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With respect to a triangle of reference 4,443, each point P in the plane of the triangle, has
unique area coordinates: P = (b1, b., b3) with b, + b, + b3 = 1. Distance coordinates are introduced
such that P=[d,, d., d3], with d, the distance from P to Ay It is shown that there is an explicit
function f(x1, x2, 23) such that f(d2, d2, d2) = 0 is necessary and sufficient for P = [d,, d2, d3], each
dy nonnegative. The partial derivatives fi (x1, x2, x3) = df(x1, X2, x3) [0xx are such that by = fi(d?,
d2 d3) for each k. Other results relating the b, and the d; are given. The use of f(x1, x2, x3) in solving
geometric problems is shown.

Key words: Area coordinates; distance coordinates; Plane Geometry; radical center; triangle of
reference.

We are given three noncollinear points 4, 4>, A3 and all other points are in the plane of the
triangle of reference A,4,A43.

Notationally, two distinct points X, Y determine an infinite line XY, with the finite line segment
XY having length | X, Y|. If X, Y are centers of circles with radii x, y respectively, the radical axis
of those circles is a line perpendicular to XY, at a point which is (| X, Y |2+ x2—%2)/2|X, Y| from
X in the direction of Y. Given a third point Z, not on XY, as the center of a circle, the three radical
axes meet in a common point called their radical center. The area of the triangle XYZ is denoted

by | X, Y, Z|. The function

(1) F(x1, %2, x3) = 2(x1%2 + x1x3 + x223) — x2 — 22 — x3
has the well-known property

(2) 16|X,Y,Z12=F(|X,Y|2, |X,Z]2, Y, Z|2).

Let A=|A,, A2, As| denote the area of the triangle of reference. With respect to this triangle
every point P has unique area coordinates! by, b,, bz, which are real numbers restricted by

(3) b1 +bz+b3=1

We write

P= (bls sz b3)’
with4,=(1,0,0),4,=(0,1,0),43= (0,0, 1).

AMS Subject Classification: Primary 5010.
! Also called “normalized barycentric” or “‘areal” coordinates [1].2
2 Coxeter, H.S.M., Intmducl_ion to Geometry (Wiley, 1961).
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The area coordinate b, is defined as the ratio =|P, A,, A3|/A with b, > 0 ifﬁ does not inter-
sect A»A3, by < 0if it does. Similarly for the other by, so that the diagram of signs is

(=, +,+)

(E =)
(+,+,+)
Al A2
(4,=,) CEs (= 4,-)

Conversely, any three real numbers b,, b;, bs, restricted by (3), define a unique point P= (b,, b,,
b3) with respect to 4,4.4;.

If a point P is at a distance d; from A4, d> from A, and d3 from A3, we call these the distance
coordinates of P with respect to A;4243, and write

P=[d, d,,ds],
or, when more convenient,
P=<d? d2,d2 >.
For clarity, dx=|P, Ax| for all k=1, 2, 3.
Note that the triangle PA>4; has side lengths ai, ds, ds so that
@) 16A2b2=F (a2, d2, d?)

with similar equations for the other b;. Also note that P is the radical center of circles with centers
Ay, As, Az and radii d;, d>, ds respectively.

Now consider the general case of circles with centers 4, 4,,A45; and radii ry, r2, rs. Denote
their radical center by

®) P0=[81’ 62,83]-

In what follows there is no loss of generality in assuming that P, is in the interior of 4,445.
Near A, we have

2_r.2
ag+r2-1y
202

Po

v

of+r2-rf H3 Az
20,
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Let «; denote the interior angle at A;. Then |H», H3|=38; sin a;.3 The formula for cos a; in the
triangle A,H-H 3 is

©) 2(a§+r%—r§> (a?,-kr%—r%) cosa,=(a%+r%_r§>2+<a§+r%—r%

2
J— oy 2
2a, 2a; 2a, 2a, ) (81 sin a1)2.

In order to simplify this equation we shall need a few definitions and formulas. Define
ci=aj+a3—a}
(7 cx=a?+a3—a}

c3=a}+a3—aj.

Note that

8) c1=2a3—c3=2a}—c,
and that

9) 2a,a; cos a1 =c;.
Since

(10) asaz sin a; = 2A,
we have

11) c2+16A?=4azaz.

Now return to eq (6). Multiply through by 4a3a3, and use eqs (7) through (11) to simplify.
We get 16A2 f(r3, r2, r2)= 16A2(r2 — 82), where

3
(12) 16A%f(x1, 22, x3) = ' aje,x, —aja3ad

k=1

1
—3 {ei(xz—x3)2+ c2(x1 —x3) 2+ c3(x1 — x2) 2}.

Generally:

(13) F(r2, 12, 12) = r2 — 2. =1,2,3.
If £(r2, r2, r2) = 0 then rip = 8« for all k=1, 2, 3 so that Po= [ry, r2, r3).

Now notice that

3
) 2 ajcy=F(a?, a2, a?) = 16A2,
k=1

3 The circle with diameter 4,Po goes through H, and Hs. Thus H.H; is a chord with opposite angle a;.
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so that

(15) flaxr—t, 22 —t, x3—t) =f(x1, X2, x3) — ¢ all ¢.

Let x,=rforall k=1, 2, 3 and let t =f(r3, 1, r}). Since (13) implies xx —t=2582forall k=1, 2, 3,
we have f(82, 82, 82) = 0. As we pointed out before, any point P = [d,, d2, d3] can be a radical
center. The above shows that f(d?, d, d2) = 0.

Combining this with our remarks following eq (13), we have proved the first part of the following
theorem:

THEOREM. Let d;, dz2, ds be any real nonnegative numbers. Then there is a point P=[d,, d2, d3]
if and only if f(d2, d, d3) = 0 (f defined in (12)). In that case P = (f, (d3, d3, d2), f»(d2, d2, d2),
fa(d2, d2, d2)) where fy(x1, X2, x3)= 0f{x1, X2, X3)/0xy for all k=1, 2, 3.

For clarity, we write out the fi:
16A2f; (%1, x2, x3) = a2ci + c3(x2 — x1) + c2(x3 — x1)
(16) 16A2f3 (xl, X2, x3) = (1362 == 03(x1 = xz) SIS C1(x:; - X2)
16A2f;3 (x1, x2, x3) = aZcs + ¢z (x1 — x3) + c1(x2 — x3).
Note that (14) implies
(17) fi(x1, x2, x3) + fo (21, %2, x3) + f5(x1, 22, x3) = 1.
Also note that

(18) Sr(xr —t, x2 —t, x3—t) = fr(x1, x2, x3) all ¢; k=1, 2, 3.
In the process of proving the last part of the theorem, we shall need the following computations.

The locus of points with b3 =1 is a line through A4; parallel to 4,4,. Naturally if P = (b:, b2, b3)
then b; + b, = 0 (see (3)). Suppose b, < 0.

P=(-bp,b2,!)
=[d,d2,93]
|4, P|=d,

The area of PA»A43is A - |—b,|. It is also % a;d; sin as.
Therefore

19 ds = azbs.
Using the cosine formula in that triangle yields

d2=d:+ a} —2aids cos
(20) = alb2 + a; — bece.
Using the cosine formula in the triangle A;43P we have

d? = d2+ al— 2azd; cos (az + a3)
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(21) =albj+ aj+ bci.
Now use eq (18) with each xx = d} and t = d} = a}b3. For k =1 we have (using (20) and (21)):

16A%f(d?,d%,d2) = 16A% f1(aj + beci,a? — bec2,0)

3

= a?c; + c3(a? — a; —bs(c1+ c2)) — Cz(ag + bsc1)
(using (16)). Since a%c1 + cs(a? — a2) = cza? (note ¢1 + c3= 2aj, ¢+ c3=2a}) , and since
(22) cic2 + cic3 + C2C3 — 16A2.,
(¢1 + c2 = 2aZ, then add the three symmetric formulas, and use eq (14)), we have

Fi(d2d2,d2) = — by = by

as desired.

Similar computations prove f2(d?,d},d%) = by and (as a check), f3 (d},d3,d3) =1 = bs. The
case b2 < 0is handled similarly to prove the last part of the theorem for the case b3=1.

Return to eq (12) and solve f (x1,x2,x3) = 0 for x;. An intermediary stage is the equation

(23) 16A2{ £ (x1,%2,x3) }2 = 2a%(x2 + x3) + 22003 — @} — x2 — x2.

The r.h.s. is recognized to be F(a?x2,x3). Let xx = d2 for all k =1,2,3, and use (4), to get { f1(d?,
d2,d%)}? = b2. Generally
fr(d?d2,d?) == by k=123

Set fi= fi(d2,d3,d3) for all k=1, 2, 3. Equations (3) and (17), showing %b,=3 fx=1, imply that
we cannot have fr = — by for all k. Suppose f3 = bs. Then

f1+f2:1‘—f3:1—b3=b1+b2.

If fi=0b, then f,=b,, and conversely. The only open case is fi=—b1, fo=—=bs. This implies
bi+b.=0, whence b3=1. We have already covered this case, so the proof of the theorem is
complete.

An interesting implication for Py is immediate. Use eq (18) with xx=r2 for all k=1, 2, 3 and
t=f(r}, r3, r3) as before. The result is fx(82, 82, 82) = fi(r2, r2, r2) for all k=1, 2, 3. In other
words the area coordinates for the radical center of three circles with centers at 4,, 4., A5 and
radii ry, r2, r3 respectively are given by

(24) Po=(f1(r}, 13, 13), f2(13, 13, 13), f3 (13, 13, 12)).
Of course, the distance coordinates are given by
(25) Po=<ri—f(r}, 1}, 13), 3= f(r}, 13, r3), r3— f (13, 13, 13) >.

If we wish to find the (0 to 8) circles simultaneously tangent to the three circles used above,
we can do so through f, to obtain four quadratic equations whose solutions solve the problem.
The point is that a circle of radius r which is simultaneously tangent to all three circles has a
center
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(26) P=[ri+eir, ra+ear, ra+esrl,

with each ex==*1 depending on whether the tangency is ‘“‘outside” (¢=1) or “inside” (e=—1).
Simplifying
27) f((ri+er)?, (ra+eer)?, (r3+esr)2)=0,

we get a quadratic equation in r (with constant term f(r2, r3, r3)). If r is a negative root of that
equation, we simply “assign” —r to — €;, — €2, — €3 since exr= (—¢€;) (—r), k=1, 2, 3.

Thus we can cover all solutions with just four triples of €’s, no two of which are negatives of
each other.

We end this note with a list of formulas connecting the area and distance coordinates of a
point

P= (bl, b2, b3) =[d19 d27 d3]-

The formulas are given without proof, but are easily derived, with extensive use of the formula
for the distance between P and P'= (b;, b,, b3):

3

(28) 2|P,P' 2= ci(be—b))>.

k=1

First we complete the connection between the coordinates, begun in the last formula of the
theorem, with

d&i=alb2+ c,b,b, + a§b§
(29) d3=a3b?+ cyb,b3 + a3b3

d3 = a3bi + c3b,b, + ajb3
or

3
(30) 2d2= (1—2b)c,+ 3 b, k=123
n=1

Let R denote the circumradius of 4;4:43, and p, the distance from P to the circumcenter.
The latter has area coordinates aic,/16A2, k=1,2,3. Also 4AR = a;azas.

Define
(31) Gp=R?—p}:
Then Gp can be found using only the by:

(32) Gp= a2byb, + a2b,b, + a2b,b,
13 .
(33) =3 ;;1 (b, —b})c,s

or only the dj:
(34) Gp=R?>— (c1(d:—d3)?+ ca(dy —d3)?+ c3(dy — d2)?)[32A2
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(35) =R (al(di—d3) (di—dj) +aj(dj—di) (dj —df) +ai(d—d}) (df—df))/16M°
(36) = (2a2a2az =Y aic,d2)/16A%;

17273 k" k"k

or symmetric combinations:

3
(37) Gp= E bkdfc
k=1
3
(38) = E (a2 —2di+ bic,)/4
k=1
3
(39) =kz (a2—2d:+ bycy) /6
=1
3
(40) = E (a2 —d:—b,a})/3
k=1
3 3
(41) = Z{blalf,ag + b,aia:+ byaial — E aid}i}/z a
k=1 =1
3 3
(42) = {b1b2b3 kZl a;+ 1;—:1 bfcdfc}/2(blb2 +b,b,+b,b,)
(except at a vertex). Other relations are
(43) d? = bya; + bya; — Gp etc.
(44) bic,=2Gp— a3+ d;+d3 etc.
(45) (1 = b1)Gp = bid? + bobsa? etc.
(46) 2atalb, = ¢\Gp + ald} + aidi — a’d? etc.

The pedal triangle of P, which has side lengths axdi/2R, k=1, 2, 3, has area A|Gp|/4R?; i.e.,
@7) 164262 = F(aid}, ajd}, a3d})

(48) = 4alaldld: — (aldZ + aid: — a3d?)? etc.

If P does not lie on the triangle 44,45 then the lines 4,P, A>P, A3P intersect the circle of
radius pp, concentric with the circumcircle, in P and in points 4, 4;, A; respectively which have
(opposite) side lengths Ap|bk|dk for k=1, 2, 3; A\p=4App/didsds. The area of 4] A4 is ANZ|bibsbs|.
Thus

49) 1642 (bibobs)? = F (bid, b3d2, bidy).

=00 ==

Finally, suppose d?=g(t), a differentiable function of ¢, for k=1, 2, 3. The b, will also be

differentiable functions of ¢, (by the last statement of the theorem), and b, will denote the derivative.
We have
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3

(50) Y, big, (1) =0
k=1

and

3
(51) g,(t) + cib, = g (t) + caby = g (t) + caby = crbiby.

k=1

(Paper 76B3&4-367)
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