Process Support Library

The Process Support Library (PSL) is a basic part of the
Cronus implemementation. It contains a large number of functions

which can be used to construct Cronus object managers and user
programs. All Cronus programs are expected to use the PSL to
perform the functions which it supports. The distribution of

-54-

responsibilities between the PSL and the Cronus kernel is often
not defined, and may shift from implementation to implementation.
Any program that bypasses the standard PSL interface, and makes
use of private information about this division is no longer
insulated from modifications of the definitions of the objects,
object managers and the kernel, and the use of such a program may
produce unexpected results in the future.

The following is a partial list of the kinds of functions !
which one may find in the PSL.

o A set of standard interface routines for all operations
on the basic Cronus objects. There are two sets of
interface routines, those which are designed for use with S
managers and other asynchronous programs. and which do V

not wait for the response from an operation. and those
which are intended for use in interactive programs, which

do wait for a reply if one is expected.

o Functions supporting composite activities, such as S
writing data on a file specified by a symbolic name

o Functions supporting the construction of Cronus object
managers. These include routines for manipulating UIDs
and UID tables, for managing the processing requests and
their responses in asynchronous processes, for creating
and modifying work-in-process and intentions lists.

" A standard error reporting facility for both asynchronous
and interactive processes.

" Sublibraries for message composition, string 0
manipulation, portable input/output operations. and .

device management.

The PSL is described in detail in Section 2 of the Cronus User's
Manual.

-55-

6 Interprocess Communcation and Messages

6.1 Overview

Cronus presents a set of facilities for the composition of
messages and their transmission to provide a systematic
communication facility among Cronus processes. There are three
parts to this communication support:

o An interprocess communication (IPC) transport facility,
based on the object model and object-oriented addressing.

provides Cronus primitives for uniform, host-independent
communication among processes. This facility, which was

introduced in Section 4. is further described in the
current section.

o Conventions for passing data using Cronus canonical data
types permit messages to be composed without concern for
the heterogeneity within a cluster.

o Protocols and conventions for constructing messages used
in intercomponent interactions, especially the invocation
of operations and the replies.

The Message Structure Library (MSL) organizes these conventions
and protocols by providing routines for the composition and
examination of messages.

The IPC mechanism of Cronus is built upon the primitive
functions InvokeOnHost, SendToProcess, and Receive. These
primitives support the asynchronous communication of
uninterpreted data octets among Cronus processes, by means of the
abstractions of sending to a process or invoking an operation on
an object.

Messages, the entities communicated by the IPC, may be sent
either reliably or with minimal effort. In addition, notions of
both a small message which can be carried by a single datagram on
the underlying transport mechanism, and a large message which may

require an arbitrarily large number of datagrams are supported,
although this distinction is hidden by the IPC library routines.
Messages may be sent and received all at once or in pieces. The
size of the chunk of data manipulated is independently selected
by the sender and receiver. Large messages of indefinite size

-56-

w % -

al N M I
It 1

S

form the basis for interprocess stream communication.

The Message Structure Library (MSL) is used to format

messages, but is independent of the IPC. It provides a mechanism
for inserting and extracting typed, structured data into a

message buffer in a position- and machine-independent manner.
Associated with the MSL are conventions, called the Object-
Operation Protocol, for the patterns of communication that arise
in performing operations on Cronus objects. 0

The IPC and message structure facilities, and their
relationship, will be discussed in the following sections. The
details of the interfaces and the specific implemenation of the
IPC will be found in the Appendixes on the COS implementation and

in the Cronus User's Manual. S

6.2 Messages in the IPC

The IPC facility supports two classes of messages. reliable
messages and minimal effort messages

A message sent reliably will be delivered to the receive
queue of the addressed process (or the manager of the

addressed object on an InvokeOnHost) despite transient
failures in the communication substrate. A reliable
message will be delivered at most once.

Minimal effort messages are transmitted with whatever
reliability characteristics are provided by the S
communications substrate. The IPC facility does not

attempt to provide a sending process with information
regarding the disposition of the message.

PM

In both cases, the message is protected by an end-to-end
checksum, so if the message is delivered, the content may be
presumed to be correct.

The sending process may use minimum effort messages whenever

it seems appropriate. The current implementation uses them for
all messages sent to a broadcast or multicast address.

-57-

Messages may also be categorized by length. A small message
will fit into an IPC packet throughout the cluster. The maximum

size of a small message is implementation dependent, and in the
current system is about 1500 bytes (see Cronus User's Manual
message(4)). A large message may have a length set at the time
the message is initiated, or the length may be indefinite.

Minimal effort messages are constrained to be small, while
reliable messages may be small or large.

A large message may be of any size, although they are
generally larger than the small message limit, and the PSL

automatically selects a small message for messages below the

limit and a large message for a message above the limit.

Messages of indeterminate length support Cronus streams, S
which are uni-directional data channels between a source object
(sender of the message) and sink object (receiver). Cronus
streams are used to interconnect processes with devices and with

other processes. Although data flow on the stream is
unidirectional. the implementation of a stream involves

transmissions in both directions. from source to sink containing
data. and from the sink to source containing flow control and
synchronization information.

One objective for the IPC facility is to make the
distinction between small and large messages be as small as

possible. In particular, the content and structure of the 0
information contained in a message, and any information about a
message that is delivered to a recipient (e.g., size, source,
etc.) is independent of its transmission characteristics. The

sender of a message indicates whether or not the message is to be
transmitted reliably, and its length, if it is of bounded length.
The receiver need not be concerned with these characteristics of S

the message.

6.3 Programming Interface

The programming interface for the IPC provides facilities

needed to invoke operations on objects, send messages to
processes. and receive messages from clients. Many application
programs will be written in terms of higher level routines which
may be found in the PSL. The interface described in this section

-58-

0

is primarily of interest to systems programmers who are
developing and maintaining object managers and PSL routines.

The interface provides direct support for the Cronus
primitives (InvokeOnHost, SendToProcess, and Receive), for the
full range of message types (reliable small, minimum effort
small, and reliable large), and for various buffering strategies
that the sending or receiving process might wish to adopt.

When a process invokes an operation on a Cronus object, it
uses the PSL function Invoke; when the message is tranferred by
the SendToProcess primitive, the process uses the PSL function
Send. In either case, the process indicates the size of the
message being sent, whether it is to be sent using reliable
transmission, and points to a buffer which contains the •
information which is currently available for transmission. The
buffer may contain the entire message or any portion thereof (see
Cronus Users Manual send(2)). The IPC accepts the information
for transmission, and returns a small integer, called the message
handle. If there is more information to be sent, a new buffer is
given to the SendMore function, along with the message handle. S
Finally, the message is completed by applying the LastSent
function to the message handle.

The operation switch on each Cronus host provides buffering
for messages and synchronization between Cronus processes. (.

Buffering and synchronization are closely related, because S
buffering in an intermediary influences the synchronization

points between processes.

The sending functions accept the message if it can be queued
somewhere within the IPC mechanism. It can be in a host-
dependent transport mechanism between the process and the
operation switch (see Figure I), on the "receive queue" of a
Cronus process (if it is an intrahost message), or on the
"network queue" of messages waiting to be transmitted (if it is
an interhost message). If the message cannot be queued
immediately, it is refused by the IPC, and the sender is
responsible for any required recovery.

Even if the message is accepted, the IPC does not report
that the message has been delivered or that delivery can be
assured The only way the sender can be assured that a message
has been received by it is to wait for a reply from the intended

-59-

% IV V
% ''..

recipient. Cronus managers respond with at least a ReplyCode
whenever an operation is invoked on an object. User processes
should normally observe a similar protocol, since lower level
protocols cannot assure delivery of messages.

receive
queues AL

- - - -- - - - -I I

I network v
Peer-to- queue --- > I I-.-> Receive
peer - 0
Message <---I I %
Protocol - -

--- I---->-

(intrahost)

--------------------- < SendToHost

(interhost)

Process to Operation
Switch Transport

Figure 6.1 Schematic of the Operation Switch

The receive queues are maintained in FIFO order; the network
queue is a group of FIFO queues, one per destination host or
process. Entries on the receive queues are delivered to client
processes to satisfy Receive requests, and entries on the network
queue are transmitted to remote operation switches, where they
are placed on the proper receive queues.

60

,1-60-

, x:. ,' ' -. . . '¢,+?--v"--, . .. ","":.:. . ,). e€ € , :e ,I,'.

®SpN

When the receiving process is prepared to process new data,

it executes the Receive or ReceiveMore function. Each new

message is started with Receive, and if the entire message is not

available, or cannot fit into the buffer that has been given to

Receive, more of the data can be read with ReceiveMore see

Cronus User's Manual receive(2)). Both functions return

immediately with the data, if any, that is available.

The buffering strategies in the two communicating processes

may be different. The sending process can, for example, send the

entire message in one piece, and the receiving process may choose

to receive it a chunk at a time.

The !PC also provides functions which give the client
control over the message queues, the basic timeouts which control 0

error handling, and the processing of asynchronous events (see

Cronus User's Manual ipcmisc(2). receive(2)). These functions

include.

o WaitForChange suspends the process until an interesting S

event occurs. Typically. this will be the arrival of

another message or more data for a message which has been

partially received. Other interesting events include
timeouts and events which are unrelated to the IPC
mechanism. S

o AbortMessage deletes a message from the queue without

completing processing (either send or receive).

o SetDefaultTmeout adjusts the standard timeout for the

process.

" MsgQueueSize tells how many messages are waiting for

processing. including any partially received messages.

-- j

N.N

6.4 IPC Implementation

The implementation of the Cronus IPC can be described at two
levels. There are some elements of it which are generic; the
structure of the implementation must support those facilities

which clients expect of it. These include the overall issues of

buffering, synchronization, and reliability, for example. At the

second level, there are specific decisions about how the initial
implementation will be constructed. Future implementations of S
Cronus may choose to do things in a very different way. For
example. the current implementation uses the DoD standard
connection protocol, TCP, to implement reliable message

transport. Future implementations may use a different reliable

transport mechanism.

Cronus IPC supports three types of messages.

o small, minimum effort messages,

o small, reliable messages. and

o large. reliable messages.

Neither the protocols used nor the structural requirements of the

implementation specify the division of responsibility between the
operation switch and the PSL for these various classes of
message. In fact, the division might be made differently in S

different hosts in the same cluster. The transport mechanisms 'p

used in the current implementation are shown in Table 6.1.

Small, minimal effort messages are sent from Source

Operation Switch to Destination Operation Switch by means of IP 0

datagrams using the standard User Datagram Protocol (UDP).

Receipt of an IP/UDP datagram by the Destination Operation Switch
is not acknowledged.

On receipt of a datagram. the Destination Operation Switch

determines if the enclosed message should go to a local object or

process. If so, it places the message on the receive queue of

the object manager or process

0

-62-

,e.~~~4L4AALI6&~~ %4%-N~&~ - ,v

TYPE OF MESSAGE TRANSPORT MECHANISM

Small, minimal. IP - Operation Switch <-> Operation Switch
effort

Small, reliable. TCP - Operation Switch <-> Operation Switch

Large. reliable TCP - One connection per large message,
connection establishment initiated by
an Operation Switch to Operation Switch

interaction, but connection may be in
the Operation Switch or the PSL. at the
discretion of the host implementation.

Table 6.1 Message Transport Summary

The initial implementation of Cronus will transmit small,
reliable messages from Source Operation Switch to Destination
Operation Switch over a TCP connection because it is the fastest
way to get the implementation working. TCP provides services not

required for small reliable messages (e.g., strong sequencing, 0
reassembly) and we may find that the overhead they impose makes
the performance of the IPC unacceptable. If this is the case, we
will develop a reliable small message protocol (RSMP). RSMP
would perform the following services

o Provide receipt acknowledgement. 0

o Provide for retransmission.

o Perform duplicate detection and elimination. "'-

As with small minimal effort messages, upon receipt of a
message the Destination Operation Switch will determine which
local object manager or process should receive the message and

will place the message on its receive queue.

-63-

.......

Large messages are implemented through a TCP connection for
each message. There is an interaction between the source and
destination hosts to establish the TCP connection. When the
message has been transferred, the TCP connection is closed.

The following steps are used to establish a new TCP
connection to carry a large message between two processes:

The source host selects the port to be used for the TCP is

connection, and puts its end of the connection into the
listening state.

The Source Operation Switch sends a StartLargeMessage (see
Cronus User's Manual message(4)) message over the Operation
Switch to Operation Switch TCP connection. This message _
specifies the destination, the port for the TCP connection,
and perhaps the first part of the message.

The Destination Operation Switch places the message on the
receive queue of the object manager or process.

When the destination process executes a Receive and finds
the first part of a large message, any data sent along with
it is delivered. The destination host selects a port for

its end of the TCP connection, and uses the TCP port
supplied within the StartLargeMessage message.

After the connection is established, the source host will
use it to pass message data to the destination host.

After the source process sends the last chunk of data in the
large message, the TCP connection will be closed.

This discussion does not specify whether the Operation

Switches or the client processes are responsible for managing the
connection that carries the bulk of the message data, nor whether
the Operation Switches or client processes are responsible for
actually using the TCP connection to send and receive message S
data. These implementation decisions may be made differently for
each host type.

-64-

% %

6.5 Object Operation Protocol

The Object Operation Protocol (OOP) is used by the PSL
whenever operations are invoked on Cronus objects. There are
three basic message types in this protocol. Request, Reply, and

InProgress. All of the messages in the OOP are marked as
belonging to the operation protocol, and each is marked with its
basic type. Messages arising from one Request normally contain
the same Cronus unique number called the operation identifier. A S
Request message also contains the operation name and a Reply
message contains a standard reply code. These are the minimal
contents of the messages. they also contain additional,
operation-specific information.

The simplest message pattern involves one Request message
generated by a client, and one Reply generated by an object
manager in response.

During a manager's handling of the request. it may send an
InProgress message to the original requestor. Any number of -

InProgress messages may be generated by manager processes
handling a request. they are all addressed to the process which
initiated the Request message A client may use these messages
to reset time-outs, for example.

We distinguish between a simple operation (or operation) and
a compound operation. A simple operation has a single operation
name and operation identifier. Any manager process, in the
course of acting upon a Request may invoke one or more new

(simple) operations by sending Request messages. A compound
operation is the aggregate of all simple operations arising from
or caused by the invocation of one simple operation. Normally,
all of the suboperations will complete before the intiating S
simple operation completes. Each of the simple operations has
its own operation identifier, so a process may invoke several
sub-operations in parallel.

Sometimes a manager cannot complete the processing required
for an operation, for example, a request for a catalog lookup may
be satisfied only by the cooperation of catalog managers on two

hosts. The manager may then either

o perform as much processing it can, and send a Reply that
is marked Incomplete, or

-65-

*1 11 I Jl 1-11 l Y,

o elect to complete it using sub-operations, which follow

the same pattern as requests, and send a Reply when the
operation is complete.

If the manager chooses the first of these alternatives, it can
often send the text of the message that the client needs to send

to the other manager as part of the Reply. The client can

complete the operation by invoking another simple operation.

It is desirable for a Cronus process to be able to query the
status of a compound operation. The operation identifier of the

original request is used as a global identifier for each

suboperation. Since this identifier is included in the Request
messages of all simple operations it causes, the managers acting
on suboperations can respond to a status query keyed to the

initiating identifier.

6.6 Message Structure

40

The primary design goal for the Cronus message structure is

the regularization of control traffic. Control traffic includes

requests for operations to be performed on objects, replies
generated by operations, exception notices, and messages needed

to coordinate distributed object managers. Control messages are

usually short (tens to hundreds of octets). Because performance

is a major issue, messages should be compact, and efficiently
composed and parsed.

A message structure can be evaluated in a number of ways. A
discussion of evaluation criteria, and an application of these

critera to a number of well-known message structures may be found

in [BBN 5261]. As a result of that analysis, a standard Cronus

message structure was formulated. It has the following

characteristics.

" Messages are self-describing, so the fields may be

identified by name rather than by order. This simplifies

the parsing of messages, at the cost of transmitting the

identifying information.

o The conventions rely only on features that are available

-66-

in many programming languages. This improves the
portability of the implementation, at the cost of
increasing the cost of a single implementation.

" The need to define new data types, which are treated in
the same way as the pre-defined types, is explicitly
recognized. This is consistent with the general

philosophy of Cronus design.

" Name and data type fields are compactly coded, and
efficient programming interfaces are provided, while the
overhead of a general message format is held down. These
all contribute to good system performance.

S

The Message Structure Library (MSL) is a collection of
functions that is part of the PSL; these routines fall into three
classes.

o application interface functions.

o data translation functions. and

o structure manipulation functions.

The application interface procedures construct the message in an
external representation. which is machine independent, using the
data translation and structure manipulation functions This data
structure can be transmitted from one process to another, and
subsequently parsed by MSL procedures at the receiving process. A
summary of the functions and a cross reference to detailed
discussions of them may be found in Cronus User's Manual, on page
msl(2).

The Cronus external representation is based on key-value
pairs, where the key is a conventional name that is stored with
each data value. The key indicates the meaning of the value.
The value. in turn, consists of a data type indicator and the
actual data. Including the type indicator assures us that we can
move the data from one Cronus host to another. The internal
representation of the data may differ at the sending and
receiving hosts, but it is always transmitted in 4 canonical

fcrm. along with its type [Herlihy 1982]

-67-

,~~~ ,.~ 4 ,e % ,4 ~ . Y

A canonical type is either an atomic or composite ty-pe An
atomic type, such as boolean or signed 16-bit integer, defines a
set of primitive data values. A composite type, such as array,
has substructure defined in terms of other canonical types (see
Cronus User's Manual can-types(4))

Keys are coded as short (16-bit) integers, but values can
vary in length from one octet to many thousands, and are not
restricted in form, and may be built from simple or composite
data types.

Most IPC messages passed among managers or between processes
and managers use a high-level protocol called the Object-
Operation Protocol (OOP). OOP is based on a set of well-known
keys which are used object managers (see Cronus User's anual
kevs(4 r

- -'

-68-

0~ W . .W. 00

7 Authentication, Access Control. and Security

7.1 Introduction

The goals of the Authentication and Access Control facility
are:

1. Prevention of unauthorized use of Cronus and unauthorized
access to DOS maintained data and services. S

2. Preservation of the integrity of the system and its
components against intentional insertion of unauthorized
components.

Support for a uniform user view oi access control to the S

resources and functions provided by Cronus

4 Survivable authentication functionality

The design of the access control and authentication facility
assumes that systems in a Cronus cluster are all in a single 0

administrative domain. There are a three broad classes of hosts
within the cluster.

o hosts dedicated entirely to Cronus system functions and
not user programmable.

o hosts supporting user applications using tamper-proof
multiple protection domains (trusted multi-access hosts),

and

o hosts supporting user applications without secure
multiple protection domains (single-user workstation

hosts).

We assume all hosts supporting dedicated Cronus functions
and multiple user protection domains are physically secure from
tampering. Workstations may not be completely physically secure.
but have at least a tamper-proof component. At minimum, this
component is in the local network address insertion and reception
function. It could, however, be higher up in the workstation
system. in the virtual local network internet address insertion
and reception function, in the object system process-unique

-69-

%%%.

identifier insertion and reception function, or even higher. In

this sense, all user-programmable hosts support multiple
protection domains (user and system), although in the limiting
case, the "system" domain may simply be a piece of network

interface hardware. Since we are not aware of any workstation

systems meeting this requirement, we assume future product
packaging changes. There seem to be two viable positions to take
regarding the assumptions on these changes.

1. Assume only an absolute minimum, that a single low level
"address" can be protected.

2. Allow the set of protected functions to grow as needed to
conveniently interface the workstation in a manner as

similar as possible to multi-access systems. 0

The extreme solution to the second approach could be an access
machine for each workstation, although other solutions are also
possible. For our current work we will assume the second
approach. planning only for an arguably insecure implementation
directly within the workstation. •

The network (cable) itself may also not be totally
physically secure. While parts of it can be expected to be

secure (e.g within a secure machine room), other parts can be
expected to be exposed to unauthorized connection.

7.2 The Cronus Access Control Concept

7.2.1 Decomposition of the Access Control Problem

The basis of access control in Cronus is the ability of
Cronus to reliably deliver the address of a sender of a message %
(or invoker of an operation) to the receiver of the message. The

Cronus communication subsystem is implemented so that this is i '

true. That is.

for IP and Virtual Local Network.

If the sender is within the Cronus cluster, the

internet host address of the sender is reliably
delivered to the receiver. If the sender is not within

-70-

61 ~ yw ~ ~ - ~

the cluster, a non-cluster internet host address is
delivered to the receiver, which can be interpreted by
the receiver as indication that the authenticity of the
sender's address might be suspect.

for the Cronus IPC/object system.

The UID of the sending or invoking process is reliably
delivered to the recipient of the message.

The recipient of a request can decide on the basis of the
sender's identity whether or not to perform an operation

requested.

For this to be a useful basis for access control, a means 0
for reliably associating some authorization with senders' 7

addresses and process UIDs is required.

One approach is to make static bindings between
authorizations and addresses or UIDs. These bindings would be
"well-known", such that when a process receives a request from
the process with UIDY it knows that the process is acting under
the ZAuthority. This method is used in the ARPANET TELNET and
FTP protocols, users assume that the process for sockets one and
three are under the authority of the host administration and can
be trusted with their passwords. Static bindings are too
restrictive to be the sole mechanism in a system like Cronus,
although a few static bindings are required for the access
control mechanism to work (see Section 7.6).

Dynamic binding is useful when authorities are not all known

at system creation time, and when processes are dynamically
created. The system must not only support mechanisms to
dynamically establish the binding between a process and an
authority, but also to dynamically determine the binding from
some system entity in a trustworthy manner.

Most Cronus activity is the result of requests initiated by

users of the system Human users are represented by an
abstraction called a "principal". If we extend the notion of a
principal to include elements of the system, such as object
managers, all activity in the system can be thought of as
initiated by principals. System elements which are principals
are called "system principals". Each Cronus principal (human or

-71- .

system entity) has a unique identifier. Different system
principals have different authorities. For example the primal
file manager and the printer service are Cronus system
principals, neither of which need be authorized for all of the
objects and operations accessible to the other.

Access control can be thought of as consisting of the
following steps.

1. Identification. Determine the identity of the principal
that is requesting a particular operation.

2 Authorization. Determine whether the principal has been

authorized to perform the operation.

For example, when an object manager must decide whether to 0
perform an operation. it must know the identity of the principal
that is requesting the operation (Identification) and the rights
the principal may have with respect to the operation
(Authorization).

7.2.2 Authorization

Cronus uses access control lists to support authorization.

The access control list (ACL), which is part of the object
descriptor, "protects" a particular action. In the simplest S
case, it is a list of the principals who have authorization to
perform the action. When a principal attempts an operation, the

list is checked for the principal, if the principal is present
the authority to perform the operation has been verified and the
operation may occur.

In Cronus this simple idea is extended in two ways:

I. Group identifiers may appear on an ACL, so an entire
group of principals can be authorized as a unit, or have
its authorization revoked as a unit.

2. A set of rights is associated with each identifier on an
ACL A single list can selectively control a principal's
or a group's access to an object for which several

-72-

operations are defined, such as a file. Rights are
abstract, bound to specific operations by the
implementer.

An ACL is a list which contains elements of the form.
(id, rights)

where "id" is either a principal (PID) or a group identifier
(GID), and "rights" define the principal's or group's
authorization with respect to the object the ACL protects. The
allowable rights for a particular ACL are dependent upon the type
of object being protected.

Users log into Cronus as principals by supplying an

appropriate name and corresponding password(IO). A system
component called the Authentication Manager maintains records of
all principals and groups. Collectively, these records form a
User Data Base (UDB). At login time the Authentication Manager
expands the membership of a user-specified subset of the access
control groups which he is a member. This is a transitive
closure computation on the specified list of group identifiers in
the user's record The user's own id, PID. is added to the
result of the expansion. Tht resulting set of principals is
called the access group set (AGS) for the process (11)

AGS = JPIDJ U ShowGroup-MembershipExpanded (GID)
for the default GIDs)n the PID record.

The AGS is used in access control checks as follows. When
an action protected by an ACL is attempted, the ACL is compared
with the principal's AGS. If an entry of the form. S

(ID , (.... Right, . .

where

(10). See Appendix A for a more complete description of the
login and session initiation scenarios.
(11) The basic ideas associated with Access Group Sets have been
adapted from similar work at Carnegie Mellon University in the
Central File System project.

-73-

N

ID is in AGS, and
Right is required to perform the action

is found on the ACL, the principal's authorization is verified

and the action may be performed.

During a session, a user may add and remove identities from
the current AGS. To add a group identity, the user must be a
member of the added group Updating the current AGS is

accomplished via operations invoked on the Authentication

Manager. which causes the update of the current process AGS list.
These operations affect a single process however, the new AGS
will be inherited by subsequently-created children only.

7.2.3 Identification in Cronus

There are two related identification problems.

11 At the start of each session. the identity of the user
must be established.

12 Processes must be able to ascertain the identity of the
principal corresponding to the processes with which
they interact.

The solution to both problems lies in a set of mechanisms that

bind processes with principal ids and group identifiers. These
mechanisms depend upon the ability of the communication system to
deliver the UID of a sending process tp the receiver of a message

reliably.

It is useful to restate these problems into the following
terms.

1. A binding must be established between a process and an

AGS,

2. There must be a means for a process PI to determine the

binding between another process P2 and its AGS.

-74-

e'"Z

V7- -y 3CFr9._ AAIWNFd\5~rVX1J V WV MJ AC

When a user approaches Cronus to start a session a process (PI)
is allocated(12). P1 cannot be bound to U (the user's principal
identifier) until Cronus establishes the ronnection via password
authentication. Before that happens, P1 is bound to a well-known
principal, "NotLoggedln", which has minimal authorization. One
task of the login procedure is to change the binding of PI from
NotLoggedin to U.

The binding between a principal identity and a process is >-

established by the AuthenticateAs operation. The user engages
in an authentication dialogue with Cronus, supplying a name and
password which is checked against the UDB If the authentication
dialogue succeeds, the AGS for U is computed and a binding is
establishcd between PI and U. A record of the binding

Pl, U, AGS

is maintained by the process manager for the authenticated
process, to be used throughout the process lifetime. The
identity of the user has been established, completing problem I.

Throughout the course of U's session. P1 and other processes
acting on behalf of U attempt actions which require authorization
verification by the processes that perform the actions. This is
problem 12. Consider a situation in which P1 has requested
another process (SI) to perform some action (A), shown in Figure

In order to perform an access control check, S1 needs ,j N 11

determine the binding of P1 The identity of P1 is known to SI

because P1's UID was delivered along with the operation
invocation that requests A. SI can obtain the binding of PI by •
invoking the Authorization_BindingOf operation.

Authorization_BindingOf(P) -> U, AGS.

AuthorizationBindingOf causes a message to be sent from SI to

(12). Cronus actually uses a more complex process structure to
support a user session, as indicated in Appendix A.3. However, %
the following discussion is insensitive to these details, so we
use this simple model in our explanation %%

0
-75- A

. '

0

I Invoke(A) I

I P1 I --------------------- >1 SI

Invoke(Authorization_BindingOf, PI) 0

. I K
V

- - - -

Process [
Descriptor >1 Manager i •

-~~~~~~V -
SPI,U,AGS1 <

.......

Figure 7 1 Retrieving Access Control Data

the manager for process PI. which returns the bindings for the
process to SI V

The login sequence establishes a binding between user (U)
and an "initial" process (PI). Bindings are established for
other processes created during a user session through
inheritance. During a user session, processes created by an
authenticated process inherit both the principal identity and the
current AGS of the initiating process. Object managers attain
their principal identities and access group sets as part of the
system initialization phase.

--. P¢

-76-

J^ *

' -'.--4%

7.3 Access Control List Initialization

A common problem associated with Access Control List
mechanisms is the effort required for proper explicit (manual)
initialization. In practice, the ACL for a new object can often

be automatically predetermined based upon the type of the object,
the creator, and the context in which the object is created
(primarily the directory in which it is subsequently catalogued).
This is the premise upon which the Cronus Initial Access Control 0

List (IACL) mechanism is based.

A list of type-specific IACLs may be associated with

selected Cronus objects, currently Principal and Directory
objects. The IACLs are manipulated using the standard ACL

manipulation operations (ReadACL, AddToACL, RemoveFromACL), •
distinguished by an optional key denoting the type with which the

IACL is to be associated. The IACL mechanism also supports the
Cronus type hierarchy. the IACL associated with an ancestor in
the type hierarchy will be used if a more specific IACL for the
type itself has not been specified.

Cronus Create operations incorporate the following algorithm
for initializing the ACL of newly-created objects.

1) A list of "IACL hints" (UIDs of objects potentially

having IACLs associated with them) are searched in order
for an IACL pertaining to the type of the object being S
created. The first one found is used. These hints
usually reference the Cronus directory where the object
will subsequently be catalogued.

2) If no IACL search is specified, or the hints fail to
yield an appropriate IACL, the object for the Principal S
invoking the operation is queried as if it were included

at the end of the hints list.

3) If an IACL is still not found, the invoking Principal is
given all rights to the object.

There are user commands for setting up, examining and
modifying the initial access control lists retained with cronus
objects.

-- I

7.4 Authentication Manager

The Authentication Manager defines and maintains two types
of abstract Cronus objects: CTPrincipal and CT_Group. Like

other system objects, the CTPrincipal and CTGroup identifier
objects have symbolic names for convenient human access.

Principals are symbolically named from a private name space
maintained by the Authentication Manager, which ensures their
uniqueness across the entire system Symbolic group identifiers
can be placed anywhere in the Cronus catalog, at the convenience
of the creating user.

Operations on objects of type CT _Principal and of type
CTGroup are controlled by access control lists. By convention,

any legitimate principal can create a new CTGroup object, but 0
only administratively authorized principals can create a new

principal. When the system is initialized, it contains at least
one pre-defined principal, which is authorized to create other

principals.

In the following sections we discuss the design ofthe 1

objects and operations supported by the Authentication Manager.
Section 7.8 discusses how to make the functions of the
Authentication Manager survivable.

7.5 Objects Related to Authorization

The object of type CTAuthentication_Data is the user data
base consisting of the records for system users and for groups of

principals which have been defined in the system.

The object of type CTPrincipal is the permanent data base'

entry that Cronus maintains for each legitimate user. It is the
repository for such user-specific data as default priority and
other parameters associated with resource management, default

modes of behavior (e.g. default working directory). and
authorization data. It is expected that new kinds of data will 0
be added to the principal objects from time to time.

-78-

%~ ~ ~ -% V %
% I

S

A CTPrincipal object can be expected to contain the
following data:

o Principal unique-identifier (PID)

o Symbolic name of principal

o Access control list

o Encrypted password
o Direct group memberships
o Direct group memberships to be expanded on Login
o Range of priority service authorized

o Default priority
o Name of default initial subsystem
o Name of home directory for the principal ... (other

user-specific data) 0

The priority data will be used in resource management
functions. The default subsystem is the program automatically
invoked following login. A home directory is a directory

assigned to the principal that serves as the initial current 0
directory for catalog accesses, in particular, it contains
additional user initialization data.

Groups (objects of type CTGroup) gather a number of
identities for purposes of collectively granting them rights to
objects and operations. Any user can create a new group. and

place any other principal or group in it. This group can then be
placed on an ACL. The access control list for the group object

controls modification of the group definition.

A CTGroup object contains at least the following data.

o GID for the group

o Name of the group
o GIDs of the groups of which the group is directly a

member
o IDs of principals (PIDs) and groups (GIDs) that are

direct members of the group

There are a few special group identifiers. One of these

(group world) represents the set of principal identifiers without

actually enumerating them anywhere. This group identifier is
automatically appended to every AGS computation. Another special

-79-

group "Wheel" represents an access control override capability
used for system maintenance, implicitly receiving all rights to
all Cronus objects. Admission to this group is carefully
controlled.

A convention has been adopted which effectively supports
wheel capability only for objects of a specified type A process
whose principal ID matches the PID of the manager process is
automatically granted all rights to all objects managed by that
manager. This is useful in handling peer managers. As an
example, all file managers are bound to a special file manager
principal, and implicitly have all access to all files managed by
peer file managers.

0

7 6 Operations on Authorization Related Objects

The generic operations to create and remove objects, and to

examine and modify the object descriptor. ACL., and object status S
apply to instances of CTPrinc)pal and CTGroup

The following operation (see Cronus User's Manual
authdata(3)) is used during login to establish the binding of
the user to the principal UID:

Authenticate As

The following operations allow processes to control the
identities applicable to an authenticated process (see Cronus
User's Manual auth_data(3)). They effect only a single process, 0
which may be either the invoking process or another process

authenticated to the same principal.

Enable-AccessGroup

DisableAccess Group

The following operations maintain and interrogate the
objects of type CTPrincipal (Cronus User's Manual principal(3)).

Lookup-Principal
ShowGroupMemberships

-80-

I ns

AddtoDefaultGroupExpansionList

Delete-fromDefaultGroupExpansion_List
Change-Password

The rest of the data in the principal entry in the user data
base is treated as part of the object descriptor. The generic
operations which manipulate the object descriptor are used to
examine and set these fields. •

The following operations are used to inspect and maintain
the group identifier objects (Cronus User's Manual group(3)):

Add-toGroup
RemovefromGroup
ShowGroupMembers

The rest of the data in objects of type CTGroup is
contained in the process descriptor and is maintained using the

generic operations defined on object descriptors.

The access control list of any object, including objects of
type CTGroup and CTPrincipal, can be set using the generic
operations on access control lists (see Cronus User's Manual

object(3)).

7 7 Operation of the Access Control Authorization Function

Cronus access control checks the current identity of the

accessing agent against access control lists maintained by the
service provider. A process is authenticated in a way which
binds the process UID to a set of external identities defining

the authorizations of the process. These identities, the AGS, %
are available to any service-providing process. This section .

discusses the authorization function which is part of the service 0

provider. %

In general, the access control steps within an object
proceed as follows. k

..0-81-

P1 .N W

I. The request is parsed to determine the originating
process UID and the operation/object requested. The
processUID is trusted because it is added to the message
by the operation switch. Universal public privilege for
the operation to all objects managed by the manager is
first checked, to see if the specific access check is
needed.

2. A manager-based cache of process/object authorization S

pairs for the processUID is checked for a valid current
entry.

3. If there is no corresponding cache entry, the accessing
agent's AGS is obtained. This data is also cached but on

a per-host basis by the AGS cache manager. If present on _
the host. this cache manager provides a high performance
interface to the Authentication_BindingsOf function.

There is a broadcast-based protocol for alterting AGS
cache managers to entries that should be purged. If an %
AGS cache manager does not run on a host. managers
execute the Authentication_Bindings-Of operation

directly, and the AGS is not cached [The per host AGS
caching is not yet designed or implemented.]

4. The access control software computes a new
process-UID/object authorization entry using the AGS and

the access control list maintained with the protected 0

objectioperation The processUID authorization entry is
then put in the manager cache.

5. The process UID object authorization is used to verify
permission. If authorized, the operation is passed on to
the operation code. If unauthorized, the request is 0

rejected.

6. To allow for the enabling of new access groups, steps 3-5
are repeated in the event that cached AGS fails.

The permission authorization function is accomplished by a
set of routines and data structures that we call the "gatekeeper"

because of its role as protector of the objects/operations.
Gatekeeper functions can be invoked as part of the procedures for

receipt of a message, or called directly from the host process.

-82-

(. ~ ~ . 1%

Access control can be applied to operations on the object

set supported by the receiving manager process. or on operations
defined by the receiving service. There is a fixed maximum

number of access control rights maintained by the gatekeeper
software (currently 32) for any object. These rights are
represented as positions in a bit vector associated with both the
identity it authorizes (principal identifier or group identifier)
and the object it controls.

7.8 Host Registration

The lack of physical security for various parts of the

system presents problems for the access control subsystem. Since
the network cable may be accessible to tampering, the network
might be tapped. An outsider could then inject or inspect
packets under an assumed network address. A workstation might
pose as the site of a trusted manager. We can use administrative

authorization to alleviate these problems.

Encryption of all local network traffic is a form of
authorization It can remove the threat of tapping for either

listening for or insertion of packets. Providing the host with
the encryption/decryption key is administrative authorization to
participate in the Cronus cluster. If a host can communicate at

all, it can be considered an authorized host. Because
encryption/decryption is isolated in the communication interface,
it can be added transparently at any time. While communication
encryption can be thought of as part of the Cronus design, it
will not be part of the initial implementation.

Since workstations may be treated specially for some access 9
control decisions, system configuration registry could be the
source of such identification. In addition, the undesirability
of tightly controlling responses to broadcast Locate operations,

makes the registry useful in determining the authenticity of the

respondee. A configuration registry enumerates all of the
authorized system hosts, and the system services (Cronus
functions) which they have bern authorized to run.

One secure way to make the registry service available is to

support it on one (or more) well-known Cronus hosts (i.e. hosts
at a well-known internet addresses, say host No. 1, ...). The

N N

-83-.

-~~~ ~ ~ ''l S * S14).4S:;S1:..S1 N

configuration data can then be obtained with an Invoke Ofn Host to

the well-known hosts using the logical name for the service(13).
The cluster configuration service would support the following
functions.

ShowConfigurationHosts
SetConfigurationHosts

Standard access controls apply, with ShowConfigurationHosts
being universally allowed, while SetConfigurationHosts limited
to a system administration group.

7.9 Survivable Authorization Design

7.9.1 Objectives

The authentication function and evaluation of the current AGS are
critical parts of the operation of Cronus. These functions must
be available at all times or Cronus cannot operate effectively.

Our objectives in providing survivability in Authentication are:

a. A Cronus user should, under reasonable failure patterns,

always be able to gain access to the system. 0

b. The current value of the process-AGS binding should be

available whenever a process is able to request services

from object managers.

c. A less important but desireable objective is that a 0

client be able to continue to perform maintenance

operations on the principal and group objects despite

failures of hosts supporting these functions. r5%

To meet objectives (a) and (c), we must replicate theAuthentication function. To meet objective (b), we must maintain

(13). Since this function is often used to determine the

veracity of responses to the Locate operations, it can not safely I.
use Locate to find out where configuration managers are running.

-84-

the bindings in a replicated fashion, or keep them close to the
process to which they refer, so that the bindings are available
when the process makes requests of other Cronus managers.

7.9.2 Observations

The authentication function is a global DOS function supported on S
a GCE which is expected to be up most of the time. Becuuse these
services are simple, the host hardware and software should be
stable. Increasing its availability. Since the GCE is relatively
inexpensive. it is also feasible to stock a spare.

The authentication function is based on maintaining two related S
types of objects. The data bases which the Authentication
Manager maintains to support the principal and group objects are
not large. The principal data base is estimated to be no larger
than 1000 users, with an average entry having around 1000 bytes
of data. The group data base might have 2000 entries, averaging
300 bytes of data. This is less than 2 MBytes of data, and can
easily be accommodated on a GCE.

The processing demand on Authentication managers is not expected
to be large. Aside from initial authentication and group
expansion, which occurs typically once per user per session.
other operations are infrequent. New users and Croups are S
occasionally created and the associated data bas,s occasionally
displayed and updated. A single GCE appears easily capable of
handling anticipated processing requests.

Performance and size considerations do not seem to require more
than a single GCE per cluster. Survivability is the primary
motivation for replicating the authentication manager. Our
approach is to maintain completely replicated data bases on two
or more GCEs.

Of the operations performed by the Authentication Manager, the
one of most concern for survivabilitv is Authenticate-As, which S
is a read-only function. This is also true of a number of other
AM operations (Lookup Principal, Show Groups Expanded, etc.).
Synchronization of multiple authentication managers is not
required to complete these operations.

-85- -0 0 U
J" ". e % % r

Ikeld P~ J\

Some AM operations do modify the authentication data (e.g. Create
new principal, Modify User Parameters, etc.). These require
synchronization among Authentication Managers for consistency.

However, because these operations are relatively infrequent and
have simple semantics, a simple approach to synchronization which
ignores maximizing concurrency will suffice. We designate a
primary Authentication Manager as a single point of
synchronization. This method is backed up by an alternate
procedure if the primary site is inaccessible. A complete -
description of our approach follows in the next section.

In the current implementation. each process has a process manager
on the same host. The process-AGS bindings are maintained by the
process manager in the process descriptors for these processes.
During host outages when a manager is inaccessible, so too will
be the process it manages. There is no need to maintain the -
process-AGS binding any more reliably than we maintain the
process reliability. As some later point, we will address issues
of process survivability. We can then naturally think in terms of
replication of process descriptor data (including the current
AGS) as part of the reliable process concept. and need not
address it separately.

7.9.3 Approach

Fully redundant copies of the authentication data bases are
maintained at more than one Cronus host. This means that,

ignoring synchronization, an operation can be completed at any
site which maintains the data base. We expect that two
oRerational authentication sites will provide sufficient
availability for most applications of Cronus.

A spare GCE could be integrated into the system if one of the
dedicated hosts needs to be taken off-line for any extended
period. This minimizes the time during which there may only be a
single Authentication site functioning. The new host integration
protocol first involves transmission of all of the existing
objects. When the objert transmission is complete, the new
manager retrieves the change log and incorporates any updates.
The final step before assuming operational status is to
coordinate with any on-going activities.

-86-

' ~ ~ ~ e V.'r % r 1:% % ""' ¢ . " "'- ' '- €' . . €€ ' €. €

Each operation on authentication data objects is an independent
transaction, so that there is no linkage between any two
operations. The operations either reference the identified
objects (read operations) or modify the identified objects (write
operations). Read operations require no synchronization or
concurrency control between Authentication Managers. Any Read
operation can be handled by any available authentication manager.

Some read operations have side effects which do change the state
of other system variables (e.g. AuthenticateAs modifies the 0
current process AGS in its process descriptor) but these are

idempotent operations so repeating them at distinct sites as part
of error recovery is not harmful.

Write operations, on the other hand, require synchronization

among the Authentication managers to preserve the consistency of S
the data with respect to concurrent updates. To do this one AM
is chosen as the primary site. The designation of which AM is
primary is found in the configuraticn data base for the system.
Clients as well as other AM processes can consult this data base k

to find the primary site. The primary site remembers its role
and will respond to broadcast request to identify itself in case 0
the configuration file is inaccessible.

All Write operations are initiated with the Primary AM, which
serializes the modifications to the database. The primary AM
records the modification in a change log by appending a change

record to a multi-copy reliable file. After logging the request,
it updates it own data base, and informs other operational AMs of
the change. If all AMs are running, the data bases are again
synchronized after each one incorporates the update. When an AM .,-*

is restarted, it processes the change log to incorporate changes
made to the data base in its absence before it will accept new
requests. Multi-copy files are used for change logs to avoid
single host failure reintegration dependencies. .

This approach raises two issues.

a. What, if anything, should we do about read/write -
synchronization for read operations that may be processed _

by a non-primary AM while the corresponding object is .,

undergoing modification by the Primary AM?

b. What, if anything, should we do when a modification is
requested and the primary AM is inaccessible?

-87-

Ii
~oW. , -

To answer question (a) we first observe that not only is the data
changed infrequently, but much of it is particular to a single
Cronus user, and hence concurrent read and write access is quite
unlikely. Furthermore an old copy of just modified data is
almost never harmful. The behavior is similar to a race
condition between independent accesses to a single copy data
base. Thus our approach to Read/Write synchronization is to do

nothing.

There are many possible answers to question (b). One approach is
to do nothing, and reject these operations temporarily until the
primary AM is brought back on-line. Since modifications to
authentication data are not critical to the operation of the

system, the major effect of this is inconvenience because we will

need to repeat the operations at a later time. A simple
mechanism which avoids this uses the lock on the change log file
as a tool for serializing updates from any of the available AMs.

In this scheme. when the primary AM is inaccessible, any AM can
initiate the update if it can first lock the change log. It then
infcrms the other operational AMs of the change When the
primary comes back. it integrates the changes it has missed ,
before assuming primary update responsibility again.

S

•S
U-V'

-88-

*~~ ~ %. ~~~~

8 Cronus File System

8.1 File System Overview

Cronus supports a number of different kinds of files,

including.

o Primal files.

The primal file is the most basic kind of Cronus file.
Other kinds of Cronus files are implemented from prima]

files. A primal file is stored entirelv within a single
host. and is bound to the host.

o Reliable files.

A reliable file is implemented by one or more primal
files. Each primal file used to implement a reliable
file contains all of the file data. The reliability of
these files derives from the fact that the file is
accessible as lonR as at least one of the primal files 5

that implement it is.

o Dispersed files.

A dispersed file is implemented by one or more primal

files. A dispersed file is one whose contents may be 0

distributed over more than one host. Each of the primal %
files used to implement a dispersed file contains part of
the contents.

The initial Cronus implementation (the "primal system")
supports only primal files, which are implemented upon underlying S
single-host file systems. The next major Cronus release (the
"reliable system") will support reliable files. Later system
releases may support dispersed files.

This section also describes a single host file system,
called the Elementary File System. which will be developed for
each Cronus file host to serve as a common base of implementation
support for Cronus file managers.

-89- 4

!%

Primal files are Cronus objects. They have unique
identifiers (IUDs), and may be given symbolic names. There is a
Cronus object type CTPrimal_File.

Executable programs will be stored as files of type
CTExecutableFile which is a subtype of primal File. There will
be many different kinds of hosts in Cronus, and an executable
program file which can run on one host type will usually not be
able to run on another. In addition to the normal descriptive
information, files of this type have information that specifies
where they can be run. The additional information maintained for

an executable file would include.

o The type of processor required to execute the program
stored in the file.

o The run-time environment required by the program
including the local operating system and necessary
peripheral devices.

8.2 Cronus Primal Files

8.2.1 Cronus Primal Files

Primal files cannot be moved from one host to another, the 0
primal file system is partitioned among hosts that store primal
files. The HostNumber component of the UID for a primal file
always specifies the host on which the file is stored. A copy of
a primal file can be created on another host, and the original
can be deleted. The copy is a different primal file with a
different UID, it just happens to contain the same data as the
original file.

Like other Cronus objects, primal files are accessible to

processes by means of the interprocess communication and
operation switch (Section 6). There is a Primal File Manager
process on each host that stores part of the primal file system.
A client process accesses a primal file by invoking an operation
on the file, in which the UID for the file and the operation to ,

be performed on the file are specified.

-90-

%C 0
,~ ~*~\ ~ ~ - .%

v~ gal

S

The Primal File Manager that maintains a primal file also
defines a mapping between the UID for the primal file and the
information required to manage the file. The collection of
information necessary to manage a primal file is called its
descriptor. The file descriptor includes.

UID of the creator;
Date and time of creation,

Date and time of last write.
Access control list (ACL) for the file,
Information necessary to find the file data on

the storage media,
Current size of the file.
Other information (to be specified as needed)

Most of the operations provided by conventionai file systems
Icreate. read. write, etc..) are implemented for Cronus primal
files The design is discussed in terms of the normal life cycle 0
of a primal file which includes.

1. The file is created.
2. Data in the file may be read or written by a client.
3. Information in the file descriptor may be read or written

by a client.

4 The right to access the file may be granted to or revoked
from other users.

5. The file may be deleted.

File creation involves, the generation of a UID; the
creation and initialization of a descriptor for the file; and the - 0

binding of the UID and the file descriptor in the Primal File UID
Table Until data is written into the file, the file is empty.

When a primal file is created by a Primal File Manager, it is
created on that manager s host.

There is an issue regarding whether it should be necessary
to open a primal file before reading or writing file data. One

reason for "open" and "close" is to provide for reader-writer
svnchronization, another is optimization of read/write
operations The disadvantage is that open/close add complexity
to the Primal File Manager because it must maintain state

-91-

I -' Wk

information for open files and deal with the problem of files
opened which are never explicitly closed (e.g., because the
client's host has crashed). Furthermore, if we require open and
close, additional operations must be invoked on the file even
when the read or write is for a small amount of data.

The Primal File Manager supports access to files without
open and provides an open/close facility for clients that need
it. A read or write without open is called a "free read" or a S
"free write". The client may then choose whether the additional
overhead of opening and closing the file is worthwhile. For
example. if we wish to write a simple log message when a process
is initiated, we would probably choose the free write. If. on
the other hand, we were copying a file. we would probably choose
to open the files, incurring the overhead of initiation once. and S
gaining further system support for synchronization and data
integrity. A client process may read or write data in a primal
file (subject to authorization considerations) without opening
it. unless another process has opened the file in such a way that
free reads and writes are forbidden.

Free reads and writes are synchronized in the sense that %

multiple reads and writes are serializable. This means that the
File Manager will, in effect, perform each read or write
operation in its entirety before performing another operation.

When a file is opened. two parameters specify the access S

state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired There are two types of synchronization supported.
"frozen" which permits either N readers or a single writer, and
"thawed" which permits any number of simultaneous writers and
readers. When a file is opened with "thawed" access, readers of •
the file see updates made by writers of the file. Opening a file
with "thawed" access prevents other processes from opening it 110.1
"frozen".

N

-92- q V N

Thus, the access states defined for a file are.

free,
frozen read open.
frozen readwrite open, V
thawed open;
(free) read in progress,
(free) write in progress.

A file may be opened so long as the access state requested
does not conflict with the current access state of the file.
Table 6.1 defines the compatibility of the access states with one
another, and with read and write operations invoked by a client
without previously opening the file. An OK for an (OPERATION, S
ACCESS STATE) entry in the table means that a client process can%
perform the operation on a file when the file is in the

corresponding access state, a NO entry means that the operation
will fall when the file is in the corresponding state; a DELAY

operation means that the operation will be delayed until the
operation in progress (and any others that may be queued) are .
completed.

The data in a primal file is a sequence of octets, numbered
from 0 to N. The read operation specifies the first octet to be
read and the number of octets to be read. The write operation
specifies the octet position of the first octet to be written and
N octets of data to be written.

In order to support file system recovery, data that is
written to a file that has been opened for (ReadWrite, Frozen)
access does not become part of the permanent file data until the
file is closed. It is possible to close a file opened for
(ReadWrite, Frozen) access in a way that aborts writes made to
the file while it was open.

A file is open to a process. The Primal File Manager
provides an operation which returns a list of the UIDs for the
processes, if any, that have a given file open. Another
operation returns a list of the UIDs for the files, if any, that
a given process has open.

When a process is destroyed with files open. the files are

-93-

ACCESS STATE

free frozen frozen thawed read in write in

read readwrite progress progress

OPERATION

frozen

read OK OK NO NO OK DELAY
open

frozen
readwrite OK NO NO NO DELAY DELAY
open

thawed OE NO NO OK DELAY DELAY
open

f ree OK 01. NO OK O DELAY
read

free OE NO NO OK DELAY DELAY
write

Table 8.1 Access State Compatibility

closed and any writes to (ReadWrite, Frozen) open files are •

aborted The normal close operation may only be invoked by the
process that opened the file. An alternate close operation can

be used by other processes to close a file during cleanup.

A client can read the descriptor of a primal file. Some of
the information in the file descriptor is changed as a side 0
effect of operations on the file. For example, when a file is

written, the date and time of last write is changed. There is

other information that the client may wish to change explicitly.

Access to a primal file is controlled by its access control
list 4ACL) Access to a primal file may be granted to other S

users by adding entries to the ACL. Similarly, access to a file

may be revoked from a user by removing the corresponding entry
from the ACL.

Some file system support the notion of Delete, UnDelete and
N

-9 At~4 %A % A\ V

%,.

,%

Expunge operations. The current design for the primal file
system assumes that only Delete (called Remove) will be

supported, but it is relatively straightforward to modify the

specification of Cronus primal files to accommodate a Delete,
Undelete, and Expunge model of file removal.

0

8.2.2 Crash Recovery Properties

If a primal file operation is invoked, the Primal File
Manager normally acknowledges the operation, indicating the

disposition of the operation (e.g., success, failure, and reason)
and, depending upon the operation, to return any data requested.

The Primal File Manager does not acknowledge write requests
until the data has been written to non-volatile storage. A

client process can be sure that the data has been written when
the acknowledgement is received, even if the Primal File Manager
or its host should crash shortly afterward

Primal File write operations are atomic with respect to host
crashes. That is, if the Primal File Manager host should crash
during a write operation, after the host and Primal File Manager

have been restarted and the Primal File Manager has performed its
recovery procedures, the write operation will have either
occurred in its entirety or no part of it will have occurred. If

the crash occurs after the data has been safely written but
before the acknowledgement has been sent, the acknowledgement
will never be generated.

This atomicity property is true for the Close-and-
Reta)nWrites operation. That is, either none or all of the
writes made while the file was open will have been performed. %%I

-95- I

h'~ ~ q ~ .-w "441

p

8.2.3 Operations for Objects of type CTPrimalFile

In addition to the generic operations (Cronus User's Manual
object(3)) the following operations are supported for primal

files.

Open
Close
Sync 0

Read
Write

Truncate
Append
FilesOpenBy
OpenStatusOf S
CloseProcessOpenFile
CloseAllProcessOpenFiles

The Open and Close operations provide an atomic transaction
capability for a single primal file. At some later point, we may
define e::plicit BeginTransation. EndTransaction, and
AddToTransaction operations which could be used to provide a
capability for transactions that involve more than a single

primal file.

In response to a Status operation, the Primal File Manager
returns information about the status of the primal files it •
manages (Cronus User's Manual p-filesys(3)), such as the amount
of free space, the amount of space used by existing files, the
number of files it manages, the number of files currently opened,
etc. This information will be useful to system operations
personnel as well as to clients who might use it when deciding
where to create primal files. 0

8.3 Reliable Files

-96-

8.3.1 Objectives

The principal motivation within Cronus for maintaining

multiple copies of a file derives from reliability
considerations. The objective is to increase the probability
that the file will be available for access at any given time by
keeping copies (in Cronus we shall call them images) of the file .''-". .

at a number of hosts. Although any given host that stores the
file may fail, 'so long as at least one of the hosts maintaining 0
an image is accessible, the file will be also.

Secondary benefits include performance improvements that may
result from distributing the load due to file access among the
hosts that store the file and from the possibility that client

-0
access to an image of the file maintained on its own host will be

more responsive than access to an image on a remote host.

Increased file availability does not come for free. The
cost is increased complexity in managing the files. Most of the
complexity is a consequence of the fact that Cronus works to

ensure the mutual consistency of the file images, when one image
of the file changes, all others should be updated to reflect the
change

Furthermore. in the Cronus environment it is desirable to
support concurrent access to files. For example, Cronus supports -

a form of multiple readers / single writer concurrency control
for primal files The same sort of concurrency control is
provided for multi-image files.

Concurrency control requires that sites managing images of a
file cooperate to synchronize client access to the file. There
is complexity and overhead associated with this cooperation. In
addition, since strong concurrency control mechanisms require the
participation of more than one site, situations may arise where
an insufficient number of file image sites are accessible to
perform the concurencv control. Unless the system is willing to

permit unsynchronized access to an accessible file image in such
situations, some of the reliability benefits of multi-image files
will be lost. The danger of unsynchronized access is, of course,
that accessors may cause different images of a file to become

inconsistent

The Cronus approach to concurrency control for reliable

*~o rN % ..

II

t J&

files is based on the presumption that file availability is K
important enough that it is permissible to risk the consistency

of file images and to grant access to file data when
synchronization cannot be achieved That is, when a choice must
be made, file availability or survivability is considered more
important than mutual consistency of file images.

The approach to concurrency control is to try to achieve
strong synchronization prior to file access in order to maintain S
the consistency of the file images However, should the

synchronization fail because the file sites required to achieve
it are inaccessible, the client will be informed and access to
the file will be permitted only if the client gives explicit
consent to continue.

This relaxed approach to concurrency control will be
practical only if. %

a. File access patterns are such that it is relatively
unusual for multiple concurrent updates to occur.

b. Hosts are reasonably reliable so that host failures that
prevent strong synchonization are relatively rare.

c. There is a simple and inexpensive way to detect
inconsistent images of a file. We believe that the
Version Vector mechanism developed at UCLA [Parker 1983]
is a good one for this purpose.

Experience with Cronus may show that there are some
applications which require more absolute synchronization than
this approach supports. If that proves to be the case, the
support for reliable files will be augmented to include a file •
type for which more positive synchronization is supported.

83.2 Reliable Files as Composite Objects

A reliable file is a Cronus object of type,

CTReliable_File A Cronus Reliable File (RF) is a collection of 7
one or more primal files. each of which represents an image of
the reliable file No two images of a reliable file are stored

-98-

at the same site,

The number of images of a reliable file may change over the
lifetime of the file, as may the sites which maintain the
individual images. The desired number of images is called the
cardinality of the file. The actual number of file images may be
different than the file cardinality. For example, when a file is
first created its cardinality will be greater than the number of
images until all of the images are created. Similarly, if the 0

cardinality of a file is changed, it takes finite amount time for
the number of images to be adjusted. Thus. the cardinality is

properly thought of as an objective.

A reliable file of cardinality = 1 is a migratory file.
Although it has only a single image like a primal file, unlike a
primal file it may be moved from one host to another.

Each Reliable File Manager (RFM) maintains a UID table for
the reliable files that it manages. Unlike simpler objects, such
as primal files, the management of reliable files requires the

cooperation of RFMs. Each RFM participates in the management of •
a collection of reliable files (the ones in its UID table), but
not all RFMs participate in the management of all reliable files.

Depending on the cardinality of a particular reliable file,
a RFM may need to cooperate with 0 (cardinality = 1). 1
(cardinality = 2). or more (cardinalitv > 2) other RFMs. For - ,
each reliable file it manages. a RFM is directly responsible for %
carrying out the operations on a particular primal file that
represents an image of the file. We shall sometimes refer to
that image as the managers image or as the local (to the
manager) image .

When a client invokes an operation on a file, the underlying PI
interprocess communication facility routes the operation to an
RFM capable of performing it Any interactions among RFMs that
are required to perform the operation are transparent to the
client process

Access to the primal files that comprise a reliable files is
limited to RFMs No other process may directly access a primal
file used to implement a reliable file. even if the process has
the UID for the primal file. this is enforced by the Cronus
access control mechanism

-99-1

%

For Cronus, RFMs reside only on sites that also have primal
files managers (PFMs). The manager's image of the file is stored

at the manager's site. RFMs, of course, access the file images
through PFMs in the normal fashion.

There is an issue regarding the relation of RFMs to PFMs.
They could be implemented either as two completely separate
managers which communicate by means of interprocess communication
or as a single, combined manager for both CTPrimal_File and •
CTReliableFile. The initial implementation of reliable files
will be accomplished by means of RFMs that are separate from the

PFMs Later implementations may integrate the RFM functions into -N.V

(some of) the PFMs.%

In addition to the information maintained in descriptors for
primal files, object descriptors for reliable files contain the

following information.

File Cardinality.
ID of primary site (see below), -

Version vector for the local image of the file

(see below ..
Version vector for the local image of the

descriptor (see below).
List of UID's for the primal files that implement

images of the file.

8.3.3 Synchronization Considerations •

*1' ?
In order to maintain the consistency of images of reliable

files and the integrity of internal file data (for primal as well

as reliable files). Cronus must control and synchronize the
manner in which clients access the files.

The general Cronus approach to synchronization for reliable
files can be characterized as a best effort approach consisting

of the followiny steps,

I try to synchronize access.

- 100-

2. if synchronization cannot be achieved permit access if
the client so desires,

3. be prepared to detect and deal with inconsistencies that
may result from unsynchronized access later.

A specific concurrency control mechanism must be chosen.
Although much has be written about concurrency control and
synchronization for multiple copy files and data bases, there is
little practical experience on which to base a choice. We have
decided to use a simple mechanism for Cronus. Should the
mechanism prove to be inadequate (for example, because it cannot
achieve synchronization often enough, given the failure patterns
observed in Cronus), it will be replaced with a more capable (and
complex) one.

Synchronization will be accomplished by means of a
primary/secondarv image approach. Each reliable file will have
one primary image and one or more secondary images. All attempts
to synchronize access to a reliable file will require
synchronization with the primary image. We refer to the manager

of the primary image as the primary manager for the file,
managers of other images are called secondary managers.

When a client attempts to access file data in a way that
requires synchronization. an attempt will be made to synchronize
with the primary image of the file. If the client's access
attempt is initiated with the manager for the primary image,
synchronization occurs as for primal files. If the access
attempt is initiated with the manager for a secondary image of
the file, the secondary manager interacts with the primary
manager to gain the appropriate kind of access (non-exclusive
read, exclusive write).

RFMs use a locking discipline to support synchronization
This discipline works roughly as follows. When an attempt to
open a file for reading is handled by a secondary manager, the
manager tries to set its lock for the file to "reserved for
reading". The attempt to set the lock fails if the file is ,O--I?
already locked for writing Next, the manager interacts with the
primary manager to try to set the primary manager's lock for the ,10
file If this succeeds, the secondary manager sets its lock to
"locked for reading" and proceeds with the open. If the primary
has the file locked for writing, the secondary manager clears its

-101-

-4

lock and reports to the client that the file is busy. When the
file is closed, both the local lock and the primary manager's

lock for the file are cleared. Attempts to open a file for
writing are handled in an analogous fashion. This locking
discipline is described in more detail in the Cronus User's
Manual.

The reliable file system supports the notion of free reads
and writes. For a free read the synchronization outlined in
Table 8.1 is performed by the file manager which handles the
client's read. but no attempt to synchronize with the primary

manager is made Free write operations require synchronization
with the primary manager.

If sychronization for any operation falls because the •
primary manager cannot be reached. the operation may proceed, but
only with the explicit consent of the client, and, of course, at .\ '
some rlsk. The risk is that different images of the file may be

undergoing unsynchronized access, and, as a result, the file

images may diverge into inconsistent states.

A client may specify its intent with regard to
unsynchronized access when it initiates a file operation by means
of an optional operation parameter. Alternatively. the client

may choose not to specify the action to be taken when it invokes
the operation. in which case, if synchronization cannot be
achieved, the manager will ask whether it should proceed with or
abort the operation.

Inconsistent images of a file can be detected by means of
the version vector mechanism developed at UCLA. A version vector

for a reliable file, RF, is a set of N ordered pairs, where N is
the number of sites at which RF is stored. A particular pair
(Si, Vi) counts the number of times updates to RF were initiated
at Si. Thus. each time an update to RF originates at Si, Vi is
incremented bv one. The version vector is part of the object
descriptor for RF.

Two images of a reliable file are said to be consistent if
the modification history of one is the same as or is an initial
subsequence of that of the other. It can be shown that two
images are consistent if one of the vectors is at least as large
as the other in every (Si, Vi) pair The larger vector is said
to dominate the smaller, and the image corresponding to it

-102-

represents a later, consistent version of the image corresponding
to the smaller vector. If two vectors are such that neither
dominates the other (that is, some pairs in one are larger than
some pairs in the other and vice versa), then the corresponding
file images are inconsistent with one another.

Since the descriptor for a file may undergo modification
independently of the file data, descriptors for reliable files
also have version vectors. 0

The question of when version vectors for file images should
be compared and what to do if they are not equal is discussed in
Section 8.3.6. The synchronization mechanism for reliable files
outlined here is described in more detail in the Cronus User's
Manual. S

8 3 4 Interactions Among Reliable File Managers

RFM s must interact with one another in order to maintain
reliable files. For example, when a reliable file is updated,
the new file data must be transmitted to each site that has an
image of the file.

Occassionally a RFM that must participate in such an
interaction will be inaccessible. It is important that when, if
ever. such a RFM becomes accessible the interaction occur. It is
the responsibility of the inititiating RFM to ensure that the
interaction occurs. The mechanism used by RFM's to do this is as
follows. 0

Each RFM maintains a PendingActions data base which contains
a record for each operation it was unable to completely perform
due to its inability to interact with other RFM's. Each such
record includes

the UID of the reliable file,
a specification of the action required to complete

the operation,
a list of the sites at which the action must be

performed (for some actions, this list may be empty).

-303-

% % %~~ % . M,

Whenever the RFM is unable to complete an operation, it adds •

a record to the PendingActions data base to describe the actions 'I

necessary to complete the operation. Subsequently, at regular

intervals, the RFM scans the PendingActions data base and for
each record, it attempts to perform the necessary interactions.

If the RFM succeeds in performing some, but not all, of the

interactions, it updates the record. When all of the 0

interactions described by a record are successfully performed,

the record is removed from the data base

The actions that may be found in records in the

PendingActions data base include.

a Acquire sites to store images of a file.

b Update the descriptor for a file.

c Update a file itself.

When a RFM comes up for the first time, its PendingActions

data base is empty, and if sites and the network never failed the

data base would remain empty.

The PendingActions data base should be stored in a

reasonably reliable fashion. It is probably adequate to store it

as a primal file on the RFM's local site

8.3 5 Operations on Reliable Files

The operations supported for primal files are also supported
for reliable files. Three additional operations are supported
for reliable files The ChangeCardinality operation changes the

cardinality of a reliable file. The File_Sites operation
produces a list of the sites that are thought to be maintaining

images of the file. with the primary file site distinguished.

The MoveImageTo_ Site operation moves a file image from one site

to another (removing the image at the source site).

-104-

'%, . .'.,. ':, /. ." .

ftP(CA AP %.

V

The design of reliable files is conveniently described in
terms of the normal life cycle for a file, which is much the same
as that for a primal file. The principal exception is that the
cardinality of the file may change. The life cycle includes.

a. The file is created.

b. Data in the file may be read by a client.

c Data in the file may be written by a client.

d Information in the file descriptor may be read by a
client.

e. Information in the file descriptor may be written by a
client.

f. The cardinality of the file may be changed

g The file may be deleted

The following sections discuss these operations

8.3.5 1 Creating Reliable Files

A reliable file must be created before data can be written
into it, and until data is written into the file, the file
remains empty. 0

To create a reliable file, the client invokes the Create

operation specifying the cardinality of the file as a parameter.
The RFM that receives the Create operation becomes the primary
manager for the file.

For the initial implementation of reliable files, clients
may exercise control only over where primary file images are
maintained. If the Create operation is requested by means of
InvokeOnHost, then the RFM at that host becomes the primary
manager, otherwise, the RFM selected by the interprocess

-105-

r* *.-.*. IFer N-r'r< "L r

communication facility becomes the primary manager. Later

implementations may provide means for client processes (as well

as for users through the user interface) to exercise control over

the initial placement of secondary images. After images are in

place, the MoveImageToSite operation can be used to move an

image from one site to another.

When a RFM receives a Create operation. it.

a Creates a (empty) primal file for the primary image of
the reliable file, and obtains its UID (UID pf).

b. Allocates a UID (UIDrf) for the reliable file, and makes
an entry for it in its UID table,

0
c. Creates and initializes a descriptor for the reliable

file. The following descriptor fields are initialized.

The cardinality.
The primary site,
The file version vector and descriptor version

vector,

The list of UIDs for images is initialized to

include UID-pf.

d. Returns UIDrf to the client, indicating that the Create

succeeded.

Secondary images of the file are not created until the file is
written the first time (That is, after a free write or after

the file is opened. written into and closed).

When a reliable file is first written and whenever the file
cardinallty is increased. the RFM selects sites to store images
cf the file The acquisi on of new sites involves three steps.

a. The selection of the new sites

b. Obtaining commitments from the RFMs at the selected sites
to store images of the file.

C. Updating file descriptors at each of the file sites to

reflect the new sites.

-106-

'A

The RFM acquisition procedure is structured so that an RFM
need not, as part of a single acquisition attempt, acquire every
site required to support a file's cardinality. An RFM can
support operations on a reliable file even if not all of the
desired images of the file have been created. When an RFM is
unable to acquire all the sites necessary to achieve the desired
file cardinality, it creates a record in its PendingActions data
base to ensure that the additional sites will be acquired.

The acquisition procedure is described in more detail in the
Cronus Users Manual

8.3.5.2 Reading Reliable Files

Reading a reliable file is similar to reading a primal file.
File data may be read by means of a free read operation. or by
opening the file prior to performing read operations. In either
case the interprocess communication facility delivers the
operations to an RFM that manages the file

There are several differences in dealing with reliable files
which are visible to a client. These include the following.

a. The interaction between the RFM that receives the
operation and the primary RFM for the file in order to
achieve synchronization is not visible to the client.
However, should the synchronization fail because the
primary RFM is inaccessible, the client will be informed 9
and given an opportunity either to continue with the
access or to abort it.

b A client process can obtain a list of the sites that have
images of a reliable file, and it can choose which RFM to
deal with to access the file. For example, it might
choose the primary RFM. or, if an RFM happens to reside
on the host it does, it might choose that one.

c. After it opens a file, the client should continue to deal
with the same RFM for operations on the open file until
it closes the file.

-107-

8.3.5.3 Writing Reliable Files

Writing a reliable file is similar to writing a primal file.

The principal differences are essentially those noted above for

reading reliable files: the required synchronization may fail due
to the inaccessiblity of the primary manager for the file, in
which case the client must decide whether to proceed at some risk
or to abort the write, the client may choose the RFM with which

it deals, and, after it has opened a reliable file for writing, a I
client should deal with the same RFM for operations on the open
file until it closes the file.

File data must be updated after a free write or after a file
opened for writing has been closed (if writes have actually been

made and are to be retained).

The RFM at which the writes are performed is responsible for
distributing updates to the other file images. It does this by
interacting with the other RFMs sites in the following way.

a. It increments its (Site, Version) element of the file
version vector.

b. It attempts to interact with each other RFM that manages
an image of the file.

c. Should it fail to complete the image update with any RFM,
it adds a record to the PendingActions data base
specifying the file and the RFMs it was unable to update.

The actual update procedure for a particular image involves
several exchanges between the initiating RFM (iRFM) and the
responding RFM (rRFM), and works roughly as follows.

a. iRFM does lnvokeOnHost(SiteOf(rRFM), UID,
Updatelmage, DVV. FVV),

where UID is the UID of the reliable file, DVV is the
version vector for the file descriptor, and FVV is the
version vector for the file itself.

b. rRFM compares both DVV and FVV against the descriptor and

file version vectors it maintains for UID. Assuming that

-108- .1

DVV and FVV dominate the corresponding version vectors at

rRFM. rRFM returns to iRFM a SendTheDescriptor message.
(Section 8.3.6 discusses what happens if iRFM's version

vectors are dominated by or are incompatible with
rRFM's.)

S

c. When iRFM receives the SendTheDescriptor message, it
sends the new value of the file descriptor to rRFM in a

HerelsTheDescrptor message.
crRFM receves the file descraptor and updates its copy of

the descriptor It then returns iRFM a SendTheFleUpdate

message.

e. When iRFM receives the SendTheFileUpdate message, it

transmts the vle ofdte file deipo to rRFM in a

HereIsTheFilepdate message. Depending on the nature of

the changes to be made to the file image, the update maycopy of

be transmitted by sending the entire file or by sendingonly the changes that need to be made to the file to
update it.te

rFinall. after it has stored the new file data in the

primal file that holds its image of the file n rRFM
returns an UpdatelmageSucceeded message to iRFM.

8.3.5 4 Other Operations

This section describes the ChangeCardnaltty and t

MoveImageToSite operations. Both operatons requre ,,
synchronization with the primary manager.

ChangeCardlnalty is used to change ne number of images

the system tries to maintain for a reliable fle. An increase to

the cardnality is accomplished by execution of the acquisition

procedure described in Section a.3.51. Decreasing the

ca Chagardlty r lt is se tnverse of tncreasng it. The

performing manager selects a site or a set of sites which

currently maintain images of the file and asks the manager at
each to agree to discard its image of the file, and to remove the

-109-

,%

file from its UID table. After each agrees, the performing

manager instructs each to discard the image and the remaining
managers to update their descriptors for the file.

MoveImageToSite moves a file image from one site to
another, preserving the file cardinality. The parameters of the
operation are the file UID, the site of the image to move, and a

new site to hold the image. The operation involves creating an
image of the file at the new site, discarding the image at the S
old site, and updating the descriptors held by all managers of

the file to reflect the change.

S

8.3.6 Use of Version Vectors

Version vectors are used to detect inconsistent images of

reliable files. In the current design. both the descriptor for a
file and the file itself are protected by version vectors.

Version vectors are compared in two situations.

a. When an image of a file is updated. The RFM initiating
the image update supplies its version vectors, and the •
responding RFM compares them with its own.

b When an attempt is made to lock a file for read or write
access. The secondary RFM attempting to lock the file
supplies the primary RFM with its version vectors and the
primary RFM does the comparison. 0

In each situation, both the descriptor version vector and
the file data version vector are compared. There are four
possible outcomes for the comparison of version vectors:

a. The supplied version vector is the same as the local
version vector.

b The supplied version vector dominates the local version
vector

c. The supplied version vector is dominated by the local
version vector.

d. The two version vectors are incompatible.%

The actions taken for these outcomes depend upon whether image
updating or file locking is taking place.

For updating. the version vectors are compared by the RFM
whose image is about to be updated. The various comparison
outcomes and the actions to be taken for each are.

a. The supplied version vector is the same as the local
version vector. Since the updating RFM increments its

element of the version vector prior to sending it for
comparison, if the RFMs are behaving properly, this case

should not occur. If it does, some RFM has been
misbehaving. The update should be deferred and the
operations staff should be alerted by means of a message
to the Monitoring and Control System. .., .

b The supplied version vector dominates the local version
vector. This is the normal case, since the local image

is being updated. In this case. the image update should
proceed.

c. The supplied version vector is dominated by the local
version vector. In this case, the local image is more

recent than the one that is to replace it. The update
should be aborted, and the local version should be used
to update the remote version.

d. The version vectors are incompatible. This detects an _

inconsistency. The update should be deferred until human %
intervention can clear up the problem.

In the locking situation, the version vectors are being
compared by the primary RFM for the file in question.

a. The supplied version vector is the same as the local
version vector. This should be the normal case, and
locking can proceed.

-Ill-

b. The supplied version vector dominates the local version
vector. In this case, the primary image is obsolete, and

should be brought up to date. If the file is being
locked for writing, the locking should proceed, and the

local image can be updated when the file is closed. If

the file is being locked for reading. there are two 4/
possibilities Either, the primary file image could be
updated before proceeding with the locking, or the
locking could proceed and the file could be updated when 0

the lock is cleared.

c The supplied version vector is dominated by the local
version vector. The secondary image should be updated

before proceeding. If the file is being locked for
reading, then the file image at the secondary site should -

be updated so that the client is given access to the most

current file data. If the file is being locked for
writing, then the secondary file image must be updated

first to avoid incompatibility.

d The version vectors are incompatible If the file is
being locked for reading, the locking may proceed, but an
attempt to signal a user or operator to resolve the
incompatibility should be made. If the file is being
locked for writing, the client should be informed of the

incompatibility and given an opportunity to resolve it.
The client may proceed without resolving the
incompatibility, in which case the write is treated as an
unsynchronized write.

8.4 Elementary File System

8.4 1 Introduction

The Elementary File System (EFS) is an easily ported single
host file system that serves as a common base of implementation

support for Cronus file managers on Cronus Generic Computing
Elements (GCEs) configured with disks, on the UNIX system, and on
the VAX. The underlying implementation of the EFS is consituent
host dependent. but the interface presented to the Cronus File
Manger is uniform As a result. portability of the File Manager

-11I2-

is enhanced, and the cost of integration of new hosts is reduced.

The EFS was originally developed as a primitive file storage
capability for the GCE mass storage devices.

The two principal design objectives of the EFS are:

I. Sufficient functional capability to support the Cronus
distributed file system.

2. Simplicity and efficiency.

The principal users of the EFS will be object managers.
Client processes will seldom. if ever, directly access files
through the EFS. Therefore, only the most basic file

operations need be supported. More complex file functions
can be supported by the object managers themselves. Simple
steps have been taken in the internal organization of the
EFS to support effective crash recovery and system restart
procedures.

The Elementary File System will have the following S
characteristics:

1. The name space for EFS files is flat. Names for EFS files

are called FileIDs. and they are fixed length bit strings.
FilelDs are not Cronus UIDs. A FileID is unique on the EFS

that generated it. but it is not unique across all Cronus
hosts. The EFS is a Cronus object in much the same way that

the existing UNIX or VMS file systems are C:onus objects,
but

.1%

2. A EFS file is not a Cronus object.

3. File data is organized as a sequence of fixed length blocks.
File i/o is sequential. and is block oriented. The basic

file i/ o operations are.

ReadEFSFileBlock(FilelD, BlockNumber, Buffer), and
WriteEFSFileBlock(FilelD, BlockNumber, Buffer).

4 There are no open or close operations. No setup is

necessary to read data from or write data to an existing EFS
file.

-113-

l%

5. It is necessary to create a EFS file before writing data to

it. This is accomplished by the

CreateEFSFile()

operation, which creates an empty EFS file and returns its
Fi lelD).

J0

6. EFS files are deleted by the

DeleteEFSFile(Fi lleD)

operation

7. There is no access control for EFS files. Possession of the
FilelD for a EFS file is sufficient to access the file.

The EFS will normally be accessible only to Cronus Services.
The primal file manager is an example of such a service. These

services provide controlled access to the objects and operations
that they implement. as described in Section 8.

In addition to supporting the local primal file manager, the
EFS may be operated on as an object to permit remote access for
maintenance and debugging purposes. There is a single access
control list (ACL) associated with access to the entire EFS

through the EFS_File Manager. Only a very few principals will be
on the ACL for a EFS. An example of a principal which might be

granted access to the EFS is the "System Maintenance" principal.

8.4 2 File Formats

The following description of the Elementary File System
structure assumes that a disk can be represented by a series of
fixed length blocks In the Cronus ADM, the storage may be.

a disk drive on a GCE,

a disk device in a UNIX system, or

-114-

a contiguous file on the VAX/VMS.

The EFS makes few demands on the underlying recording medium, and
it is relatively easy to see that most potential Consituent
Operating Systems will provide a construct upon which the EFS can

be built.

File disk blocks are self-identifying for reliability •
purposes. Each block includes a header that contains the FileID
and the block number. The file header in each block contains a
NextBlock pointer which is the disk address of the next block, if
anv. in the file. The NextBlock pointer in the last block

contains a special value marking the end of file

There is a FileID Table which provides a mapping between
FilelDs and the disk address of block 0 of the file (see Figure

I). The FilelD Table is as a file with a well-known FilelD
(FileID = 1) Its block 0 will be stored at a known disk address
(with an alternate copy stored tt another location to prevent

loss of data in case the primary block is bad) The FileID Table
is a hash table.

There is a £'reeDlil:Block table which records the disk blocks
that are available. The FreeDiskBlock table is a bit table

stored in a file with a well-known FileID (FileID = 2). Its
block 0 is stored at a known disk address. When a file is
deleted, its blocks are recorded in the FreeDiskBlock table, and
the FilelD field in the headers of each of the blocks is cleared.

As disk blocks are needed they are allocated using the

--
FreeDiskBlock table.

There are two types of EFS files. The type of the file is
contained in the header of block 0. T types of EFS files are
ksee Figure 2).

a1 Short file

This is a file, all of whose data will fit within block 0.

b. Normal file.

This is a file whose data will not fit within a single

block.

-115-

%\I ~ ~ '

DMgk bLocks ror rLLo 5 J-

FLsI TabLe

F'.LeID BLockQ

F.Le d,.sk bLock ror-niot.

ockNummer2
NcxL9Lovq -A

Itk

EFS File Table
Figure 8.1

-116-

"Ks~ ~ % % %> <'

.v.

Random Access GCE Files

File Disk Block Format Small File

F\Lo!D j
i KLockNumbor 0
NuxtBLock NuLL

Tpu - 0

OMTR
09TA

Normal File

K_ _ _ KK0 2
Tuo - I
NoBLke - X

OLk Index 0"T" OPTA

Nu L

K K K

-1

Part or Part or.
Index r.,\ SLk Index OLki Index
OLk Index

OvertlowBlockl

More Data Blocks

EFS File Types

Figure 8.2

S

A Normal file may contain index blocks which allow random access
to the file. By convention, the first of these blocks is given
block number -1. and contains:

i. A block index which holds the disk address of blocks 1

through N of the file; and
ii. The disk addresses for two overflow blocks, named

OverflowBlockl and OverflowBlock2, which can be used to find

the block index entries for blocks numbered greater than N. S

If the file is very large, not all of its index will fit into
block -1.

OverflowBlockl is used as an index for blocks which store
part of the block index which will not fit in block -1. 0
Specifically, if block -1 can store indices for blocks 1 through
N. if OverflowBlockl can store M disk addresses as indices, and
if each block it indexes can store P disk addresses.
OverflowBlockl can provide access to indices for M4P additional
blocks, numbered (N+l) through (N+M*P). The block index for the
Normal file shown in Figure 2 overflows block -I into
OverflowBlockl, and is small enough that it doesn't require

OverflowBlock2

OverflowBlock2 provides an additional level of indirection

for very large files. It contains an index for blocks which are

used in the same manner OverflowBlockl is. If OverflowBlock2 can
hold Q disk addresses as indices, then it can provide access to

indices for MIPIQ blocks, numbered (N+M*P+I) through
(N+M*P+I+M*P*Q).

By convention the BlockNumber for OverflowBlockl is -2. Any

index blocks referenced by OverflowBlockl, a, well as 0
OverflowBlock2 (if present), and any index b' ,cks it references 7;.

directly or indirectly are assigned BlockNumbers in a negative
sequential fashion starting at -3 in the obvious manner. N

Some constituent hosts will have multiple disks (in the case
of UNIX, these may actually be disjoint regions on a single
physical disk, and in the case of VMS. they would be multiple
contiguous files). Part of the FilelD specifies the disk on

which the file resides. The CreateEFSFile operation takes an
optional parameter which specifies a disk. If the parameter is
supplied, block 0 and all subsequently created blocks of the file

%

-ll16-

"..A- , - , .Q . .

I~h~W W~ IWVVUV~ U WX IVVL' '

%

N

are allocated on the specified disk. If the parameter is not

supplied, block 0 and subsequent blocks are allocated on the disk

the EFS sees fit.

8.4.3 Disk Salvaging

There is a BadDiskBlock table which holds the disk addresses
of bad disk blocks. The BadDiskBlock table is stored in a file
with a well-known FilelD (FileID = 3).

There is a EFS disk salvage operation which can reconstruct
the FilelD table, the FreeDiskBlock file, and the BadDiskBlock
file. and reset the NextBlock pointers in files.

The salvager may encounter files with missing blocks. When
it does, it will fill in any hole it encounters with a newly

allocated filler block, linking the filler block into the file
where the hole was. The FilelD of the filler block will be set

to the ID of the file. and its BlockNumber will be set to a
special BlockNumber which identifies it as a filler block. The

only data in a filler block will be the BlockNumbers of the
previous and next file blocks which contain data. Higher level
software can be used to recover the data in a file which contains

filler blocks.

As the salvage procedure encounters bad disk blocks, it
records them in the BadDiskBlock file. If it encounters a bad
block which is part of a file, the salvager will remove the block
from the file and substitute a newly allocated replacement block
by linking it with the other blocks of the file in place of the
bad block. The FileID of the replacement block will be set to

the ID of the file, and its BlockNumber will be set to a special
BlockNumber which identifies it is a replacement block. The only
data in the replacement block will be the BlockNumber of the
block it replaces. This will make it possible for higher level
software to recover the data in other blocks of the file.

I

-119-6 %L

9 Symbolic Naming

9.1 The Cronus Symbolic Name Space

Cronus has a global symbolic name space with the following
properties.

I. Cronus symbolic names are location independent.

a. A name for an object is independent of its host.

b. A name that refers to an object can be used

regardless of the location from which it is used.

2. Cronus symbolic names are uniform.

Common syntactic conventions apply to names for different

types of objects.

The symbolic name space is constructed upon a hierarchically
structured tree. The tree contains nodes and directed labeled
arcs. There is a distinguished node called the "root" Each
node has exactly one arc pointing to it, and can be reached by
traversing exactly one path of arcs from the root node. Nodes in
the tree represent Cronus objects which have symbolic names.
Links provide an overlaid structure based on symbolic pointers
which provide a name space which is a network, so a node may be
reached by more than one path.

Non-terminal nodes (those from which arcs may originate) are
called directories. Each labeled arc corresponds to a catalog
entry. The label for an arc is called an "entry name".

The complete name of a node. which is the symbolic name for
the object, is formed by concatenating the labels on the arcs
traversed on the path from the root node to the node in question,
separated with the character ":" In other words, the syntax for
a complete name is. 5

x . ' y

where "x" and "y" are arc labels, the ".." brackets indicate
optional presence, the ". is a punctuation mark to separate name

-120-

%%

components, and ") s i'" means zero or more occurences of s.

It is also possible to name nodes relative to a directory.

Such a relative name is formed by concatenating the labels on the

arcs traversed on the path from the directory in question to the
node. The syntax for a relative name is:

x y

There are conventional names for the current ("connected" or
"working") directory. its parent, and the user's initial

directory.

The most common types of cataloged objects are the various S
kinds of files, but any other object may be cataloged. Some
conventions will be adopted, for example, there will be a dey
directory' which contains the symbolic names for the devices on

the system. These conventions are not enforced by the system,
and any object may be entered into any directory (assuming
appropriate authorizations) at the convenience of the user.

There are certain special object types which are used in
support of the catalog itself, including.

o Directories

A directory object (type CT_Directory) is a non-terminal

node in the catalog tree.

o Links

The catalog entry for a link (type CTSymbolicLink) •

identifies another point in the symbolic name space called
the link target These objects are stored in the catalog
itself. Links are cataloged as terminal nodes in the name
hierarchy tree. Links are handled specially within the

Lookup operation.

o External linkages

An external linkage (type CTExternal_Linkage) is an object '

which implements access to another name space. External
linkages are cataloged as terminal nodes in the name

-1%1-

"- ' "N • " " ' '

hierarchy tree. External linkages permit users to refer to

non-Cronus objects directly from the Cronus name space. For
example, an external linkage might be used to give a file
directory on a Cronus application host a Cronus symbolic
name.

For some object types it is useful to be able to think of a
collection of the objects as a sequence of "versions" or S
"revisions" of the same logical object. The Cronus Catalog

implements a version feature for certain types of objects; for
example. versioning will be supported for files, but it will not
be supported for directories.

For types for which versioning is supported. the catalog •
entry operation will permit the same name to be entered into a
directory more than once. Each copy of the entry will have a I
distinct version field and should point to a different object. I
However. all objects pointed to by different versions of the same
entry name must be of the same type. The first time a name is
entered. the result will be version 1 of the object. Subsequent S
entries of the same entry name will result in successively higher
versions of the object. All of the catalog operations which take

a name parameter will allow the specification of a version number

as well.

The catalog managers provide routines that can scan through S
the catalog and return catalog entries for names that match a
specified pattern.

The create(entry) operation can be used to simply establish I
a symbolic name for a Cronus object of any type except a I
directory, symbolic link, or external linkage object. These I S
types of entries are inserted in the catalog when they are
created (since other objects need not be named, the creation of
the object and naming of the object are distinct operations). In
a sense, these objects are special in that they must have a
symbolic name in addition to a UID.

Figure I shows a relatively simple symbolic nar- tree and

Figure 2 shows part of the underlying directory structure that
corresponds to the part of the tree that contains the name
a.b.c

-122-

• ° • o

Root drector~

00

Catalog Hierarchy
Figure 9.1

-123-

MA .W 'S

nK'(5

Implemenati~on of Cronus Catalog

rLLo that rLL9 thut rLa. th rano that
LmpL~i..r~t9 LOPLei~ort LwpL&vno~tw ~ m oft nt
rout &rctorq c&rectorM ckruct~ar >a~b f.Lca. :.>b>.

ab
Cototoq 'a ao-b'abc

ent nL.rUlD abU&rU1D abcF..LnUll Files

/ rt rIT ca15U 10 F l MulOT Directory

roiOGL a9GLb1,L UID Table
r nt.F L UI u !Lt.4 I j) n bf.L rl l L- Q is u qj d b gj

.ncr..AUI '- F, 14 UID Table
c. U ir 07L - ~r.L~I~ fl.ue a

_ j - j IL .flrsirrs)

U-0

Implementation of Cronus Catalog

Figure 9.2

-124-

S ~%'

When a lookup operation is invoked, the catalog manager
interprets a complete Cronus symbolic name by starting at the

root directory. The UID of the root directory is well-known.

The catalog manager processes a name component by searching the
current directory for a matching catalog entry. If it finds a
matching entry and there are no more name components, the lookup
is complete and it returns the catalog entry. 11 it finds a

matching entry and there are more name components to interpret. --

the entry must be for a directory, symbolic link, or external 0

linkage, or else the lookup ends in failure. If the entry is a
directory, the catalog manager continues the lookup by obtaining
the UID for the directory from the entry and then using it to

interpret the next component. Interpretation of a relative

symbolic name is handled in the same fashion, differing only in
where the lookup starts. For a relative name, the catalog 0

manager starts its search at the starting directory parameter of

the lookup operation.

Symbolic ;inks encountered during lookup are handled in a
special meP r. When a link is encountered, a new name is formed

by substituting the link target, which is a complete Cronus •
symboliL name held in the catalog entry, for the portion of the

symbolic name evaluated so far. The lookup operation then
resumes by interpreting this new name. Links can be thought of
ar macros which are expanded during the lookup operation.

A parameter of the lookup operation controls whether links
are to be expanded. If the parameter specifies that links are to
be expanded, the substitution of link targets during the lookup

operation occurs. If the parameter is set to prevent links from

being expanded, the lookup operation terminates when a link is
encountered. In this case, the lookup operation will be

considered successful if the name has been completely evaluated.__•

Otherwise it will be considered a failure.

4"

9.2 Objects Related to the Catalog I .

-125- U
®r" %

1. "1.q M

.4 V:

9.2.1 Objects of Type CTCatalogEntry

Each catalog entry is a Cronus object, however, unlike most
objects in Cronus, a catalog entry has no UID. A catalog entry
contains the following information.

UID for the object,
Complete symbolic name for the object,
UID for creator of entry (PrincipalUID) and

Type-dependent information

Type-dependent information for objects of type CT_Directory,
CTSymbolicLink, and CTExternal Linkage is discussed below.

For objects that are not part of the Cronus catalog, everything
that can be known about an object is maintained by (or can be
obtained from) the manager for the object. That is, no type-
dependent information is maintained in the catalog.

9.2.2 Objects of Type CT_Directory

For directories, no type-dependent information, except the
host that stores the directory, would be maintained in the
catalog entry. All other information about the directory will be
maintained with the directory object itself.

9.2.3 Objects of Type CT_Symbolic-Link

For a symbolic link. the type-dependent information, which 0
completely specifies the link, consists of the complete symbolic
name for the l ink target.

U I D. "
Complete symbolic name for the link.
UID for creator of entry (PrincipalUID), and

Complete symbolic name for the link target.

-126-

9.2.4 Objects of Type CTExternal_Linkage

For an external linkage, the type-dependent information
completely specifies the external linkage. It includes a Cronus
interpretable designator for locating the other name space and a
symbolic name that is interpretable in that other name space.

The details of the method for designating other name spaces and
for interacting with them are incomplete. A catalog entry for an
external linkage will include. 0

UID.
Complete (Cronus) symbolic name for the external

linkage,
UID for creator of entry (PrincipalUID)
Cronus interpretable designator for the other

name space, and
Symbolic name interpretable in the other

name space. %

9.3 Catalog Operations

9.3.1 Objects of Type CTCatalogEntry

The following operations are defined for the Cronus symbolic .

catalog (see Cronus Users Manual catentry(3)). I

Create

Remove .

Lookup 0
Read -
Change
In tScan
ScanDi rectory
LookupW Id

LookupWild performs a catalog lookup using Cronus wild card "
conventions (see Cronus User's Manual sym-name(4)), and returns a ,
list of all the entries which match the specification. Initcan
and ScanDirectory perform the same function, but incrementally, i
returning individual entries.

A

-127-

V/ VY S. .

9.3.2 Objects of Type CTDirectory

The following special operations are defined for objects of
type CTDirectory (see Cronus User's Manual directory(3)):

Create

Remove S
9.3.3 Objects of Type CT_SymbolicLink

The following special operation is defined for objects of
type CTSvmbolic_Link (see Cronus User's Manual sym-link(3)).

0
Create I

9.3.4 Objects of Type CTExternal _Linkage

The following special operation is defined for objects of
type CTExternalLinkage (see Cronus User's Manual extlink(3)):

Create

9.3.5 Access Control for Catalog Operations

All of the catalog operations are operations on one or more
directories. There are three rights defined for access control

purposes:

ReadDirectory,
WriteDirectory. and

ModifyACL.

ReadDirectory rights are needed for all operations which
return information from a directory. In operations which access
multiple directories, such as Lookup. ReadDirectory rights are
needed for each directorv accessed. WrnteDirectorv rights are
needed for all operations which insert or remove entries from a

-128-

% %,

directory, or alter the contents of an entry (with the exception

of those which change the access rights). ModifyACL rights are
needed in order to change the access rights to an object
represented by a catalog entry.

Table 9.1 summarizes the access rights required for the
various operations. I

Read Write Modify

Directory Directory ACL N.

Create(entry) x
Create(link) X

Create(external linkage) x
Remove (entry) x
Lookup x
LookupWild x
InitScan x
ScanDirectory x

Read~entrv! x
Change entry X
Create directory) x

Remove(directory) x

Table 9 1 Access Rights Required for Catalog Operations

9.4 Catalog Implementation

9.4.1 Introduction %,%

The following implementation issues are discussed below:

1. the manner in which client processes interact with the
catalog manager which implement the catalog functions.

2. the use of Cronus data storage resources to implement the
catalog data base.

-129-

'5.~'. .1 '.P'.A ~

NP % % %%P OF-4

'e4" 'q.' '%. %\ " V ':. , : '". ",,•~ < f . '_. . / . . ~ L ~ 'l.

3. the distribution of the catalog data base among Cronus
hosts-

9.4.2 Cronus Catalog Managers '

There is a catalog manager process at each host that
maintains part of the catalog. It is the object manager for
objects of types CTCronusCatalog. CTCatalogEntry.
CTDirectory. CT Svmbolic _Link. and CTExternal Linkage.

The catalog managers communicate with client processes by
means of the standard Cronus IPC facility. Since the catalog 0
hierarchy is distributed among Cronus hosts, different managers
will have direct access to different parts of the catalog. Some

catalog operations can be accomplished by a single catalog
manager and some require the cooperation of two or more catalog
managers

For example, the Remove(DirUID. catEntUID) operation would
normally be sent to the manager for directory DirUID. and only
that manager is required. The lookup operation may require
catalog managers on two hosts if the manager to which it is sent
does not contain the subtree required to interpret the entire

symbolic name. S

A client process will not, in general. know which catalog I
manager is the best one to perform a given operation For this
reason, a client can initiate a catalog operation with any I
catalog manager. If the manager selected can perform the
operation requested by itself, it will. If not, it will interact 0
with other managers as necessary to perform the operation.

9 4 3 Implementation of the Catalog Hierarchy

Directories are stored in files. The catalog manager

maintains a UID table for the objects it manages. Since the
principal objects implemented by the catalog manager are
directories, this table is called the Directory UID Table The

-130-

F V-

N"~4,a'.. PO %~' %N N .

Directory UID Table maps the UlDs for directories into their
object descriptors.

A directory contains zero or more catalog entries. The
catalog entry for a (inferior) directory contains the UID of that
directory. To access a directory given its UID, the catalog
manager uses the Directory UID Table to obtain the object
descriptor for the directory, and then uses the file UID in the
descriptor to access the file that holds the directory. 0

9.4.4 Distribution of the Catalog

9.4.4.1 Principles Affecting Distribution

Among the considerations influencing catalog distribution
are

1. The catalog should not be stored at only one site.

This is a reliability consideration.

The catalog should be distributed, and it should probably

be replicated in some fashion. 0

2. The entire catalog should not be stored at any single
site.

This is a scalability consideration.

3. It should be possible to access an object when the site I
that stores the object is accessible.

This is a reliabilitY consideration.

Access to objects through the UID name space has this
property since the information required to access an
object, given its UID, is maintained by object managers.

Access to objects through the symbolic name space should
also exhibit it.

-131-

The catalog entry for an object (or a copy of the entry)

should be stored at the same site as the object. In

addition, there should be enough information at the

object site to control access to the object.

4. There is little utility in maintaining a catalog entry

for an object in a more reliable fashion than the object
itself.

This is a common sense consideration.

It is not necessary to replicate catalog entries for

objects beyond that required by (3).

There are some further isssues to consider associated with

(2) and (4t. and we disscuss them in more detail in the next two

subsecti..' The discus-,on includes elements of the
implementation oi "sc reliable system as well as the primal
system, because these may impose constraints on the primal system

design

9.4.4.2 Dispersal Of The Catalog

This section examines the requirement that the catalog not

be stored at a single site The line of reasoning followed is
essentially that that lead to the design of the Elan hierarchy

[BBN 3796]

Directories are the basic unit of distribution for the 0

Cronus catalog. Directories are implemented by Cronus primal and

reliable files. The lookup operation follows the components of a

symbolic name through a number of different directories, one for
each component in the name .assuming it does not encounter a

symbolic link). Unless there is a further restriction on the
dispersal of the catalog, each directory could be at a different
site from the previous one.

It is desirable to limit the number of sites that must be
visited in a lookup operation. Two useful restrictions are to.

-132-

'~~.1 'e .

II%

1. Require that the catalog structure for entire subtrees
below a certain cut (the "dispersal cut") through the

catalog tree be stored within a single site. We call a
subtree that is rooted at the dispersal cut a
"dispersal subtree".

2. Require that the catalog structure above the dispersal
cut be stored within a single site. We call the

structure above the dispersal cut the "root portion" of

the hierarchy.

Restriction I ensures that lookup operations within a

subtree that is below the dispersal cut can be confined to a
single site. Restriction 2 ensures that the task of determining 0

the site that stores a particular dispersal subtree can be
confined to the site that stores the root portion of the
hierarchy. As a result, lookup operations require at most two

catalog sites.

It is useful to add a third property to the dispersal of the

catalog.

3. The root portion of the catalog hierarchy should be
replicated. Furthermore, a good way to replicate it is
to maintain it at each site that maintains a part of
the catalog (i.e. a dispersal subtree). The reasons
for doing this are.

o To distribute the load resulting from lookup
operations among several sites.

o To allow some lookup operations to be confined to
a single site.

o To increase the availability of the root portion

of the hierarchy.

Figure 3 illustrates how a simple name hierarchy might be
dispersed among several hosts according to these three

restrictions.

0

-133-

jr0

Dispersal Cut
Replicated Root Portion
of Name Hierarchy

Host A
C

-, -' S

Hos B Hos C
Host C HostI

Hostt HostC D

Dipesalpubrsalo h aao

Figure 9.3

-134-I

i

For this to be practical. it must be possible to maintain
the copies of the root portion in a consistent fashion among the
same set of hosts that store parts of the catalog. It has been
observed that the root changes very slowly, because few users are
authorized to make changes, and because changes generally occur
as the result of the addition or deletion of a user or project.
This means that the maintenance mechanism need not be powerful
enough to handle the general multiple copy update problem.

9.4.4.3 Replication of Catalog Information

The primary consideration for replicating catalog 0

information is one of reliability. The objective is to ensure
that Cronus objects with symbolic names are accessible
symbolically whenever the sites that manage the objects are. It-
is likely that unavailability of a catalog manager will be the
result of a host crash, so that we can assure maximum access by
providing a copy of a catalog entry on the host where the object I
is cataloged. Then the entry will usually-be available whenever
the object is If this is the same as the site of the primary
catalog entry, then no replication is needed. If it is
different, then a secondary catalog entry is provided on the host
where the object resides.

For every host on which there are object managers, there
will be either a full catalog manager or a secondary catalog
manager. Each full catalog manager will maintain a fully
replicated root part of the catalog tree and its own subtrees
rooted at the dispersal cut. In addition, both full and
secondary catalog managers will maintain a separate database, the
secondary entry table, which contains secondary catalog entries I
for objects which are on its host but for which the catalog
subtree containing it is not local. I

A secondary entry is a catalog entry which stands in for the
primary entry for an object. It differs from the primary entry
in two respects. First, it can reside only on the host on which
the object resides, and then only if the primary entry is on a
different host. Second, it is stored in the secondary entry
table, not in a directory

|0

-135-

J--

Q!'
-

S

The secondary entry table is not used to speed up local
access to the object UID. Rather, it is available only to
support catalog operations when the primary entry is not
accessible. The reason for restricting its use is to avoid
synchronization problems between the primary and secondary
entries for an object during normal operation of the system when
no hosts are down. If the object has more than one symbolic
name, a copy of each catalog entry will be stored at the object's I
host. That is. there will be a collection of Cronus catalog
entries at each host for those objects that b3ve symbolic names

that require access to directories on othei hosts. The catalog
manager software will maintain the consistency between these
secondary catalog entries and the primary entry.

Figure 9.4 illustrates how the catalog information will be
maintained. The circular nodes represent objects that are stored
at the same host as their entry in the catalog hierarchy and the
square nodes are used to represent catalog entries for objects

that are stored remotely from their entries.

Under normal conditions, the lookup operation uses the
primary entries in the symbolic catalog. When not all of the

directories are accessible, the secondary symbolic access path is
used. The lookup will succeed whenever the object itself can be
--eached, since if the object has a symbolic name, a copy of the
catalog entry object will be stored at the site that manages the
object. (14)

When a client process first invokes a LookuR operation. the
operation is performed using only the primary catalog entries.
If that fails, the client may then attempt to perform a look up
on the full symbolic name of the entry of interest. In this I
second lookup attempt. the client must multicast the lookup
request to all catalog managers and set the key in the request

414) Lookups of partial symbolic names cannot be performed using
the secondary access path. because the failure of the initial
lookup suggests that the catalog manager which can interpret the -
Directory UID for the start of the search is unavailable. To use
the secondary access path. the client must remember the full

symbolic name for entry. Further, the secondary access path willI
not have the mechanism of symbolic links available. As a result,
a path name utilizing such a lin: will also fail.

-136-

,.' V%
% -,.J % %As

PRIMARY ACCESS PATH

Dispersal Cwt Pepliccted Root Port~on

of Nc. Hiercrchy

HostAos fi '
E

i'r'z

entry entry nr
cep es copies copres 1copes

Host C . ,Host D HotFHost G

SECONDARY ACCESS PATH //

Secondary Symbolic Access Path
Figure 9.4

-137-

S

indicating a secondary access path lookup.

Lookup by means of the primary path is much more efficient

since it is directed, whereas lookup by means of the secondary

path is undirected. There is no a priori knowledge of the host
or hosts that need to be consulted to perform a lookup by the

secondary path.

9.4.4.4 Synchronization Among Catalog Managers

There are two cases in which catalog managers must
synchronize among themselves in order to preserve consistent

information. the replication of the catalog hierarchy above the
dispersal cut. and the correspondence between the primary and

secondary entries for objects which reside on one host and have

their primary catalog entry on another.

In addition, there are two aspects of the synchronization
problem. the first is the synchronization among hosts which are 0

all running, the second between a host which has changed the

catalog and a host which is reintegrating into the Cronus cluster
after a period of inaccessibility.

This section discusses techniques for automating replication
of the root portion of the Cronus hierarchy (i.e. that
above the dispersal cut). While the approach discussed applies

to the Cronus catalog, it is also intended to be used as a
base for more general replication services that might be applied
to other Cronus components (the authentication manager, file

managers, etc.)

As with all Cronus functions, automation of catalog
replication will be implemented by the object managers.

Initially, we can think of the functions needed to implement this
automation as being composed of the basic operations on an
object type. Later it might be appropriate to cast them
as new operations In any case, we will refer to these S

functions as operations irrespective of their actual

implementation as operations on a type. In the case of the
catalog. these replication functions will be handled by the
Catalog Managers. rather than in a more general way such

as through some form of replicated file Eventually. when we

-138-

6Y m =&, ,,

gain more experience with replication, we may want to provide a

more generic way of providing replication services.

We define the following basic operations:

o Replicate existing directory
o Dereplicate existing directory
o Modify existing directory (add, delete, modify/entry)
o Reintegrate host 0

In addition to these operations, we can add two more functions
related to management of the replicated portion of the catalog:

o Move dispersal cut (or replicate/dereplicate above/below
directory)

o Copy dispersal (make a copy of the entire dispersal hierarchy)

In order to simplify the design, we will restrict ourselves to
these functions Other variants. such as create a new
replicated directory, can be implemented from these and the 0
existing catalog operations in the obvious manner.

Our approach to maintaining consistency in the
replicated portion of the hierarchy will be to use update
logs that are maintained and accessed by the Catalog Managers.
We will discuss the management of updates in more detail

later, when we discuss reintegration.

Before discussing the operations, recall that all
directories in the hierarchy above the dispersal cut are

replicated on all hosts. Below the dispersal cut, each
subtree of the catalog hierarchy is maintained on a single 0

host. This ensures high availability of the root portion of the
catalog and a minimal number of inter-host accesses in a
directory search. The catalog is designed to accommodate

infrequent changes to the root portion of the hierarchy, so speed
of update is not a major issue. 0

In Figure 5 we see a detailed representation of the
replication of the root portion of the catalog hierarchy on two
hosts, A and B. Note that the directories above the
dispersal cut are truly replicated, having the same directory

UIDs. The reader should not confuse the implementation of

-139-

-*-

the catalog (as files with different file UIDs maintained by
the file managers) from the replication of the catalog itself
(directories with the same UIDs maintained by catalog
managers). The reader should also remember that the contents
of the replicated directories are also replicated (e.g. they have
the same entries), and that they have location independent
semantics. That is, the entries consist of a symbolic name that
is known globally (through the catalog) and a UID that is
known globally (through the operation switch). With this -
background. we can now go on to discuss the operations in more
detail.

9.4.4.5 Replicate

The replicate function takes a specified non-
replicated directory and replicates it throughout the
configuration. That is, a copy of the directory and all its
entries will be created by the Catalog Manager on each host in
the configuration with the same UID as the source. The function
is restricted in that only the root directory or children
of replicated directories can be replicated. To ensure
consistency. a copy of the newly replicated directory is made
available available by the Catalog Manager when the operation
has been completed locally. Thus, only when the new directory
is allocated and its entries are copied is it made visible
by inserting its UID into the Catalog Manager's UID table. Each
copy of the directory is also marked as being replicated
to assist the Catalog Manager in its future management.
The operation is managed by the Catalog Manager of the source
directory which communicates directly with all the other -
Catalog Managers in the configuration to complete the operations
on their hosts.

The replicate operation is logged by the initiating Catalog
Manager to allow reintegration of hosts which cannot complete
the replication immediately. We will discuss update log

maintenance and reintegration later. For now, we note that a
log entry is created for the operation and hosts that have not
completed it will use the log in the process of reintegration at
a later time

-140-

Relication in the Cronus Catalog

DO)SIAL LMa LM

HOST B

F5gure 9 5

UM) 1

-141

-141-

The following pseudo-code describes the algorithm:

REPLICATE DIR
IF DIR ALREADY REPLICATED OR PARENT NOT REPLICATED THEN

ERROR

ELSE

LOG REPLICATE DIR
MARK LOCAL DIR REPLICATED 0

FOR ALL REMOTE CATALOG MANAGERS

CREATE REPLICATED COPY OF DIR

/" CREATE, COPY ENTRIES, MARK DUPLICATED,
MAKE VISIBLE*/

S

There are several issues that are raised by this method
aside from those of log file management First, the algorithm
requires that there be a database of all hosts in a configuration

that run the replication service. The database should be

distributed on all hosts for efficiency and availability

The second issue is whether the remote replications
should be managed synchronously (waiting for remote
operation to complete) or asynchronously (telling the remote
Catalog Manager to start the operation and not waiting for
completion). If the operation is synchronous, there are
obvious performance implications for completion depending on how

long the operation will take. For a large configuration this
could be a problem A time-out will be required for those hosts
that are down or cannot respond Asynchronous management
means that it is hard for the originator to know when and
if the operation was completed. It puts more of a burden on the 0
reintegration procedure for making sure the operation is
carried out successfully. One possibility in the
asynchronous case is for the target to acknowledge start of the
operation and not have the originator wait for completion.

The issue here is the definition of when an operation is

complete. Strictly, an operation is complete only when all
hosts in the configuration have successfully completed it.
However, it may be sufficient to consider an operation
"complete' from the point of view of the initiator when it has

been successfullv logged and all running hosts in the

-142-

configuration have been notified to start the operation.
Since the reintegration procedure will presumably eventually
cause the operation to be completed on all hosts, relying on it
to make sure the operation is completed on all hosts is
probably adequate. Thus, the initiator's responsibility is to
a) log the operation; b) notify all running hosts in the
configuration to start the operation; and c) complete the
operation on the local host. Once the operation is successfully '
logged, we assume that it will be completed on all hosts 6

eventually by the reintegration procedure even if any of
the hosts (including the initiator) crashes in the midst of an
operation

The only problem with this approach is if a host cannot
complete the operation operation due to problems such as ,

lack of resources (e.g., no space to add new directories,
etc.) In these cases, the best solution is probably to notify
the operator of the resulting inconsistency through error logging..;N
or the monitoring and control system so that the problem
can be manuallv resolved The reintegration procedure can
still be used in these cases to retry the operation at a later
time. but presumably operator instruction will be required in
some instances to clear up the cause of the problem

Another issue in the design of replication functions is
maintenance of the secondary catalog database. Recall that
to maintain accessability of symbolically named objects, a
secondary catalog entry is maintained on the host where an object
resides if the object is located on a different host than its
primary catalog entry. Thus, objects will be accessible
symbolically through this secondary path even if the primary path
is unavailable. However, in the case of the replicated

portion of the catalog, the need for the secondary database is
obviated since the catalog information is already available on
all hosts in the configuration. % %

N O.

-143-

9.4.4.6 Dereplicate

The dereplicate function takes a specified replicated

directory and removes all copies of it except the one on the
host of the originator (which can be any host in the
configuration). Dereplicate only applies to replicated
directories whose children are not replicated. The algorithm
is similar to replicate in that it takes place available: first

the directory is made invisible on the remote host, then 0

the remote copy is removed. The following pseudo-code

summarizes the cperation.

DEREPLICATE DIR
IF DIR NOT REPLICATED OR ANY CHILDREN REPLICATED THEN

ERROR S

ELSE

LOG DEREPLICATED DIR
MARK LOCAL DIR DEREPLICATED
FOR ALL REMOTE CATALOG MANAGERS

DEREPLICATE DIR /" MAKE INVISIBLE, DELETE DIR '/

One issue with dereplicate is how to preserve the

characteristic that subtrees of directories below the dispersal
cut be contained on a single host. One solution would be to 0

force this condition to be true before the directory could be
moved below the dispersal cut (dereplicated). This would
require manual reorganization of the directory hierarchy
before dereplication. Another approach might be to relax this
constraint and allow the dereplication to take place anyway.

As an optimization, the hierarchy could be reorganized manually •
later to meet the condition

9.4.4 7 Modify

The modify replicated directory operations (add, delete,
change) also proceed along the lines of replicate/dereplicate,
adding the operation to a log file and notifying all the
remote Catalog Managers to complete the operation. ' 0

-144-

Z-A I, %. %*

Modification of the existing directories presents a more severe
synchronization and locking problem than replication and
dereplication. For replication and dereplication, atomicity of
the operations ensures consistency, since the directory will
be available somewhere, by virtue of the Cronus IPC system (i.e.
UIDs are location independent) even if it is not yet
fully replicated. Modification, on the other hand, could lead
to inconsistency if the operation is not completed successfully
or if simultaneous modifications to the same directory are
attempted.

Clearly. some form of concurrency control is needed to
prevent conflicts and inconsistencies. Because changes to the
root portion of the hierarchy occur infrequently, we can
prevent conflicts (simultaneous changes to the same entry) by
locking the root portion when any change is made, so that only
one change can occur at any time. Since modification of
the root hierarchy is an administrative function, this is
probably acceptable.

Inconsistency in the root portion of the hierarchy is a
different problem which results from latency in completing
the operation across all copies of the hierarchy This results
in periods where the directories have different contents.
This may or may not be a problem in practice. depending on how
frequently changes to the root portion are made. S
9.4.4 8 Update

So far. we have avoided the problem of hosts that cannot 0
complete replication operations, either because they are down
during an operation or because they are isolated through
network failure or partition. We have mentioned that the
approach we will take for reintegration is the use of pending
actions logs where each operation is recorded until
completed by all hosts in the configuration. We now discuss
the details of reintegration and log file management.

The basic idea is that there is some log file
accessible to the Catalog Managers on all hosts. Entries in the
log are made for each replication operation A host's

-145-

pv.

catalog manager reads the log file when it comes back up and
before it accepts any new requests. For each entry in the

log not completed by that host, the indicated operation is
completed and the host marks the operation complete in the entry.

When all hosts in the configuration have completed the indicated

operation, the entry is freed for garbage collection.

Entries in the log file consist of an operation code
(replicate/dereplicate directory, add/delete/modify directory
entry), arguments to the operation (directorv UID or actual
entry contents), and a vector of operation done bits
corresponding to each host in the configuration As the

operation is completed by a host. its completion bit is set by
the remote host's Catalog Manager at reintegration time. If all

the bits are set and the entry is the last one in the log
file. the file can be truncated by the Catalog Manager.
Garbage collection is done by a daemon process that runs

periodically to trim the log file. The assumption is that
the normal state of the log file will be empty (i.e. all
operations completed). In any case, as long as all the hosts in

the configurations eventually come up, the log file will

eventually be trimmed

Initially, at least, there will be a single central log
file accessed by a global UID known to each Catalog Manager.
Admittedly, this presents a weakness in the mechanism, since
if the log file becomes inaccessible, updates to the hierarchy

cannot be done. This can be dealt with in the future by
replicating the log file on multiple hosts or by using the
persistence database in each Catalog Manager to ensure the
operation's completion.

The central log file can also serve as a lock on the -V
hierarchy to serialize the updates Any access to the log %

file must be exclusive. This presents synchronization
problems in updating either the log file or the replicated V.

portion of the hierarchy itself. Whenever a Catalog

Manager attempts a replication operation, it first tries to
open the log file for exclusive access. When the

initiating Catalog Manager completes the entry, it releases the
log file. Again, the infrequence of most hierarchy updates
should make this acceptable.

-146-

9.4.4.9 Failure Analysis

Let us look at the types of failure in maintaining the
replicated database. A host can be down when the operation
is started. In this case, the reintegration procedure
will cause the operation to be completed when the host restarts.

Another form of failure is communciation failure that isolates
a host from others on the network. In this case, we assume
the effects are similar to the previous case, since presumably if ID

one host on the LAN cannot communicate with another, it is
isolated from all others in the configuration. A third type of
failure is inability to complete an operation because of
resource limitations or some other cause unrelated to total
host failure or isolation. As we mentioned earlier, the best we
can do here is to report the error and wait for manual
intervention to clear the source of the problem and fix the
inconsistency. The latter two cases argue for running
the reintegration procedure periodically, even if the host
has not crashed, to restore consistency to the database in the
event of a transitory failure in communications or resource
limitation, etc. 0

A different type of failure occurs when a host crashes
in the middle of an operation. Here, we want to avoid partial or
incomplete results and ensure that the operation is
eventually completed correctly when the host restarts. There are
three mechanisms for protecting these operations from the results
of such crashes. First, the initiator logs the operation as
early as possible so that the reintegration procedure will be
able to recover from any subsequent host crash. Similarly.
hosts completing the operation do not mark the operation
complete until it has actually been performed.

Second, the effects of the operation are made visible only

after the result is valid to avoid partial or unusable
results. Finally enough information is available for the
manager to verify whether the operation has already been
completed or not. in case of a crash before the operation has
been marked done in the log. This avoids the problem of a host

trying to perform a completed operation multiple times.

Thus when a host reads the log file it must verify that the
indicated operation has not already been performed. For
replicates or dereplicates of directories, it can check to
see if the indicated directory already exists (or doesn't) and is

-147-

• A N

marked as replicated (or not). For addition or deletion of
entries to replicated directories it can similarly search for the
existence (or not) of the indicated entries. Finally, for
modifications of a replicated entry, both the old and new
entries must be present in the log entry, so the host can
determine whether the modification was completed or not.

To summarize, the following describes the general form of
the operations from the point of view of the initiator, the 0
remote hosts, and the reintegration procedures

INITIATOR.

LOG OPERATION
NOTIFY REMOTE CMs OF OPERATION
COMPLETE OPERATION LOCALLY"

REMOTE. COMPLETE OPERATION LOCALLY
MARK OPERATION DONE IN LOG

UPDATE. LOOP. READ LOG ENTRY
IF OPERATION NOT MARKED DONE BY THIS HOST THEN 0

VERIFY OPERATION NOT DONE

IF NOT DONE THEN

COMPLETE OPERATION LOCALLY
FI
MARK OPERATION DONE IN LOG

FI

9.4.4.10 Other Operations

Earlier, we referred to two other functions which
are important in the practical administration of the S
replicated root portion of the Catalog Hierarchy. The
first, move dispersal cut, can be thought of as a compound
replicate/dereplicate operation whose semantics are: given a
directory in the hierarchy move the dispersal cut to %

include it in the replicated portion by doing the appropriate

-148- I
ON~ %/

)v" % a'
~ ~ *** ,ZO

replicate or dereplicate operations on the intervening
directories. Conceptually this can be thought of as traversing
the hierarchy and performing the individual replicate or
dereplicate operations. Operationally. this function may be
quite dangerous, so thought must be given to protecting it
suitably.

The other function relates to adding a new host to a
configuration. There are a few issues involved with this
task. The first is to add it to the configuration database
so that it can be identified as running the replication service
by other managers. Second, it must be able to get a copy
of the replicated portion of the hierarchy from another manager.
This is similar to the action required in replicating a
directory. In this case one cl the Catalog Managers would walk
down the root portion of the hierarchy and send copies of
each replicated directory to the new host. Since this is
presumably done infrequently and at a time before the new

host is supporting users, performance and synchronization
issues do not seem to be major problems. Finally, the update
log file must be reformatted to include the fact that there is a
new host in the configuration (i.e., new entries must accommodate
the new host in the vector of operation done bits).

A similar inverse set of operations must be done for
removing hosts from the hierarchy. The host being removed
must be taken out of the configuration database and the log file
must be updated to account for the host's no longer
participating in the replication service.

-149-

* - ~\ '4JAL-

10 Input/Output

10.1 Introduction

Devices, such as line-printers, tape-drives, or terminals are

integrated into the Cronus system as sub-types of a generalized

I/O object CT lOStream, which supports a generalized set of I/O

operations.

We have tried to generalize the input-output operations to

make similar operations on different types of objects as similar
as possible. so that programs and programmers do not have to be

burdened with special-case software which depends on whether the
output is a terminal, a printer, a disk file, or the standard

input of another program. There are places where these 0
similarities break down, as discussed below. The special-case

software is isolated in the PSL so the CRONUS applications

programmer will be largely isolated from these details.

10.2 Operations on devices

Devices are objects of type CTDevice. which is a subtype of type
CT IOStream. and implements the standard operations of that type.

Open
Close
(15)
IOLock
Read
Write

lOStreamsOpenBy
OpenStatusOf
CloseProcessOpenlOStreams

CloseAllProcessOpenlOStreams

(15) Open and close are used for synchronization. They are also

used to trigger those actions that many device managers will wish

to perform (e.g , hanging up a modem when the last process closes

its output to the terminal, issuing a form-feed when a process
opens the lineprinter) when the device gets accessed.

-150-

%
%-

L"I =02J A~.~ "&A

S

In addition to these operations, device objects also implement a
number of special-purpose operations, for example, a tape drive
or a disk drive have a Seek operation to allow writing or reading
to be done from a particular position in the medium which the
device uses. (16) The details of individual device-object
operations will be specified as actual devices are added to the
CRONUS cluster. (17)

We anticipate a hierarchy of object types, breaking down S

into finer and finer distinctions. For example, CT-lOStream >
CTDevice > CT-printer > CTlineprinter. Just as there are

several kinds of I/O-stream objects, there may be many kinds of
lineprinter object, perhaps one for each kind of lineprinter, or
there may be page printers and graphics printers.

Device object managers also will commonly refuse a request
for "frozen" access. In addition to the exclusivity of access
provided by frozen access, one also gains the ability to cancel
the writes which have been done to the object. This latter
ability cannot be implemented on devices in any meaningful way.
so this form of access is not allowed by the device's manager.
(18) One may open devices for exclusive access, of course.

(16) Other special operations individual device managers are
likely to implement are. density and format control for tape and
disk drives, many devices may be turned off-line by software
printers will have page-length, page-width, and font controls,

and so on.
(17) The description of the special operations on terminal
devices is discussed in section 11.
(16) We might at some later date explore making some device

managers clever enough to provide their own spooling, in which
case one would be able to do frozen writes with the ability to 0
cancel the writes. Such cleverness would likely lead to a number 2
of special-purpose (spooling-oriented) operations, such as
perform output after a specific time", etc. While it might seem

that such cleverness is more appropriately placed in a program
and not in a device manager, for efficiency reasons one might
desire to eliminate the middle-man.

For example, a file to be spooled for printing, the

requesting process, and the printer manager may all reside ona
different machines. There is little point in the data from the

file to be passed through the network to the requesting program. NS
-151-

Pill P , I il

10.3 Implementation overview

For each device object on a host there is a manager for the

device. Device managers may manage multiple devices (for
example, a host might have only one line-printer manager for all

of its lineprinters, or may have a single manager that manages
both tape-drives and disk-drives (19)), or a manager may manage
a single device. Which of these approaches is taken will depend
entirely on the implementation, and is not within the scope of
this document. When started. the device manager registers the
UIDs for its devices with the operation switch on its host, so

that the Cronus IPC mechanism delivers operations on the device
object appropriately.

10.3.1 The use of large messages for device 1/0

We expect that most 1/0 devices will be done using a stream
interface as supported by Cronus large messages, in order to
avoid passing all the 1/0 messages through the operation switch. S

This implementation is different from primal files, for example,
because of the fundamentally different ways in which we expect
the object managers to be implemented. For devices such as

line-printers, terminals and tape-drives, it seems realistic to
expect that there will be one manager process per physical

device. Unlike the primal file system, which is accessed by many S

processes at one time, an individual device is typically a

limited-access entity. Users typically require exclusive access

then passed back through the network to the printer manager when
the data could go straight from the file to the printer manager

in the first place. Thus, a printer-object-manager may implement
a "spool for printing" operation which takes the UID of the file
to be printed as a parameter. Probably the act of spooling itself

should be treated as an object and given it's own UID. Suggested
operations on spool-objects. Create (to get a UID for subsequent
transactions). Remove (to cancel a spooled action); TimeToBegin
(to set the time for the spooled action to take place); as well
as the usual printer-oriented operations (header format, font,

etc.).
(19) Exotic as this may sound, it is easy to imagine a single %0

manager for DEC-Tape drives and disk drives, for example.

-152-

S

to a device while they are using it. Thus we expect a device
manager to be able to maintain a stream connection to everyone
who wants to talk to its object. Very few constituent operating
systems would permit a process to have so many open network
connections supporting the message stream at one time, so we ,,
expect 1/O from primal files to be datagram-based, rather than A'.
connection based. In contrast, 1/O from devices may be
connection-oriented, bypassing the operation switch for reasons
of efficiency. S

10.3.2 Reasonable defaults for unspecified options

In order to provide uniformity of access, the device S
managers assign reasonable defaults for their device-specific
parameters (e.g.. tape density) if the application program does
not issue operations specifically setting them. The goal here is
to provide an access mode in which the application program can
remain largely unaware of the nature of the object receiving its
output or providing its input.

10.3.3 Naming

Devices like any other Cronus objects have names in the
globe Cronus symbolic namespace. These names may appear anywhere
in the name heirarchy though, as happens on UNIX systems where a
similar approach is taken to devices. most devices will probably
be gathered together in the directory ".dev". For example, the
most popular line-printer may be given the name ":dev:lpt", or
devices may be given more descriptive names, like .,
".dev.fancy printerin-graphic_arts dept", or users may choose to

locate the name of a private device in a more convenient
directorv, like ":usr.melissa my-printer" (for the printer in
Melissa's office The symbolic catalog name is used only as a
convenient means for accessing the device UID and plays no role
in the way the Cronus system treats the device. (20) 0

(20) "Attached to" here is taken in a very loose sense. BBN-CLXX
has a printer which is physically attached to a BBN-NET TAC port
and which is accessed by a number of hosts), yet it is easy to

imagine a device manager for this printer being provided in the

-153-

.~

4
.1

,I.

11 User Interface

11.1 Introduction

The Cronus user interface provides uniform, convenient
access to the functions and services of the Cronus distributed
operating system and the subsystems which run under Cronus. User
requests for access to the functions and resources of the system
are similar for all DOS components, that is, a request to run a 0
program is the same no matter where the user access point is in
the cluster, and no matter where the process that satisfies the
request is run

The user interface includes four major elements by which
human users gain access and interact with Cronus to perform
tasks

1. The terminal manager is responsible for the behavior of
the terminal or other device by which the user gains
access to the system Cronus supports a number of
different terminal managers for users who have a direct
connection to the cluster or who access Cronus through
the Internet.

2. The session manager controls the user session from login
to termination. It operates on the authentication data
base (through the Authentication Manager) to verify the •
user's principal identity, and on the session record data
base (through the Session Record Manager) to record
information about the session. It also creates parallel
execution threads and allocates portions of the terminal,
under user control, to each thread.

3. The command language interpreter (CLI) receives requests
from the user to create processes and execute programs to
perform the tasks.

4. The user programs or applications that actually perform
the tasks run in program carriers (see Section 5). The
terminal manager, session manager, and the CLI cooperate
in creating these program carriers, loading them, passing

Cronus cluster.

-154-

'~~~~~1~F !;-.e 1v " 'V'1u/~

Al9

parameters to them, and directing the input and output to
the places that the user has requested.

The design of the Cronus user interface has been influenced
by the following considerations:

" The user interface should deal effectively with the
distributed character of the operating system.

" Variations in cluster configurations and in user

requirements will likelv lead to a number of different
user interfaces, and these interfaces will evolve.
Therefore, the current implementation should focus on the

underlying structural concepts needed to support a
variety of presentation methods.

o The utility of Cronus depends on widespread
accessibility. Therefore, the initial implementation
should support commonly available terminals instead of
more powerful devices which are now just becoming
available.

" The user interface should support system reliability and
error recovery from malfunctions during a user session.

The consequences of these observations for the design of the user 5
interface in a distributed system are explored in the next
section The terminal manager, session manager, command language
interpreter. and the pattern of the cooperation among them and
their use of other system objects are discussed in the following v
sections.

11.2 User Interface Design for a Distributed System

The Cronus user interface is a generalization and extension
of user interfaces provided by other computer systems. Since -

Cronus is a distributed operating syste that integrates a
collection of otherwise independent computer systems, the
implementation of a function may be dispersed across the cluster.
The Cronus user interface is independent of the user interfaces
for the COSs

-155-

% -%'

The following are some of the design objectives for the user
interface that have been influenced by the distributed nature of
Cronus.

1. Command invocation and program control should be uniforn

across the cluster.

2. Multiple parallel activities should be supported directly
by the user interface.

3 The user should be able to start and control distributed
activities.

4. System operation should be independent of the location of
the terminal manager, session manager, CLI, and user

processes.

5 The user interface should support detection and recovery
from malfunctions affecting only parts of a user's
session.

6. The user should be able to issue commands directly to the

COS

First and foremost, Cronus itself provides for the uniform
invocation of any command. The command interpreter finds the
command in the Cronus symbolic catalog and creates a program
carrier for it. Because the symbolic name space is host

independent, commands can be organized in any manner convenient
to the user. for example. all the programs used to carrry out a
particular task can be cataloged in a private directory, even if
some of them can only be executed on specific host types. The 0

host is normally selected by examining the type of the executable

file for the command

A Cronus cluster may have more than one host of a particular
type. and different copies of reliable files are stored on
different hosts. The interface allows (but does not require) the
user to communicate an intention to use a specific instance of
any replicated resource

-156-

=..k.

7UW7Uf7UF?9r1'WM~~I qJn~jKWYVUZA1WW ' W'W U-.d I"WU .~ . ~ .-

A single user session may contain a number of independent
tasks executing in parallel on different hosts. In such a

session, the user can exploit the true parallelism which separate 0
processing elements provides and reduce the effects of

communications delays by selecting the host on which a task ,J,
executes. Cronus provides device-independent mechanisms that

support the use of a single terminal jor controlling parallel
activities. The effectiveness of a particular terminal for this
purpose is, of course, dependent on the capabilities of that 0

device . ~C

A programmer can develop multi-part applications in which

hosts. To the end user, the distribution of components can

remain largely invisible, since the programmer and Cronus can
take care of the details of the distribution. In particular, a

task may consist of a multi-host pipeline of processes, in which
a process running on one host can pass its output directly to the

input to a process running on another host.

The Cronus architecture p.-ovides several kinds of access
point. Although the user interface has comparable components for
each of these access points, the location and mode of

interconnection among the components will differ. The
decomposition of function in the user interface permits flexible
distribution of these components.

On the other hand, the distribution of the components

increases the cost of synchronization and probability that a
single host failure will affect the user session. To reduce
synchronization traffic, Cronus does not maintain a centralized
record of all elements in a user session. Rather, this data is

distributed among the managers responsible for the individual -
parts. This makes the interface somewhat tolerant of failures
and provides a basis for the design of a reliable user session N\,

The user interface facilitates direct access to COS

functions through a user Telnet function, which can access the
COS command interpreter for the hosts of the cluster Telnet is
treated as a parallel activity with other user activities; that
is, it is a separate thread in the user session.

-157-

-,.,.

11.3 Overview of a User Session

A session begins when a user activates a terminal that is

connected to Cronus and proceeds with a system login. The
session normally ends when the user logs out. During the

session, the user interacts with the system to run programs which
interrogate and manipulate Cronus resources and to perform such
job specific functions as word processing or data base inquiry.

Users gain access to Cronus in one of following ways: A,

I. Terminal access controllers (TACs). A Cronus TAC is a b

terminal multiplexer connected directly to the local area ",
network. Cronus TACs are implemented in dedicated GCEs.

2. The Internet. The Cronus local network is connected to
the Internet by means of an Internet gateway. Users
outside the cluster may access Cronus through the

standard terminal handling protocol (Telnet) which
operates upon a lower level, reliable transport protocol

(TCP). S

3 Mainframe hosts. Cronus mainframe computers can have
terminal ports that enable access to Cronus.

4. Dedicated workstation computers. A workstation is a
computer that is. at any given time, dedicated to a S

single user. Workstation hosts have sufficient 'K,
processing and storage resources to support non-trivial
application programs, such as editors and compilers, and
to operate autonomously for long periods of time(21).

The user interface has four principal modules; a terminal

manager. a session manager, the session record manager, and the

command language interpreter .

When the user activates a terminal, the terminal manager
connects the user to a session manager. There is a session S

manager for each active user. It has a limited set of commands

for initiating and manipulating sessions and session data (see

(21). The Primal system wil l not support workstations.

-158-

%... ...

Cronus User's Manual session(1)). The login command, which

initiates a new session, performs two basic functions. First, it
identifies the user, establishes the access rights for the
session, and gets the user data needed for session
initialization. Second, it creates a session and records it in a'A2
session record. A complete description of the session is
distributed among a number of system components, but the session
record object records the existence of the session and certain -
other key items (see Cronus User's Manual session(3)). S

After the session manager has identified the user, it starts
the initial subsystem specified in the user's principal object
(see Cronus User's Manual principal(3), principal(4)). This can

be either a general purpose command interpreter or a special 0
purpose application. The principal object may also request that
the initial subsystem be run on a specific host.

The session manager maintains session data as part of its
temporary state, that is. this information does not survive if
the session manager crashes. The session record manager, on the
other hand. maintains the basic information needed for session 9
recovery in non-volatile storage.

The initial subsystem runs in the first processing thread in
the session. The user may create more threads, each of which

consists of a varying number of program carrier processes
organized into a hierarchy rooted at the program carrier created
by the session agent. This program carrier is called the head
process of the thread. %

Often the head process is a command language interpreter
(CLI). This is a program that interacts with the user to receive 0
commands, which it performs by creating and controlling

processes. In the following discussion, we assume that the head
process of the current thread is the Cronus standard command
language interpreter, which is called cli (see Cronus User's
Manual cli(l)). <. .

The head process can execute a command that terminates the -"
thread. The session agent may also force the termination of a N''

thread The logout command terminates a user session. At the %
end of the session, the session record object is removed, and the r
terminal is free to support a new session,

.

-159-I

%~ e
%' % % % % %

Instead of executing logout, the user may detach from the
session and re-attach to it later. Processes in a detached
session are no longer controlled by the session manager and from
the terminal. These processes will continue execution until they
require terminal input or output, at which point they will block.
and wait until they are re-attached. When the user re-attaches
to this session, the new session manager and terminal takes over
as the source of control and terminal input/output. The session
manager command resume causes the processes to continue. This 0
procedure is also used in recovering a session which has been
detached by a host crash.

The user interface assigns the responsibilities for user
session activities as follows.

o The terminal manager encapsulates the physical terminal
device. It handles the terminal device, directs the
keyboard input to the active process. receives the output
from one or more active processes, and manages the

display (for video display units)

" The session manager initiates user authentication.
creates a thread, starts the inital subsystem, creates
and manages additional threads, attaches and detaches
sessions, and assigns terminals to processes.

" The command language interpreter reads and parses command -
line input, starts and controls processes that run the
commands, and controls assignment of standard input and
output.

" The session record manager creates and maintains records
for active and detached user sessions. •

In addition, other components of Cronus support the user session, .X %,

of particular importance are the program carrier manager, the "s'
catalog manager, and the authentication manager.

1

-160-

*, " s;s'Z'.' Z ' Z ,s. 'E N'.£'. ']" ".'" " .. " ".')"."."-")? ?N

NN
11.4 Terminal Manager

The terminal manager is the process which is closest to the
user. It provides the Cronus interface to the physical device,
through cooperation with the COS of the host to which the

terminal is connected. The terminal manager supports three broad
classes of device.

" hardcoy terminals that are strictly line-at-time devices 0

capable of producing upper and lower case alphanumeric

characters and the standard ASCII control character set;

" ASCII video terminals (often called CRT terminals or
video display units) that support cursor addressing on a

display screen that is large enough to support, for
example. a full-zcreen editor, and

o advanced terminals (often called bit-mapped terminals)

that contain a processing element and enough memory to
support multiple display areas and graphical output.

The primary focus of the primal system is on the ASCII video
terminal because there are many of them available today. Cronus

supports the sharing of a single, physical terminal device among
the parallel activities in a session. This terminal multiplexing
will be most effective when an advanced terminal is available,
but will be possible in a limited fashion with the other terminal
types.

The terminal manager encapsulates the physical terminal, the

corresponding Cronus object is of type CTPhysical Terminal (see
Cronus User's Manual phys-term(3)), which has a number of

subtypes corresponding to the different kinds of terminals. One
or more objects (called Cronus terminals or simply terminals in

the discussion below) of type CTTerminal is associated with each
physical terminal This provides a mechanism for multiplexing or
sharing the physical terminal among a number of Cronus terminals.
The Cronus terminal is the input,/output device for a process.

Since terminals are Cronus objects, they have all of the usual
properties of objects, including host-independent access. In
addition to the generic operations defined on CTObject (see

Cronus User's Manual object(3)), the following operations are
defined on objects of type CTTerminal.

-161-

% %.'J'

% Wo ' a1 IE
a--~.6 a- e~ :~ a

Open
Close
Read
Write
Activate

Deactivate

Programs may treat a Cronus object of type CTTerminal like
an ordinary terminal, since it has a keyboard and a screen,
although either or both of these may be inactive at any time.
Each thread in a user session, and the session manager itself,
has its own object of type CTTerminal. which will simply be
called the terminal in the discussion that follows Within a
thread, processes coordinate their access to the terminal through
the terminal manager.

If the physical terminal supports independent display areas
(windows), the session agent maintains a window for status
displays. The rest of the physical display contains one or more
regions. each of which is used for the output of a single
term,nal. The physical keyboard can be associated with only one
of the terminals at any time; the thread that owns this terminal
is the current interactive activity in the session. The keyboard
can be transferred to the session manager's terminal by a control
character sequence (see Cronus User's Manual terminal(I)). Once
the session manager is in control, the user can execute commands
to create new terminals, remove old terminals, and change the
current interactive terminal (see Cronus User's Manual
session(1)).

Output to any of the regions currently displayed is
immediately visible. Input is directed only to the current
thread Normally all input characters go to a single process.
However, when one process creates another process, it may request
certain (control) characters to be intercepted and sent to it,
the interrupt facility discussed in Section 11.8 is implemented
using this facility.

Processes invoke Read and Write operations on the terminal
to get input from the keyboard and write to the display. These
use large messages of indefinite length to provide a stream
between the terminal manager and the process. A process will
have two messages associated with the keyboard, it sends read
requests on one of them. and receives the input on the other one. %

-162-

% j

--

% .'-1- • /)

P.M J ~. w r; r ., V' -,

As keybord input is collected, It is used to fulfill any
outstanding read operation. Since the terminal is shared among

the processes of the thread, characters are sent only in response
to a read request. If there is no outstanding request, the
terminal buffers characters until it exhausts the space allocated
for them.

When control of the keyboard is transferred from one process
to another, the old process stops issuing read requests. If the
new process needs keyboard input, it establishes the two messages
used for the stream and begins issuing read requests of its own.
The PSL routines for reading and writing take care of the details
of establishing the messages, so ordinary applications need not
be concerned with them. The Write streams are not controlled.

simultaneous output from two processes in a thread may become 0
interleaved unless they are coordinated by the application

program logic "

Each terminal has mode settings which control its behavior.
These are discussed in detail in the Cronus User's Manual page
termi nal(l} Among the most important are the following.]•

1 Read activation termination character set An input
character from this set terminates the current read
request. The terminal manager stops sending characters
after it transmits the ones it has, including the
termination character, until it receives another request. •

2. Echo control Input echoing at the terminal manager may
be either on or off. If it is on. it may be performed

immediately or deferred until the characters are used to
satisfy a read request.

3. Buffering and local editing Terminal input may be
buffered until an activation request termination
character is typed. If the input is buffered, local
editing functions are also available. If the input is

unbuffered, it is sent as soon as it is accepted when a
read request is active, the application process then 0
assumes the responsibility for editing functions.

4 Interrupt character handling. The user may set certain
characters as interrupt characters, see the discussion in

Section 11 8

-163-

-U i. -i. i

11.5 Session Manager

The session manager creates and removes user session
records, controls the allocation of the physical terminal
display, and creates and controls threads.

During a simple session, in which a user executes a series
of commands sequentially, the session agent is largely invisible
to the user. The user may, however, wish to initiate and control n
parallel activities. Each collection of parallel activities is a

thread. Session threads are objects of type CTThread. At any
time during the session, the user can instruct the session agent
to create additional threads which operate in parallel with other
existing threads(22). A thread can be used to support parallel
processing or to maintain the state of some activity while the
user shifts attention to another activity.

The first process created in a thread is called the head
process. and is usually a command language interpreter. The
default head process is an instance of the principal s initial
subsystem, but the user may select any program in the Cronus
symbolic namespace.

A new thread is created whenever a Telnet connection is
opened, with the Telnet process at its head. The connection may
be to any Internet host. either within or outside the cluster.

For the forseeable future. Telnet paths to cluster hosts will be
needed to support activities not yet incorporated into Cronus.
such as maintenance of the COS.

The following commands are supported directly by the session
manager (see Cronus User's Manual session(l))"

- Start a new session (login)
- Terminate a session (logout)
- Attach session agent to an existing session (attach)
- Detach session agent from an existing session (detach)
- Initiate a parallel activity (create_ thread)
- Terminate a thread (killthread)
- Create a Cronus terminal (make terminal)

(22) There is user-settable control key that activates the
session manager so the user ma" invoke session manager commands.

-164-

Ss,. -%

WtNl

- Remove a Cronus terminal (remove_terminal)
- Map thread to region (map-thread)
- Display threads (showthreads)
- Activate named thread (thread)
- Telnet to host (telnet)

11.6 Session Record Manager

The session record manager maintains the centrally
accessible, non-volatile record of active Cronus sessions in
objects of type CTSessionRecord (see Cronus User's Manual
sess _rec(3)). A session record object contains the following
data

- Session UID
- Creating principal

- Time of Creation (for identification purposes)
- Lists of thread UIDs

- Session agent ProcessUID

A session record is created at the beginning of each Cronus
session. During the session's lifetime, data is added and
removed by the session agent. The session record is used in
recovery after a host or system crash.

The session record can be accessed by other programs to
report about an individual session or all current sessions. In
addition to the generic operations, the following operations are

defined on objects of type CTSessionRecord.

- ReadPublic .
- Read Private
- WriteSessionRecord

- Lookup-Principal

N
-165-

~- *'*"i~~ '.A~' - '

Y. Ie .I V'V

11.7 Command Language Interpreter

A user request usually consists of a command name plus one
or more parameters or arguments. There are three basic kinds of
arguments for cli: names of objects from the Cronus catalog;
control parameters, called switches, and application-specific
parameters. Switches may be associated with either the command
as a whole, modifying its behavior, or with one or more of the
object names that appear on the command line.

If one thinks of the command as a series of words typed on a
line, the command name is the first word. The command name
specifies the action to be performed; the actual name is often a
simple English word suggesting that action, for example, Rrint.
Cli interprets the command name as an entry in the Cronus
symbolic catalog, it expects the command name to be the symbolic
name of an object of type CTExecutable_File. Either a complete
or partial pathname may be entered on the command line. A
designated set of Cronus directories (called the search p_&J) are
used to resolve partial pathnames; the first match encountered
causes the search to stop.

There is a small set of commands built into cl. These are
used to control the command interpreter's environment (such as
the current working directory) and the execution sequence of
commands. Executable objects may be either process i or
files containing commands. The built-in commands that control
execution sequence are most often used in command files.

The executable object may be augmented by a syntax
definition, so the command interpreter can know the number and
type of the arguments, default and legal values for the switches,
and help information for the command. Users may associate
private syntax definitions with public commands. Commands which
have syntax definitions, either private or public, are called
defined commands.

Command arguments are passed as part of the process
descriptor (see Section 5 and Cronus User's Manual process(4)) of
the new program carrier process. When the command syntax
definition is available, cli performs type and range checking on
parameters, and conversion from alphanumeric to internal
representations for certain of types, including Cronus object
name and integer Both forms are passed to the application

-166-

% I Z.%

~WUJ~--------

process, since the character string form is of use in some cases,
for example in generating error messages.

The syntax definition facility is particularly valuable in a

distributed environment for the following reasons:

o The cost of remote command invocation is generally higher
than it is in monoprocessor cases. Parameter error
checking reduces the frequency of execution failures
caused by usage errors.

o If the command interpreter knows the names of some of the
objects that the command is operating on. it may be able
to use object location as one criterion in its selection
of a site for command execution.

Many command arguments are cataloged objects. Cronus

supports a working directory list, which is an ordered collection
of directories that are used in relative pathname searches for
named objects. The user may change this list at any time. The
cli also supports partial name recognition. The user may press a
key to get a list of all matches for the partial name, using both
the working directory list and the standard wild-card facilities

(see Cronus User's Manual symname(4)) of the Cronus catalog,

from which the actual name may be chosen. There is also a
deferred recognition key which allows the user to ask for the

matching to be done, but not reported interactively.

The help key can be used to display help information which
is found in the syntax description of a defined command.

0

The command interpreter allows a user to provide a host
designator when specifying an object name, including the name of
the command itself, For example,

edit textfile@PCVAX

would invoke the editor on the copy of textfile stored on the

Cronus VAX.

copy filel file2@GCE3

would make a copy of filel under the name file2 and store the new

-167-

. %

k

file on host GCE3, and

Radar@CLXX other-parameters

would select host CLXX to run the subsystem Radar.

Objects of various types may be cataloged in the Cronus

symbolic name hierarchy without restriction. Often, a user will
wish to select objects of a specific type, so a standard switch 0
is defined for type designation. As an example, a user would

type

dir_display file-name.'/type=reliable file

to display the names of those objects in the current working 0
directory list that match the wildcard pattern filename.* and
are of type CTReliable_File.

Cli performs two kinds of initialization. First, internal
variables are set from a profile data file, which consists of

lists of (name. value(pairs. This file can be maintained using

edit key value (see Cronus User's Manual editkey(l)). Second,
cli executes a profile command file

After cli has collected and parsed a command, it creates a '

program carrier object, loads it with the executable image and
starts it. Normally the process uses the same terminal as the
command interpreter does. Therefore, cli releases control of the

terminal to the user process, and waits for it to terminate
before collecting another command.

Ci uses the program carrier process support for input and
output redirection (see Section 5 and Cronus User's Manual S S
prog.carr(3)). The redirection is indicated by the punctuation

character >, thus the command

dir_display file name.* >newfile.lst

would place the result of the catalog lookup of filename.' in

the file newfile.lst When _lL redirects output into a file
whose name did not previously appear in the Cronus catalog, it

creates a new primal file. The user may use the standard switch
(/type) to designate another type. for example,

V

-168- U

4,

dir-display file-name.* >newfile.lst/type=reliable_file

will create a reliable file to receive the output.

The user can specify that two or more commands should be
executed simultaneously and linked together linearly, in such a
way that the output of the each command becomes the input to the
next one. We refer to the collection as a pipeline. Since the
components of a pipeline may be on different hosts, the user can S
dynamically construct multi-machine distributed commands.

11.8 User Processes

In most cases, actual work of an application is carried out
by a user process that is created in response to a command issued
to cli. These user processes are program carriers, and make use
of all of the properties of those objects. Objects of type
CTProgramCarrier have been discussed in Section 5.5.

Application programs typically make extensive use of the PSL. In
this section, we discuss interrupts and user error reporting.
both of which are supported by the PSL.

Sometimes a process needs to be terminated by an interrupt
or _s12nl. Cronus supports two forms of interrupt, a hardkill.
which terminates the process immediately without giving it the
opportunity for application-specific termination processing, and
a softkill that gives the application process the opportunity to
terminate cleanly. In the event that programs do not respond to
softl ill requests. hardkill can be imposed. Interrupts are
usually invoked by typing a control sequence during a user
session, but they are also generated by a command (see Cronus S
User's Manual signal(l)),

Programs may choose to receive softkill signals, and use
them for application-specific purposes unrelated to process
termination. Cli will always receive the hardkill signal and
remove the application process.

Interrupts invoke the Stop operation on program carrier
objects. The exact implementation on a particular host depends
on the facilities of the COS that are available to the program
carrier manager

-169-

I

The processes created by cli form a hierarchy of program
carrier objects, which may be decomposed into sub-hierarchies of
the thread object. Any subtree of the thread hierarchy is called
a process group. An entire thread is the largest process group.

Process groups are managed by the program carrier manager in the
current implementation. Operations on process groups suppart
convenient control and cleanup of process subtrees.

Methods for reporting errors in Cronus are designed to
support a variety of program structures and execution
environments. There are two basic program structures;

Asychronous processes, often called manager processes
because object managers are of this class, these processes
receive messages from a number of sources and may not wait
if they issue requests to other managers to satisfy incoming
requests. Error handling in manager processes is discussed

in Section 4.6.

Synchronous processes, which process data that arrives in a
more or less predictable fashion, often from a terminal or a
file. When these processes send messages. they usually wait
for a reply.

We have identified the following execution evironments:

Independent processes are asynchronous processes, •
particularly object mangers that are daemon processes
started by the Monitoring and System or by another daemon

process.

Interactive processes may be either synchronous or
asychronous. In this environment, a human user carries on a •

conversation with the process. Examples of processes in
interactive environments include the traditional
applications of distributed systems. multi-host database
systems, office automation, and program development systems.

Pipelined processes consist of two or more programs which--

might normally be run in an interactive environment that are
connected in such a way that the upstream process writes its

output on the input of the downstream process. A pipeline

can span host boundaries

-170-

. V.
.

Background processes are generally interactive programs

which are set into execution in such a way that the data
which normally comes from the user is found somewhere else
(usually in a file).

In the interactive case, where the error is reported " .0

directly to the user, we have a situation that is similar to the %,
one in an ordinary, centralized operating system. It can be seen 0
that error handling is similar in pipeline and background cases.

A program in an interactive environment will also report

certain errors to the Monitoring and Control System (MCS). These

include errors caused by system resource limitations and some

kinds of access control violations. 0

Independent processes, including Cronus managers, report

errors to the client which issued the original request, and may
also send a message to the MCS. In addition, Cronus managers
keep statistics on the kinds of errors which have been detected,
and report them to the MCS periodically.

'-'t *-

The responsibility to terminate or continue processing %

belongs with the application or manager, so PSL routines never
take pre-emptive action, and never terminate the process. The
PSL routine cannot understand the situation well enough to exit . ." '
properly. since the routine may be executed within an atomic 0

transaction, or within a composite action which has other work-
in-progress entries (see Section 4.6) Instead. it sets
parameters describing the condit'on in an error block (see Cronus
Users Manual error(4), and t,, application error handler fields
the error and processes it.

The standard error list may be found in the general
Introduction to the Cronus User's Manual. Each PSL routine page

in Section 2 of the Cronus Users Manual lists the errors which ,.

may occur during the execution of the the function. In most
cases, an interactive process would perform any necessary
cleanup, and then use the standard error reporting routines (see
Cronus User's Manual error(2)) . =.

Whenever an error is detected in processing a request from a
client process. the error condition is reported through the reply

message The error procedure uses the standard message

0

P,, %

X
.

-%

structure, and certain assigned keys. When it is necessary to

report an error to the MCS, the process uses a standard routine
to generate the message to the MCS (see Cronus User's Manual

error(2)) .

%

. " v %0

-*ZI

F-.-

- £

V-*. '-

12 Monitoring and Control

12.1 System Capabilities

The monitoring and control system (MCS) for Cronus includes

monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate, and of gateways. The

monitoring and control station provides the functionality of an
operator's console for the Cronus Distributed Operating System. X

The MCS treats Cronus as an integrated system, decomposed by
function rather than by host. Where practical, it also monitors

and controls Constituent Operation System (COS) functions from
the same station, but such functions are limited bv our desire to

modify the COSs as little as possible. The discussion in this

section includes elements of the Reliable System as well as of

the Primal System. These additions are included to assure that

the Primal System design does not interfere with future

extensions.

Cronus is restarted from the Monitoring and Control System.

For some hosts, the MCS will invoke functions already on the

hosts, in other cases (for example. GCEs which have no disks),
the MCS will download the host to start Cronus. '-1

Network monitoring and control of a local area cable-based
network such as the Ethernet is relatively simple. It includes a
detection and reporting of changes in host availability.

monitoring and controlling traffic levels on the cable. Cable
utilization and the traffic level of each host is measured.

Prioritv or allowable traffic densitv may be set for each host. 2

Transmissions from a host may be stopped altogether.

12 2 System Model for Monitoring and Control

Cronus consists of a set of services(23) and low-level
e"ri suppo-t entities including the Cronus IPC mechanism. The -

(23) A Cron:is service is a process which performs Cronus.-

operations in response to requests from other Cronus processes.

All objet managers . for instance, are services.

-% %

Id

MCS is a set of processes on a Cronus host, its functions can be
executed from anywhere in the cluster.

IService I MCS I I Data

I Probe Service I I Reduction
I-> <-I Process\

- - --- - - -- - -- -- -- - - - - --- -~ ------- II--I---- -- -- --

/ /\.. .

/ ./ Cronus
File

Cronus IPC -> System

I/ / ,.>,v
- - -- --------

•/ * -/If!%

Host I <-- MCS I-- S
Probe I->--Host I

Process

Figure 12. 1 Structure of the }ACS

The MCS monitors both the support layer and the services.
The set of services is extensible, and the MCS is designed to
accommodate new services. ,

The MCS is based on a functional decomposition rather than

on a site-based decomposition of the system. For example, one
service monitor monitors all file system managers while another
mojnitors authentication managers. The MCS will be aware of
distinctions between sites and to distinguish them in its

reports

-174- '"

-U ':. - U ;.2 2 e ¢ .," vX' . ,
.''',.,' ,

S

12.3 Structure of the MCS

The MCS runs as one or more Cronus processes. The MCS
station is not bound to any particular site, although certain
information gathering functions are most conveniently performed
at one location. It uses the Cronus file system, in which it
will store data, and the Cronus IPC facility. The MCS will be
divided into two parts. The first part is the interactive g

section. which does on-line data collection, display, and control 0

of Cronus, It obtains status information from host and service
probes, and incorporates it into its own data base. The second
part performs data reduction and generates reports.

The interactive section of the MCS consists of a very low-
level module and a higher level module (see figure 1). The
majority of the MCS resides in the high-level module, a Cronus
service which communicates with its probes through the Cronus
interprocess communication facility. The low-level module uses f.

only the lowest level of network protocol (User Datagram
Protocol). This primitive lower level can be relied upon when
little of Cronus is functioning. This portion will be 0
implemented first. It provide the functions required to
bootstrap Cronus. to examine and alter memory on Cronus hosts.
and to do simple monitoring of the Cronus network.

There are two types of reports to the MCS. polled messages "
and traps. Polled messages are reports in response to a request .

from the MCS Traps are reports from probes which are
unsolicited. They normally represent unexpected or unusual
events.,e

The MCS uses polled messages as the primary data gathering
technique. The polling request provides a mechanism which will._
quickly recognize when a host or service disappears. 1% N

Traps are employed for reports about specific events, which%
may require real-time response, or which are unanticipated. For

instance, the crash of a service would be reported as a trap, so
that service restoration or reconfiguration could be instituted
immediately. A host coming up would similarly be reported by a
trap message, because of the timeliness of the information and

because a new host on the network might not get any unsolicited 1.
N'

-175-

%

pol I s (24).

The MCS contains a trap logging service. Trap reports are

generated by both host and service probes. Trap messages include
a service type and priority in their header, so that display
routines can easily determine which traps require immediate

display in a high-priority window, and so that the operator can

easily select all traps in a priority range from a given service
class (e.g. file system). The trap logger could be extended to S

permit automatic operations in response to traps, so that a
"service crashed" trap report could be used to force a restart of

the service from the MCS.

The display processes normally directs critical reports to

the system operator, with each process controlling one or more 0

text streams A text stream may be directed to a display %

terminal window, a hardcopy output device, a file, or several
different places The operator terminal should support a multi-
window display, which will enable the operator to monitor a

variety of aspects of system operation simultaneously, with one
window usually reserved for critical reports. Other windows will S

be created to present data as requested. For instance, an

operator might choose a process in one window which presents the
general status for all hosts in the network, and another window .S
to present the load status for a particular host of interest.

When the sophisticated window package is not available, a

simpler interface would enable the operator to monitor one window

at a time, the difference would be invisible to the MCS since ,-

each window would look to it like an independent display.

The data reduction facilities of Cronus can reside wherever
convenient, and will be regarded as background tasks. The S

integrity of the system does not depend on their availability.

but their reports should prove useful to the tuning and %
management of the network. %

(24) Polling for hosts which are known to Cronus but currently

down would continue at a low rate, however, so that a lost trap
for such a host coming up would not be fatal . .

-176-

% %%

%I MN, A'h ?

The data reduction section will take advantage of the fact

that the files generated by the interactive section are available

globally as part of the Cronus file system.

12.4 Host Probes, Service Probes, and Network Monitoring

A host probe is a primitive entity which every Cronus host 0

must provide to report status to the MCS. A host probe must at
least report the presence of the host and its internet address at
the time the host operationally enters Cronus, and must respond
to AREYOUTHERE messages broadcast from the MCS. The host probe

is the distributed part of the low-level section of the
monitoring and control system. A host probe will often offer 0
further information in its report. host type, probe reports
available, current MCS reports. Cronus services, level of

integration. etc.

Service probes are monitoring entities in all Cronus
services. Services to be monitored will include object managers.
terminal concentrators, and user authenticators Service probes .

reflect a functional rather than site-based decomposition of
Cronus. Data from related service probes on different hosts are
combined in the MCS, in order to present a more understandable

picture of the service. The MCS specifies what types of data
should be collected and reported through poll responses and
through traps.

A service probe is located within the service. Unlike host
probes. they may require a certain level of Cronus functions,
since the loss of service monitoring and control does not
compromise our ability to restart the system. Service probes use S
the full range of Cronus services, especially the Cronus IPC

f ac i I It v.

Some messages, including control messages and high-priority

monitoring, will run with a priority above that of the service.
Most monitoring, however, will run with a priority below that of _

the service itself.

The service probes for the Cronus file system reports the
loading on the local portion of the file system the number of % 'm .

requests for various classes of services, etc It may also

%

0.** %k?'

IM *

W ... asnfht.paa . y.uI-wt- -npr, ,t " , ,is . - n,J.I ' J'iLiF F
4

&~J flUNWV jvv jyt -s

include the ability to trace all activities on particular files
(using traps) as a debugging aid.

The process manager probe reports machine process loading,

both for Cronus and non-Cronus processes, and optionally supports
tracing services for activities on Cronus processes. The probe
will report certain classes of exceptional events on processes,

and will provide services, invokable from the MCS, for invoking

and killing processes, and for tracing process activity on a

per-process basis.

Gateway monitoring would normally fall into the category of

service monitoring, however, the gateway already reports status

in response to polling by a host. We will use this capability to
obtain gateway and internet status. Since we do not wish to do 0

development in this area, we will to restrict ourselves to the

available capab:lIties.

The MCS will not monitor the cable network traffic directly.

Rather. it will gather reports from hosts on the traffic sent,
traffic received, and the collision rate at each node .

12.5 Loading and Debugging Support ON

The control function has the capability for restarting S

Cronus on the hosts of the network. It may do this in one of two
ways. In some cases (e.g. GCE). this includes transmitting the

code directlv to the host to be loaded. In other cases, the
computer s own loading sequence is invoked, using its private

secondary storage. In no event should the downloading procedure

require the assistance of a third machine. Some machines may S

detect some of their own failures and restart themselves

A distribu ed, heterogeneous system such as Cronus poses .
special problems for debugging tools. The goal is to have a

sophisticated debugger which runs on one host and debugs on

another. We would like to have a single debugging system be
capable of debugging computers of differing architectures.

Moreover, we would like the debugger to be able to debug at
source language level to provide for efficient development.

Currently the leading candidate for developing such a tool is

~Ni% %
_ o, .%,% % ,%% e" . . "J . .-. :""2""2',2"° ' ' "22 . ' . " .' ' %'."" ."'.- "" """ L,..."",, .' ,

XMD, which is adapted from the multi-window editor PEN. XMD does
not currently debug code in high-level languages, but can be
extended in this direction, since it does not depend on the
structure of the debugged code, relying instead on symbol table
entries to provide it with information about the target code.
XMD may soon be extended to debug C source code as part of the
effort of another project at BBN.

12.6 Cronus Initialization

The initialization of Cronus is performed from the
Monitoring and Control Station. In initializing the system, the 0
MCS will have no certain knowledge of what hosts are available.
The first step is to poll for the available hosts, and then to
initialize each host which responds.

The initialization of Cronus proceeds as follows(25). (See S
the scenario in Section 13.)

1 The MCS broadcasts AREYOUTHERE onto the network.

2. Each host has a routine in its COS that listens for
AREYOUTHERE and responds with HEREIAM and the •

parameters (a) name, (b) internet address, (c) boot
class. (d) boot file name, and any other required
information. The name is printable. The boot class
indicates the method used to initialize the host. "%'. .
Class I hosts accept a BOOTYOURSELF command and
initialize local Cronus software upon its receipt.
Class 2 hosts require a BOOTLOAD command, which is
followed by a boot file (item d) which passed to the to
the host with the code to load Class 3 hosts require
a host-specific loading protocol. which is executed on
the MCS from the boot file. (There are no plans to

(25). These messages do not use the full Cronus IPC mechanism in
the first four steps of the procedure. since the operation switch
and primal process manager are not in place on the host being'%

initialized Instead, they will be implemented as VLN messages.

-179- -~iJA r

r

implement Class 3 hosts in the ADM.)

3. When the MCS receives a HEREIAM message, it enters the

addresses of the host in a host monitor table, with a
notation that the host is not up. It then sends a
BOOTYOURSELF message if it is a class I host, or a
BOOTLOAD followed by the required file if it is a Class
2 host.

4. When a host has completed Cronus initialization, it

sends a message BOOTDONE to the MCS. Alternatively, it

may send the message BOOTFAIL, possible with parameters
indicating reason (e.g. "missing file block 5"). The
MCS may then retry the boot, if appropriate.

5. After the host is initialized, the MCS will communicate
with it using the Cronus IPC mechanism. It will

normally obtain a list of available services and will
then ask it to start up the services it supports.

The initialization procedure requires a small amount of code
resident in each processor in order to respond to the MCS
messages. This code will fit in ROM on machines which do not
have secondary storage.

12.7 Siting the Monitoring and Control System

Should the MCS be located on the GCE or on an application
host" Using a GCE is desirable because it can be specially
configured to support the MCS, it is intended to be the dedicated
processor, it provides controlled, predictable performance with 0
dedicated, low cost hardware, and it is expected to be

redundantly available Since UNIX hosts may not be available
redundantly, we would less often have back-up service if use it %
on a UNIX application host for the MCS. On the other hand,
building the MCS on an application host has several advantages.
the UNIX host provides a much richer development environment,
have already been written for UNIX, so that less program
development would be necessary, we can take advantage of the set %

of available UNIX utilities.

-180-

% % %.0 qP% %

% %

For the near term, we will build the tools on UNIX. We will

be careful to code the routines in a portable manner, so we can
easily move them to a GCE environment. This provides us with the

benefit of using UNIX in the short term. while keeping the

eventual goal of relying on redundant GCE's for Cronus services.

12.8 Phased Implementation

Implementation of the monitoring and control station will

occur in phases. both in terms of functionality, and in terms of

reliability and performance. The functionality will be increased
both as the reporting capabilities of the probes increases, and

as the need for data analysis grows.

Initially, the MCS will exist on a single host, without
strong reliability or performance goals. We will first build the
host monitoring section of the MCS, and simple host probes in

order to be able to start and restart Cronus hosts and services,

and to record the status (up/down) of hosts. As services are
written, we will add service probes, and extend the MCS to

monitor them. This initial system will utilize the UNIX file
system until the Cronus primal file system is available, and will

then convert to the use of Cronus files. Later the MCS will

reside on a GCE and will use standard Cronus files.

Revision 1 1 83/06,/06 10.39.29 bjw
Initial revision v.,,

•p -

%

I E3 U _

4• !-

S

13 Scenarios of Operation

13.1 Basic User Commands and Functions

This section presents examples of the use of Cronus
functions and of the integration of structural units. Scenarios
are presented for typical system and application tasks. The
intent is to suggest the interactions through the flow of control
and shared data. The scenarios also suggest how the primitive 0

functions might be combined to support operations required of
modern operating systems. The first few sections are narrative,
and the later ones provide pseudo-code examples. Details of

syntax and calling sequences in these examples are not those of
the actual implementation.

Many of the user commands and functions of Cronus fall into

the following categories.

o Session initiation and termination Login. Logout.

Attach, etc.

o User and system data base status and maintenance. Display

and edit user records, access control lists, show logged

on users, etc. -

o File manipulation and file/directory maintenance, name 0
lookup. read. write, directory listing, etc.

o Program invocation and control. create process. terminate

process, etc.

o Input/Output: List file etc. S

o System Operation. Starting the system, monitoring its
components. etc. SJU

Each of the following sections presents a scenario from one
of these categories.

-182-

" "; '- . , ''" :', %" ,' .,€,, ", . . - L -. .# ¢ . -
' "

"" , ," ' ,

pr

13.2 Registering a New User

New users may be added to the system only by members of the
administrative group. The command to create a principal entry 0
issues an Invoke operation specifying the logical name for the 9
principal data base manager (CLPrincipal) as the target process.

and including the CreatePrincipal operation and its parameters

in the message text. The Invoke uses the Locate(CLPrincipal)
operation, to find an available principal data base manager, then 0

sends the message text to one of the sites that responds using
SendToHost, The site identifier may be cached to simplify
subsequent requests. The principal data base manager creates a 4
user entry and returns the unique identifier for the new object.
This UID is the Cronus internal name of the principal. and will
appear in Access Group Sets and Group specifications. It may S
also be used to identify the user record whenever that record

needs to be accessed.

When a principal is added, a number of user data base

entries are initialized. One of those is the priority range
authorized for the user. A private directory is created, and the S
principal is given all rights to it. The pathname for this
directory is entered as the default home directory for the

principal The home directory serves as the repository for
command interpreter profile data that specifies user-customizable

system features.

133 Login

A user may connect to Cronus either through Telnet and a 0
standard session agent running on a shared Cronus host, or

through a Cronus Terminal Access Computer (TAC). Telnet supports
access from outside the cluster through gateways, and from other

devices obeying the protocol.

Access through a Cronus terminal device process is available S
only from a host that supports Cronus interprocess communication
protocols and will probably be supported only on workstations or %
Cronus TACs. It is more powerful, because the access point

software is fully integrated with Cronus.

......III~ I 3-

*4~ ~ % % % % 1-Fed

To initiate a session, a user must have a terminal device

process to manage his terminal communication, and a session
controller process to manage interactions with the system.

Telnet access requires both processes to execute on a shared host
of the system. A workstation access path can support both
processes; a Cronus TAC access path places the terminal device
process in the TAC and the session controller process on a shared

host.

Login is handled by the Cronus session controller process.
The user is prompted for a login name and password, which are
used by the session controller process to build a request to the
Authentication Manager by invoking the operation.

Authenticate_As(name,encryptedpassword) 49

On receiving this message, the Authentication Manager retrieves
the associated principal data base entry, verifies the password,
and creates the Access Group Set for the process.

The Authentication Manager interacts with the Cronus Session S
Manager to record the session. The Session Manager assigns a
session identifier and adds it to the table of active sessions.

A session record contains are the UIDs of the session principal.

controller process, and terminal device process. This table is
used to se isfy status requests about the cluster and active

users. Some emergency procedures, (for example, destroying all
processes associated with a session), may also rely upon this
t ablIe .

The session identifierthe AGS, and other user data base
entries are placed in the process environment through an

interaction with the process manager for the authenticating 0

process.

After modifying the process environment to indicate f,
successful authentication. AuthenticateAs returns the principal
UID to the authenticated process. This identifier is used to

interrogate the user data base for other information needed to
complete the login sequence. One such item is the default home
directorv, the symbolic name of the initial Cronus directory
which is used for unrooted catalog lookup operations, including

the search for additional user initialization data The
directorv name is converted to a catalog entry UID by an

-I4

*-X7II r . rA r r -. -V . ' ~ -'K -,K -

interaction with the catalog manager, and the UID is stored in
the process descriptor.

A principal may have a default program registered with the
Authentication Manager, if so, this program is executed at login
time. If no program is specified, the standard command
interpreter is assumed. The standard input and output for the

executing process are directed to the principal's terminal device
process.

13.4 Accessing a File

Each process descriptor contains (among other things) an
entry for the UID of the current directory. This value is

initialized at login to the principal's home directory, but can
be modified during the course of the session. The current
directory is inherited by a new program carrier process.

Suppose a client process wants to read the first 500 bytes
of data in the primal file with the symbolic name a.b c. To do
this, it would obtain the UID for the Primal File by means of.

Lookup(nullDirUID, ":ab:c", true)
-> abDirUID. abcCatEntUID. abcCatEntContents.

By convention, the UID for the null directory, nuIlDirUID, is

used to specify the starting directory whenever a complete name
is to be looked up. Next, it would read the file data by means
of.

Read~abcCatEntContents.ObjectUID, 0, 500)

which would cause the primal file manager to send the first 500
bytes of data for the file.

These operations are made available by a single function

call in the Process Support library.

ReadFileData(".a.b c", 0, 500k

-185-

i P OI %

Now, assume that a process has a relative symbolic name for a
file. The current directory UID is included in the request to
the catalog to look up the file name. Using the general form of
Invoke, the catalog manager is found based on the hint in the
catalog entry UID. The catalog manager performs the lookup and
returns the primal file UID associated with the symbolic name.
The primal file UID is then used to find the file manager for
this object, again using the hint which is part of the file UID

to locate the manager.

13.5 Creating a File

A Cronus cluster may contain many hosts with file managers.
each willing to store and retrieve file data at the request of
other processes. The operation

Locate(CL_Primal_File)

can be invoked by a process to determine the set of accessible
primal file managers.

One policy for the creation of files might be to try to
create the file on the same host as the creating process if a
local primal file manager responded. If this is not possible, a
remote manager can be selected and asked to create the file. The
primal files manager include status information, information in
the responses, such the amount of unused disk storage available,
a measure of the current 1/0 and processor load; or a restriction
on the principal UIDs that may to create files through this

manager. This information can be used to select a storage site
for the file. The selection strategies are packaged in a library
routines in the Process Support Library. e

The file may need a symbolic catalog entry. The catalog
entry operation is carried out by the catalog manager of the
directory to which the file is being added.

Suppose that the client process wants to create a file and
to give it the symbolic name a b.c. Further suppose that a

-186-

""" ""-- , "-. - "

directory named .a:b already exists.

First the client would use the

Create -> FileUID

operation to create a new primal file. The file would be empty,
The client could write data into the file by means of:

Write(Fi IeUID. BytePosit ion, Data)

or by bracket ing the write(s) by

Open4'FileUID. ReedWrite, frozen)

and

Close(FileUID, RetainWrites)

operat ions

To catalog the file. the client first obtains the UID of the 41
directory that will contain the catalog entry for the new name.

Lookup(nu]IDirVID. ".a b", true)
->aDirU'ID. abCatEritUID, abCatEntContents

and then enters the new name

Enter(abCatEntContents.ObjectUlD. "c", FileUID)
>abcCatEntU]D-A

If there were no directorv a-b or a, then the client would0
f irst have to create both '.a and .a.b. This could be done as PA

follows First the client would obtain the UID for the root
directory By convention the name of the root directory is
Root. The fact that the root directory is cataloged in itself
represents the only violation of the tree structured property of
the Cronus symbolic name space.

Lookup(nul]MrUID, ".Root", true)

root CatEn t UID,

-187-

-

>
o

t*U

D

)I . . 1

rootCatEntContents

Next, the client would create the directory a:

CreateDir(rootDirUID, "a")
-> aDirUID, aCatEntUID

and then. it would create the directory a:b.

Create(aDirUID "b") -> abDirUID. abCatEntUID. , -a ,

At this point, the symbolic name a.b.c can be established, as
above, for the primal file.

The Process Support Library contains routines coupling the
creation and naming of files, to avoid the situation where a
failure produces a file which does not have a symbolic catalog
entry and hence is not easily accessed. The operations are e
ordered such that the symbolic name is entered before the file is
closed. If the process fails after the name is entered, the
catalog entry may be deleted by explicit user commands, or by

automatic recovery mechanisms.

13.6 Deleting a File

Suppose the name of the file to be deleted is >a>b>c.

Deletion is accomplished by the following operations
Lookup(nullDirUID, ".a:b.c", true)

-> abDirUID, abcCatEntUID, abcCatEntContents

Delete(abcCatEntContents.ObectUID)

Remove (abcCatEntUl D)

If the primal file and catalog manager are coupled, the

Delete operation could have the side effect of invoking the
Remove operation.

-1 88-

13.7 Listing a Symbolic Catalog Directory

Suppose the name of the directory is ;a.bsc. A utility
program executes the following sequences of operations to print
the desired file names.

InitScan(nullDirUID, °"a.b.c .*.)

xDirUlD,
xCatEntUID,

xCatEntContents

repeat until abcScanState indicates end of scan
[if TypeOf(xCatEntContents.ObjectUID) = A filetype

then print xCatEntContents.SymbolicName,

ScanDirectory(abcScanState)

-> abcScanState,
xDirUID,

xCatEntUlD,
xCatEntContents,

13.8 Running a Program

Application programs are executed within program carrier
objects. The creation of an application process has three steps:
a program carrier is created, the program carrier is loaded with

the program image, and the program carrier is started.

The program image will generally be obtained from a Cronus
file, which may be anywhere within the Cronus file system. A
routine, that combines these process creation steps process
creation will be available in the PSL. This routine takes as one
of its arguments the symbolic name of the program image file.
The symbolic name is translated to the file UID by means of a
symbolic catalog lookup, and the file UID is used to load the
program image into a new program carrier object.

-189-

, , -.*~ ~ y' V .. . % - , , . - - .,9 J - . -_

In a heterogeneous system, a particular program image can
only be executed on certain processors. A VAX program image, for
example, can only be executed on a VAX host. Some mechanism must 0
exist to match the the program image to a processor capable of

executing it.

Subtypes of program carriers are defined for each processor
architecture for example, CTVAXProgramCarrier. These subtypes
contribute no new operations to objects of type S
CTProgramCarrier, but provide a means of locating a specific
kind of processor. For example, the operation

Locate(CL_VAXProgramCarrier)

will attempt to locate all program carrier managers on VAX hosts S

Executable files are subtypes of primal files with the type
CTExecutable. The descriptor of a program image file contains
the logical name of a program carrier subtype, e.g..
CLVAXProgram.Carrier. The file descriptor may also contain
other information such as special host requirements. An
operation on program carrier managers, ResourceTest, determines
if a particular manager has the resources which are prerequisites
to execution, the CreateProcess routine can invoke this test
whenever a process has special needs.

The actions carried out by the library routine can now be
described in greater detail

I The symbolic program name is translated to an executable
file UID. by means of a symbolic catalog lookup.

2. The routine requests the file descriptor of the program
image file, by invoking the Read_Descriptor on the file
obj ec t

3 The required program carrier type and any special
requirements are determined from the file descriptor.

4 A Locate operation finds the Program Carrier Managers

capable of executing this process, and a ResourceTest
operation narrows the candidates further.

~-190-

. .. .•V"

5. A Program Carrier Manager is selected according to some
policy :26) and the operation CreateProgramCarrier is

invoked on it, the UID of the new Program Carrier object

is returned.

6. The Load-Program operation is invoked on the program
carrier object.

7. When the load operation is complete, the routine receives
a reply from the Program Carrier object, and then invokes
Proceed on the Program Carrier to start it.

The CreateProgramCarrier operation takes as a implicit

parameter the process descriptor of the creating process, which 0

is inherited (with certain changes) by the new process.

A process descriptor contains some information which is
maintained securely by the system (e.g., the process UID. and the
UID of its principal) and an open-ended set of information

inserted into the descriptor by the ChangeProcessDescriptor-0
operation. All of the open-ended information is inherited

directly by the descendants of the process. Some of the system

information is inherited (e.g., the principal is normally
inherited) and some of it is not (e..., the process UID of a
descendant is unique to it). The system information defines the

authority of the new process for access to information and -

resources

The creating process may invoke Change-Process Descriptor

after but before starting, the program carrier to make changes in

the descriptor.
6.

(26) A reasonable policy might select the Program Carrier manager

on the local host, if it is a candidate, and to select the most

lightly loaded host (from information in the reply to Locate) if
it is not. Many other policies are possible, and exploring the
possibilities is an important area of future work.

-191-

~O

13.9 Starting a Cronus Service

In this section we sketch a scenario which might be directed

by a cluster control station, to startup, operate, and take down

a Time Service instance on one host. It is indicative of the
steps required to initiate and control an initial process load

sequence. The steps required to bring up each host to the point

assumed in this scenarios have been discussed in Section 12.

The Cronus Time Service has two main functions.

I. To respond to direct requests for the date and time, and

for format conversions among the Cronus date and time

formats.

2. To periodically multicast the date and time on a well-known

VLN multicast channel.

Assume that host CVAX has joined the Cronus system, and the
primal process manager is the only active Cronus process. The

control station performs

InvokeOnHost("CVAX",
CLPrimalProcess, 0
<(CKOperation_Name.COServiceList)>

and receives in reply a list of the services which could be

created on CVAX, only the PPM is marked as active. The logical r

name CLTimeService is contained in the list. The control

station then performs

InvokeOnHost("CVAX",
CLPrimalProcess,
<(CIK.OperationName.CO_CreatePrimalProcess)
(CKUID ServiceName.CL_Time _Service)>)

The Time Service process is created and started, and the control

station receives a reply containing CVAX_TimeServiceUID, the

specific UID of the Time Service Primal Process. The Time

Service begins its work:. and if left undisturbed will
periodically multicast the date and time forever The control p

-192-

W, - or.,or rM

station (or any other Cronus process) could request the current
date and time by performing

InvokeOriHost("CVAX",

CL_TimeService,
<(CKOperationName,CODateTime)>)

At some later time, it becomes necessary to temporarily S
inhibit the periodic multicasts of the Timer Service. The

control station performs

InvokeOnHost("CVAX",
CVAX_TimeServiceUID,
<(CK_OperationNameCOChangeProcessDescriptor). 0
(CKModify,)

(CKIPCEnabled,"false")>)

After the control station receives the reply confirming this
operation, it is known that all IPC to or from the Time Service S
has been inhibited. The Time Service process continues to exist,
however, and is eventually restored to its normal function when

the control station performs

InvokeOnHost("CVAX",
CVAX_TimeServiceUID, S
<(CK-Operation-Name C0-Change-Process-Descriptor)

(CI(Modi fy,)
(CK-IPCEnabled, "true')>)

Finally, perhaps in preparation for replacing the Time Service
code with a new version, the control station does S

InvokeOnHost("CVAX",
CVAX_TimeServiceUID,
<(CKOperationName,CODestroy)>)

and the Time Service process is known to be destroyed when the _ 4
reply arrives at the control station.

Revision 1.1 83/06/06 10.39.32 bjw le

Initial revision

-193- /-194-

14 Primal System Hardware

The Advanced Development model of the Cronus distributed
operating system will have three mainframe computers, four GCEs,

and a gateway. The mainframe computers are two BBN C70s and a

Digital Equipment Corporation VAX 11/750, the GCEs are Multibus
computers with M68000 central processors, and the gateway is an
DEC LSI-11 based computer.

The C70 computers are configured as general development
machines. The first, C70-1, is the site of the majority of the
development work since it supports both the C70 development tools
and those of the GCEs. We will rent time on a second C70, C70-2.
which will be used to exercise Cronus support for reliable
redundant hosts, and to test scalability. Both C7Os will run S

UNIX version 7 as released by BBN Computer Corporation and

modified by the Cronus project.

The VAX 11/750 provides a VMS-based software development
environment, as well as a mainframe of a distinctly different
archi:ecture. Its purpose in the ADM is to provide a limited 0

integration host. Since it is a large well-supported mainframe.
it will contain its own development environment, and we will also

use it as a source of computer power for general tasks, both to
off-load the C70, and to test real usage of the Cronus

heterogeneous host environment. The VAX is configured to reflect

its usage as a software development machine.

The Cronus system has four GCEs, configured for a variety of
tasks. Since they are compatible machines, their configurations

will vary over time, as we perform different experiments *on the
network, and as we make board substitutions to make one GCE
perform functions of another which is temporarily out of service.

The configuration table for the GCEs should be regarded as only a
typical set of GCE configurations.

The Cronus gateway is implemented on an DEC LSI-11 computer.

This would normally be a task for a GCE, however, standard
internet gateways are currently implemented on LSI-11, and

adoption of the LSI-11 gateway allows us to obtain an off-the-

shelf implementation. The next generation of internet gateways

is expected to be built on M68000 computers, and at that time we

will probably move the gateway to a GCE.

-195-

"'

MIME~a.pa'

J0

.

C70-1 1 Mbyte main storage
2 80 Mbyte removable disk drives
Magnetic Tape Drive,

800/1600 bpi, 125 ips (Cipher)
Arpanet 1822 LHDH interface 0
Ethernet interface (using

Interlan protocol module)

C70-2 1/2 Mbyte main storage
2 160 Mbyte removable disk drives
Arpanet 1822 LHDH interface •

Ethernet interface (using
Interlan protocol module)

VAX 11-750 1 Mbyte main memory
1 160 Mbyte Winchester disk

Magnetic tape drive, 1600 bpi, 40 ips
MDI high speed synchronous serial interface
3COM Ethernet Interface
VMS Operating System

Table 14.1 Software Development Hosts

-196-

S .~%

S

GCE-I+2 Forward Technology M68000
processor with 256 Kbytes memory

Micro-Memory 256 Kbyte memory board
80 Mbyte Winchester Disk Drive and SMD interface
3COM Ethernet Interface 0

8-slot Multibus backplane

GCE-3 Forward Technology M68000 processor
with 256 Kbytes memory

Micro-Memory 256 Kbvte memory board
8-line RS-232 serial interface •
3COM Ethernet Interface

8-slot Multibus backplane

GCE-4 Forward Technology M68000 processor
with 256 Kbytes memory

Micro-Memorv 256 Kbyte memory board]
8-line RS-232 serial interface
300 Ipm line printer
3COM Ethernet Interface

8-slot Multibus backplane

Table 14.2 Generic Computing Elements -- Typical Configurations

-197-

~i

Gateway LSIII/03 processor card
64 Kbyte memory card

DLVIIJ 4 line terminal card
MRV11C ROM card (bootstrap)
ACC 1822 interface with DMA
Interlan N12010 QBUS Ethernet controller

BBN FNV1 Fibernet interface
MDB backplane and power-supply.

Table 14.3 Gateway Configuration

-199-

1%S

S

15 Virtual Local Network

15.1 Purpose and Scope

The Cronus Virtual Local Network (VLN) provides interhost
message transport in the Cronus Distributed Operating System.
The VLN client interface is available on every Cronus host.
Client processes can send and receive messages using specific, 0
broadcast, or multicast addressing.

The VLN stands in place of a direct interface to the
physical local network (PLN). This additional level of
abstraction is defined to meet two major system objectives.

o Compatibility. The VLN is compatible with the Internet
Protocol (IP) and with higher-level protocols, such as the
Transmission Control Protocol (TCP). based on IP.

" Substitutabilitv. Cronus software built above the VLN is
dependent only upon the VLN interface and not its
implementation. It is possible to substitute one physical
local network for another provided that the VLN interface
specification is satisfied

This description assumes the reader is familiar with the
concepts and terminology of the DARPA Internet Program, reference

[NIC 1982] is a compilation of the important protocol
specifications and other documents. Documents in [NIC 1982] of
special significance here are [Postel 1981a] and [Postel 1981b].

The Advanced Development Model ADM will be connected to the
ARPANET, and it is important that the ADM conform to the standard
and conventions of the DARPA internet community. In addition, a

large body of software has evolved, and continues to evolve, in
the internet community. For example, protocol compatibility
permits Cronus to assimilate existing software components
providing electronic mail, remote terminal access, and file
transfer.

The substitutability goal reflects the belief that different
instances of Cronus will use different physical local networks.
Substitution may be desirable for reasons of cost, performance,
or other properties of the physical local network such as
mechanical and electrical ruggedness.

-199-

S

Figure 1 shows the position of the VLN in the lowes! layers

of the Cronus protocol hierarchy. The VLN interface

specification leaves programming details of the interface and

host-dependent issues unspecified. The precise representation of

the VLN data structures and operations will vary from machine to

machine, but the functional capabilities of the interface are the

same regardless of the host.

ITransmission IUser I
Control I Datagram . ..

Protocol Protocol I

Internet Protocol

(IP6

Virtual Local Network
(VLN)

Physical Local Network

(PLN, e.g. Ethernet) S

Figure 15.1 Cronus Protocol Layering

The VLN is completely compatible with the Internet Protocol

as defined in [Postel 1981b]. No changes or extensions to IP are

required to implement IP above the VLN.

-200-

%e..

S

15.2 The VLN-to-Client Interface

The VLN layer provides a datagram transport service among
hosts in a Cronus cluster, and between these hosts and other
hosts in the DARPA internet. The hosts belonging to a cluster
are attached to the same physical local network. Communication
with hosts outside the cluster is achieved through internet
gatewavs, shown in Figure 2, connected to the cluster. The VLN
routes datagrams to a gateway if they are addressed to hosts
outside the cluster, and delivers incoming datagrams to the
appropriate VLN host. A VLN is a network in the internet, and
thus has an internet network number(27).

-2011%N! ~~(27). The network numbers for the PLN and VLN may be the same or ! ._

somewhat more complex. Either approach is consistent with the.,, !

-201-

to internet

network X

0

Ihostlil IgtwyAt Ihost2l Ihost3_

I I I 1 0

Ihost4! Ihost5l IgtwyBI Jhost6j

I

to internet
network Y

Figure 15.2 A Virtual Local Network Cluster

The VLN interface will have one client process on each host,
normally the host's IP implementation. The VLN performs no
multiplexing/ demultiplexing function.

The structure of messages which pass through the VLN is
identical to the structure of internet datagrams. The VLN
definition assumes that there is D well-defined representation
for internet datagrams on any host supporting the VLN interface.
The argument name "Datagram" in the VLN operation definitions
below refers to this well-defined but host-dependent datagram
representation.

The VLN guarantees that a datagram of 576 or fewer octets
can be transferred between any two VLN clients. Although larger
datagrams may be transferred between some client pairs, clients
should avoid sending datagrams exceeding 576 octets unless there

-202-

is clear need to do so. The sender must be certain that all
hosts involved can process the oversized datagrams.

The internal representation of an VLN datagram is not
included in the specification, and may be chosen for
implementation convenience or efficiency.

Although the structure of internet and VLN datagrams is
identical, the VLN-to-client interface places its own
interpretation on internet header fields, and differs from the
IP-to-client interface in significant respects.

1. The VLN layer uses only the Source Address. Destination

Address. Total Length, and Header Checksum fields in the
internet datagram. other fields are accurately transmitted ;--.
from the sending to the receiving client

2. Internet datagram fragmentation and reassembly is not
performed in the VLN layer, nor does the VLN layer
implement any aspect of internet datagram option

processing.

3. At the VLN interface, a special interpretation is placed
upon the Destination Address in the internet header, which
allows VLN broadcast and multicast addresses to be encoded
in the internet address structure.

4. With high probability, duplicate delivery of datagrams sent
between hosts on the same VLN does not occur.

5 Between two VLN clients S and R in the same Cronus cluster,
the sequence of datagrams received by R is a subsequence of ,

the sequence sent by S to R; a stronger sequencing property
holds for broadcast and multicast addressing.

In the DARPA internet. an internet address is defined to be

a 32-bit quantity that is partitioned into two fields, a network

number and a local address. VLN addresses share this basic
structure, but it attaches special meaning to the local address
field of a VLN address.

Each network is assigned a _ (A. B. or C), and a network
number. The partitioning of the 32-bit internet address into

-203-

' N .ULt'.

network number and local address fields as a function of the
class of the network is shown in Table 1.

Width of Width of

Network Number Local Address

Class A 7 bits 24 bits S

Class B 14 bits 16 bits-.

Class C 21 bits 8 bits

Table 15.1 Internet Address Formats

The bits not included in the network number or local address
fields encode the network class. e.g., a 3 bit prefix of 110
designates a class C address (see [Postel 1981a]). 0

The interpretation of the local address field is the
responsibility of the network. For example, in the ARPANET the
local address refers to a specific physical host. VLN addresses,
in contrast, may refer to all hosts (broadcast) or groups of
hosts (multicast) in a Cronus cluster, as well as specific hosts •
inside or outside of the cluster. Specific, broadcast, and
multicast addresses are all encoded in the VLN local address
field (28). The meaning of the local address field of a VLN
address is defined in Table 2.

(28). The ability of hosts outside a Cronus cluster to transmit
datagrams with VLN broadcast or multicast destination addresses
into the cluster may be restricted by the cluster gateway(s), for
reasons of system security.

-204-

Address Modes VLN Local Address Values

Specific Host 0 to 1,023

Multicast 1,024 to 65.534

Broadcast 65,535

Table 15.2 VLN Local Address Modes

In order to represent the full range of specific, broadcast, and
multicast addresses in the local address field, a VLN network
should be either class A or class B.

The VLN does not attempt to guarantee reliable delivery of
datagrams, nor does it provide negative acknowledgements of
damaged or discarded datagrams. It does guarantee that received

datagrams are accurate representations of transmitted datagrams.

The VLN guarantees that datagrams will not replicate during
transmission. so each intended receiver, a given datagram given

to the VLN by higher levels is received once or not at all(29).

Between two VLN clients S and R in the same cluster, the
sequence of datagrams received by R is a subsequence of the
sequence sent by S to R, that is datagrams are received in order.
possibly with omissions. A stronger sequencing property holds
for broadcast and multicast transmissions. If receivers RI and
R2 both receive broadcast or multicast datagrams DI and D2.

either they both receive Di before D2, or they both receive D2
before DI.

While a VLN could be implemented on a long-haul or virtual- •

(29). A protocol operating above the VLN layer (e.g., TCP) may
employ a retransmission strategy; the VLN layer does nothing to
filter duplicates arising in this way.

-205-

W~WUI K'V WW W"ViWWWV W'6 V'

circuit-oriented PLN, these networks are generally ill-suited to
the task. The ARPANET, for example, does not support broadcast
or multicast addressing modes, nor does it provide the VLN
sequencing guarantees. If the ARPANET were the base for a VLN
implementation, broadcast and multicast would have to be
constructed from specific addressing, and a network-wide
synchronization mechanism would be required to implement the
guarantees. Although the compatibility and substitutability
benefits might still be achieved, the implementation would be S
costly, and performance poor.

A good implementation base for a Cronus VLN would be a
high-bandwidth local network with all or most of these
characteristics.

I. The abilitv to encapsulate a VLN datagram in a single PLN

datagram.%

2. An efficient broadcast addressing mode.

3. Natural resistance to datagram replication during _

transmission.

4. Sequencing guarantees like those of the VLN interface.

5. A strong error-detecting code (datagram checksum).

Good candidates include Ethernet, the Flexible Intraconnect, and r

Pronet, among others.

15.3 A VLN Implementation Based on Ethernet 0

The Ethernet local network specification is the result of a %

collaborative effort by Digital Equipment Corp., Intel Corp., and

Xerox Corp. The Version 1.0 specification [DEC 1980] was
released in September 1980. Useful background information on the
Ethernet internet model is supplied in (Dalal 1981].

The addresses of specific Ethernet hosts are arbitrary 48-
bit quantities, not under the control of the DOS. The VLN
implementation must map VLN addresses to specific Ethernet
addresses. The mapping can not be maintained manually in each ,'

-206-

*.e++ + . •
. ',:,'

WM3M VV WNU WUIF9J.WU %W

VLN host, because manual procedures are too cumbersome and
error-prone for a local network with many hosts, each of which
may join and leave the network frequently. A protocol is
described below which allows a host to construct the mapping
dynamically, beginning only with knowledge of its own VLN and
Ethernet host addresses.

An internet datagram is encapsulated in an Ethernet frame by
placing the internet datagram in the Ethernet frame data field, 0

and setting the Ethernet type field to "DoD IP", as shown in
Figure 3.

The Ethernet octet ordering is required to be consistent
with the IP octet ordering. If IP(i) and IP(j) are internet 0

datagram octets and i<j, and EF(k) and EF(l) are the Ethernet
frame octets which represent IP(i) and IP(j) once encapsulated,
then k<l. Bit orderings within octets must also be consistent.

Each VLN component maintains a virtual-to-physical address
map (the VPMap which translates a 3Z-bit specific VLN host 0

address to a 48-bit Ethernet address. The VPMap data structure
and the operations on it will implemented using hashing
techniques.

Each host controller has an Ethernet host address (EHA) to
which it responds. The EHA is determined by Xerox and the 0
controller manufacturer. In addition, the VLN assigns a
multicast-host address (MHA) to each host. This multicast
address is constructed from the local host portion of the
internet address. .

When the VLN client sends a datagram to a specific host, the 0

local VLN component encapsulates it and transmits it without
delay. The Source Address in the Ethernet frame is the EHA of
the sending host. The Ethernet Destination Address is formed
from the destination VLN address in the datagram, and is either:

o the EHA of the destination host, if the sending host knows
it, or I.

o the MHA formed from the host number in the destination VLN
address, as described above, if the sending host does not

know the EHA coresponding to the host number.

-207-

*1 --%- N

0 1 2 3
012 34 56 78 90 1234 567 890 12 34 56 78901

+-+---+-+--- -+--+-+--+-+-+-+--+-+-+-+--+-+-+--+------+-+-+-+-+-+-+--+-+-+---

Destination Address
+-+-+--+ -+-+-+-+$--+ _

I Destination Address (contd.) I Source Address

Source Address (contd.)

I Type ("DoD IP") I

+-+-+-+-+-t -+-+-+4--+-+-+-+-+-+-+-+ .

IVersioni IHL IType of Servicel

I Total Length I Identification I

JFlagsj Fragment Offset I Time to Live I Protocol I

I Header Checksum I Source Address

I Source Address (contd.) I Destination Address I

Destination Address (contd.)

Data

Frame Check Sequence

Table 15.3 An Encapsulated Internet Datagram

-205-S

%, %,

I I, ' 1
I raeChckSqun-

j .1 '

I

When a VLN component receives an Ethernet frame with type

"DoD IP". it decapsulates the internet datagram and delivers it
to its client. If the frame was addressed to the EHA of the
receiving host, no further action is taken. If the frame was
addressed to the MHA of the receiving host, the VLN component 0

broadcasts an update for the VPMaps of the other hosts. The
other hosts can thenuse the EHA of this host for future traffic.

If the MHA is represented as a sequence of octets in hexadecimal,

it has the form.

A B C D E F 0

09-0O-08-O0-hh-hh

A is the first octet transmitted, and F the last. The two octets

E and F contain the host local address.

E F

00000hh hhhhhhhh

MSB LSB

The type field of the Ethernet frame containing the update

is "Cronus VLN". and the format of the data octets in the frame
is:

0 I 2 3
012 34 56 7 8 901 2 3456 7890 12 34 56 7 8 90 1

i Subtype ("Mapping Update") I Host VLN Address I

] Host VLN Address (contd.) I

When a local VLN component receives an Ethernet frame with type U ,

"Cronus VLN" and subtype "Mapping Update", it performs a

-209-

or

StoreVPPair operation using the Ethernet Source Address field and
the host VLN address sent as frame data

A VLN datagram will be transmitted in broadcast mode if the
specifies the VLN broadcast address (local address = 65,535,
decimal) as the destination. The receiving VLN component merely
decapsulates and delivers the VLN datagram.

The implementation of multicast addressing is more complex. 0
Each host defines the number of multicast addresses which can be
simultaneously "attended" (listened to) This number is a

function of the particular Ethernet controller hardware and of
the resources that the host dedicates to multicast processing.

The VLN protocol permits a host to attend any number of multicast
addresses. from 0 to 64,511 (the entire VLN multicast address 0
space). independent of the controller in use.

It is possible to implement the VLN multicast mode using
only the Ethernet broadcast mechanism. Every VLN host would
receive and process every VLN multicast, discarding uninteresting

datagrams. More efficient operation is possible if some Ethernet
multicast addresses are used. and if the Ethernet controller has
multicast recognition which automatically discard misaddressed

frames.

There is no standard for multicast recognition. The 3COM
Model 3C400 controller performs no multicast address recognition.

It passes all multicast frames to the host for further
processing. The Intel Model iSBC 550 controller permits the host
to register a maximum of 8 multicast addresses with the
controller, and the Interlan Model NMIO controller permits a

maximum of 63 registered addresses.

A VLN-wide constant, MulticastRegistered. is equal to the
smallest number of Ethernet multicast addresses that can be .
simultaneously attended by all hosts in the VLN. A network

composed of hosts with the Intel and Interlan controllers

mentioned above, for example, would have MulticastRegistered
equal to 7 (30), a network composed only of hosts with 3COM Model .

3C400 controllers would have MulticastRegistered equal to

(30), Multi-Registered is 7, rather than 8, because one multicast i i
slot in the controller is reserved for the host's MHA.

-210-

* ~ ~~~ %t C '~V

J%

64,511, since the controller itself does not restrict the number
of Ethernet multicast addresses to which a host may attend (31).

A mapping is defined which translates the VLN multicast
address to an Ethernet multicast address. The first
Multicast-Registered VLN multicast addresses are assumed to be
attended by each host. The local address portion of the internet
address of a VLN multicast channel is a decimal integer M in the
range 1,024 to 65,534.

1. (M - 1,023) <= MulticastRegistered. In this case, the
Ethernet multicast address is

09-00-08-00-mm-mm

2. (M - 1,023) > Multicast-Registered. The Ethernet broadcast
address is used. A VLN component which attends VLN
multicast addresses in this range must receive all
broadcast frames, and select those with VLN destination
address corresponding to the attended multicast address.

•0

Delivered datagrams are accurate copies of transmitted
datagrams because VLN components do not deliver datagrams with
invalid Frame Check Sequences. A 32-bit CRC error-detecting code
is applied to Ethernet frames.

Datagram duplication does not occur because the VLN layer
does not perform retransmissions, the primary source of
duplicates in other networks. Ethernet controllers do perform
retransmission as a result of collisions on the channel, but the
collision enforcement mechanism or "jam" assures that no
controller receives a valid frame if a collision occurs.

The sequencing guarantees hold because mutually exclusive
access to the transmission medium defines a total ordering on
Ethernet transmissions, and because a VLN component buffers all
datagrams in FIFO order.%

(31). For the Cronus Advanced Development Model,
MulticastRegistered is currently defined to be 60.

-211-

15.4 VLN Operations

There are seven functions defined at the VLN interface. An

implementation of the VLN interface has wide latitude in the

presentation of these operations to the client; for example, the
functions may or may not return error codes.

The functions are to occur synchronously or asynchronously
with respect to the client's computation. We expect that the

ResetVLNlnterface, MyVLNAddress, SendVLNDatagram,
PurgeMAddresses, AttendMAddress, and IgnoreMAddress operations
will be synchronous with respect to the client.

ReceiveVLNDatagram will usually be asynchronous, that is, the
client initiates the operation, continues to compute, and at some

later time is notified that a datagram is available.

ResetVLNInterface()

The VLN for this host is reset. For the Ethernet
implementation, the operation ClearVPMap is performed,

and a frame of type "Cronus VLN" and subtype "Mapping
Update" is broadcast. This operation does not affect the
set of attended VLN multicast addresses.

MyVLNAddressl

Returns the VLN address of this host.

SendVLNDatagram(Datagram)

When this operation completes, the VLN layer has copied

the Datagram. The transmitting process cannot assume that 0

the message has been delivered when SendVLNDatagram

completes.

ReceiveVLNDatagram(Datagram)

When this operation completes, Datagram is a P

representation of a VLN datagram which has not previously

received.

PurgeMAddresses()

When this operation completes. no VLN multicast addresses

-212-

W :.N

are registered with the local VLN component.

AttendMAddress(MAddress)

If this operation returns True then MAddress, which must
be a VLN multicast address, is registered as an alias for

this host, and messages addressed to MAddress by VLN
clients will be delivered to the client on this host.

lgnoreMAddress(MAddress)

When this operation completes. MAddress is not registered
as a multicast address for the client on this host.

Whenever a Cronus host comes up, ResetVLNInterface and

PurgeMAddresses are performed on the VLN. A VLN component may
depend upon state information obtained dynamically from other

hosts, and there is a possibility that incorrect information

might enter a component's state tables. A cautious VLN client
could call ResetVLNlnterface periodically to force the VLN
component to reconstruct the tables.

A VLN component will limit the number of multicast addresses
to which it will simultaneously attend, if the client attempts to

register more addresses than this. AttendMAddress will return

False with no other effect.

The VLN layer does not guarantee buffering for datagrams at
either the sending or receiving host(s). It does guarantee that
a SendVLNDatagram function performed by a VLN client will
eventually complete; this implies that datagrams may be lost if

buffering is insufficient and receiving clients are too slow. 0

-213.

0

16 Generic Computing Element Operating System

One of the more important Cronus hardware components is the
Generic Computing Element (GCE). Prior to its introduction to
the Cronus DOS project. CMOS was under development at BBN as a
real-time operating system for several types of communication
processors, such as gateways and network terminal concentrators.
In addition, a support environment for building and debugging
CMOS applications is available under UNIX. CMOS provides the
following basic operating system features.

o multiple processes
o interprocess communication/coordination

o asynchronous 1/0
o memory allocation
o system clock management

CMOS is an open operating system, that is. no distinct
division exists between the operating system and the application

program. The operating system is a collection of library
routines that can be easily extended by adding new routines and
can be reduced by excluding unneeded routines. The programmer
can directly access lower-level interfaces.

CMOS is a portable operating system. The use of the high-
level language C is the principal factor in CMOS portability.
Small size and simplicity are other important factors. The
design minimizes the amount of machine-dependent code and
segregates it. The I/O system design allows for easy replacement
of device-dependent modules.

The debugging environment is provided by XMD. a display
oriented debugger based on the PEN editor. All of the features
of the editor are available to the user in addition to the
debugger specific commands. PEN is a multi-window editor with
capabilities for manipulating multiple files and edit buffers.

XMD displays a special configuration of windows that are
appropriate to debugging. This configuration consists of a source
window, a register display window, a breakpoint window, and a
window for displaying variables.

-214-

A low-level debugger is resident in the target processor to

interpret and execute commands sent to it over the communication

path, currently a terminal line to the C70 UNIX host processor

where XMD is running.

Access to networks will be provided to CMOS applications

from three levels. At the highest level, the user can open a TCP

stream. The first application at this level will be Telnet and

terminal concentration software. At the next level, there is an

internet datagram service. This will be used to implement inter-

process communication between hosts, as well as other standard

internet protocols. The lowest level is the Ethernet loca.l

network interface.

The communication module in XMD will be changed to use the

Ethernet instead of a terminal line, increasing its flexibility

and usefulness Downloading will be possible over the network.

plus it will be easier to debug multiple GCEs from one site.

The internal device structure was changed was to give the •

1/O system more flexibility in dealing with the number of

possible relationships between hardware devices and the

interrupts generated by those devices. Without this change, the

capability of writing simple device drivers for CMOS is

compromised.

A name service capability was added for the run-time binding

of string names to processes and devices. The name space is

hierarchical and there is a notion of absolute and relative

pathnames. In the presence of some form of mass storage, the

names can be made non-volatile.

NS

-215/ -216

'Ir

REFERENCES

[BBN 5041]
"Cronus. a distributed operating system. functional
definition and system concept," M. D. Hoffman, W. I.
MacGregor, R. E. Schantz, & R. H. Thomas, Technical Report

#5041, Bolt Beranek and Newman Inc., June 1982.

[BBN 5086]
"Cronus, A Distributed Operating System. Interim Technical
Report No. 1," R. Schantz, E. Burke. S. Geyer, M. Hoffman, A.
Lake, E. Pogran, D. Tappan, R. Thomas, S. Toner, and W. S

MacGregor, Technical Report #5086, Bolt Beranek and Newman
Inc.. July 1982. .,.

[BBN 5260]
Part A of [BBN 5261]

[BBN 5261]
"Cronus, A Distributed Operating System. Interim Technical
Report No. 2," R. Schantz, B. Woznick, G. Bono, E. Burke, S. Geyer,
M. Hoffman, W. MacGregor, R. Sands, R. Thomas, and S. Toner
Technical Report #5261, Bolt Beranek and Newman

Inc., February 1983.

[Dalal 1981]
"48-bit absolute internet and Ethernet host numbers," Yogen
K. Dalal and Robert S. Printis, Proc. of the 7th Data
Communications Symposium, October 1981.

[DEC 1980]
"The Ethernet: a local area network, data link layer and
physical layer specifications," Digital Equipment Corp.. Intel
Corp., and Xerox Corp., Version 1.0, September 1980.

[Goldberg 1983]

"Smalltalk-80. The Language and Its Implementation". Adele Goldberg
and David Robson, Addison-Wesley, Reading Ma, 1983.

fHerlihy 1982]

"A Value Transmission Method for Abstract Data Types", M. Herlihy

- 217 -

110111''111III'lill. 4#k I %*

and B. Liskov, ACM Transactions on Programming Languages and Systems

Volume 4 (4) 527, October 1982.

[Jones 1978]
"The Object Model: A Tool for Structuring Software," A. K. Jones.

in "Opexating Systems. An Advanced Course," R. Bayer, R. M. Graham.

and G. Seegmuller, eds., Springer-Verlag, Heilelberg, 1978.

[Liskov 1977)
"An Introduction to Formal Specifications of Data Abstractions,"

Barbara Liskov and Stephen Ziles, in "Current Trends in Programming

Methodology", Vol 1, Raymond T. Yeh. ed.. Prentice-Hall, Englewood

Cliffs, New Jersey, 1977.

[NIC 1982] 0

"Internet protocol transition workbook." Network Information I .

Center, SRI International, Menlo Park, California, March 1982.

[Parker 1983]
"Detection of Mutual Inconsistency in Distributed Systems,"

D, S Parker. Jr. et a. IEEE Transactions on Software Engineering. 0

Volume SE-9 13) 240. May 1983.

[Postel 1981a]
"Assigned numbers," Jon Postel, RFC 790, USC/Information

Sciences Institute, September 1981.

[Postel 1981b]

"Internet Protocol - DARPA internet program protocol
specification," Jon Postel, ed., RFC 791. USC/Information

Sciences Institute, September 1981.

[Rentsch 1982] 0

"Object oriented programming," T. Rentsch, SIGPLAN Notices,
September 1982, pp. 51-57.

[Robinson 1977]

"A Formal Methodology for the Design of Operating System Software,"

Lawrence Robinson, Karl N. Levitt, Peter G. Neumann, and 0

Ashok R Saxena, in "Current Trends in Programming

Methodology", Vol 1, Raymond T. Yeh, ed., Prentice-Hall, Englewood

Cliffs, New Jersey, 1977.

(We'inreb 19811
- •

- 218 -

"Lisp Machine Manual", Daniel Wemnreb and David Moon, Massachusetts
Institute of Technology, Cambridge Ma., 4th ed. , 1981, p. 279f.

-219-

,~ E
P -

I NDEX

a ccess 34 . 211
access control 17, 30, 69, 71, 128
access control list 23, 35 72. 94, 114
access group set 73
access machine .. 7
access point 157
access rights 159
accessibility .. 155
acknowl edge 95
acknowledgements.................................. 205
ACL....................................... 23, 72
active... 44
address... 32, 70
address recognition............................... 210
address space................ 41
Add-toDeault.Group..ExpansionList 81
Add_ to...Group................................ 81
Advanced Development Model ADM.. 4. 11

AGS... 73
AGS cache.. 82
an error block....................................... 171
Append.. 96
application ... 46, 154
application process....................................... 169
arc.. 120
AREYQUTHERE.. 179
argument... 166
ASCII video terminal...................................... 161
asychronous process....................................... 170
asynchronous... 41
asynchronous 1/0.. 214
atomic.. 50, 95
atomic transaction.................................... 43, 171
AttendMAddress.. 213
AuthenticateAs.. 75, 80
authentication... 69
authentication manager..................................... 23
authenticity.. 71
authority.................................. 191

Index

-1--2-

V P%~~'. %

Sb

S

I S

S

0

S
'Yb

* S

k A~-

S S

U

1' - ~ - V ,~; 'n\A< v.~ q~k'PS,'

authorization yerification 75
background process 171
BadDiskBlock table .. 119
binding... 71
bit vector..683
bit-string.. 32
block.. 113
block index.................................... 118
BOOTLOAD................. 179
BOOTYOURELF.............................. 179
bound _....16
Breakpoint.. 53

broadcast 32, 203, 205
broadcast addressing moode......................... 206
buffer... 163

buffering.................... 213

C 7 0 s .. 195
cable..... 70, 178

c a che 32. 82
catalog I................. 21, 30

catalog data base..............................130
catalog manager.................122, 129
catalog the fileI 187
Change 127

Change-.Password.. 81
ChangeState _... 53

child.. 52

C H P _ 3 6
class.. 25. 203
class A 205

class B 11, 205
cleanup 94

Clear-.Program......................... 53
ClearVPMap 212
CLI................................. 154

c".............................. 159

client....................... 38I
close............ .. 91
Close.. 96
close... 113
Close.. 150
CloseAllProcessOpenFiles................................... 96

CloseAllProcessOpenlOStreais........................_.... 150I
CloseProcessOpenFile................................. 96

Index
-3-

be I SIP W

CloseProcessOpenlOStreans.................................. 150
cluster.. 32, 155
CMOS... 214
coherence... 4, 12, 14
collision enforcement..................................... 211
command file... 166
command interpreter....................................... 159

comandlanguage interpreter............... 154, 160
command name.............................. 166
communication............................. 36
communications...................................... 6
compatibility........................ 206
Compativilitv... 199
composite... 55
composite action.................... 43
composite object.......................... 29 P
connected directory..................... 121
constituent host process............. 36, 44
Constituent Operation System COS.......... 173
control................................. 24. 30, 173
control block.................................... 42
control information 52
control station...................... 192
control traffic.. 66
copy... 90
COS... 48
COS interface... 24
crash.. 95. 159. 175
CRC .. 211
Create.. 33. 34, 45
create... 114
Create.. 127, 128
create a file.. 186
CreateEFSFile 114
Creating a File.. 186
Cronus cluster... 4. 6
Cronus generic name 48
Cronus service 46, 173
Cronus sybolic service name.......... 48
Cronus system call... 39
Cronus VLN... 209

CronusRestart.. 47 .
CronusType............................. 33
CTCatalog........................... 30

Index
-4

CTCatalogEntry 126, 127
CTDirectory 30, 121. 126, 128
CTExecutable_ Fi le 166
CTExternal_Linkage 121. 127, 128
C T_ G r o up 7 8 , 7 9
C T_ H o s t 29 , 4 5 , 4 6
C T -O b j e c t 2 9
CTPhysicalTerminal 161
CTPrimal_File .. 30
CT_ P rim a lP rocess .. 45
CTPrincipal 30, 78
CTProgramCarrier 30, 45. 51
CT_ Symbolic_Link 121, 126
CTTerminal 161
current directory 121 _

daem on 4 1
data abstraction ... _ 28
data reduction 176
datagram II, 25. 201, 206
datagram option processing 203
datagram replication 206
d e b u g g e r 2 1 4
d ebu g gi n g 178 ,
DEC LSI-.1 195
d e d i c a t e d 6 9
d e fau lt sub sy stem .. 7 9
d e f e r r ed e ch o 16 3 I.,
de f in ed comm and ... 166

"SDe lete 4 7
Delete_ from_DefaultGroup..ExpnsionList................... 81
Deleting a File ... 88
demu ltip lexing .. 202
d e s t r o y .. 4 9 _
d e t a c h .. 1 6 0

deve lopment mach ine 195
d e v i c e .. 1 2 1
d e v ic e o b je c ts 18
d e v i c e s .. 2 3
Digital Equipment Corp 206

d irec tory 120, 12 1, 13 1
d irec tory ob jec ts .. 18
D isab le_AccessGroup B0
d i s p e r s a l c u t ... 13 3
dispersal subtree 133

Index

5 -

% %~ %.

dispersed file..........-. 89
display area .. 162
distributed........................ 155
distributed operating system........ 12
distribution... 130, 132
DoD IP... 207
domains... 69
download... 178
dynamic binding .. 71
echo.................... 163
elective keys.. 50
EnableAccessGroup 580
encapsulated.. 207 %

encryption.. 83
entry name... 1200
environment..................... 170
error.. 42, 171
error condition................................... 42
error recovery.. 52, 155
error reporting.................................. 55
error-detecting code...................................... 206
Ethernet..................................... 8
ethernet 25

Ethernet....................................... 206. 207, 215
Ethernet host address EHA................................. 207
exception... 66
exclusive................................. 211
executable 156

executable file, 190
executed.................................... 189
execution.. 170
external linkage.. 121
external representation.................................... 670
failure.. 157
filIe... 30
file descriptor.. 91
file objects.. 18
FilelD) Table... 115
FilelDs.. 113
FilesOpenBy... 96
filler block......................._..................... 119
Flexible Intraconnect..................................... 206
flow control.. 58
fragmentation 203

iad ex

6-

,,NIN,,

fram e207
Frame Check Sequence............... 211
free read... 92
free write... 92
PreeDiskBlock... 115
frozen...................................... 92
functional decomposition................................. 174
functionality 151
gatekeeper..582
gateway. 158
gateway monitoring.. 178
GCE... 158
generic .. 27
Generic Computing Element GCE............... 214
Generic Computing Elements GCE.............................7
generic name 33

generic operation...................................... 29, 34
global performance................................5
global symbolic name space................................ 120
group.. 72
group identifie............ 73
hardcopy terminals.. 161
hardkill 169

hashing 207

head process.. 159
HEREIAM.. 179
heterogeneous... 6
hiding principle 25
hierarchically structured............... 120
high-bandwidth............... 206
hint.. 18
home directory... 79
host.. 29, 45
host dependent role designator......................... 45, 49
host failure.. 157
host monitoring... 181
host probe... 177
HostAddress......................... 32
host-dependent.. 200
Host Incarnation .. 20
HostNumber.. 20
human user... 170
identifier.................................... 32

identity 71, 72

Index
-7-

IgnoreMAddress.. 213
image 166
immediate echo.. 163
IncarnationNumber 33
independent.................. 41, 42
independent display area.................................. 162
independent process.. 30
independent task... 157 .

index.. 1158
inherit........................... 29
inheritance......................... 28
initial directory 121
initial process load.................. 192
initialization................................... 41. 159, 179
InitScan 127S
integration 22
integrity............................. 5. 17, 69
Intel Corp... 206
intentions... 43
interactive.. 42, 162
interactive process....................................... 170
interactive section 175
interface 55
internal structure 16
Internet........................... 6. 158
Internet address... 32
internet address.. 203
internet datgram 215
internet datagrams................................. 202
internet gateways................ 201 .

internet header... 203
internet host address...................................... 70
internet protocol.. 25
Internet Protocol I?.................................. 11. 199
interprocess....................................... 36
interprocess communication......................... 16. 27, 34
Interprocess Communication IPC.............................7
inter process communication/coordination214
interrupt............ 163, 169
invoke ... 30
InvokeOnHost,... 31

MO ock150I
IOStreamsOpenBy 150
IPC .. 16 , 44

Index

-5-:

MIMI,

jam . 2 1 1

kernel 13. 27
keyboard... 162
Key-Children.. 54
Key..jPCEnabled... 50
KeyMyAGS... 50
KeyMyUlD.......................... 50
KeyParent.. 54
KeyPriority 50

KeyState. 54

Key_ StErr 54

KevStlutput 54

Key...termina 54le

Load....rogram..................... 53
loca Trat.o...4
loc-alu ade............... 203
loc-aluades paield...........................204
klcl aranwr............... 6 8.... 158
lalleditrng... 163
loag network... 158, 12
loaler networks.............................1990
Locte......................... 1, 325
loical ae..33
login.... 15, 1
load t...160
Lood-Progra..1253
loocal.ac.t..1
lookuriIndress...03

loaplad... . 274

local net.. 1959
Loanfram..7, 15
loanae proess...170

log in 5 . 1 9 8

lo ou-9 -.. . . 6

Mapping Update.............................. 209

MCS.. 47
memory allocation... 214
message.. 38, 41, 56
message oriented.. 36
message structure... 17
Message Structure Library67
messages..................................... I............. 40
migratory objects... 16
minimal effort.......................... 56
minimal effort messages.................................... 57
missing blocks................................ 119
ModifyACL.. 129
monitoring........................ 24, 173
monitoring and control station MCS....................... 173
Monitoring and Control System MCS......................... 173
MSL... 17, 67
Multibus...10o, 195
rnulticast. 203, 205
multicast addresses....................................... 212
multicast-host address MHA............ 207
Multicast _Registered.................. 210
multi-host pipeline.......................... 157
multiple process... 214
multiplex.. 161
multiplexer.. 158
multi-window........................... 176
MyVLNAddress................................ 212
name space....................................... 18. 120, 121
name tree.. 122
network... 70
network cable...683
network monitoring.. 173
network number... . 203

network traffic... 17B
new users.. 183I
NextBlock pointer.. 115
node... 120
non-terminal node.. 120
non-volatile... 159
Normal file............................ 115
NotLoggedln 75
object descriptor 35, 81
object manager 27. 72

Index
- 10 -

object managers.................................... 13, 32,- 41
object model........................ 27
object types.. 13
object-oriented programming................................ 25
octet... 40
octet ordering.. 207
octet position... 93 "
octets... 202
open.. 91
Open.. 96
open...................... 113
Open... 150
open operating system..................................... 214
OpenStatusOf.. 96, 150
operating system.. 4S
operation 30
operation switch....................... 16, 27, 31. 32, 38. 52
operations.. 66
operator's console.. 173
optional key.. 50
overflow blocks... 116
parallel........................ 156
parameter 166

parent-child.... 52
password 73
pattern... .. 122
peer-to-peer.. . .. 40
performance... .. 151
permanent state.. . .. 43
permanently bound.. 16
phases... 181
physical local network................................ 25, 201
physical security.. 83
physical terminal,.. 164
physically secure.. 70
pipeline... 157
pipelined process... 170
PLN.. 206
polled miessaged... 175 9
portable.. .. 214

PPM .. 4?
presentation... . 155
primal file.................................... 16, 21, 30, 89
Primal File Manager.............. 46

Index

% % '

vv-

Primal~~~~Il File ,D Tabl 9

primcial Fie. D al................................... 9 1

princials ec...163
primalt process.. 45 9 46
PrlProce ss .. an....ger................................ 46 34
pria rocesses.up...223

prometive...74,39
principsl....................................30. 71
principal denitfier..73
pricipss ... 2384
prority...793
proceed...538

Process~~~~~~~ ~~ ~) Su p r i r r'..2 ,3 ,4 ,5

Process-rup................ 537
process..arrier..,44

progess contro...45
process descipo..490
protcss n en.rone..164
protcss grp...53)(
proes ojcs..2,3,3,5,163
Purcess rSuppor Library.......................... ..36,.4. 542
RessList.......................................96 4
Roam aciarier.....................................22,.3. 63
roamACare .anager...46
rogdrmor img... 190
ret..2063

rection...695
rotocolhiearch...200
PSL~i ... 3 36 5, 26
Prel-timess..2125
readsm 6 17.103
Readiv activation.................... temnto36
readiver... . 35
Readeiec~tory... 212
reconfSiuratonk.. 1135
readverwitr..1

Rea~yPrm................................e3
ReaUerPams............................13

Rea~rte................................... I 9

redirection 54
Register.. 47
register... 213
relative name.. 121
relative symbolic name............................... 125, 156
reliability..................................... 135. 155. 181
reliable delivery.................................. 205
reliable file...689
reliable message... 57
Remove,.................................. 34. 127, 128
Remove_ fromGroup...................681
replicated objects..................... 16
replication.......................... 135
reply...............................38
Reply... 42
reply 66
Report-_State................................... 53
Report-_Status............... 35, 52
Request 41
required keys............................. 50
reset... 330
ResetVLNlnterface 212
resident.................................160
resource........................... 52
resource management..................................... 5, 79
resource-sharing.. 12

restart.. 178

revision... 122
rights 72

role designator,...................................... 47, 45
ROM.. 180
root... 120
root directory........................ 125

root portion... 133
routing information.. 38I
salvager... 119
Scalability........................ 5
ScanDirectory.. 127
screen... 162
search path.. 166
SearchAll _Descriptors..................................... 52
secondary catalog entry................................... 135
secondary catalog manager................................. 135

Index
- 13 -

secondary entry table..................................... 135
secondary request.. 41
secure.. 70
sender.70 ''

SendToProcess.............. 31
SendVLNDatagram... 212
sequence... 203
SequenceNumber.................. 20, 33
Sequencing guarantees..................................... 206
sequencing property....................................... 205
sequential 113
serializable............................... 92
service... 29, 45
service monitor.................. 174
service probe.................. 177
service probes................................... __ 177 151
Service_-List... 47, 49
session.. 184
session controller.......... 184
session identifier............. 184
session initialization... 159
session manager 154, 156, 160
session record 159, 164
session record manager.......... 160
Set _ConfigurationHosts.................................... 84
share.. 161
Short file... 115
ShowConfigurationHosts................................... 84
ShowGroupMembers... 81
ShowGroup-Memberships..................................... 81
signal............................... 169
sink.. 58 O
site-based decomposition.................................. 174
small message... 56
softkill... . 169
source... .. 58
special group.. .. 80
state... 54, 159 ~
static binding .. 71
S top .. 53
StopGroup .. 53
stream... 54, 162
streams .. 52 .
structured objects.................. 16

Index
- 14 -

V11 .-1I

substitutability .. 5
Substitutability 199
substitutability.. 206
substrate.. 6
subtype... 29
Survivability.. 5
Suspend .. 53
SuspendGroup.............. 53
switch... 166
symbolic catalog...................... 34
symbolic links 125
symbolic name 30
symbolic name space............................ 120
symbolic names...78B
Sync.. 96
synchronization................................... 36. 91, 157
synchronous process....................................... 170
syntax definition... 166
system clock.. 214
syvstem login....................................... 158
system primitive..................................... 27
system principal..................... 71
system reliability........................ 155
system state.... 43
table-driven... 38
TAC 158

tamper-proof. 69

TCP... 158
TCP stream...................................... 215U
Telnet.................................. 8, 157, 158, 164. 215
temporary state....................................... 43, 159
terminal... 54, 161
terminal access computers................................. 158
terminal concentator.. 8
terminal device... 184 N
tprminal manager................................ 154, 160, 161 1
terminal multiplexer...................................... 158
termination character 163
thawed.. . 92
thread.. 154, 159, 164
traffic... 83

transaision Control Prtool 199
transaction......... 17
Transacison pot rotocol............................... 1990

Index

- 15 -

%~ 4

Transmission Control Protocol TCP.......................... 11
transport.. 201
trap logging.................. 176
traps.. 175
true parallelism.. 157
Truncate.. 96
trusted manager ... 83
type.. 28, 33
UID... 18, 32, 71
uid table 19

UID Table... 34
UID table 55

uniform... 14
uniform invocation 156
uniformity.................... 4, 12
unique identifier.. 18
universal public privilege................................. 82 A
UNIX... 195
UNO... 32
user .. 23
User Data Base... 73
user identity. 18
user interface 13, 24
user program. 154

user session .. 54, 162
user Telnet.. 157
Utility hosts... 10
VAX 11/750...................................... 195
version .. 122
video terminal... 161
Virtual Local Net............. 9
virtual local network...................................... 25
Virtual Local Network VLN................................. 199 5
virtual terminal.. 54
VLN.. 9
VMS... 195
VPMap... 207
wild card... 127
window.. 162
working directory... 121
working directory list.................................... 167
work-in-progress.. 171
workstation....................................... 69, 83, 158
workstations .. 7

0

Index
-16

I L

Wre........... te............ 96, 150
WriteACL... 35
WriteDirectory................ 128
WriteEFSFileBlock... 113
WriteSvsParmis.. 35
WriteUserParns... 35

X e r o C o p 2 0

Xero r.......... .. 206

XMD.......................................21

17h

IN Ill ,'II'llI'l II = 4.1A, I II vj S

LiS

