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This paper presents a unified account of the theory of least squares and its adaptations to statis-

tical models more complicated than the classical one.
of weak generalized matrix inverses, a useful variant of the more familiar pseudo-inverse.

First comes a development of the properties
These

properties are employed in a proof of the usual Gauss theorem, and in analyzing the case in which

known linear restraints are obeyed by the parameters.
variance-covariance matrix for the observations.

Another situation treated is that of a singular
Applications include the case of equi-correlated

variables (including estimation despite ignorance of the correlation), linear ‘“restraints’ subject to
)

random error, and stepwise linear estimation.

1. Introduction and Summary

The aim of this paper is to present a unified account
of the theory of least squares, and in particular to de-
scribe the necessary modifications when the customary
statistical model is complicated in certain ways re-
quired for greater realism. The paper contains (prob-
ably) new results, (probably) new proofs of known re-
sults, and an (almost certainly) new overall treatment
of the subject. Our hesitancy to make stronger claims
arises because many of the theorems associated with
least squares are part of the “folk-lore” of the field,
and because the relevant literature is growing rapidly
and much of it is “disguised’ in the context of other
branches of mathematics or science. The most closely
related paper of which we are aware of is that of Rao
[1962]; our work was done independently of his. (The
relevance of the very recent paper of Chipman and

Rao [1964], which contains other references of interest,
is detailed at the end of section 5.2.) Valuable sum-
maries of various aspects of the theory of least squares
can be found in Deming [1943], Plackett [1949, 1960],
Rao [1946], and Scheffe [1959].

The foundation of least-squares estimation theory
is the well-known Gauss ? theorem which can be proved
in a number of ways, e.g., by linear vector space tech-
niques as in Scheffe (op. cit) or by the method of La-
grange multipliers as in Plackett [1960]. We shall
present a proof suggested by the properties of gener-
alized inverses of matrices, an idea motivated quite

*Part of this author’s work was supported by the Mathematics Research Center, U.S.
Army, Madison, Wis. under Contract DA—11-022-0Ord—-2059. This is a revision and exten-
sion of Mathematics Research Center Technical Report 314, May 1962.

! Present address: National Cancer Institute, National Institutes of Health, Bethesda,
Md., 20014.

2 The literature refers to Gauss’ fundamental work as the Markov or the Gauss-Markov
theorem. Since Markov’s contribution consisted essentially of bringing attention to Gauss’
work, it does not appear necessary to hyphenate the theorem with the name of Markov.

naturally by the possible singularity of the coefficient
matrix in the usual normal equations. It will be shown
that any one of a wider class of matrices, which we
call weak generalized inverses, can serve equally well.
The properties of weak generalized inverses appear
interesting in their own right; they are developed in
section 2, are applied to the derivation of the Gauss
theorem in section 3, and are involved implicitly or
explicitly throughout the rest of the paper as well.

One complication of the customary statistical
model which often arises in practice is the imposi-
tion of known linear restraints on the parameters.
In section 4 the Gauss theorem is extended to this
case. For a careful analysis it is important to dis-
tinguish clearly between artificial constraints (imposed
to obtain unique solutions) and ‘“‘real” ones, and among
the latter class to exploit the distinction between those
constrained functions which were estimable before
the restraints were imposed and those which are es-
timable only by virtue of the restraints.

Another frequent complication, the possibility of a
singular variance-covariance matrix for the observa-
tions, is discussed in section 5. It is shown how this
deviation from the “standard model” can be replaced
by the adjunction of linear restraints, and vice versa.
Models involving both kinds of complications are
treated. Applications of the general theory are made
to the case of equicorrelated variables (including the
possibility of estimation in some cases despite ignor-
ance of the correlation), and to the case of linear
“restraints” subject to random error. The topic of
stepwise linear estimation, which has aroused con-
siderable interest recently, is examined in section
5.5(cf. Freund, Vail, and Clunies-Ross [1961], Gold-
berger and Jockems [1961]).

The style of the paper represents a compromise
between (1) the desire to have it serve as a useful
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statistical reference as well as a vehicle of research
communication, and (2) the need to avoid a length and
prolixity which surely would induce ‘battle fatigue”
in readers and authors alike. On the one hand,
additional information and “sidelights” appear
throughout as corollaries and informal remarks.
Also, the more familiar matrix techniques have been
used in preference to vector space concepts, at the
cost of some awkwardness at points where the “linear
geometry’” approach is the really natural one. Proofs
have been written out in fairly full detail (except for
matrix-algebraic steps). It is hoped that these
policies make the paper more valuable and accessible
to a wider range of readers. On the other hand, it
has been necessary to presuppose a rather mature
grasp of matrix theory and manipulations. A serious
expository gap (which we hope some colleague will
fill) is the omission of any discussion of computational
methods for the calculations required in utilizing
the theory, and also the absence of concrete and non-
trivial numerical examples. Inclusion of such ma-
terial, though desirable for completeness, would have
interrupted the logical pattern of the theoretical
development.

It is a pleasure to acknowledge the many fruitful,
often heated, but always stimulating discussions with
J. M. Cameron (NBS Statistical Engineering Labora-
tory) which have continued over many years. With-
out his constant interest, this paper would never have
been written. Colleagues at the Mathematics Re-
search Center, whose helpful comments have in-
fluenced the present version of the material, include
H. Reinhardt and J. C. Boot. We also acknowledge
with thanks a constructive reading of our paper by
T. N. E. Greville.

2. Weak Generalized Inverses

In this section we define weak generalized inverses
and develop some of their properties. LetXbeap Xn
matrix. As a special case of what follows, we shall
show that there exists an nXp matrix X* with the
properties 3

(a) XX*X =X

(b) X XX+=X+
(2.1)
() (X*X) =X*X

(d) XX =XX+.

The matrix X* is unique (this will not be proved in the
present paper) and is called the generalized inverse
of X. Further details on this topic can be found in
the excellent review paper by Greville [1959]. Some-
times X* is called a pseudo-inverse or a Moore-Penrose
inverse, the latter association referring to Moore [1935]
who originally discovered its properties, and to Penrose
11953] who later rediscovered and developed them
further.

3 A superscript prime will always denote (vector or matrix) transposition; the original
definitions involved the complex-conjugate transpose, but we deal only with real matrices.

Our approach to this material is based on the fol-
lowing lemmas whose proofs (although simple) are
given for completeness.

LEMMA 1. Let A be a pXp symmetric matrix of
rank q (q <p), and K a p X r matrix of rank r=p—q.
Then there exists a pXr matrix H with the properties

(a) H'A=0
(2.2)
(b) det (H'K)# 0

if and only if the square symmetric matrix

A K
M:
K’ 0
is nonsingular. In this case any H of rank r obeying

(2.2a) can be used as the H in (2.2b). Furthermore,
M -1 has the form

C H(K'H)~!
(H'K)-'H’ 0

M-1=

Proor. First assume M nonsingular, and let
Cc Cy
M-1=
C: C,

where C is symmetric and p X p, C» is symmetric and
rXr, and Cy is pXr. The multiplication* MM-1=]
implies

AC+KCi=I.

Now choose any p X r matrix H of rank r obeying (2.2a).
Such matrices certainly exist. Premultiply the last
equation by H' to obtain H'KC{=H'; since H' is of
rank r, H'K must have rank =r (and thus exactly r
since K has rank r), so that (2.2b) holds. To prove
the converse, let H be any p X r matrix obeying (2.2).
Then by (2.2b) H must have rank r=p—gq, and from
this and (2.2a) it follows that any p X p matrix B with
H'B=0 has the form B=AD for some p X p matrix D.
Now specialize to B=1—K(H'K)"'H' and use the
resulting matrix D to define 3

C=[I-HK'H)'K']D.

If this matrix, together with C,=H(K'H)™! and C>=0,
is substituted in the M~! formula given above, then it
is easily verified that MM~—1=1 so that M is nonsingular
and the proof is complete.

4The symbol I will always denote an identity matrix of appropriate dimension.

5We remark that the matrix C can be written explicitly as C=[/—H(K'H)'K'][4
+KH']-'. One verification employs the properties (2.3b) and (3.12) of the “true C,” whose
existence is shown in Lemma 2, to check that using the indicated formula in the upper left
block in M~ does in fact lead to MM~'=1. Another formula not requiring knowledge of
H, and verifiable using (3.12b) and its consequence (4+KK')'K=HK'H)™, is
C=A+KK')'—(A+KK')'KK'(A+KK")!
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LEMMA 2. Let A, K, M be as in Lemma 1 and as-
sume M nonsingular. Then there is a unique p Xp
symmetric matrix C associated to K, with the property
that for at least one H obeying (2.2),

(@) K'C=0
(b) AC=I—KH'K)"'H'.

(2.3)

Furthermore C obeys (2.3b) for every H satisfying (2.2),
and has the additional properties.

(a C=CAC, A=ACA
(2.4)
(b) C is of rank q.
Proor. For any H obeying H'A=0 and

“det(H'K) # 0, it is easily verified that any symmetric
p X p matrix C satisfying (2.3) must be a block of M~!
placed as in the formula for M~! given in Lemma 1.
Furthermore, such a C does satisfy (2.3). Since M de-
pends only on K (i.e., not on the choice of H), the same
is true of M~' and therefore of C. Since CK=0, pre-
multiplication of (2.3b) by C yields CAC=C, which
implies that the rank of C is at most that of 4. Since
H'A=0, postmultiplication of (2.3b) by A4 yields
ACA = A, which implies that the rank of 4 is at most
that of C. Thus (2.4) is proved.>?

It is interesting to observe, from eqs (2.2) through
(2.4), that the relationship between the pairs (4, H)
and (C, K) is symmetric. Also, property (2.4a) shows

that C enjoys properties (2.1a) and (2.1b) of 4*. Since
A and C are symmetric, (2.1¢) and (2.1d) read
AC=CA. (2.5)

This will certainly hold (by (2.3b)) if K= H, an allowable
choice of K in accordance with (2.2) since det(H'H) # 0
if H(p X r) is of rank r. Equation (2.5) will not hold in
general,® but we shall not require it and so can permit
ourselves the freedom of choosing K different from H.
The case gq=p (i.e., A nonsingular) can be included
by appropriate formal conventions concerning “vacu-
ous blocks” in the block matrix M and its inverse;
this will be assumed done wherever appropriate, the
result (by (2.4a)) being of course C=A4"".

The next lemma and its use in the following theorem
are not strictly necessary for our purposes, but are
included to round out the theory.

LEMMA 3. Let A be a symmetric pXp matrix.
Then every symmetric p Xp matrix C related to A by
(2.4a) arises from some K as above.

PRrROOF. Let g and r be as above, and let H be any
p X r matrix of rank r such that H'4=0. Let K(p Xr)
consist of r columns of I —AC in the same positions as
r independent columns of H'. Since H'(I—AC)=H’,
it follows that H'K is nonsingular and thus that K has
rank r. Also since C(I—AC)=0, it follows that
CK=0 and therefore K'C=0. To verify (2.3b), first

52 From the last formula in footnote 5, we see that C is determined by K only via KK';
e.g. C is unchanged if K is replaced by some (p Xr) KL with LL'=1.

$For a specific example in which eq (2.5) fails, take the rows of 4 to be (1, 0) and (0, 0),
H'=(0, 1), K'=(1, 1); the rows of C are (1,—1) and (—1, 1).

observe that (2.4a) implies (2.4b), so that the equation
C(I—AC)=0 proves I —AC to have rank not exceeding
p—q=r. Thus the columns of /—AC not in K are
linear combinations of the columns of K, i.e., we can
write

[—AC=KE
for some rXp matrix £. Then
H'=H'(I—AC)=H'KE
so that
(HK)"'H'=E
and therefore
I—AC=KH'K)"'H',

completing the proof.

Now let X be a p X n matrix. A weak generalized
inverse of X is an n X p matrix X~ with the first three
of properties (2.1), i.e.,

(a) XXX=X

(b) XXX =X~ (2.6)

(c) X X)=X"X.

The following theorem, which characterizes the class
of all weak generalized inverses of X, in particular
establishes the existence of at least one such inverse.

THEOREM. Let X be a pXn matrix. The nXp
matrix X~ is a weak generalized inverse of X, if and

only if
X =X'C

for some C associated to A=XX" as in Lemma 2.
PROOF. First suppose X~ =X'C with C associated
to A as above. Property (2.6a) reads ACX=X, and
follows from (2.3b) upon noting that H'AH =0 implies 7
H'X=0. Property (2.6b) reads X'CAC=X'C and
follows from (2.4a), while (2.6¢) asserts the symmetry
of X'CX and is a consequence of the symmetry of C.
To prove the converse, assume X~ is any n X p matrix

obeying (2.6). By (2.6b) and (2.6¢),
X=X XX =X'[X")X"].

By Lemma 3, it suffices to prove that C =(X")'X ~ obeys
(2.4a). This follows from

CAC=X)X" XX X)X =X")X XX XX~
=X)X" XX-=X")X"=(,
ACA=XX"X)'X XX’ =XX"XXXX'
— U =R =,

" The last equation implies that the sum of the squares of the entries in each row of
H'X vanishes.
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We note in passing that with X—=X'C, X~ obeys
(2.1d) if and only if eq (2.5) holds. Thus (2.1d) holds
if the choice K=H is made (this completes the proof
that X has a generalized inverse X*), but as mentioned
earlier we shall not have to impose this requirement.

In what follows the notations H, K, C, X~ will have
the same significance as in this section, 4 will stand
for XX’, and the notation X* will be reserved for the
generalized inverse. Note that X~ and C need not be
uniquely determined by X (although X+ is), but depend
on the choice of K. The relations

ACX =X (2.7)

HX=0 (2.8
obtained in connection with the last proof are recorded
here for subsequent reference.

3. Fundamental Gauss Theorem for Linear
Estimation

The methods of least squares have been in use now
for over 150 years. Gauss [1873] in 1821 (collected
works 1873) is now credited with placing the method
on a sound theoretical basis without any assumptions
that the random variables follow a normal distribution.
Gauss’s contribution was for a time neglected until
Markov [1912] “rediscovered” the work of Gauss. It
should be noted that Legendre [1806] in 1806 was the
first to publish the method of least squares, although
apparently Gauss had known about it some years pre-
vious. For a more detailed historical introduction
consult Merriman [1877], Plackett [1949], and Eisen-
hart [1964].

In this section we apply the properties of the weak
generalized inverse to obtain a proof of the Gauss
theorem. The relevance of the generalized inverse to
the theory of least squares has been noted by Bjerham-
mar [1951], Greville [1960], and Penrose [1956]. The
fundamental result used in these papers is that for
an over-determined system of linear equations

X'b=y,
oy }’n), b,:(blk, b27 G ooap bp)a

the selection of b which minimizes the sum of squares
of residuals, (y —X'b)'(y—X'b), is given by

y' =01, . -

b=X")"y

where (X')* is the generalized inverse of X'. It is
easily verified using (2.1) that (X')* =(X*)’, so that by
(2.1a) and (2.1c)

Ab=XX"(X*)y=XX*X)y=(XX*X)y=Xy

i.e., b must be a solution of the usual normal equations
Ab=Xy of least-squares theory. More recently Rao
[1962] has used property (2.4a) to demonstrate some of
the well-known results associated with minimum
variance linear unbiased estimation.

Before stating the theorem we review the central
idea of an estimable parameter, cf. Bose [1944]. Let
Y=, ... Y, be a vector of random variables
having a distribution which depends on a parameter 6.
A function g(Y) of the random vector Y is called an
unbiased estimate of 0 if E[g(Y)] =0, for all values of
0, where this last phrase may reflect limitations on the
possible values of 6 imposed by the problem at hand.
The parameter 6 is called estimable if it has at least
one unbiased estimate of some form prescribed by the
context. In this paper we deal only with linear
estimates

g¥)=d'Y+c

where d'=(di, . . ., dv) is a 1 Xn vector and c is a
scalar. A best (unbiased linear) estimate of 0 is one
which has minimum variance among the class of un-
biased linear estimates of 6.

THEOREM 1: (Gauss). Let X be a pXn matrix
(p<n) of known constants having rank q, 8 a p X1
vector of unknown parameters, and Y an n X1 vector
of random variables such that®

EN=X'8 3.1)
var(Y)=ao?l.

The minimum variance unbiased linear estimate of any
estimable linear function 6=1'8 of B (where | is a
p X1 vector) is

d=01'(X-)'Y=UICXY.

For all such 6, 6 can be obtained as U'B where p
(independent of 1) is any vector minimizing the quad-
ratic form (Y —X'B)' (Y —X'B), or equivalently is any
solution of the normal equations

AB =XY (A= XX") (3.2)
whose general solution can be written
B =CXY+(I—CA)z (3.3)

with z an arbitrary p X1 vector.

PrROOF: Let d be an nX1 vector. Then we remark
that the unbiased linear estimates of 0=1['8 are
precisely the linear forms d'Y with d obeying

Xd=I, (3.4)
so that 6 is estimable if and only if (3.4) has a solution

d. Indeed, the function d'Y+c is an unbiased esti-
mate of 6 if and only if, for all values of 6,

I'B=0=Ed'Y+0)
—d'EY)+c=dX'B+c.

SIfY =(Y,, ... Y,), then E(Y) is the vector with E(Y)) as kth component, and var(Y)
is the n X n matrix with cov(Y;,Y)) as (i, )th entry.

154



Whether /=0 (so that 0 is the only value of 6) or
[ # 0 (so that # assumes all real values), this will be
true if and only if ¢=0 and d obeys the system (3.4).

The key idea is to seek a linear change of (random)
variable from Y to B =B'Y, where B is an n X p matrix
so chosen that for each estimable 6=1'B, at least one
unbiased linear estimate of 6 can be written in the
form ['B. That is, for at least one d; obeying (3.4) the
identity

I'BY=I'pB=d'Y

is to hold, or equivalently? d;=BI[. For any pair of
vectors [ and d related by (3.4) we would have

Xd=1=Xd,=XBl=XBXd,

and since every d is related to some [ by (3.4) (just
define [ by (3.4)) the equality between the end terms
of the last display is an identity in d. This shows that

B must be chosen to obey

X=XBX. (3.5)

Conversely if (3.5) holds then for each d and [ related

by (3.4) we can set d;=BXd so that
Bl=BXd=d, and Xd,=XBXd=Xd=1

as desired. Therefore (3.5) is exactly the desired
relationship, and its resemblance to (2.6a) suggests our
setting B=X" so that

di=X [=X'CL.
The variance of §=d'Y is var(§)=(d'd)o?, which is

to be minimized by a proper choice of d subject to (3.4).
Define an unknown n X1 vector § by d=d;+ 8§, so that

d,d:d[ ’d[ +(l’1'8+ S’d[ +5’8.
However, since d; satisfies (3.4) we have
d/'d=1'CX(d—X'Cl)=1I'Cl—1'CACL=0,

so that

var(é)=(d;'d;+8'8)(72,
which is minimized if and only if §=0, i.e., d=d|.
(Incidentally this shows d; independent of the choice
B=X-.) Thus the unique “best estimate” is

> 0=d,'Y=1'CXY (3.6)

and its variance is

A

var (0) = (di'd)o? = (I'CXX'Co*=1'Clo®.  (3.7)

We have shown that I’ is a best estimate of 6 if and
only if

I'B =l'CXY,

9 We assume for this motivation that the distribution of Y is not concentrated on some
lower dimensional subset of n-dimensional space.

which, since [=Xd, = ACl, is equivalent to

I'C(AR —XY)=0. (3.8)
Tbis shows that any solution 2 of the normal equation
AB =XY yields a best estimate [’3 of . Conversely 1©
if (3.8) is to hold for all estimable 6=1['f (i.e. for all /
such that (3.4) has a solution d), then since every d is
related to some [ by (3.4) we have

d'X'CAB =d'X'CXY

as an identity in d, so that X'CABp =X'CXY and
premultiplication by X (together with (2.4a) and
(2.7)) shows that  must be a solution of the normal
equations.

Since CXY is a solution of the normal equations, the
general solution can be written

B =CXY+n

where 7 is an arbitrary p X 1 vector such that Am=0.
For any p X 1 vector z,

n=I—CA)z

satisfies this condition by (2.4a), while conversely any
mn obeying An =0 has the form (I —CA)z with z=m).

It only remains to show that the solutions 2 of the
normal equations are precisely the vectors 8 which
minimize the quadratic form

0=Y—=X'B)(Y—X'B).

For this purpose set B=B +8& and observe
XY—X'B)=0, so that

Q=¥—=X})(Y=X'f)+ (X'8)'(X'5) A A
=Y—-X'B)Y—X'B)

where equality holds if and only if X’6=0 and thus %
if and only if 46=0, i.e., if and only if B (as well as
B ) satisfies the normal equations.

The preceding analysis essentially contains the de-
scription of the class of estimable functions. We
rephrase this in the following corollary.!

COROLLARY 1.1: The parametric function 0=1'B
ts estimable if and only if

(I—AC)l=0 (3.9)

or equivalently
H'l=0.

We know that 6 is estimable if and only if
Substi-

PRrOOF.
there exists a vector d;=X'Cl with Xd;=L.

19This converse, which makes the role of the normal equations precise, was not explicitly
stated as part of the theorem.

a Clearly X'6=0 implies 46=XX'6=0; conversely XX'8=0 implies (X'8)'(X'8)=0
and thus X'8=0.

"' We again remind the reader that H and K are assumed chosen as in section 2, i.e.,
obeying (2.2).
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tuting (2.3b) yields

l—Xd=([—AC)Il=0=KH'K)"'H'l
which implies
H'l=0

as desired. Conversely if (I—AC)[=0 then

l=ACl=Xd, (di=X'Cl)
and if H'[=0 then by (2.3b), /| —AC)[=0 as well.

We observe in particular that the components of
are best estimates of the corresponding components of
B if and only if these components are in fact estimable;
by (3.4) this requires that every unit p X 1 vector, and
thus every p X 1 vector, be a linear combination of the
columns of X. In other words ““3 is an estimate of 87
makes sense only in the special case g=p, when
C=A4"1.

The next corollary pertains to finding a solution of
the normal equations by adjoining “dummy” quanti-
ties to obtain a system of full rank.

COROLLARY 1.2: Let N and m be rX1 wectors of
constants where m is arbitrary. Then the unique
solution of the system of (p+r) simultaneous linear

equations
A K B XY
kol =1 3.10)
vields a solution of the normal equations; the same
holds for the unique solution of the system
(A+HK")A =XY +Hm. (3.11)

ProoF. The system (3.10) is of full rank since
its coeficient matrix is the M of Lemma 1 in section 2.
Therefore the solution can be written

[ﬁ]_[c H(K’H)—‘] [XY]
N (H'K)-'H' 0 m

CXY+HK'H)"'m
[(H’K)“H’XY ] (3.11a)
However since H'X=0, the vector \ is identically
zero. Since K has rank r, m can be written as K'z
where z is a p X 1 vector; then the solution vector B is
B =CXY +(— CA)z which is the general solution of
the normal equations. It also follows that the g of
(3.10)’s solution satisfies (3.11), since K'B =m. It
only remains to prove that (3.11)’s solution is unique,
e., that A+ HK’ is nonsingular. This is true since it
C}?n be directly verified using (2.3b), (2.3a), and (2.8)
that
(A+HK)"'=C+[H(K'H)-*—CH] (H'H)"'H'.
(3.12)

For situations in which a suitable K is known but a
suitable H is not at hand, it may be desirable to re-
place (3.11) by an analogous system not involving H.

Such a system is given by

(A+KK')p =XY +Km, (3.12a)
which is satisfied by the 8 of (3.10)'s solution, and
which has only one solution since

(A+KK')"'=C+HK'H)""(H'K)"'H" (3.12b)
as can be directly verified using (2.3). Lacking H, one
might still want to know C in order to check estima-
bility by (3.9).

From the criterion (3.9) and the fact that K is of
rank r, it follows that the elements of K'B are an
independent set of nonestimable functions with the
additional property that [4, K] has independent rows.
The analysis of (3.10), together with the Gauss theorem,
shows that the values of these nonestimable linear
functions can be prescribed in any way (i.e., K'8=m)
without affecting the best estimates of the estimable
functions; A depends on m but A=10' (where 0=1B
is estimable) does not. The results of prescribing (in
a self-consistent way) the values of an arbitrary set of
linear forms in B are treated in section 4.

It is natural to inquire as to the significance of
I'B when 6=1'8 is not necessarily estimable. One
form of the answer is given in the next corollary.

COROLLARY 1.3: Let B =CXY. Then for any

0=1B, there is a unique '* esumablefunctwn 0,=18,
namely 0, =1'CAB, such that B is the best estimate
0f61

ProoFr. First assume [y =ACI and 6, =[;8, so that
01 is estimable by Corollary 1.1. Then the Gauss
theorem implies that /'8 is the best estimate of 6,
since by (2.4)

I'8 =U'CXY=1U'CACXY
=(AClH'CXY=1}B.

To prove the uniqueness of 6i, consider any es-
timable 6;=1{8 such that I'8 is the best estimate of
6;. Then by Corollary 1.1 H'l; =0, so that [;=An for

some p X 1 vector . Also we must have
UCXY=1'R =1ip =n'ACXY=n'XY,
so that X’Cl=X"m and therefore
L=XX'n=XX'Cl=ACI

as asserted.
For completeness we include some known facts
about the vector of residuals

o=Y—-X'p
(where B is any solution of the normal equations '?) and
114 The uniqueness assertion requires the assumption mentioned in footnote 9. Note
that a definite choice of C is assumed.
12 Note that 8 is independent of the choice of 8.
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the usefulness in estimating o? of its squared length
(the residual sum of squares)

$2=8'8=Y—X'B)YY—X'B)=Y'Y—B'AA.
COROLLARY 1.4: The residual wvector is uncor-
related with the estimate of any estimable function; in
f(LCt 12a
Cov(B, 8)=0.

Furthermore we have

E(S?) = (n—q)o2.

PrRoOOF. The expected value of the residual

vector 1s R
E®)=EY)—EX'B)=0.

Therefore

Cov(B,8)=E{p &'} —E{E(})5'}

=FE{[CXY][Y—X'B]'} =CXE(YY')I—X'CX).

Since
EYY)=a+X'B)X'B)

we have

Cov(B, &) =CX[o)[+X'BB'X][I—X'CX]
=C[o* I +ABB'][X—ACX] =0
because X=ACX from (2.7).

To prove the second assertion we use the general
formula

EY'BY)=E(Y')BE(Y)+ trace (B var (Y))
for the mean of a quadratic form, with

B=(I—-X'CX?=1—X'CX,

to obtain
E(S?=E(@®'9)
=B'X(I—X'CX)X'B+ o trace (I —X'CX)
=02 trace (I —X'CX)
=o0?[n—trace (X'CX)].
By the general formula trace (M;M;)=trace (MiM,)
where M, and M, are rectangular matrices of the same
dimensions, we have
trace (X'CX)=trace (XX'C)=trace (AC)
=trace (/| —K(H'K)~'H’)
=p—trace [(H'K) (H'K)~!]
=p—r=gq,

12a By definition, Cov(8, &) is the matrix E{[8 —E®B)][6—E)]'}.

completing the proof.

A final comment deals with the maximum possible
number of linearly independent nonestimable para-
metric functions 6=0I'8. If ¢g=p (i.e., A is non-
singular) then this number is zero; every linear func-
tion of B is estimable since B itself is estimable
(see the remarks after Corollary 1.1). If ¢ <p,
however, then the number is p rather than r (as is
occasionally suggested). This can be seen by par-
titioning 4 =[A4:, A.], where A; consists of ¢ inde-
pendent columns of 4. Then the pXp matrix [H, 4]
is nonsingular, since H'H and A{A, are nonsingular
and

[<%§f}ii’j,’;] [H, 4i]=1.

Therefore, if A is a column of H and a1, as, . . . a4
are the columns of 4, then
N=[H, ci+h, ar+h,. .., a,+h]
has the same determinant as [H, 4;] and so is also
nonsingular. The p columns of N are therefore the
vectors “I” of coefficients of p independent parametric
functions, which are all nonestimable since the non-
singularity of H'H implies that no column of

H'N=[H'H, H'h, H'h, . . ., H'h]

is the zero vector.

4. Gauss Theorem With Given Restraints

Often experimental situations arise in which the
parameters (components of ) are connected by
known linear relations. It is not generally realized
that some of the linear forms whose values are pre-
scribed by these given restraints may be estimable with
respect to the equations of condition E(Y)=X'B
where as before we assume X is p X n (p < n) and of
rank g. In this section we discuss the appropriate ex-
tension of the Gauss theorem when these equations of
condition are supplemented by known linear con-
straints. It will be shown that several applications of
the “simple”” Gauss theorem of section 3 suffice to
reduce such problems to purely matrix-theoretic
questions.

We introduce the term pre-estimable to be used in
this section for those parametric functions (linear in )
which are estimable with respect to E(Y)=X'B. The
term estimable will refer to the parametric functions
which are estimable with all the given informatien in-
cluding the restraints. Clearly every pre-estimable
parameter is also estimable, but the converse need not
hold; for example a nonpre-estimable function whose
value is specified by one of the given constraints is
obviously estimable.

We will find it convenient to assume that the con-
straints have been brought into an “‘irreducible form”
in a sense made precise in this and the next few
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paragraphs. Suppose the initially given restraints are

L'B=m

where L’ is kX p with rank £, and m is £X 1. The
matrix L can be partioned into L=(L,, L.) where L;
is pXs; (k=s;+s,) with rank s; such that L,'8=m, is
nonpre-estimable and L.'8= m» is pre-estimable; i.e.,
H'L; has no zero column and H'L,=0. Since H has
rank r=p—q, we know that s, < ¢q. Furthermore from
the remarks at the end of section 3, the maximum num-
ber of linearly independent nonpre-estimable re-
straints '3 is p; hence s; < p.

Let the rank of the r X s, matrix H'L; be v. There
will then exist a s; X (s; —v) matrix G with rank s;—v
such that H'LG=0. Also there will exist a s; Xv
matrix F' with rank v such that F'G=0. We can for
example take F' to consist of v linearly independent
rows of H'L;. Then the square matrix of order s,
S=(F, G), has rank s;. Hence we can premultiply the
nonpre-estimable restraints L;'8 by S’ to obtain

F’ F'LiB
LiB= =
G'LiB G'my .

F'm,
Gl

Since H'L:G=0, the (s; —v) restraints G'L;3 are pre-
estimable. It is clear that the restraints F'L{3 are
nonpre-estimable, as H'LF has no zero column by vir-
tue of F'G=0. Thus the original k restraints L'B=m
may be regarded as being transformed into two sets
ik == F’ﬁl

KiB =m,

0 = G'n—u

Ké,B = M,
my
where K; is p X k; with rank k; such that
Ki=F'L{, ky=v

G'L;
K= , ke=(s1—v)+s>

L;

with H'K;=0. Furthermore the rank of the r Xk
matrix H'Ky=H'L\F (ki <p) is ¥ k; and hence the
rank of K; is also &;.

When the given s; nonpre-estimable restraints L;3
are such that the rank v of H'L; is s; (equal to the num-
ber of nonpre-estimable restraints) then these restraints
will be termed irreducible restraints. Alternatively if
the rank v of H'L, is < s; (smaller than the number of
nonpre-estimable restraints) the restraints L;8 will be

13 We will use the term “restraint” to refer to a constrained linear form as well as to the
constraint equation itself.

14 Since S is nonsingular, L;B:ﬁ. is logically equivalent mS'L;ﬁ:S'ﬁl.

142 For some nonsingular vxv matrix U, we have F= FU where F(vxs) consists of v=Fk,
independent rows of H'L,. Also L{H= FP, where P is a k;xr matrix of rank k£,. Then
KH=F'L\H=U'F'FP; since U' F'F is nonsingular, K'H is also of rank k.

called reducible restraints since it is then possible
(as was just shown) to obtain pre-estimable restraints
from them. Unless otherwise indicated the given
restraints in this section will be denoted by

KB m
K;ﬂ ma

where K; is p X k; and has rank k;. Furthermore the
restraints K’ are a set of k; irreducible nonpre-
estimable restraints and K8 denotes a set of k, pre-
estimable restraints; i.e., H'K,=0. Since k; and r
are the ranks of H'K; and H respectively, we must
have k; <r.

THEOREM 2.
fying

Let X, B, and Y be as before, satis-

E(Y)=X'B, var Y =02l

Also let there be given known linear restraints among
the parameters of the form

KiB=m, KiB=m.

where K; is p X k; with rank k; and m; is k; X1. The
ky restraints KiB=m; are irreducible and nonpre-
estimable whereas the k, restraints Ky8=m, are pre-
estimable. With H as before, let H=[H,, H:] corre-
spond to a partition such that Hy is p X (r —k;) and H,
is p X ki where det HIK; # 0. Then the minimum vari-
ance linear unbiased estimate of the estimable function

0=18 is

é = l’{CXY aF I{1(1<1,H1)_l m;
aF CKQ(Kz,CKz)_l(mz - KQ,CXY)}

where the matrix C is obtained from Lemma 2 with K
taken to be K = [K,, K] and Ko(p X (r—ki)) chosen
such that det H'K # 0.

PROOF. ** A partition H=[H,, H,] with the de-
sired properties can be formed by taking H', to con-
sist of k; rows of H' in the same positions as k; lin-
early independent rows of H'K,. We first show that
the unbiased linear estimates of 6=1'8 are precisely
the linear forms

g¥Y)=d'Y+d mi+dmo, 4.1)
for which
Xd+K1d1+sz2:l, (42)
where d is an n X1 vector and d; is a ki X1 vector.
Thus 6 is estimable if and only if (4.2) has a solution
[1(11', di, d3]. The proof is based on the observation
that

Z'=[Y', mi, ms]
defines an (n+k;+ k) X1 random vector Z (recall

14> We point out in advance that rearranging the columns of H and/or K does not alter the

properties required of H and K (i.e., (2.2)).
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that a constant is a special case of a random variable),
and that
EY)=X'B, K{B=mi, KB=m:

are equivalent to E(Z)=[X, K, K]'8. Thus the asser-
tion is proved by the proof of (3.4), with Z replacing
Y, [X, Ki, Ks] replacing X, and [d', di, d5] replacing d'.

The nonsingularity of H{K; can be used to solve
(4.2) for d; after premultiplying it by H',. The result
is

di=(HiK\)'Hil,

so that the unbiased linear estimates of §=1['f are
precisely the linear forms

gY)=d'Y+dsm.+U"H(K{H\)'m, (4.3)

for which

Xd+ Kodo = [I1— K\(H{K,)~'H{]l=[*. (4.4)
Thus 0 is estimable if and only if (4.4) has a solution
[d', d:].

Since var [g(Y)] =var(d'Y)=02d'd, as before (in
section 3) the objective is to minimize d'd, but now the
side condition on d is the existence of a d, related to
d by (4.4). Initially regard d» as fixed; then the min-
imization of d’'d subject to Xd=[*— K.d, is identical
with the problem of finding a best estimate for
({*—Kuody)'B subject to (3.1). By the Gauss theorem
of section 3, the unique solution (as a function of ds) is

d=X'C(I* — Ksdo)=X'C{ I — K;(H{K\)"'H{ ]| — K.d}.
(4.5)

In (4.5) the matrix C is obtained from Lemma 2 for
some appropriate K; choosing ' K as in the statement of
the theorem yields CK; =0 (since C is symmetric and
(2.3a) holds); so that (4.5) simplifies to

d=X'Cl—X'CKd>. (4.6)

This simplification was the purpose for choosing the
indicated form K= [K,, K,].

Let Y*=X'Cl and X*=K3CX. Then the quad-
ratic form d'd to be minimized becomes, by (4.6),

Q* =" = (X")'dy) (Y* = (X*)'d>),

and the condition on d; is that it be related to some
d by (4.4). This condition is, however, automatically
satisfied for any d», which can be seen as follows.
First, the estimability of 6 implies that [* can be written
in at least one way in the form (4.4), say

l*:X6+K282

15 To show that such a choice is possible in at least one way, select any p X (r— k;) matrix

K, of rank r—k, such that H;K,=0 and AK,=0. If H,=K, held, then (2.2a) would be
satisfied and

H'K=[H,, H]'[Ko, Ki]
would have nonsingular square blocks H'H, and H'K; on its main diagonal, implying the

desired relation det (H'K)# 0. Since by Lemma 1 this relation (for fixed K) is independent
of the particular choice of H, it persists even if Hy # K.

Second, the pre-estimability of KB (i.e.; the fact
H'K>=0) implies that K,=XB for some n X k, matrix
B. Combining these observations gives (for any d»)
as desired.

The choices of d» (now unrestrained) which mini-
mize Q* are known by the Gauss theorem to be pre-
cisely the vectors

dy=C*X*Y* + (I — C*A%)z, (4.7)
where z is an arbitrary k, X 1 vector and C* is related
to

A*=X*X*) = KsCXX'CK, = K;CK » (4.8)

as C is to A. We shall however show below that

I —A*C*=0, so that A* is nonsingular and the solu-
tion becomes uniquely

dy=(A*)"'X*Y* = (K{CK,) 'K} Cl. (4.9)

Substitution of (4.6) and (4.9) into (4.3) gives the best
estimate § as asserted in the statement of the theorem.

Since K, has linearly independent columns, we can
prove I=A*C* by showing that

(I —A*C*K;=0.

For this purpose write K;=XB as above, and use eq
(2.6a) to obtain

Ki=B'XXX)=B'X' X)X =K,X'C)X' =X*X".
Then the version AHC*X*=X* of (2.7) gives

(I —A*CHK;=(I — A*C*)X*X'=0

as desired, completing the proof of the theorem. We
shall frequently use the consequence
ACK, =K, (4.10)

of Ky=XB and ACX=X.
COROLLARY 2.1: The parametric function 6 =18 is
estimable if and only if
Hy'[T—Ky(H'Ky)~'H,'][/=0. (4.11)

Furthermore if Hy is chosen such that Hy'K, =0, then
the condition reduces to
H(,/IIO (4]2)

ProOOF. The necessary and suflicient condition
for 6 to be estimable was shown to be (4.4), i.e.,

Xd+ Kod, =1 — K (H{Ky)"'H,']l (4.13)

holds for some d and d». Since HyX =0 and H; K, =0,
eq (4.11) holds. Conversely if (4.11) holds, then

H'[I—K(H,Ky)'H,']l=0
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which implies that (4.13) holds for some d and d,
which in turn means that § =1['8 is estimable.

The only restrictions on H=[H,, H;] and
K=[Ky, K] are that det H'K#0, H'A=0,
det H,K; # 0 and that both H and K have rank r=p—q.
The matrix Hy, can be chosen in any way subject to
satisfying the above conditions. H, can always be
taken to satisfy H;K;=0 by taking an initial H, for
which the above conditions hold and letting

Ho:[I—Hn(Kn'Hl)*‘Kl’]I:IO.

It is easy to verify that Hj4A= 0, and further that
HiK;=0. By Lemma 1, if the matrix H=[H,, H,]
has rank r, then det (H'K)# 0. T'o prove that H has
the required rank r, we write the formula for H, as

H()’:f{o_

HP  (P=(K,H)'K,H,)

10
—P 1

where the first factor on the right-hand side has rank
r while the second is rXr and nonsingular.

Note that the previous construction did not depend
on Ko. We now show, in addition, that K, can be so
chosen that HiK,=0. Simply replace an initial
K() by

and observe that

[HO,HI] = [HO»Hl] [

Ko= [I—Ky(H;Ky)'H}]Ky:

then HiK,=0, and H¢K, has the required rank r—k;
since it coincides with Hy K.

For simplicity we shall assume in what follows that
Hj and K, are chosen so that both H{K; =0 and H1Ky=0.
Thus the estimability condition is given by Hj/ =0, and
the frequently occurring inverse (H'K)~! takes the
simple form

(H'K)~'=diag [(H{Ko)™', (HKy)']. (4.14)
Then the general form of the vector B, such that the
best estimate of every estimable 'S is I B, is given by

1) tmy

KiCXY),

ﬁ =CXY+H0(K(;H())‘1mo+Hl(K1’H

+ CKy(K5CKs) = (my — (4.15)
where mg is an arbitrary (r— k;) X 1 vector.

The next corollary formulates some systems of
equations involving “dummy’ variables (wo, p1, \)
and artificial restraints (K¢8=mo) which can be used
to solve for B of (4.15).

COROLLARY 2.2: Let wo and mgy be (r—k;) X 1 vec-
tors, w1 a ki X1 vector and N\ a ks X1 vector. Then
every solution B of the system

A Ko l:ﬁ XY
Ki 0 A m;

K, 0

(4.16)

mz

can be used in the best estimate §=IB of any esti-
mable function 0=1'8. The same holds for the unique
solutions of each of the systems

A Ko Ki K] | B [XY]
K¢ 0 0 0 Mo mg
Ki 0 0 0 pa| =] m |, (4.17)
Ki 0 0 0| L}\_ | my
A K] XY]
S 5 o (4.18)
K/ 0 [ }= m;
K: 0 | ' [m: |
A+HK,+HK; K.| [B XY +Hom,+ Hym,
M I M
(4.19)
as well as the vector
=ho+ CKx(K!/CKy)"'(my —K/CXY)  (4.20)

where B is obtained from the unique solution of

A Ko Ki] [Bo] [X
Ki 0 0 Mo |=|mo |- (4.2])
K; 0 0 Mo my

PROOF. System (4.16) does not have a unique solu-
tion for k; <r, but for any solution [3’, \'] we can
define a vector my by Kif =mo and observe that
[B', \'] satisfies (4.18). Thus the discussion of (4. 16)
reduces to that of (4.18).

Since the B of (4.15) clearly obeys K/ = m;, and also
(premultiply 3 by CA) satisfies

C{AB + K:A— XY} =0
where
=(K3:CK,)~

(KCXY — my), (4.22)

we find that 8 and A obey (4.18). Thus the solution
of (4.18), once it is proved unique, must have the form
(4.15).

The first subsystem

AB +K()I.L() + Kl[J«l +K2/-L2 =XY

of (4.17), when premultiplied by (HiKo)'H|, yields
o= 0; then premultiplication of

AB ‘+‘K1/.L| +K2[.L2 =XY
bY (HiK,

)"'Hi yields w;=0. Thus every solution of
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(4.17) is a solution of (4.18), so (4.17) does not require
further discussion. Note that the dummy variables
o and w, are zero vectors in the solution.

It is trivial to check that any solution of (4.18) is
also a solution of (4.19). Thus the results for (4.16)
through (4.19) will be proved once we show that (4.19)
has a unique solution. The utility of (4.19) is that it
is a smaller system than those preceding it. We
write the first subsystem of (4.19) in the form

(A+ HK")B =XY+ Hm— K>\

where m’=(mj, mi). By Corollary 1.2, A+ HK' is
nonsingular so that 8 is directly determined in terms

of A by
B =(A+HK") XY+ Hm)—(A+ HK')"'K,\.

Corollary 1.2 shows that the first term on the right is
just By, while since H'K,=0 the formula (3.12) for
(A+ HK')~' shows that we have

B =Bo— CK,\. (4.23)
After premultiplying by (K,CK2) 'K}, noting K} = mo,
we obtain a unique A.

To treat (4.20) we first use (4.14) to obtain
H((K'H) '=[HoKyHo) ', H(K{H1)~']

and then apply corollary 1.1 (see (3.11a)) to the system
(4.21) to show that its unique solution has

B 0=CXY + Hy(KoHo)mo+ H(KiH)'my. (4.24)

Thus B given by (4.20) coincides with (4.15).

COROLLARY 2.3. With the particular choice
B =CXY+ H(K{H)'m; + CKy(K5CKs)~1(m, —K5CXY)
for any 0=1'B there is a unique'>* estimable 6, =13,
given by [, =[AC+KiHK)H[)l such that for all
possible my, m» and 3,0 p is the best estimate of 6.

ProOF. First assume [,=[AC+ K\(HiK,)'Hi]l
and 0;=1[08. Then Hi,=0, so 0, is estimable, and

we have
lKl ],3 =’ B

by direct calculation (using CAC=C, AH,=0, KiC=0)
so that ['B is the best estimate of #;. To prove um({ue
ness, consider any estimable 6; =108 such that ['j is
the best estimate of 0; for all m; and m.. Note with
the aid of (2.2a), that det (H{K;) # 0 implies that [4, K]
has rank g+ k;. Since Hi[A, K;] =0 and H, has rank
p—(q+ ki), it follows from Hyli =0 that [, =Ad+ K.d,
for some vectors d and d;. Using ACX=X and
ACK,=K, we obtain

B =1'[CA+H(KH

1B = d'[(I — Ko(K5CK») ' K5C)XY

r Kz(Ké CKz)_lm;z] ar d.’ml.

158 The uniqueness assertion requires the assumption mentioned in footnote 9.

Setting m; =K (i=1, 2) and equating the coefficients
of Yand B in 11/3 and ['B , we obtain

X'(I — CKy(K5CK,) ' Ki)(d — Cl) =0, (4.25)

Ko(K4CKy)-'K} (d— Ch = K\ [(H,K,) ' H}l — d\] (4.26)

Multiplication of the second equation by H{ leads to
Hil=HK,d, and thus to

di=(HiKy)'Hil

as desired. Substitution of this into (4.26) yields a
result which when substituted into (4.25) gives

X'(d—Ch)=

implying that Ad=ACI as desired.

We turn now to the residual vector §=Y—X'8
and the residual sum of squares S>=48'8.

COROLLARY 2.4. The residual sum of squares can be
written as

S2=8'8= (Y —X'B ())"Y =18 o)+ N

Ky'CKo)N (4.27)

and has the expected value
E(S?)=(n—q+ ky)o2,

where B is the estimate ignoring the preestimable
restraint KiB=m. and

A= (Kz/(:Kg)il(Kzr(:XY —my).

PrROOF. The residual sum of squares can be
written
S2=8'8=(Y—X'Bo+ X'CK:N)'(Y—=X'B o+ X'CK:\)

=Y—=X'Bo)(Y—=X'B o)+ N (KsCK)A+2(Y—X'B ¢)' X'CK;\.

However we have
(Y=X'B o) X'CK:A=(Y'X'C— B jAC)K:\
=Y'X'C—Y X' CAC)K:2A=0

and thus

S2=(Y—X'Bo)'(Y—X'B o)+ N (K2’ CK)A.

From Corollary 1.4 of section 3 we have

{(Y XB() Y X, (,}*(n—q)O'l
Furthermore
( ) (KzCK7) KZB ml) == O var A = (K CK))

Making use of the formula for finding the expectation
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of a quadratic form 1% gives
E (N K5CKa\) =trace {(K;CKs)(var \)}
= trace {(K,CK>)(K;CK>)"'o?} = ks0?,

and thus the result is proved. Note that the formula
for S? is composed of two parts, the second of which
measures the deviation between the values of the pre-
estimable restraints KjB as estimated from the data
(Y), and the given values m. of these restraints. X
COROLLARY 2.5. The residual vector 6=Y —X'B
is uncorrelated with any estimable function; in fact
Cov (3, B)=0. (4.28)
PrROOF. We write 8, =Y—X'B, as the residual
vector if the restraints K;B=m. had been ignored.
By (4.20) =280+ X'CKs\ and B =pBo—CK:\ and we

can write
COV (87 ﬁ): cov (80 ’ 30) — Cov (807 A)1(2,6'
+X'CK; cov (A, Bo)—[EMAN)IKSC. (4.29)

From Corollary 1.4 of section 3 we have
cov(8g, Bo)=0. For the second term in (4.29) we
calculate

cov(8y, ) =cov(8y, Ks B o—m2)(KsCKz)™ ' (4.30)

=cov(do, p o Ko(K5CK2) 1= 0.

For the third term we calculate

cov(\, Bo)— [E(N)]K5C (4.31)

= (KiCK 2)~' cov(K;B o—ma, B o)— (var NK3C
= (K,CK,)-{K}, var(B o) — K,Ca?}
= (K}CK)~{K}, var(CXY)— K Co?} =0.

Substituting in (4.29) we obtain the desired result
(4.28).

It is possible to develop the extension of the Gauss
theorem in a manner which leans more heavily on
properties of the weak generalized inverse. However,
the final form of the solution is not useful for practical
applications. One possible advantage of this alterna-
tive approach is that there is no need to make a
distinction between pre-estimable and nonpre-estima-
ble functions. These results are contained in the fol-
lowing theorem.

THEOREM 3. Let X, B and Y be as before, satisfying
E(Y)=X'B, var(Y)=0a?l

and also the restraints
L'B=m (4.32)

16 If the column vector Z is such that E(Z)=0, var Z=023, then E(Z'AZ)=0? tr AX.

where L is a p Xk matrix of known constants and m is
a kX1 vector of known constants. The minimum
variance unbiased linear estimate of any estimable
linear function 6=1'B is § =1'p , where B (independent
of ) is given by

B =(1—LL-)CI—-LL-)XY
+[I-I—-LL-)YCI—LL-)A](L")m (4.33)

andAC is related to A=(I—LL)A(I—LL") as C is
to A.

Proor. We first show that the unbiased linear
estimates of 6§=['B are precisely the linear forms
gY)=d'Y+p'm (4.34)

for which
Xd+Lp=1 (4.35)

where d is an n X1 vector and p is a kX1 vector.
Thus 6 is estimable if and only if (4.35) has a solution
(d, p). The proof is based on the observation that

Z'=[Y',m'] (4.36)
defines an (n+k) X1 random vector Z (recall that
a constant is a special case of a random variable),
and that (4.32) and E(Y)=X'B are equivalent to
E(Z)=[X, L]'B. Thus the assertion is proved by
the proof of eq (3.4), with Z replacing Y,[X, L] replac-
ing X, and [d’, p'] replacing d'.

The variance of g(Y) given by (4.34) is (d'd)a?, so
that finding a best estimate of 6 is equivalent to mini-
mizing d'd by a proper choice of d, subject to the condi-
tion that there exist a p related to d by (4.35). The
choice of such a p is immaterial (as long as one exists)
since p appears in (4.34) only in the combination

p'm=(Lp)'B

which by eq (4.35) is determined by d and [. If d is

such that some p obeys (4.35), then by eq (2.6a)
l—Xd=Lp=LL Lp=LL~(l—Xd)
with L= any weak generalized inverse of L, so that

(I—LL )(l—Xd)=0 (4.37)

and a particular solution of (4.35) is p*=L~(l—Xd).
Conversely if (4.37) is satisfied then p* provides a
solution of eq (4.35) and we can take

g)=d'Y—X'(L)m)+U'(L)m. (4.38)

It has been shown that finding a best estimate of 4
is equivalent to minimizing d'd subject to condition

(4.37), which can be rewritten as Xd=1 with

X=(—LL)X, =I—LL)L.
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This is analogous to the problem (treated in the proof
of the Gauss theorem) of minimizing d'd subject to
Xd=1, and so the unique solution is

d=X-I=X'I—LL-)CI—LL)L, (4.39)

from which eq (4.33) follows by substitution into (4.38).

Still another approach to the material of the section
can be based on the random variable Z defined by
eq (4.36). Namely, as regards the first and second
moments with which least-squares theory is exclu-
sively concerned, the model specified by E(Y)=X'gB
and L'B=m is equivalent to the model

E@Z)=[X, L]'B, var(Z)=a* [én 8k] (4.40)

where I, is the n X n identity matrix and O is the £ X k
zero matrix. Thus a model with linear restraints is
equivalent to a “restraintless” model which however
involves a singular variance-covariance matrix.
Least-squares estimation in such models is discussed
in the next section.

5. Gauss Theorem With Arbitrary Variance-
Covariance Matrix

The results of the previous sections were derived
assuming that the vector of random variables
Y=, Y. . .., Yy wereuncorrelated and had com-
mon variance; i.e., var Y=o2%l. This section con-
siders some ramifications when var Y=o?V where V'
is a known n Xn matrix with rank m (m<n). The
case when m=n has been investigated by Aitken
[1937]. His result is generalized to include the pos-
sibility of a singular variance-covariance matrix.

5.1. Preliminaries

Before discussing the extension of Aitken’s results
it will be convenient to record the implications of hav-
ing a singular variance-covariance matrix. When V'is
'singular with rank m (m < n), then there will exist a
n X s (s=n—m) matrix F with rank s such that F'V'=0.
However, this also implies that the s components of
F'Y have var F'Y=(F'VF)a?=0 which is equivalent to
F'Y being equal to a constant.'” Since E(Y)=X',
we have as the value of this constant

F'Y=F'EY)=F'X'B. (5.1)

Then the distribution of Y'=(Y1,Y,, . . ., Yy is
singular and can be reduced to a distribution in m
random variables. In most applications when (5.1)
holds we generally have F'X’'=0. However, it is
quite possible that F'X’ # 0. In order to discuss this
more general problem, we write F'=(Fy, F,) in parti-
tioned form where F';is n X s; with rank s; (=1, 2) and

si+s2=s. Furthermore we have
Fi'X'=0 (5.2)
rank FZIX, =59 (82 < p)
17The qualifying phrase “with probability one” should be added but we omit such
distinctions.

Note that (5.2) combined with (5.1) results in

F,'Y=0 (5.3)

F./X'B=F.'Y.

That is, there are s; independent linear relations
among (Y3, Y2, . . ., Y,) and s; restraints among the 8
which are preestimable by virtue of H'(XF,)=0.
Another preliminary aspect of the problem is the
existence of an n X n orthogonal matrix P such that

, 0 0
P VP:[O A:I (5.4)

where Ais the m X m diagonal matrix whose elements
are the m nonzero characteristic roots of the sym-
metric positive semidefinite matrix V. Let G be a
n X m matrix such that the columns of G are the m
(normalized) characteristic vectors of V; i.e.,

VG=GA, G G=I
Then the orthogonal matrix P in (5.4) can be taken to
be
P=[F,G] (5.5)

where F is the nXs matrix mentioned previously,
chosen (as is possible) so that F'F=1I and G'F=0.
By virtue of this partition we have

V=GAG'. (5.6)

We also note that V* is given by
V+=GA-'G'.
The necessary four properties (2.1a—d) follow from
VAV =GA-'G'GAG' =GG'
as G'G=1.

A frequently occurring case is when V2=cl where
¢ is a scalar. Then it can readily be verified that
the generalized inverse of Vis V+=c¢2V.

Also there will be need for writing the matrix V* as

V+=TT', T=GA~'? (5.7)
where A—'2 denotes the matrix obtained from A by
replacing the diagonal terms by the reciprocals of
their positive square roots. Note also that T'"VT=1.

5.2. Arbitrary Variance-Covariance Matrix

In this subsection we give some of the main results
associated with an arbitrary variance-covariance
matrix. The notation used will correspond to that of
the preceding sections.

THEOREM 4. Consider the vector of random varia-
bles Y having E(Y)=X'B, var (Y)=02V where V is an
n X n symmetric positive semidefinite matrix with rank
m (m <n). Then the minimum variance linear un-
biased estimate of =18 coincides with its best
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estimate found from the model

EY)=X'B, var Y=0I. (5.8)

K'B=n
where X=XT,Y=T'Y,K=XFsand m=F}Y.  Thus
if o is null, B can be chosen as any solution of the
normal equations
(XV+X)B =XV+Y. (5.9)
PROOF. As in the proof of the Gauss theorem of
section 3, obtaining a best estimate A'Y+c of 6 is
equivalent to choosing an nX1 vector A, subject to
XA =1, so as to minimize

var(A'Y)=(A"VA)o>.

On the other hand, from the beginning of the proof of
Theorem 3 we see that finding a best estimate in the
model (5. 8) is equivalent to choosing a pair[d',p’'],
where d is an m X 1 vector and p an s; X 1 vector, so
as to minimize d'd subject to

Xd+Kp=1,
X(Td+F:p)=1.

ie.,
Thus the theorem will be proved if we show how to
associate to each vector A a pair [d’, p'], and to each
pair [d’, p'] a vector A, such that in each case
XA=X(Td+F.p), A'VA=d'd. &)

Given [d', p'] we simply set A=Td+ Fsp; the second
relation in (*) then follows from F'V=0 and T'VT=1.

Given A, we employ the orthogonal matrix
:[F’G]:[FI’FZ’G]
to define an n X1 vector (and thus define d and p) by

[p1, o', d'A-12) = P-1A;

then we have

A=Plp, p', d' A2 =Fp,+F.p+Td

The first requirement of (*) is satisfied because
XF;=0, and the second for the same reasons as
above.

Finally, that the normal equations corresponding
to the first line of (5.8) are given by (5.9) follows from
substitution for the tilde quantities, together with
T =Vr+.

COROLLARY 4.1 (Aitken). IfV is non—szngular then
the best estimate of any estimable §=1'Bis given by
6 =1 where B is any solution of the normal equations

XV-1X")8 =XV -1Y. (5.10)

PrROOF. When V is nonsingular, the matrix F is
null and V'*+*=V "1, so the result follows from (5.9).

COROLLARY 4.2. Let X=XT have rank q. Then
the minimum variance linear unbiased estimate of an
estimable function is § =1'p where

B =CXV+Y._ _ .

+ CK(K CK) (m —K'CXV+Y)+ HK'H) 'm,.
The matrix C is related to A=XX'=XV*X' and K
by Lemmas 1 and 2; K is a p Xr (r =p—q) matrix of
rank v such that det H'K # 0, and mq is an arbitrary
r X 1 vector.

PROOF. Since X=XT has rank g, H has the same
relation to X as to X. Because H'K =0, the restraints
K'B=rm are pre-estimable in the model (5.8). The re-
sult follows from (4.15) upon noting that here H; and
K, are null, while Hy=H and Ko=K.

COROLLARY 4.3. If X has rank q, then the quantity

in which
Bo=CXY = CXV+Y
A= (K'CK)"'(K'CXY — ),
has expectation

E(S?)=(m— q+ s2)a?.

ProoF. This corollary is an application of corol-
lary 2.4 of section 4 to the model (5.8). Note that X
is p X m, which is why m appears in place of n in the
formula for E(S?).

The first two sentences of the proof of corollary 4.2
show that if X=XT has rank ¢, then the class of pre-
estimable functions is not reduced in passing to the
model (5.8). However it X has rank g(¢ < g), then in
passing to (5.8) 'H is replaced by a p X7 matrix H of
rank 7=p—¢q such that H'X=0. Such a matrix can
be obtained as H=[H,, H] where H, is an appropriate
p X (g— q) matrix.

It is desirable to have a system of equations for 8
(in Theorem 4) when F is not null. Such systems can
be obtained (and other information derived) by applying
the material of section 4 to the model (5.8). In doing
so it should be kept in mind that the restraints
K'p =m must be separated into those which are pre-
estimable (this is the sole class when § =g, as already
noted), and those which are not; the latter must be
examined for irreducibility (see the paragraph preced-
ing Theorem 2) and “reduced” if necessary.

It is natural, as a next step, to consider a model
which involves both the complications of linear
restraints on the 8 and an arbitrary variance-covariance
matrix Vo?.  This requires no new extension of the
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theory, since the only addition is that of the restraints
Ki',B =m; (i=1, 2) where K} 8 represent pre-estimable
restraints. It is quite possible that some of the
restraints K'B3 coincide with the restraints K’B in which
case the duplicate restraints in K3 (or K58) may be
dropped. Aside from this duplication one will then
have the situation

E(Y)=X'B, var Y=0c*V (V has rank m (m < n))
KiB=mi(i=1,2)

which is identical for purposes of estimating 6=1'f3
with

a?l

E(f/):/\;',B, var Y=
- B (5.11)
Kip=mi, K'B=

where the tilde (7) quantities are defined as in Theorem
4. A formal proof is obtained by applying Theorem 4
to

E(Y*)=(X*)'B, var Y*=V*g*

in which

(Y* _[Y ml,m»]X*

V-0 0
V=10 0 0]
0 0 0

Suppose for example that X is of full rank (i.e., ¢ =p)
and that V is nonsingular (i.e., m=n), and consider
the model '™

[X, K1, K],

E(Y)=X'B, var(Y)=0o*V (5.11a)

K'B=m,

where K is a p X k matrix of rank £ and m is a £ X 1
vector, both consisting of known constants. By the
prescription given in the last paragraph, and from the
fact that m=n implies that K in Theorem 4 is null, we
see that an appropriate # will be one for the model

EY)=X'B, var (Y)=02] (5.11b)
K'B=m (5.11c)
where X=XT, Y=T'Y, and T=GA-"2. G is of rank

m=n and so T is n X n nonsingular, implying (since

=p) that X is of rank p. Hence the constraints
K'B are all pre-estimable with respect to (5.11b), i.e.
K=K, in our previous notation. Applying (4.20), we
see that we can take

. ~ ~ ~ ~~~

B =Bo+CKK'CK)"'(m—K'CXY) (5.11d)

170 In the rest of this subsection, use of the symbol m both for the rank of ¥ (here m = n),
and for the & % 1 vector in (5.11a), should cause no confusion.

where C is rglated to A=XX'=XV-1X’ as Cisto A,
and where B, is the solution of A,B(,—XY

Since A is p X p nonsingular, we have

unique

C=A-1=@V-1X')1
Bo=CXY=(XV-X"1XV-1Y,
so that substitution in (5.11d) yields
B =XV-1X")-{XV-1Y

+ K[K'(XV-1X")1K]~Y(m — K'(XV-1X') " XV-1Y)},

in agreement with the result obtained for this special

case by Chipman and Rao [1964].

5.3. Simplification of the Normal Equations
In the model
EY)=X'B, var Y=

oV
we will have XF =0 (so that the normal equations are

given by (5.9)) if and only if X=XGG'. For, if this con-
dition holds then

F=XG)G'F)=0,

while if XF =0 then X=MG" for some p X m matrix M

(i.e., the rows of X are linear combinations of the
urllmnnrmdll/ed characteristic vectors of V), and
postmultiplication by G yields M =XG.
In particular, this will be the case if
XV+=BX, X=BXV (5.12)

for some nonsingular p X p matrix B. For, the first
condition in (5.12) yields X =MG" with M =B 'XGA',
while the second yields it with M=BXGA. The two
conditions of (5.12) are logically equivalent, for the
first implies

X=XGG'=XGA'G')GAG") =XV )V =BXV

while the second implies
XV+=BXVV+=BXGG' =BX
If (5.12) holds then the normal equations are

XV+X")B =XV+Y,
and become

(BXX")B = BXY,

which are equivalent to the usual normal equations
AB =XY obtained when V'=1. This result seems to
have been first noted by T. W. Anderson [1948],
and Muller and Watson [1959] have discussed it in

the context of randomization theory.
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For the rest of this section we assume XF =0 (i.e.,
X=XGG'), and ask when a simplification of the normal
equations something like the one described above
is possible. Note that X=XGG' implies g<m. If
g=m we can partition

X'=[Xi, Xz, B'=[B1, B3]

where X is ¢Xn of rank ¢, Xz is rXn, Biis ¢X1 and B,
is 1. The normal equations become

XV XDB 1+ X V*X)B 2 =X, VY,
XV XD+ (X2V+X’2)/§ 2, =XoVHY.
Since X=XGG'

qg=m and hence

implies X; =X,6G’, X,G has rank

XV+=X,GA-'G' =BX,, Bi=X1G)A(X.6)!
where B, is gXgq nonsingular. Premultiplication of
the first normal equations by B7! (after substitution
Of Ble f()I' X1V+) ylelds

X XDB 1+ (X XDB . =X1Y

XX BB 1+ XV X5)B

(5.13)
— XoV+Y.

Thus at least the first subsystem of the normal equa-
tions has been somewhat simplified.

If in particular p=g=m then we have (5.12) and
the resulting full simplification. If p>gqg=m but

X1 X5=0, then the normal equations reduce to
X XDB1=X1Y (5.14)
(XoV XD =XoV Y,
and the solutions for A, are the same as if var Y =g?.

Without assuming XiX:=0, we can observe that
X3=XiN for some ¢ Xr matrix N and that 4,=X,X]
is g X g nonsingular; thus the first subsystem of (5.13)
can be solved for B ; as

By=A7X,Y—NB 2,

and the second subsystem becomes

N'(B; — A:BiA7YANB ;= N'(B, — A \B{ A7 )X, Y
which is to be solved for #,. If in addition X, has rank
r (which requires r < g), then N does too and one can
first find the unique B; such that 4;8;=XY, and then
satisfy the second subsystem by solving NB .=, i.e.
B2=(N'N)~'N'B;.

If ¢ < m the situation is more complicated. This is
illustrated by the following example (due to K. Gold-
berg, NBS) in which p=¢g=1 and n=m=2. Take
X=[1,0] and

11 10
C=C'=2-12 » A=
1 -1 0 %

[T

Then XV+=XGA-'G'=[3/2,—1/2] but BX has the
form [¢,0] for all 1 X1 matrices B; hence (5.12) or its
analog X,V'* =B, X, cannot hold.

Even when ¢ <m, some simplification is possible
if there is a partition G =[G, G:], with G; (n X g, such
that X,Go=0. For then,if

A=diag (A1, A2)

denotes the decomposition of A corresponding to the
partition of G, we have

X] :X1GG/ :XI(G]G{ + GzGé)ZXIGIG;,

XV =X1(GiA7'Gi+ GoA3'Gy) = X161 AT Gy

and can mimic the procedure for g=m (up to and
including (5.14)) using G; and A, instead of G and A.
At present it is not clear what other cases admit anal-
ogous simplification if ¢g<m. One such situation.
arises if we dlange the dimensions of the partition
of X' so that X; is pi X n (pi+p2=p), Bi is pi X 1, and
X: has rank p; (implying p; <gq). If there is a parti-
tion G=[G, G:], with G (p: X n), such that X;G,=0,
then the preceding analysis still applies.

5.4. Equicorrelated Variables

In many experimental situations the covariances
between the observations are not zero, but to a reason-
able degree of approximation may be regarded as

being equal; i.e., cov (Y, Y))=pao? (i #j). Therefore
we can write var Y Vo? where
V=>1—pl+p] (5.15)

and J is an nXn matrix with all elements unity.

The matrix V' has the two distinct characteristic
roots [1+(n—1)p] and (1 —p) with multiplicities one
and (n—1) respectively. However since Vo? is a
variance-covariance matrix, it is positive semidefinite
and the roots are nonnegative. Consequently

1+(r—1)p=0, 1—p=0

and we obtain the bounds —(n—1)"'<p =<1. When
either p=—(n—1)"! or p=1, a characteristic root
will be zero and V will be singular. If the Y¥; are in
creasing linear functions of one another, p will be
equal to unity. The case p=—(n—1)7! implies that

2 Y;=constant, V*=(n—1)n{I—J/n}, and that

the sum of the elements in any row or column of V is
zZero.

When p # 1 or p # (n—1)7', V has an inverse which
is given by

Vt=Q1=p){I=pll+{n—Dp]"J}.

Therefore using (5.10) the normal equations can be
written

{[A—p[1+(n—D)p]'XJX'} B =XY— p[1+(n— 1)0]“()§JY~

16)
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where A=XX'. The conditions for estimability of a
parametric function only involve first moments and
hence are not dependent on p. Therefore the func-
tion §=1'B is estimable if and only if H'l=0 where
H'X=0. The solution of (5.16) involves knowledge
of p. However we wish to determine the parametric
functions which can be estimated without knowledge
of p.

Let 1 denote an nX1 vector of ones, so that /=1 1".
Since 1 and therefore n="21 is a characteristic vector
of V corresponding to the characteristic root
[1 4+ (n—1)p], we can take the matrix G of subsection
5.1 as G=[n""21, M]. Here the n—1 columns of M
are characteristic vectors of V corresponding to the
characteristic root (1 —p), and

M'M=I,,

I'M=0, VM=(1—pM.

Since G is square, G'G=I implies GG'=I and therefore
MM'=I—n"'].
Also, in the notation of subsection 5.1,
T=GA"2=[n""2(1+(n—1)p) 21, (1—p)~'2M],
so in applying Theorem 4
X=XT=[n""2(14 (n—1)p)""2X1, (1—p)~"2XM],
5 n~ 121+ (n—1)p)~121'Y
Y=T'Y=
(1=p)-'2M'Y

The equation E();)Z/\;’B of (5.8) therefore becomes
equivalent to

E1'Y)=1'X'B, (5.17)
EY)=XB (X=XM,Y=M'Y) (5.18)

and it is readily verified that
var(V)=(1—p)a2l, cov(1'Y,Y)=0. (5.19)

The unbiased estimates of any estimable 6=1['8
have the form

gV)=d'Y +e(l'Y)
where d is an (n—1) X 1 vector, e is a scalar, and
Xd+X1e=1. (5.20)
Also,
var [g(Y)] =1 —p)o2d'd+e*n[1+(n—1)p]c?
=(1—p)a*[d'd+e*n] + e*n*po>.

First suppose the rank of X=XM is less than the
rank g of X. This rank must be g—1. Then there

exists an mX1 vector h such that A’X=1, and (5.20)

yields
h'l=h'XMd~+h'X1e=ne,

so that
e=ey=n"Yl'h)

in every estimate g(Y).!® Thus the minimization of
var [g(Y)] subject to (5.20) is achieved by choosing d

to minimize d'd subject to
Xd=1—X1ey=1—Ahe,.

This, however, coincides with the problem of finding
a best estimate for (/—Ahey)' in the model specified
by (5.18) and (5.19); the Gauss theorem yields the
solution as

d'Y=(—Aheo)' B

where ,é is any solution of the normal equations ob-
tained using (5.18) and (5.19). Since MM'=1—n"],

we find that these normal equations are

X[I— n-'JIX'B=X[I—n-1J]Y. (5.21)

Thus the best estimate g(Y) of 6=1'8 is

é: (l _Ahe())’é + l 'Ye(,
:l'B—l'h(n"h’A,é)—Fl’h(n"‘l’Y)
= (|7}
where f=B+n""h(1'Y—1'X'B). Use of (5.21) and
h'X=1"leads to AB =XY. Conversely if B is any so-

lution of A8 = XY, then choosing 3= yields a solu-
tion of (5.21), and also

é: ([ —Ahe(,)',é SIS ]. ,Y(?() = [I,B o
Now assume X =XM has the same rank g as X. To
minimize var [g(Y)], first treat e as fixed; as in the pre-
vious case we are led to the choice
dY=(—X1e)B
where B is any solution of (5.21). The rank hypothe-
sis implies that the same H, and thus the same K and

C, work for XX' as for 4, and so we may choose

B=CXY. Now
gV =UB+el'Y—X'B)
var [g(Y)] =var (I'8)+ e var [1'(Y —X'B) |
+2e cov [I'8, 1'(Y —X'B)].
The range of e in the remaining minimization prob-

lem is that of all real numbers. To prove this, note
that by the rank hypothesis [= Xd, for some (n—1)X1

'® A simple sufficient condition for the existence of such a vector 4 is that the columns of
X all sum to some nonzero constant k. That is, 1'’X =41’ and thus we may take h=/4"'1.
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vector d, (i.e., each estimable form is also estimable
with respect to (5.18)), and also X = XN for some matrix
N, so that for any real number e

I—Xle=Xd (d=dy—Nle)

as required by (5.20). The solution of the minimiza-
tion problem is therefore

e=—cov [I'8, 1'(Y—X'B]/var [I'(Y —X'B)]
=(1—p)l'CX1/{n[1+(n—Dp]+(1—p1'X'CX1}.

This is independent of p if and only if the numerator
vanishes, i.e.,

I'CX1=0, (5.22)

and in that event the best estimate reduces to
UB=UCXI—n"'))Y=1I'CXY=1B

where B is a solution of A8 =XY. Note that ’CX1 =0
will hold for all estimable functions if and only if
X1=0.

Before assembling these results (with a few more
substitutions) into a formal theorem, we remark that
XM has the same rank as

XMM'X'=X(I—n)X'=XI—n"1))2X’,
and thus the same rank as the matrix

X*=X[I—n"1]]

obtained from X by simply taking deviations from the
mean, i.e.,

XE=Xia—Xi;  HG=nT' Y Xia
a=1
Thus when X* and X have the same rank, a solution of
(5.21) can be obtained as
B=CX[I—n"1J]Y=8 —n-'CXJY.
THEOREM 5. Let
E(Y) =X'g, var (Y)=0%(1—p)l+pl]],

—m—=1)"'<p<l. Ifthe rank q* of X* =X[I—n"1]]
is q—1 (i.e., there exists an nX1 vector h such that
h'X=1"), the normal equations are Ap =XY and do
not depend on p. When q*=q, the only estimable

functions 0=1'B with best estimate independent of p
are those with

I'CX1=0, (5.22)

and for these the best estimate is ' with AR =XY.
If (5.22) does not hold, the best estimate of 0 is

6=1I'[B —n'CXJY+ {n[np(1—p)1+1]+1'X'CX1}"?

(Y—=X'B +n1X'CXJY)]
with B as above.

COROLLARY 5.1. Let the deviations Y* and X* be
defined by Y*=MY=MM'Y, X*=XM'=XMM'.
Then the quantity

S2=(Y*—X*B)(Y*—X*B)
has expectation
E(S*)=n—q)(1—p)o*

if a vector h exists for which h'X =1'; otherwise the ex-
pectation of S* ts

ES*)=m—q— 11— p)o?.

PROOF. The expectation of Y—=XB)Y—XB) is
(n—q)(1—p)o? if X has rank g—1 (i.e., a vector h ex-
ists for which A’X=1). When X has rank ¢, the ex-
pectation is (n—q—1)(1 —p)o? These results imme-

diately follow by applying corollary 1.4 of the Gauss
theorem. Since

Y—X'B=M(Y—-XB)
and (MM'?=MM' =I—n"'], we have
Y—XB)¥Y—XB)=(Y—X'p)MM'(Y—X'B) .
=(Y*—X¥B) (Y* —X*'B).

The problem arises as to what to do if there does not
exist an A for which A’X=1" (i.e., if XM has the same
rank ¢ as X), p is unknown, and we wish to estimate
an estimable function for which [’CX1 # 0. Estimates
of §=1'B can be obtained if we are willing to consider
the alternate estimation problem where

EY)=X'B,varY =(1—p)o?l (5.23)
subject to the restraint

1'X'B=1"Y,
which must be pre-estimable.

Application of (4.16) results in the normal equations

XUI—n)X'B +X1IA=XI —n"1))Y,

1'X'8=1'Y,
which reduce to
AB + X1\ =XY,
1'X'8=1'Y.
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After premultiplication by the nonzero 1Xp vector
1'X’, the first equation can be solved for A to obtain

A=1'X'X1)'1'X' (XY —A4B),

and then the normal equations for 8 alone are obtained
as

I—('X'X1)"'XJX'UB =[1— (AX'X1)~"'XJX' XY
19378 = 1197

Alternatively, we can apply Theorem 2 to the model
given by (5.23) and the restraint 1'’X’8=1'Y. Since
X has the same rank as X, H has the same relation to
X as to X. Thus, by Lemmas 1 and 2, the matrices
K and C are the same for X as for X. Here H; and K,
are null, while Hy and K, correspond to H and K, re-
spectively. The result of applying Theorem 2 is given
next as another theorem; note that the estimate 6 =1
coincides with that given in Theorem 5 when ['CX1=0.

THEOREM 6. For the model

EY)=X'8,  var Y=o%(1—p)+pl],
where —(n—1)"' < p < 1, the parameter p is unknown,
and X =XM has the same rank as X, the best estimate
conditional on 1'X'B=1'Y of the estimable function
0=1'B is given by

=1 =I'CX{(I—n"1))
+ (X' CXD) I =X'CXT—n"1))]}Y.

COROLLARY 6.1.

(5.24)

The quantity
S2=(Y*—(X*)'B )(Y*—(X*'B),
where X*=X(I—n"")) and Y¥=(I—n"1))Y, has the

conditional expectation

E(S?

1'Y)=(1—p)o*n—q).

Proor. We first observe that

S?=V—=XB)¥Y—X'B),

so that E(S2|1'Y) can be found by applying Corollary
2.4 to the model consisting of (5.23) and the restraint
1'X'B=1'Y. Here k=1, n is replaced by n—1
since X is pX(n—1), and o2 is replaced by (1 —p)o2.
This proof also shows, by (4.27), that S? can be written
as

N

S2=(Y*—(X*)B o)'(Y*—(X*)B o) +N2(1'X'CX1)
where o =CX(I—n=1])Y and
A=(1'X'CX])[1I'X'CXUI—n"1))Y—1'Y].

5.5. Two Stage Least Squares

An application of Theorem 4 arises in two stage
least squares estimation which has recently been
discussed by Freund, Vail, and Clunies-Ross (1961)
and Goldberger and Jockems (1961). We shall con-

sider some further generalizations and discuss the
matter more fully. Consider the model

EY)=X,'"B:1+X:'Bs, var Y=0?2I (5.25)
where X; are p;Xn matrices and B; are p; X1 vectors
for =1, 2. Instead of considering the full model,
in the first stage we ignore (. variables and take
E(Y)=X,'"B:. Then the normal equations will yield
the solution

B1=CX,Y (5.26)

where C; is related to X, X;’ as C is to 4.
Define the residual vector

8=Y—XiBi=(—XiC:X\)Y
and the idempotent matrix
V=I—-X/CX,.

Then we have

E@®)=VX:8.,
var (6) =Vo?,

and these equations serve as the model for the second
stage. Now apply Theorem 4 to this model: V=}+
since V' is idempotent, the analogs of X and F'=F)|
are X2V and X, respectively with X,(X.V)' =0 since
XV'=0, and so the result is the equation

(X::VX'.’:)/}'.::X2V8:X2VY (5.27)

with solution

B 2 =CX,V5=C:X.VY, (5.28)
where C. is related to XoV X} as is C to A.

Suppose 6= 1181+ 5B is estimable in the full model.
Then (see (3.4)) there exists an n X 1 vector d such that
Xid=1i(i=1, 2), and so 6, =B, is estimable in the first-
stage model. Its best estimate in that model is

0,=1iB,
and in the full model
E(6)=LC.XA(X 81+ X5B2) = 01 + [}C1 X1 X5B5. (5.29)

The procedure to be described involves adding a
term to 6, to obtain an unbiased estimate 6; of 6.
Clearly this will be possible only if 6; is in fact esti-
mable in the full model. We therefore are led to
determine what condition on the partition [Xi, X3]
will ensure that 6, =1[iB, is estimable in the full model
whenever §=10'B is. First suppose the partition has
this property. Since the rows of X'B are estimable
in the full model, the same must hold for the rows of
X{B1 and thus for the rows of

XQBZ=X’B_XiB1
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By (3.4) there is an nXn matrix B such that X;B=0
and X;B=X,. X;B=0 implies that B=VB, for some
p1Xn matrix B, and so XoVB;=X,. The last equa-
tion shows that the rows of X3B, are estimable in the
second-stage model, or equivalently (by Corollary 1.1)

Xo=XoVXiCoXs. (5.30)
Conversely, suppose (5.30) holds and that
0=10p1+ 1B

is any parametric function estimable in the full model.
By (3.4), there exists an n X 1 vector d such that

Xd=1;i=1,2).
Then

Xi(I— VXéczxz)d:ll, Xo(l— VXészz)dZO

so that by (3.4) ;=118 is estimable in the full model.
Hence (5.30) is exactly the required condition on
[X{,Xs], and is assumed in what follows.

An unbiased estimate of 6; in the full model can now
be given as

0y — LC X XsCo X VY =B,

Since 6 and 6; are estimable in the full model, the
same is true of

02=léﬂz=0— 01,
so that

X1d2:0, ng;z:lz
From this and (5.30) it can

for some n X1 vector ds.
be verified that

b= l;ﬁ 2
is an estimate (therefore the best estimate) of 4 in the
second-stage model, and also an unbiased estimate of
02 in the full model.

It has been shown that an unbiased estimate of the
estimable function

6=118,+ L3
is given by
Zfg 2y
where

B 1= Ci[I+ X X5C XX C1 1 XY — CiX 1 X5CXoY,

= el G (5.31)

The solutions (5.31) can be shown by substitution to
satisfy the normal equations

XX,  xxil [8.
XX, XoXi| |Be

XY
XY

of the full model, and so # is the minimum variance
linear unbiased estimate of 6.

For the same reason, §;=1[/B; is the best estimate
of #;=1iB; in the full model. In terms of this model
alone, the following result has been proved: If the
portions of every estimable function which respectively
involve the B; and B, variables are separately estim-
able, then the best estimate of each such function is
simply the sum of the best estimates of its portions.
In this sense the condition (5.30) can be regarded as a
generalization of orthogonality (XoX]=0); in the or-
thogonal case the normal eqs (5.27) of the second-stage
model are simply

(XzXlz)ﬁ 2 =X,Y

in direct analogy to those of the first-stage model.
Note also that (5.30) automatically holds if g=p (i.e.,
if A is nonsingular), since then every parametric func-
tion /'B, in particular [iB;, is estimable.

5.6. Restraints Subject to Uncertainty

Occasionally situations arise in which the given
restraints K'B=m are themselves subject to varia-
tion. Such may be the case when the value of K'8
is not known but prior information is available which
can be summarized as a value of a random vector m
with E(m)=K’B and with precision described by
var (m)=Vy,o® A circumstance where this may
occur is when data are available from another source
which is believed to be without bias or systematic
error.

Let E(Y)=X'B, var Y=0¢? and let the k “given”
restraints consist of unbiased estimates m, (L—l 2) of
KiB, where K; is p X k; of rank k,, and m'=(m], m,
obeys var (m)=V,o2 Further it is assumed that the
restraints Kif are nonpre-estimable functions and K3
are pre- estlmable functions with respect to the observa-
tional equations E(Y)=X'B. It is desired to perform
estimation subject to the additional conditions
K/B =m, i.e., to fit the new data so that the quantities
K'B are exactly equal to m. We may assume without
loss of generality that K;K>; =1 and that the restraints
KiB are irreducible.

It will be convenient to introduce the expression
undisturbed to refer to those estimable functions

6=1'3 whose best estimate d=1p is not altered by
the requirement that 8 be chosen to satlsfy K'B =
Not all estimable functions are undisturbed in general
for example we have no freedom in choosing § when
0 is a linear combination of the rows of K/B. The
subclass of the estimable functions, consisting of
those which are undisturbed, is a matter of choice
and its selection would presumably depend on the
problem at hand, but it should not contain any non-
zero linear combinations of the rows of K;B8. (If for
example there is skepticism concerning the prior
information, then this subclass would chosen to in-
clude, so far as possible, those functions for which a
minimum variance estimate is of particular impor-
tance.) The class of undisturbed functions may
be chosen, of the maximum possible dimension,
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as the class of all linear combinations of the rows of
L'B where L is a pX(q— k») matrix of rank ¢ — k» such
that H'L=0 and [K;, L] has rank q. We may assume
L'L =1 without loss of generality.

Because H'[K», L]=0, and [K;, L] has the same rank
g as X, there exist a ksXn matrix P> and a (¢—k2)Xn
matrix P such that

X:[Kz, L] P2 =K2P2+LP
P

These matrices can be found explicitly, in terms of
the inverse N-! of the gX ¢ nonsingular matrix

N=|K;|[K:, L]=|1 KL |,
L L'K, I

L

Since E(i2)= KB, we find that E(Y)=X'B is equiva-
lent to

as

EY)=X'B (5.32)
where Y=Y —Pim, and X=LP =X — KyP,. Similar-

ly, under the assumption cov (Y, m)=0 which is im-
plicit in our situation, it follows that var (Y)=0?l is
equivalent to

var (7) = Vo2,
where ?ZI-FPQV-_)PZ and Vs is defined by

(5.33)

var (mg) = Vao?.

Thus the original model E(Y)=X'B, var Y=0", ig-
noring the restraint K'B=rm,is equivalent to the one
given by (5.32) and (5.33).

From the fact that equality holds throughout the
sequence

qg=rank (X) = rank (KsP>+ LP)
< rank (K,P») +rank (LP)
< rank (Ky) +rank (L)=k:+ (g —k2)=¢

of inequalities, it follows in particular that X=LP has
the same rank g—k: as L. Therefore the class of
functions estimable with respect to (5.32) consists of
all linear combinations of the rows of L'S.

We next prove that an analog of H for (5.32) is given
by H=[H,(I—LL")K:]. Since H'X=0, it suffices to
show that H has rank at least p—(q—ko)=r+ks;
since

H'(I—LL")K;=0
and H has rank r, it suffices to show that (I —LL")K,
has at least rank k.. This however follows from the
consequence

Il o Ky gy
o] [
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of the identity
I
(I_LL )Kz: [K‘l, L] |:_L’K_1:| :

From the irreducibility of the restraints KB in the
original model, we can deduce that the restraints K'p3,
where K= [K;, K], are nonestimable and irreducible

with respect to (5.32). Namely,
_ [HK 0 ]
H'K= [ KyI—LL)K:  KJ(I—LL)K>

can be shown to have rank k; + k.. For this purpose,
observe that H'K; has rank k; so that the same holds
for the first block column in H'K. Also, since
(I—LL")K; has rank k., the same is true of

{IU—=LL"K>}'{(I—LL"K,} = K;(I — LL"K.

and thus of the second block column. The presence
of the zero block then ensures the result.

Theorem 4 can be applied to the model consisting
of (5.32) and (5.33), to obtain a new model analogous to
(5.8), and the restraints K'BS will remain n()npstimable
in this new model. Thus the conditions K'8 =m can
simply be adjoined to the normal equations of the new
model without affecting the best estimates 6 of the
functions estimable in this new model . . . i.e. the
linear combinations of the rows of L'B. Thus, as
desired, these linear forms have their best estimates
“undisturbed” by requiring K'8=m. (Here K plays
the role of Ky in Theorem 2.) If in particular V' is
nonsingular, then by Corollary 4.1 the normal equa-
tions become

(X7 1% = X717,
K'B =m.

It may also be appropriate to adjoin artificial non-
pre-estimable restraints to secure a unique solution
for B.

The previous material also permits us to arrive at
unbiased estimates, consistent with K'f =m, of func-
tions #=1['B which are estimable in the original model

but are not linear combinations of the rows of L'B.
From

l=ACl=(K:P,+LP)X'Cl
it follows that
0=1'CXP,K,3+1'CXP'L'B,
so that an unbiased estimate is
§=1'CXP,m,+1I'CXP'L' B =I'CX(P;Ky+P'L")B =1'B

with B as in the last paragraph. = Note that although
the second summand (['/CXP'L'B) in 6 is the best

estimate of the second summand of 6, 6 as a whole
does not coincide with the best estimate of 6 in the

original model since 8 comes from a set of normal



equations other than AP =XY. Thus 6 has been
disturbed.

The previous material takes an especially simple
form when L'K>=0, i.e., when the estimable functions
whose minimum-variance estimation is to be empha-
sized (L'B) are orthogonal to those whose estimates
are prescribed (K;B8). Here premultiplication of

X=K,P,+LP

by K and L', respectively, shows that P,=K)X and
P=L'X. Thus H=[H, K], and the model (5.32)
and (5.33) becomes

EY)= X’B, var(Y)= Vo?
with _ _
Y=Y—X'Kom,, X=LL'X,
V=I14+X'K:V2KiX.
For a simple but artificial example, suppose

x=[y 3]-x=re=[g].2=[}]

i.e., estimation of the second component B of B is of
principal importance. Suppose also that

var(mg) = Ve0?=1%02,

so that 7 indicates the relative precision of the prior
information relative to the new measurements under
discussion. The previous paragraph applies, and we
are led to the model

EY)=X'B, var(Y)=Vo?
with

Y= )’1—7h2],)_(:|:0 0]
Y2 0 1 ’

7=[1+72 0]
0 1

This can be rewritten
EY)=X'B,var(Y)=a
with ) :

X=X,V =y —ma)(1+72)-12 y,)".
Th~e~normal equations of the new model are XX
=XY, i.e.,

08 1+ 08 = 0(y: — fa)(1 +72)-12 + Oys,

OB 1 +B 5= 0(}’1 - Thz)(l + 7'2)-1/2 +y2,

to which we adjoin K'8 = ma, i.e., B1=rms Thus the
result is X

B' = (z,y2)',
whereas without the requirement K'8 =rm. we would
have R
) B'=(y1,02)"-

The estimate assigned to 6= ;+ >, which is not a
linear combination of the rows of L'B, is

0261+Bzzﬁlz+ﬂ

and has variance 7202+ o2, whereas the best estimate
of 0 in the original model is y; +y» with variance 202

Thus the requirement K'8 = m» decreases or increases
the variance of the estimate of # according as 7 <1
or 7> 1, i.e., according as the prior measurement of
my was more or less precise than the new measure-
ment of y;.
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