
$+2 x+5$

SMITHSONIAN MISCELLANEOUS COLLECTIONS
 Volume 74, Number 1

SMITHSONIAN MATHEMATICAL FORMULAE

 AND TABLES OF ELLIPTIC FUNCTIONSMathematical Formulae Prepared by
EDWIN P. ADAMS, Ph.D.
PROFESSOR OF PHYSICS, PRINCETON UNIVERSITY

Tables of Elliptic Functions Prepared under the Direction of Sir George Greenhill, Bart.

By
COL. R. L. HIPPISLEY, C.B.

PUblication 2672

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION

In memriam Cdurnd Bught mothen dept.

ADVERTISEMENT

The Smithsonian Institution has maintained for many years a group of publications in the nature of handy books of information on geographical, meteorological, physical, and mathematical subjects. These include the Smithsonian Geographical Tables (third edition, reprint, 1918); the Smithsonian Meteorological Tables (fourth revised edition, 1918); the Smithsonian Physical Tables (seventh revised edition, 192I); and the Smithsonian Mathematical Tables: Hyperbolic Functions (second reprint, 1921).

The present volume comprises the most important formulae of many branches of applied mathematics, an illustrated discussion of the methods of mechanical integration, and tables of elliptic functions. The volume has been compiled by Dr. E. P. Adams, of Princeton University. Prof. F. R. Moulton, of the University of Chicago, contributed the section on numerical solution of differential equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley, C. B., under the direction of Sir George Greenhill, Bart., who has contributed the introduction to these tables.

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to many physicists and mathematicians, especially to Dr. H. L. Curtis and colleagues of the Bureau of Standards, for advice, criticism, and coöperation in the preparation of this volume.

Charles D. Walcott, Secretary of the Smithsonian Institution.

May, 1922.

PREFACE

The original object of this collection of mathematical formulae was to bring together, compactly, some of the more useful results of mathematical analysis for the benefit of those who regard mathematics as a tool, and not as an end in itself. There are many such results that are difficult to remember, for one who is not constantly using them, and to find them one is obliged to look through a number of books which may not immediately be accessible.

A collection of formulae, to meet the object of the present one, must be largely a matter of individual selection; for this reason this volume is issued in an interleaved edition, so that additions, meeting individual needs, may be made, and be readily available for reference.

It was not originally intended to include any tables of functions in this volume, but merely to give references to such tables. An exception was made, however, in favor of the tables of elliptic functions, calculated, on Sir George Greenhill's new plan, by Colonel Hippisley, which were fortunately secured for this volume, inasmuch as these tables are not otherwise available.

In order to keep the volume within reasonable bounds, no tables of indefinite and definite integrals have been included. For a brief collection, that of the late Professor B. O. Peirce can hardly be improved upon; and the elaborate collection of definite integrals by Bierens de Haan show how inadequate any brief tables of definite integrals would be. A short list of useful tables of this kind, as well as of other volumes, having an object similar to this one, is appended.

Should the plan of this collection meet with favor, it is hoped that suggestions for improving it and making it more generally useful may be received.

To Professor Moulton, for contributing the chapter on the Numerical Integration of Differential Equations, and to Sir George Greenhill, for his Introduction to the Tables of Elliptic Functions, I wish to express my gratitude. And I wish also to record my obligations to the Secretary of the Smithsonian Institution, and to Dr. C. G. Abbot, Assistant Secretary of the Institution, for the way in which they have met all my suggestions with regard to this volume.
E. P. Adams

Princeton, New Jersey

COLLECTIONS OF MATHEMATICAL FORMULAE, ETC.

B. O. Peirce: A Short Table of Integrals, Boston, 1899.
G. Petit Bois: Tables d'Integrales Indefinies, Paris, 1906.
T. J. I'A. Bromwich: Elementary Integrals, Cambridge, igit.
D. Bierens de Haan: Nouvelles Tables d’Integrales Definies, Leiden, 1867.
E. Jahnke and F. Emde: Funktionentafeln mit Formeln und Kurven, Leipzig, 1909.
G. S. Carr: A Synopsis of Elementary Results in Pure and Applied Mathematics, London, 1880.
W. Laska: Sammlung von Formeln der reinen und angewandten Mathematik, Braunschweig, 1888-1894.
W. Ligowski: Taschenbuch der Mathematik, Berlin, 1893.
O. Th. Bürklen: Formelsammlung und Repetitorium der Mathematik, Berlin, 1922.
F. Auerbach: Taschenbuch fur Mathematiker und Physiker, i. Jahrgang, 1909. Leipzig, 1909.

CONTENTS

PAGE
Symbols viii
I. Algebra I
II. Geometry 29
III. Trigonometry 61
IV. Vector Analysis 91
V. Curvilinear Coördinates 99
VI. Infinite SERIES. 109
VII. Special Applications of Analysis I45
VIII. Differential Equations I 62
IX. Differential Equations (Continued) I9I
X. Numerical Solution of Differential Equations 220
XI. Elliptic Functions 243
Introduction by Sir George Greenhill, F.R.S. 245
Tables of Elliptic Functions, by Col. R. L. Hippisley 259
Index 3 II

SYMBOLS

log logarithm. Whenever used the Naperian iogarithm is understood. To find the common logarithm to base 10 :

$$
\begin{aligned}
\log _{10} a & =0.43429 \ldots \log a \\
\log a & =2.30259 \ldots \log _{10} a
\end{aligned}
$$

! Factorial. n ! where n is an integer denotes I.2.3.4...... n. Equivalent notation n^{n}
$\neq \quad$ Does not equal.
$>$ Greater than.
$<\quad$ Less than.
$\geqslant \quad$ Greater than, or equal to.
$\leqslant \quad$ Less than, or equal to.
$\binom{n}{k} \quad$ Binomial coefficient. See 1.51.
$\rightarrow \quad$. Approaches.
$\left|a_{i k}\right|$ Determinant where $a_{i k}$ is the element in the i th row and k th column, $\frac{\partial\left(u_{1}, u_{2}, \ldots .\right)}{\partial\left(x_{1}, x_{2} . \ldots\right)}$ Functional determinant. See 1.37.
$|a| \quad$ Absolute value of a. If a is a real quantity its numerical value, without regard to sign. If a is a complex quantity, $a=\alpha+i \beta$, $|a|=$ modulus of $a=+\sqrt{\alpha^{2}+\beta^{2}}$.
$i \quad$ The imaginary $=+\sqrt{-\mathrm{I}}$.
$\sum \quad$ Sign of summation, i.e., $\sum_{k=1}^{k=n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$.
\prod Product, i.e., $\prod_{k=1}^{k=n}(\mathrm{I}+k x)=(\mathrm{I}+x)(\mathrm{I}+2 x)(\mathrm{I}+3 x) \ldots(\mathrm{I}+n x)$.

I. ALGEBRA

1.00 Algebraic Identities.

1. $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots++a b^{n-2}+b^{n-1}\right)$.
2. $a^{n} \pm b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots \ldots \mp a b^{n-2} \pm b^{n-1}\right)$.
n odd: upper sign.
n even: lower sign.
3. $\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{n}\right)=x^{n}+P_{1} x^{n-1}+P_{2} x^{n-2}+\ldots$

$$
+P_{n-1} x+P_{n}
$$

$$
P_{1}=a_{1}+a_{2}+\ldots \ldots+a_{n}
$$

$P_{k}=$ sum of all the products of the a 's taken k at a time.
$P_{n}=a_{1} a_{2} a_{3} \ldots a_{n}$.
4. $\left(a^{2}+b^{2}\right)\left(\alpha^{2}+\beta^{2}\right)=(a \alpha \mp b \beta)^{2}+(a \beta \pm b \alpha)^{2}$.
5. $\left(a^{2}-b^{2}\right)\left(\alpha^{2}-\beta^{2}\right)=(a \alpha \pm b \beta)^{2}-(a \beta \pm b \alpha)^{2}$.
6. $\left(a^{2}+b^{2}+c^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)=(a \alpha+b \beta+c \gamma)^{2}+(b \gamma-\beta c)^{2}+(c \alpha-\gamma a)^{2}$

$$
+(a \beta-a b)^{2}
$$

7. $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)=(a \alpha+b \beta+c \gamma+d \delta)^{2}$

$$
+(a \beta-b a+c \delta-d \gamma)^{2}+(a \gamma-b \delta-c \alpha+d \beta)^{2}+(a \delta+b \gamma-c \beta-d a)^{2}
$$

8. $(a c-b d)^{2}+(a d+b c)^{2}=(a c+b d)^{2}+(a d-b c)^{2}$.
9. $(a+b)(b+c)(c+a)=(a+b+c)(a b+b c+c a)-a b c$.
10. $(a+b)(b+c)(c+a)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+2 a b c$.
II. $(a+b)(b+c)(c+a)=b c(b+c)+c a(c+a)+a b(a+b)+2 a b c$.
11. $3(a+b)(b+c)(c+a)=(a+b+c)^{3}-\left(a^{3}+b^{3}+c^{3}\right)$.
12. $(b-a)(c-a)(c-b)=a^{2}(c-b)+b^{2}(a-c)+c^{2}(b-a)$.
13. $(b-a)(c-a)(c-b)=a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right)$.
14. $(b-a)(c-a)(c-b)=b c(c-b)+c a(a-c)+a b(b-a)$.
15. $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2[(a-b)(a-c)+(b-a)(b-c)$
$+(c-a)(c-b)]$.
16. $a^{3}\left(b^{2}-c^{2}\right)+b^{3}\left(c^{2}-a^{2}\right)+c^{3}\left(a^{2}-b^{2}\right)=(a-b)(b-c)(a-c)(a b+b c+c a)$.
17. $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)=b c(b+c)+c a(c+a)+a b(a+b)+a^{3}+b^{3}+c^{3}$.
18. $(a+b+c)(b c+c a+a b)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+3 a b c$.
19. $(b+c-a)(c+a-b)(a+b-c)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)$
$-\left(a^{3}+b^{3}+c^{3}+2 a b c\right)$.
20. $(a+b+c)(-\dot{a}+b+c)(a-b+c)(a+b-c)=2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)$

$$
-\left(a^{4}+b^{4}+c^{4}\right)
$$

22. $\quad(a+b+c+d)^{2}+(a+v-c-d)^{2}+(a+c-b-d)^{2}+(a+d-b-c)^{2}$

$$
\begin{aligned}
&=4\left(a^{2}+b^{2}+c^{2}+d^{2}\right) \\
& \text { If } A=a \alpha+b \gamma+c \beta \\
& B=a \beta+b \alpha+c \gamma \\
& C=a \gamma+b \beta+c a
\end{aligned}
$$

23. $(a+b+c)(a+\beta+\gamma)=A+B+C$.
24. $\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]\left[\alpha^{2}+\beta^{2}+\gamma^{2}-(\alpha \beta+\beta \gamma+\gamma a)\right]$
$=A^{2}+B^{2}+C^{2}-(A B+B C+C A)$.
25. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)\left(\alpha^{3}+\beta^{3}+\gamma^{3}-3 a \beta \gamma\right)=A^{3}+B^{3}+C^{3}-3 A B C$.

ALGEBRAIC EQUATIONS

1.200 The expression

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots . .+a_{n-1} x+a_{n}
$$

is an integral rational function, or a polynomial, of the nth degree in x.
1.201 The equation $f(x)=0$ has n roots which may be real or complex, distinct or repeated.
1.202 If the roots of the equation $f(x)=0$ are $c_{1}, c_{2}, \ldots, c_{n}$,

$$
f(x)=a_{0}\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{n}\right)
$$

1.203 Symmetric functions of the roots are expressions giving certain combinations of the roots in terms of the coefficients. Among the more important are:

$$
\begin{aligned}
& c_{1}+c_{2}+\ldots+c_{n}=-\frac{a_{1}}{a_{0}} \\
& c_{1} c_{2}+c_{1} c_{3}+\ldots+c_{2} c_{3}+c_{2} c_{4}+\ldots .+c_{n-1} c_{n}=\frac{a_{2}}{a_{0}} \\
& c_{1} c_{2} c_{3}+c_{1} c_{2} c_{4}+\ldots+c_{1} c_{3} c_{4}+\ldots+c_{n-2} c_{n-1} c_{n}=-\frac{a_{3}}{a_{0}}
\end{aligned}
$$

$$
c_{1} c_{2} c_{3} \ldots c_{n}=(-\mathrm{I})^{n} \frac{a_{n}}{a_{0}}
$$

1.204 Newton's Theorem. If s_{k} denotes the sum of the k th powers of all the roots of $f(x)=0$,

$$
\begin{aligned}
& s_{k}=c_{1}^{k}+c_{2}^{k}+\ldots . c_{n}^{k} \\
& \mathrm{I} a_{1}+s_{1} a_{0}=0 \\
& 2 a_{2}+s_{1} a_{1}+s_{2} a_{0}=\circ \\
& 3 a_{3}+s_{1} a_{2}+s_{2} a_{1}+s_{3} a_{0}=0 \\
& 4 a_{4}+s_{1} a_{3}+s_{2} a_{2}+s_{3} a_{1}+s_{4} a_{0}=0 \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots
\end{aligned}
$$

or:

$$
\begin{aligned}
& s_{1}=-\frac{a_{1}}{a_{0}} \\
& s_{2}=-\frac{2 a_{2}}{a_{0}}+\frac{a_{1}^{2}}{a_{0}^{2}} \\
& s_{3}=-\frac{3 a_{3}}{a_{0}}+\frac{3 a_{1} a_{2}}{a_{0}^{2}}-\frac{a_{1}^{3}}{a_{0}^{3}} \\
& s_{4}=-\frac{4 a_{4}}{a_{0}}+\frac{4 a_{1} a_{3}}{a_{0}^{2}}-\frac{4 a_{1}^{2} a_{2}}{a_{0}{ }^{3}}+\frac{2 a_{2}^{2}}{a_{0}{ }^{2}}+\frac{a_{1}^{4}}{a_{0}{ }^{4}}
\end{aligned}
$$

1.205 If S_{k} denotes the sum of the reciprocals of the k th powers of all the roots of the equation $f(x)=0$:

$$
\begin{aligned}
& S_{k}=\frac{\mathrm{I}}{c_{1}{ }^{k}}+\frac{\mathrm{I}}{c_{2}^{k}}+\ldots \ldots+\frac{\mathrm{I}}{c_{n}{ }^{k}} \\
& \mathrm{x} a_{n-1}+S_{1} a_{n}=0 \\
& 2 a_{n-2}+S_{1} a_{n-1}+S_{2} a_{n}=0 \\
& 3 a_{n-3}+S_{1} a_{n-2}+S_{2} a_{n-1}+S_{3} a_{n}=0 \\
& \cdots \cdots
\end{aligned}
$$

$$
S_{1}=-\frac{a_{n-1}}{a_{n}}
$$

$$
S_{2}=-\frac{2 a_{n-2}}{a_{n}}+\frac{a^{2}{ }_{n-1}}{a_{n}^{2}}
$$

$$
S_{3}=-\frac{3 a_{n-3}}{a_{n}}+\frac{3 a_{n-1} a_{n-2}}{a_{n}^{2}}-\frac{a^{3}{ }_{n-1}}{a_{n}^{3}}
$$

1.220 If $f(x)$ is divided by $x-h$ the result is

$$
f(x)=(x-h) Q+R .
$$

Q is the quotient and R the remainder. This operation may be readily performed as follows:

Write in line the values of $a_{0}, a_{1}, \ldots, a_{n}$. If any power of x is missing write \circ in the corresponding place. Multiply a_{0} by h and place the product in the second line under a_{1}; add to a_{1} and place the sum in the third line under a_{1}. Multiply this sum by h and place the product in the second line under a_{2}; add to a_{2} and place the sum in the third line under a_{2}. Continue this series of operations until the third line is full. The last term in the third line is the remainder, R. The first term in the third line, which is a_{0}, is the coefficient of x^{n-1} in the quotient, Q; the second term is the coefficient of x^{n-2}, and so on.
1.221 It follows from 1.220 that $f(h)=R$. This gives a convenient way of evaluating $f(x)$ for $x=h$.
1.222 To express $f(x)$ in the form:

$$
f(x)=A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots .+A_{n-1}(x-h)+A_{n}
$$

By 1.220 form $f(h)=A_{n}$. Repeat this process with each quotient, and the last term of each line of sums will be a succeeding value of the series of coefficients $A_{n}, A_{n-1}, \ldots, \ldots, A_{0}$.

Example:

$$
f(x)=3 x^{5}+2 x^{4}-8 x^{2}+2 x-4 . \quad h=2
$$

$$
3=A_{0}
$$

Thus:

$$
\begin{aligned}
Q & =3 x^{4}+8 x^{3}+16 x^{2}+24 x+50 \\
R & =f(2)=96 \\
f(x) & =3(x-2)^{5}+32(x-2)^{4}+136(x-2)^{3}+280(x-2)^{2}+274(x-2)+96
\end{aligned}
$$

TRANSFORMATION OF EQUATIONS

1.230 To transform the equation $f(x)=0$ into one whose roots all have their signs changed: Substitute $-x$ for x.
1.231 To transform the equation $f(x)=0$ into one whose roots are all multiplied by a constant, m : Substitute x / m for x.
1.232 To transform the equation $f(x)=0$ into one whose roots are the reciprocals of the roots of the given equation: Substitute I / x for x and multiply by x^{n}.
1.233 To transform the equation $f(x)=0$ into one whose roots are all increased or diminished by a constant, h : Substitute $x \pm h$ for x in the given equation,
the upper sign being used if the roots are to be diminished and the lower sign if they are to be increased. The resulting equation will be:

$$
f(\pm h)+x f^{\prime}(\pm h)+\frac{x^{2}}{2!}!^{\prime \prime}(\pm h)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(\pm h)+\ldots=0
$$

where $f^{\prime}(x)$ is the first derivative of $f(x), f^{\prime \prime}(x)$, the second derivative, etc. The resulting equation may also be written:

$$
A_{0} x^{n}+A_{1} x^{n-1}+A_{2} x^{n-2}+\ldots \ldots+A_{n-1} x+A_{n}=0
$$

where the coefficients may be found by the method of 1.222 if the roots are to be diminished. To increase the roots by h change the sign of h.

MULTIPLE ROOTS

1.240 If c is a multiple root of $f(x)=0$, of order m, i.e.. repeated m times, then

$$
f(x)=(x-c)^{m} Q ; \quad R=0
$$

c is also a multiple root of order m - I of the first derived equation, $f^{\prime}(x)=0$; of order $m-2$ of the second derived equation, $f^{\prime \prime}(x)=0$, and so on.
1.241 The equation $f(x)=0$ will have no multiple roots if $f(x)$ and $f^{\prime}(x)$ have no common divisor. If $F(x)$ is the greatest common divisor of $f(x)$ and $f^{\prime}(x)$, $f(x) / F(x)=f_{1}(x)$, and $f_{1}(x)$ will have no multiple roots.
1.250 An equation of odd degree, n, has at least one real root whose sign is opposite to that of a_{n}.
1.251 An equation of even degree, n, has one positive and one negative real root if a_{n} is negative.
1.252 The equation $f(x)=0$ has as many real roots between $x=x_{1}$ and $x=x_{2}$ as there are changes of sign in $f(x)$ between x_{1} and x_{2}.
1.253 Descartes' Rule of Signs: No equation can have more positive roots than it has changes of sign from + to - and from - to + , in the terms of $f(x)$. No equation can have more negative roots than there are changes of sign in $f(-x)$.
1.254 If $f(x)=0$ is put in the form

$$
A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots \ldots+A_{n}=0
$$

by 1.222 , and $A_{0}, A_{1}, \ldots, A_{n}$ are all positive, h is an upper limit of the positive roots.

If $f(-x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the negative roots.

If $f(\mathrm{I} / x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the positive roots. And with $f(-\mathrm{I} / x)=0, h$ is an upper limit of the negative roots.

1.255 Sturm's Theorem. Form the functions:

$$
\begin{aligned}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n} \\
& f_{1}(x)=f^{\prime}(x)=n a_{0} x^{n-1}+\left(n-\text { 1) } a_{1} x^{n-2}+\ldots+a_{n-1}\right. \\
& f_{2}(x)=-R_{1} \text { in } f(x)=Q_{1} f_{1}(x)+R_{1} \\
& f_{3}(x)=-R_{2} \text { in } f_{1}(x)=Q_{2} f_{2}(x)+R_{2}
\end{aligned}
$$

The number of real roots of $f(x)=0$ between $x=x_{1}$ and $x=x_{2}$ is equal to the number of changes of sign in the series $f(x), f_{1}(x), f_{2}(x), \ldots$ when x_{1} is substituted for x minus the number of changes of sign in the same series when x_{2} is substituted for x. In forming the functions f_{1}, f_{2}, \ldots numerical factors may be introduced or suppressed in order to remove fractional coefficients.

Example:

$$
\begin{aligned}
f(x) & =x^{4}-2 x^{3}-3 x^{2}+10 x-4 \\
f_{1}(x) & =2 x^{3}-3 x^{2}-3 x+5 \\
f_{2}(x) & =9 x^{2}-27 x+11 \\
f_{3}(x) & =-8 x-3 \\
f_{4}(x) & =-1433
\end{aligned}
$$

	f	f_{1}	f_{2}	f_{3}	f_{4}	
$x=-\infty$	+	-	+	+	-	3 changes
$x=0$	-	+	+	-	-	2 changes
$x=+\infty$	+	+	+	-	-	I change

Therefore there is one positive and one negative real root.
If it can be seen that all the roots of any one of Sturm's functions are imaginary it is unnecessary to calculate any more of them after that one.

If there are any multiple roots of the equation $f(x)=0$ the series of Sturm's functions will terminate with $f_{r}, r<n . f_{r}(x)$ is the highest common factor of f and f_{1}. In this case the number of real roots of $f(x)=0$ lying between $x=x_{1}$ and $x=x_{2}$, each multiple root counting only once, will be the difference between the number of changes of sign in the series $f, f_{1}, f_{2}, \ldots, f_{r}$ when x_{1} and x_{2} are successively substituted in them.
1.256 Routh's rule for finding the number of roots whose real parts are positive. (Rigid Dynamics, Part II, Art. 297.)

Arrange the coefficients in two rows:

x^{n}	a_{0}	a_{2}	a_{4}	\ldots
x^{n-1}	a_{1}	a_{3}	a_{5}	\cdots

Form a third row by cross-multiplication:
$x^{n-2} \quad \frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \quad \frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \quad \frac{a_{1} a_{6}-a_{0} a_{7}}{a_{1}}$
Form a fourth row by operating on these last two rows by a similar crossmultiplication. Continue this operation until there are no terms left. The number of variations of sign in the first column gives the number of roots whose real parts are positive.

If there are any equal roots some of the subsidiary functions will vanish. In place of one which vanishes write the differential coefficient of the last one which does not vanish and proceed in the same way. At the left of each row is written the power of x corresponding to the first subsidiary function in that row. This power diminishes by 2 for each succeeding coefficient in the row.

Any row may be multiplied or divided by any positive quantity in order to remove fractions.

DETERMINATION OF THE ROOTS OF AN EQUATION

1.260 Newton's Method. If a root of the equation $f(x)=0$ is known to lie between x_{1} and x_{2} its value can be found to any desired degree of approximation by Newton's method. This method can be applied to transcendental equations as well as to algebraic equations.

If b is an approximate value of a root,

$$
\begin{aligned}
& b-\frac{f(b)}{f^{\prime}(b)}=c \text { is a second approximation, } \\
& c-\frac{f(c)}{f^{\prime}(c)}=d \text { is a third approximation. }
\end{aligned}
$$

This process may be repeated indefinitely.
1.261 Horner's Method for approximating to the real roots of $f(x)=0$.

Let p_{1} be the first approximation, such that $p_{1}+I>c>p_{1}$, where c is the root sought. The equation can always be transformed into one in which this condition holds by multiplying or dividing the roots by some power of io by 1.231. Diminish the roots by p_{1} by 1.233 . In the transformed equation

$$
A_{0}\left(x-p_{2}\right)^{n}+A_{1}\left(x-p_{1}\right)^{n-1}+\ldots+A_{n-1}\left(x-p_{1}\right)+A_{n}=0
$$

put

$$
\frac{p_{2}}{10}=\frac{A_{n}}{A_{n-1}}
$$

and diminish the roots by p_{2} / ro, yielding a second transformed equation

$$
B_{0}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n}+B_{1}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n-1}+\ldots+B_{n}=0 .
$$

If B_{n} and B_{n-1} are of the same sign p_{2} was taken too large and must be diminished. Then take

$$
\frac{p_{3}}{100}=\frac{B_{n}}{B_{n-1}}
$$

and continue the operation. The required root will be:

$$
c=p_{1}+\frac{p_{2}}{10}+\frac{p_{3}}{100}+\ldots
$$

1.262 Graeffe's Method. This method determines approximate values of all the roots of a numerical equation, complex as well as real. Write the equation of the nth degree

$$
f(x)=a_{0} x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-\ldots \pm a_{n}=0 .
$$

The product

$$
f(x) \cdot f(-x)=A_{0} x^{2 n}-A_{1} x^{2 n-2}+A_{2} x^{2 n-4}-\ldots \pm A_{n}=0
$$

contains only even powers of x. It is an equation of the nth degree in x^{2}. The coefficients are determined by

$$
\begin{aligned}
& A_{0}=a_{0}{ }^{2} \\
& A_{1}=a_{1}{ }^{2}-2 a_{0} a_{2} \\
& A_{2}=a_{2}^{2}-2 a_{1} a_{3}+2 a_{0} a_{4} \\
& A_{3}=a_{3}^{2}-2 a_{2} a_{4}+2 a_{1} a_{5}-2 a_{0} a_{6} \\
& A_{4}=a_{4}^{2}-2 a_{3} a_{5}+2 a_{2} a_{6}-2 a_{1} a_{7}+2 a_{0} a_{8} \\
& \cdots \cdots \cdots
\end{aligned}
$$

The roots of the equation

$$
A_{0} y^{n}-A_{1} y^{n-1}+A_{2} y^{n-2}-\ldots \pm A_{n}=0
$$

are the squares of the roots of the given equation. Continuing this process we get an equation

$$
R_{0} u^{n}-R_{1} u^{n-1}+R_{2} u^{n-2}-\ldots \pm R_{n}=0
$$

whose roots are the 2^{γ} th powers of the roots of the given equation. Put $\lambda=2^{r}$. Let the roots of the given equation be $c_{1}, c_{2}, \ldots, c_{n}$. Suppose first that

$$
c_{1}>c_{2}>c_{3}>\ldots \ldots>c_{n}
$$

Then for large values of λ,

$$
c_{1}^{\lambda}=\frac{R_{1}}{R_{0}}, \quad c_{2}^{\lambda}=\frac{R_{2}}{R_{1}}, \quad \ldots, \quad c_{n}^{\lambda}=\frac{R_{n}}{R_{n-1}} .
$$

If the roots are real they may be determined by extracting the λ th roots of these quantities. Whether they are \pm is determined by taking the sign which approximately satisfies the equation $f(x)=0$.

Suppose next that complex roots enter so that there are equalities among the absolute values of the roots. Suppose that

$$
\begin{gathered}
\left|c_{1}\right| \geqslant\left|c_{2}\right| \geqslant\left|c_{3}\right| \geqslant \ldots \geqslant\left|c_{p}\right| ; \quad\left|c_{p}\right|>\left|c_{p+1}\right| ; \\
\left|c_{p+1}\right| \geqslant\left|c_{p+2}\right| \geqslant \ldots \geqslant\left|c_{n}\right|
\end{gathered}
$$

?

Then if λ is large enough so that $c_{p}{ }^{\lambda}$ is large compared to $c_{p+1}{ }^{\lambda}, c_{1}{ }^{\lambda}, c_{2}{ }^{\lambda}, \ldots$ $c_{p}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{0} u^{p}-R_{1} u^{p-1}+R_{2} u^{p-2}-\ldots \pm R_{p}=0
$$

and $c_{p+1}{ }^{\lambda}, c_{p+2^{2}}{ }^{\lambda}, \ldots, c_{n}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{p} u^{n-p}-R_{p+1} u^{n-p-1}+R_{p+2} U^{n-p-2}-\ldots \pm R_{n}=0 .
$$

Therefore when λ is large enough the given equation breaks down into a number of simpler equations. This stage is shown in the process of deriving the successive equations when certain of the coefficients are obtained from those of the preceding equation simply by squaring.

References: Encyklopadie der Math. Wiss. I, i, 3 a (Runge). Barrstow: Applied Aerodynamics, pp. 553-560; the solution of a numerical equation of the 8th degree is given by Graeffe's Method.
1.270 Quadratic Equations.

$$
x^{2}+2 a x+b=0
$$

The roots are:

$$
\begin{aligned}
x_{1} & =-a+\sqrt{a^{2}-b} \\
x_{2} & =-a-\sqrt{a^{2}-b} \\
x_{1}+x_{2} & =-2 a \\
x_{1} x_{2} & =b . \\
a^{2}>b & \text { roots are real, } \\
a^{2}<b & \text { roots are complex, } \\
a^{2}=b & \text { roots are equal. }
\end{aligned}
$$

If
1.271 Cubic equations.
(1) $x^{3}+a x^{2}+b x+c=0$.

Substitute
(2) $x=y-\frac{a}{3}$
(3) $y^{3}-3 p y-2 q=0$
where

$$
\begin{aligned}
& 3 p=\frac{a^{2}}{3}-b \\
& 2 q=\frac{a b}{3}-\frac{2}{27} a^{3}-c .
\end{aligned}
$$

Roots of (3):

$$
\begin{aligned}
& \text { If } p>0, q>0, q^{2}>p^{3} \\
& \qquad \cosh \phi=\frac{q}{\sqrt{p^{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=2 \sqrt{p} \cosh \frac{\phi}{3} \\
& y_{2}=-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
& y_{3}=-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q<0, q^{2}>p^{3}$,

$$
\begin{aligned}
\cosh \phi & =\frac{-q}{\sqrt{p^{3}}} \\
y_{1} & =-2 \sqrt{p} \cosh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p<0$

$$
\begin{aligned}
\sinh \phi & =\frac{q}{\sqrt{-p^{3}}} \\
y_{1} & =2 \sqrt{-p} \sinh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{-3 p} \cosh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{-3 p} \cosh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q^{2}<p^{3}$,

$$
\begin{aligned}
\cos \phi & =\frac{q}{\sqrt{p^{3}}} \\
y_{1} & =2 \sqrt{p} \cos \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+\sqrt{3 p} \sin \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-\sqrt{3 p} \sin \frac{\phi}{3}
\end{aligned}
$$

1.272 Biquadratic equations.

$$
a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}=0
$$

Substitute

$$
\begin{gathered}
x=y-\frac{a_{1}}{a_{0}} \\
y^{4}+\frac{6}{a_{0}^{2}} H y^{2}+\frac{4}{a_{0}^{3}} G y+\frac{\mathrm{I}}{a_{0}^{4}} F=0
\end{gathered}
$$

$$
\begin{aligned}
H & =a_{0} a_{2}{ }^{2}-a_{1}^{2} \\
G & =a_{0}^{2} a_{3}-3 a_{0} a_{1} a_{2}+2 a_{1}{ }^{3} \\
F & =a_{0}{ }^{3} a_{4}-4 a_{0}{ }^{2} a_{1} a_{3}+6 a_{0} a_{1}{ }^{2} a_{2}-3 a_{1}^{4} \\
I & =a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}{ }^{2} \\
F & =a_{0}{ }^{2} I-3 H^{2} \\
J & =a_{0} a_{2} a_{4}+2 a_{1} a_{2} a_{3}-a_{0} a_{3}{ }^{2}-a_{1}^{2} a_{4}-a_{2}{ }^{3} \\
\triangle & =I^{3}-27 J^{2}=\text { the discriminant } \\
G^{2} & +4 H^{3}=a_{0}{ }^{2}\left(H I-a_{0} J\right) .
\end{aligned}
$$

Nature of the roots of the biquadratic:
$\Delta=0$ Equal roots are present
Two roots only equal: I and J are not both zero
Three roots are equal: $I=J=0$
Two distinct pairs of equal roots: $G=0 ; \quad a_{0}{ }^{2} I-12 H^{2}=0$
Four roots equal: $H=I=J=0$.
$\Delta<0$ Two real and two complex roots
$\Delta>\circ$ Roots are either all real or all complex: $H<0$ and $a_{0}{ }^{2} I-\mathrm{I}_{2} H^{2}<0$ Roots all real $H>0$ and $a_{0}{ }^{2} I-{ }_{1} 2 H^{2}>0$ Roots all complex.

DETERMINANTS

1.300 A determinant of the nth order, with n^{2} elements, is written:
$\Delta=\left|\begin{array}{cccccc}a_{11} & a_{12} & a_{13} & \ldots & \ldots & \ldots \\ a_{21} & a_{22} & a_{23} & \ldots & a_{1 n} \\ a_{31} & a_{32} & a_{33} & \ldots & \ldots & \ldots\end{array}\right|=\left|a_{i j}\right|,\left(i, a_{2 n},=a_{1,}, \ldots,{ }_{n}\right)$
1.301 A determinant is not changed in value by writing rows for columns and columns for rows.
1.302 If two columns or two rows of a determinant are interchanged the resulting determinant is unchanged in value but is of the opposite sign.
1.303 A determinant vanishes if it has two equal columns or two equal rows.
1.304 If each element of a row or a column is multiplied by the same factor the determinant itself is multiplied by that factor.
1.305 A determinant is not changed in value if to each element of a row or column is added the corresponding element of another row or column multiplied by a common factor.
1.306 If each element of the l th row or column consists of the sum of two or more terms the determinant splits up into the sum of two or more determinants having for elements of the l th row or column the separate terms of the l th row or column of the given determinant.
1.307 If corresponding elements of two rows or columns of a determinant have a constant ratio the determinant vanishes.
1.308 If the ratio of the differences of corresponding elements in the p th and q th rows or columns to the differences of corresponding elements in the r th and s th rows or columns be constant the determinant vanishes.
1.309 If p rows or columns of a determinant whose elements are rational integral functions of x become equal or proportional when $x=h$, the determinant is divisible by $(x-h)^{p-1}$.

MULTIPLICATION OF DETERMINANTS

1.320 Two determinants of equal order may be multiplied together by the scheme:
where

$$
\left|a_{i j}\right| \times\left|b_{i j}\right|=\left|c_{i j}\right|
$$

$$
c_{i j}=a_{i 1} b_{j 1}+a_{i 2} b_{j 2}+\ldots+a_{i n} b_{j n}
$$

1.321 If the two determinants to be multiplied are of unequal order the one of lower order can be raised to one of equal order by bordering it; i.e. :
1.322 The product of two determinants may be written:

DIFFERENTIATION OF DETERMINANTS

1.330 If the elements of a determinant, Δ, are functions of a variable, t :
where the accents denote differentiation by t.

EXPANSION OF DETERMINANTS

1.340 The complete expansion of a determinant of the nth order contains n ! terms. Each of these terms contains one element from each row and one element from each column. Any term may be obtained from the leading term :

$$
a_{11} a_{22} a_{33} \ldots a_{n n}
$$

by kecping the first suffixes unchanged and permuting the second suffixes among $\mathrm{I}, 2,3, \ldots$. . n. The sign of any term is determined by the number of inversions from the second suffixes of the leading term, being positive if there is an even number of inversions and negative if there is an odd number of inversions.
1.341 The coefficient of $a_{i j}$ when the determinant Δ is fully expanded is:

$$
\frac{\partial \Delta}{\partial a_{i j}}=\Delta_{i j} .
$$

$\Delta_{i j}$ is the first minor of the determinant Δ corresponding to $a_{i j}$ and is a determinant of order $n-\mathrm{I}$. It may be obtained from Δ by crossing out the row and column which intersect in $a_{i j}$, and multiplying by $(-I)^{i+j}$.
1.342

$$
\begin{gathered}
a_{i 1} \Delta_{j 1}+a_{i 2} \Delta_{i 2}+\ldots+a_{i n} \Delta_{i n}=\frac{0 \text { if } i \neq j}{\Delta \text { if } i=j} \\
a_{1 i} \Delta_{1 i}+a_{2 i} \Delta_{2 j}+\ldots+a_{n i} \Delta_{n j}=\frac{0 \text { if } i \neq j}{\Delta \text { if } i=j} .
\end{gathered}
$$

1.343

$$
\frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=\frac{\partial \Delta_{k l}}{\partial a_{i j}}=\frac{\partial \Delta_{i j}}{\partial a_{k l}}
$$

is the coefficient of $a_{i j} a_{k l}$ in the complete expansion of the determinant Δ. It may be obtained from Δ, except for sign, by crossing out the rows and columns which intersect in $a_{i j}$ and $a_{k l}$.

1.344

$$
\begin{aligned}
\left|\Delta_{i j}\right| \times\left|a_{i j}\right| & =\Delta^{n} \\
\left|\Delta_{i j}\right| & =\Delta^{n-1} .
\end{aligned}
$$

The determinant $\left|\Delta_{i j}\right|$ is the reciprocal determinant to Δ.
1.345

$$
\Delta \cdot \frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=\left|\begin{array}{cc}
\Delta_{i j} & \Delta_{i l} \\
\Delta_{k j} & \Delta_{k l}
\end{array}\right|=\frac{\partial \Delta}{\partial a_{i j}} \frac{\partial \Delta}{\partial a_{k l}}-\frac{\partial \Delta}{\partial a_{i l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.346

$$
\Delta^{2} \frac{\partial^{3} \Delta}{\partial a_{i j} \partial a_{k l} \partial a_{p q}}=\left|\begin{array}{lll}
\Delta_{i j} & \Delta_{i l} & \Delta_{i q} \\
\Delta_{k j} & \Delta_{k l} & \Delta_{k q} \\
\Delta_{p i} & \Delta_{p l} & \Delta_{p q}
\end{array}\right|
$$

1.347

$$
\frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=-\frac{\partial^{2} \Delta}{\partial a_{i l} \partial a_{k j}}
$$

1.348 If $\Delta=0$,

$$
\frac{\partial \Delta}{\partial a_{i j}} \frac{\partial \Delta}{\partial a_{k l}}=\frac{\partial \Delta}{\partial a_{i l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.350 If $a_{i j}=a_{j i}$ the determinant is symmetrical. In a symmetrical determinant

$$
\Delta_{i j}=\Delta_{i i}
$$

1.351 If $a_{i j}=-a_{j i}$ the determinant is a skew determinant. In a skew determinant

$$
\Delta_{i j}=(-\mathrm{I})^{n-1} \Delta_{j i} .
$$

1.352 If $a_{i j}=-a_{i i}$, and $a_{i i}=0$, the determinant is a skew symmetrical determinant.

A skew symmetrical determinant of even order is a perfect square.
A skew symmetrical determinant of odd order vanishes.
1.360 A system of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots++a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots++a_{2 n} x_{n}=k_{2} \\
& \cdots \cdots \cdots \cdots \\
& \cdots \cdots \cdots+a_{n n} x_{n}=k_{n}
\end{aligned}
$$

has a solution:

$$
\Delta \cdot x_{i}=k_{1} \Delta_{1 i}+k_{2} \Delta_{2 i}+\ldots \ldots+k_{n} \Delta_{n i}
$$

provided that

$$
\Delta=\left|a_{i j}\right| \neq 0 .
$$

1.361 If $\Delta=0$, but all the first minors are not \circ,

$$
\Delta_{s s} \cdot x_{j}=x_{s} \Delta_{s j}+\sum_{r=\mathrm{r}}^{n} k_{r} \frac{\partial^{2} \Delta}{\partial a_{s s} \partial a_{r j}} \quad(j=\mathrm{I}, 2, \ldots n)
$$

where s may be any one of the integers $\mathrm{r}, 2, \ldots$. . n.
1.362 If $k_{1}=k_{2}=\ldots \ldots=k_{n}=0$, the linear equations are homogeneous, and if $\Delta=0$,

$$
\frac{x_{i}}{\Delta_{s i}}=\frac{x_{s}}{\Delta_{s s}} \quad(j=\mathbf{1}, 2, \ldots n) .
$$

1.363 The condition that n linear homogeneous equations in n variables shall be consistent is that the determinant, Δ, shall vanish.
1.364 If there are $n+\mathrm{I}$ linear equations in n variables:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots \cdots+a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots \cdots+a_{2 n} x_{n}=k_{2} \\
& \cdots \cdots \cdots \cdot \cdots \\
& \cdots \cdots \cdots \cdots+\cdots \cdot a_{n n} x_{n}=k_{n} \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots \cdots \cdots+c_{n} x_{n}=k_{n+1} \\
& c_{1} x_{1}+c_{2} x_{2}+\cdots \cdots \cdots+\cdots
\end{aligned}
$$

the condition that this system shall be consistent is that the determinant:

$$
\left|\begin{array}{cccccccc}
a_{11} & a_{12} & \ldots & \ldots & \ldots & a_{1 n} & k_{1} \\
a_{21} & a_{22} & \ldots & \ldots & \ldots & a_{2 n} & k_{2} \\
\cdots & \ldots & \ldots & \ldots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \ldots & \ldots & \ldots & \cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & \cdots & a_{n n} & k_{n} \\
c_{1} & c_{2} & \ldots & \ldots & \ldots & c_{n} & k_{n+1}
\end{array}\right|=0
$$

1.370 Functional Determinants.

If

$$
\begin{gathered}
y_{1}, y_{2}, \ldots, y_{n} \text { are } n \text { functions of } x_{1}, x_{2}, \ldots \ldots, x_{n}: \\
y_{k}=f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

the determinant:

$$
J=\left|\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{1}} \frac{\partial y_{1}}{\partial x_{2}} \cdots \cdots \cdot \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} \frac{\partial y_{2}}{\partial x_{2}} \cdots \cdots \cdots \cdot \frac{\partial y_{2}}{\partial x_{n}} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \cdot \\
\frac{\partial y_{n}}{\partial x_{1}} \frac{\partial y_{n}}{\partial x_{2}} \cdots \cdots \cdot \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right|=\left|\frac{\partial y_{i}}{\partial x_{j}}\right|=\frac{\partial\left(y_{1}, y_{2}, \ldots ., y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots ., x_{n}\right)}
$$

is the Jacobian.
1.371 If $y_{1}, y_{2}, \ldots \ldots, y_{n}$ are the partial derivatives of a function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right):$

$$
y_{i}=\frac{\partial F}{\partial x_{i}}(i=\mathrm{I}, 2, \ldots, n)
$$

the symmetrical determinant:

$$
H=\left|\frac{\partial^{2} F}{\partial x_{i} \partial x_{i}}\right|=\frac{\partial\left(\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}} \ldots \frac{\partial F}{\partial x_{n}}\right)}{\partial\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)}
$$

is the Hessian.
1.372 If $y_{1}, y_{2}, \ldots \ldots, y_{n}$ are given as implicit functions of $x_{1}, x_{2}, \ldots \ldots$, x_{n} by the n equations:

$$
\begin{aligned}
& F_{r}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}, x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
& \ldots \ldots \\
& F_{n}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}, x_{1}, x_{2}, \ldots \ldots ., x_{n}\right)=0
\end{aligned}
$$

then

$$
\frac{\partial\left(y_{1}, y_{2}, \ldots ., y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=(-\mathrm{I})^{n} \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \div \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}
$$

1.373 If the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other the Jacobian, J, vanishes; and if $J=0$ the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other but are connected by a relation

$$
F\left(y_{1}, y_{2}, \ldots, \ldots, y_{n}\right)=0
$$

1.374 Covariant property. If the variables $x_{1}, x_{2}, \ldots, x_{n}$ are transformed by a linear substitution:

$$
x_{i}=a_{i 1} \xi_{1}+a_{i 2} \xi_{2}+\ldots \ldots+a_{i n} \xi_{n} \quad(i=1,2, \ldots, n)
$$

and the functions $y_{1}, y_{2}, \ldots \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots \ldots, x_{n}$ become the functions $\eta_{1}, \eta_{2}, \ldots \ldots, \eta_{n}$ of $\xi_{1}, \xi_{2}, \ldots \ldots \ldots, \xi_{n}$:

$$
\begin{gathered}
J^{\prime}=\frac{\partial\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)}{\partial\left(\xi_{1}, \xi_{2}, \ldots ., \xi_{n}\right)}=\frac{\partial\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots ., x_{n}\right)} \cdot\left|a_{i j}\right| \\
J^{\prime}=J \cdot\left|a_{i j}\right|
\end{gathered}
$$

or
where $\left|a_{i j}\right|$ is the determinant or modulus of the transformation.
For the Hessian,

$$
H^{\prime}=H \cdot\left|a_{i j}\right|^{2} .
$$

1.380 To change the variables in a multiple integral:

$$
I=\int \ldots, \ldots \int F\left(y_{1}, y_{2}, \ldots . ., y_{n}\right) d y_{1} d y_{2} \ldots . \ldots d y_{n}
$$

to new variables, $x_{1}, x_{2}, \ldots, x_{n}$ when $y_{1}, y_{2}, \ldots, y_{n}$ are given functions of x_{1}, x_{2}, \ldots. . x_{n} :

$$
I=\int \ldots . . \int \frac{\partial\left(y_{1}, y_{2}, \ldots ., y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots ., x_{n}\right)} F(x) d x_{1} d x_{2} \ldots . . d x_{n}
$$

where $F(x)$ is the result of substituting $x_{1}, x_{2}, \ldots, x_{n}$ for $y_{1}, y_{2}, \ldots, y_{n}$ in $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

PERMUTATIONS AND COMBINATIONS

1.400 Given n different elements. Represent each by a number, $\mathrm{I}, 2,3, \ldots$. . ., n. The number of permutations of the n different elements is,

$$
{ }_{n} \mathrm{P}_{n}=n!
$$

e.g., $n=3$:

$$
(\mathrm{I} 23),(\mathrm{I} 32),(2 \mathrm{I} 3),(23 \mathrm{I}),(3 \mathrm{I} 2),(32 \mathrm{I})=6=3!
$$

1.401 Given n different elements. The number of permutations in groups of $r(r<n)$, or the number of r-permutations, is,

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

$$
\text { e.g., } n=4, r=3 \text { : }
$$

$$
\begin{aligned}
& (\mathrm{I} 23)(\mathrm{I} 32)(\mathrm{I} 24)(\mathrm{I} 42)(\mathrm{I} 34)(\mathrm{I} 43)(234)(243)(23 \mathrm{I})(2 \mathrm{I} 3)(2 \mathrm{II})(24 \mathrm{I})(34 \mathrm{I})(3 \mathrm{II}) \\
& (3 \mathrm{II})(32 \mathrm{I})(324)(342)(4 \mathrm{I} 2)(42 \mathrm{I})(43 \mathrm{I})(4 \mathrm{I} 3)(423)(432)=24
\end{aligned}
$$

1.402 Given n different elements. The number of ways they can be divided into m specified groups, with $x_{1}, x_{2}, \ldots, x_{m}$ in each group respectively, $\left(x_{1}+x_{2}+\ldots+x_{m}\right)=n$ is

$$
\frac{n!}{x_{1}!x_{2}!\ldots . x_{m}!}
$$

e.g., $n=6, m=3, x_{1}=2, x_{2}=3, x_{3}=\mathrm{I}$:

$(\mathrm{I} 2)(345)(6)$	$(\mathrm{I} 3)(245)(6)$
$(23)(\mathrm{I} 45)(6)$	$(24)(\mathrm{I} 35)(6)$
$(34)(\mathrm{I} 25)(6)$	$(35)(\mathrm{I} 24)(6)$
$(45)(\mathrm{I} 23)(6)$	$(25)(234)(6)$
$(\mathrm{I} 4)(235)(6)$	$(\mathrm{I} 5)(234)(6)$

1.403 Given n elements of which x_{1} are of one kind, x_{2} of a second kind,, x_{m} of an m th kind. The number of permutations is

$$
\begin{gathered}
\frac{n!}{x_{1}!x_{2}!\ldots \cdots x_{m}!} \\
x_{1}+x_{2}+\ldots \ldots+x_{m}=n
\end{gathered}
$$

1.404 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are allowed, is

$$
\frac{(m+n-1)!}{(m-1)!}
$$

e.g., $n=3, m=2$:

$$
\begin{aligned}
& (\mathrm{I} 23, \mathrm{O})(\mathrm{I} 32, \mathrm{O})(2 \mathrm{I} 3, \mathrm{O})(23 \mathrm{I}, \mathrm{O})(3 \mathrm{I} 2, \mathrm{O})(32 \mathrm{I}, \mathrm{O})(\mathrm{I} 2,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I}) \\
& (32, \mathrm{I})(\mathrm{I}, 23)(\mathrm{I}, 32)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})(0, \mathrm{I} 23)(0,2 \mathrm{I} 3)(0, \mathrm{I} 32)(\mathrm{o}, 23 \mathrm{I}) \\
& (\mathrm{O}, 3 \mathrm{I} 2)(\mathrm{o}, 32 \mathrm{I})=24
\end{aligned}
$$

1.405 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are not allowed, so that each group contains at least one element, is

$$
\frac{n!(n-\mathrm{I})!}{(n-m)!(m-\mathrm{I})!}
$$

e.g., $n=3, m=2$:

$$
(\mathrm{I} 2,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I})(32, \mathrm{I})(\mathrm{I}, 23)(\mathrm{I}, 32)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})=\mathrm{I} 2
$$

1.406 Given n different elements. The number of ways they can be combined into m specified groups when blank groups are allowed is

$$
\begin{aligned}
\text { e.g., } n=3, m=2: \\
(\mathrm{I} 23,0)(\mathrm{I} 2,3)(\mathrm{I} 3,2)(23, \mathrm{I})(\mathrm{I}, 23)(2,3 \mathrm{I})(3, \mathrm{I} 2)(0,123)=8
\end{aligned}
$$

1.407 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are allowed is

$$
\frac{(n+m-1)!}{(m-1)!n!}
$$

e.g., $n=6, m=3$:

Group I 655444333322222 IIIIIIOOOOOOO

Group 3 ○○IO2IO 3 I 204 I 3205 I 42306 I 5243
1.408 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are not allowed, so that each group shall contain at least one element, is

$$
\frac{(n-\mathrm{I})!}{(m-\mathrm{I})!(n-m)!}
$$

binomial coefficients

1.51

I. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}={ }_{n} C_{k}=\frac{n(n-\mathrm{I})(n-2) \ldots(n-k+\mathrm{I})}{k!}$.
2. $\binom{n}{k}+\binom{n}{k+\mathrm{I}}=\binom{n+\mathrm{I}}{k+\mathrm{I}}$.
3. $\binom{n}{0}=\mathrm{I},\binom{n}{\mathrm{I}}=n,\binom{n}{n}=\mathrm{I}$.
4. $\binom{-n}{k}=(-\mathrm{I})^{k}\binom{n+k-\mathrm{I}}{k}$.
5. $\binom{n}{k}=0$ if $n<k$.
6. $\binom{k}{k}+\binom{k+\mathrm{I}}{k}+\binom{k+2}{k}+\ldots+\binom{n}{k}=\binom{n+\mathrm{I}}{k+\mathrm{I}}$.
7. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots+(-\mathrm{I})^{k}\binom{n}{k}=(-\mathrm{I})^{k}\binom{n-\mathrm{I}}{k}$.
8. $\binom{n}{k}+\binom{n}{k-\mathrm{I}}\binom{r}{\mathrm{I}}+\binom{n}{k-2}\binom{r}{2}+\ldots+\binom{r}{k}=\binom{n+r}{k}$.
9. $\mathrm{I}+\binom{n}{\mathrm{I}}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}$.
10. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots+(-\mathrm{I})^{n}\binom{n}{n}=0$.
II. $I+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
1.52 Table of Binomial Coefficients.

						n					
$\binom{n}{\mathrm{I}}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	$\left.\begin{array}{l}n \\ 7\end{array}\right) \quad($	$\binom{n}{9}$	$\binom{n}{$ IO }			$\binom{n}{12}$
I											
2	I										
3	3	1									
4	6	4	I								
5	10	Io	5	I							
6	15	20	15	6	I						
7	2 I	35	35	2 I	7	I					
8	28	56	70	56	28	8	1				
9	36	84	126	126	84	36	9	1			
10	45	120	210	252	210	120	45	10	I		
II	55	165	330	462	462	330	165	55	II		
12	66	220	495	792	924	792	495	220	66	12	I

1.521 Glaisher, Mess. of Math. 47, p. 97, 1918, has given a complete table of binomial coefficients, from $n=2$ to $n=50$, and $k=0$ to $k=n$.
1.61 Resolution into Partial Fractions.

If $F(x)$ and $f(x)$ are two polynomials in x and $f(x)$ is of higher degree than $F(x)$,

$$
\frac{F(x)}{f(x)}=\sum \frac{F(a)}{\phi(a)} \frac{\mathrm{I}}{x-a}+\sum \frac{\mathrm{I}}{(p-\mathrm{I})!} \frac{d^{p-1}}{d c^{p-1}}\left[\frac{F(c)}{\phi(c)} \frac{\mathrm{I}}{x-c}\right]
$$

where

$$
\begin{aligned}
\phi(a) & =\left[\frac{f(x)}{x-a}\right]_{x=a} \\
\phi(c) & =\left[\frac{f(x)}{(x-c)^{p}}\right]_{x=c}
\end{aligned}
$$

The first summation is to be extended for all the simple roots, a, of $f(x)$ and the second summation for all the multiple roots, c, of order p, of $f(x)$.

FINITE DIFFERENCES AND SUMS.

1.811 Definitions.
I. $\Delta f(x)=f(x+h)-f(x)$.
2. $\Delta^{2} f(x)=\Delta f(x+h)-\Delta f(x)$.

$$
=f(x+2 h)-2 f(x+h)+f(x)
$$

3. $\Delta^{3} f(x)=\Delta^{2} f(x+h)-\Delta^{2} f(x)$.

$$
=f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x)
$$

4. $\Delta^{n} f(x)=f(x+n h)-\frac{n}{\mathrm{I}} f(x+\overline{n-\mathrm{I}} h)+\frac{n(n-\mathrm{I})}{2!} f(x+\overline{n-2 h})-\ldots$

$$
+(-1)^{n} f(x)
$$

1.812

1. $\Delta[c f(x)]=c \Delta f(x) \quad(c$ a constant $)$.
2. $\Delta\left[f_{1}(x)+f_{2}(x)+\ldots.\right]=\Delta f_{1}(x)+\Delta f_{2}(x)+\ldots$.
3. $\Delta\left[f_{1}(x) \cdot f_{2}(x)\right]=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x+h) \cdot \Delta f_{1}(x)$

$$
=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x) \cdot \Delta f_{1}(x)+\Delta f_{1}(x) \cdot \Delta f_{2}(x)
$$

4. $\Delta \frac{f_{1}(x)}{f_{2}(x)}=\frac{f_{2}(x) \cdot \Delta f_{1}(x)-f_{1}(x) \cdot \Delta f_{2}(x)}{f_{2}(x) \cdot f_{2}(x+h)}$.
1.813 The nth difference of a polynomial of the nth degree ${ }^{\circ}$ is constant. If

$$
\begin{aligned}
f(x) & =a_{0} x_{n}+a_{1} x^{n-1}+\ldots .+a_{n-1} x+a_{n} \\
\Delta^{n} f(x) & =n!a_{0} h^{n} .
\end{aligned}
$$

1.82
I. $\frac{\Delta^{m}\{(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-\mathrm{I} h})\}}{n(n-\mathrm{I})(n-2) \ldots(n-m+\mathrm{I}) h^{m}}$

$$
=(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-m-\mathrm{r}} h)
$$

2. $\Delta^{m} \frac{1}{(x+b)(x+b+h)(x+b+2 h) \ldots(x+b+\overline{n-1} h)}$

$$
=(-\mathrm{I})^{m} \frac{n(n+\mathrm{I})(n+2) \ldots \ldots(n+m-\mathrm{I}) h^{m}}{(x+b)(x+b+h)(x+b+2 h) \ldots(x+b+\overline{n+m-1} h)} \cdot
$$

3. $\Delta^{m} a^{x}=\left(a^{h}-1\right)^{m} a^{x}$
4. $\Delta \log f(x)=\log \left(I+\frac{\Delta f(x)}{f(x)}\right)$.
5. $\Delta^{m} \sin (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \sin \left(c x+d+m \frac{c h+\pi}{2}\right)$.
6. $\Delta^{m} \cos (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \cos \left(c x+d+m \frac{c h+\pi}{2}\right)$.
1.83 Newton's Interpolation Formula.

$$
\begin{aligned}
f(x)=f(a) & +\frac{x-a}{h} \Delta f(a)+\frac{(x-a)(x-a-h)}{2!h^{2}} \Delta^{2} f(a)+ \\
& +\frac{(x-a)(x-a-h)(x-a-2 h)}{3!h^{3}} \Delta^{3} f(a)+\ldots \ldots \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-\overline{n-1} h)}{n!h^{n}} \Delta^{n} f(a) \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-n h)}{n+1!} f^{n+1)}(\xi)
\end{aligned}
$$

where ξ has a value intermediate between the greatest and least of $a,(a+n h)$, and x.

1.831

$$
\begin{aligned}
f(a+n h)={ }^{\circ} f(a) & +\frac{n}{1!} \Delta f(a)+\frac{n(n-1)}{2!} \Delta^{2} f(a)+\frac{n(n-1)(n-2)}{3!} \Delta^{3} f(a) \\
& +\ldots+n \Delta^{n-1} f(a)+\Delta^{n} f(a)
\end{aligned}
$$

1.832 Symbolically
I. $\Delta=e^{h \frac{\partial}{\partial x}}-\mathrm{I}$
2. $f(a+n h)=(\mathrm{I}+\Delta)^{n} f(a)$
1.833 If $u_{0}=f(a), u_{1}=f(a+h), u_{2}=f(a+2 h), \ldots, u_{x}=f(a+x h)$, $u_{x}=(\mathrm{I}+\Delta)^{x} u_{0}=e^{h x} \frac{\partial}{\partial x} u_{0}$.
1.840 The operator inverse to the difference, Δ, is the sum, Σ.

$$
\Sigma=\Delta^{-1}=\frac{\mathrm{I}}{e^{\lambda \frac{\partial}{\partial x}}-\mathrm{I}}
$$

1.841 If $\Delta F(x)=f(x)$,

$$
\Sigma f(x)=F(x)+C
$$

where C is an arbitrary constant.

1.842

1. $\Sigma c f(x)=c \Sigma f(x)$.
2. $\Sigma\left[f_{1}(x)+f_{2}(x)+\ldots\right]=\Sigma f_{1}(x)+\Sigma f_{2}(x)+\ldots$
3. $\Sigma\left[f_{1}(x) \cdot \Delta f_{2}(x)\right]=f_{1}(x) \cdot f_{2}(x)-\Sigma\left[f_{2}(x+h) \cdot \Delta f_{1}(x)\right]$.
1.843 Indefinite Sums.
I. $\Sigma[(x-b)(x-b-h)(x-b-2 h) \cdots(x-b-\overline{n-1} h)]$

$$
=\frac{\mathrm{I}}{(n+\mathrm{I}) h}(x-b)(x-b-h) \ldots(x-b-n h)+C .
$$

2. $\sum \frac{1}{(x+b)(x+b+h) \ldots(x+b+\overline{n-\mathrm{x}} h)}$

$$
=-\frac{\mathbf{I}}{(n-\mathbf{I}) h} \frac{\mathbf{I}}{(x+b)(x+b+h) \ldots(x+b+\overline{n-2} h)}+C
$$

3. $\sum a^{x}=\frac{a^{x}}{a^{h}-1}+C$.
4. $\sum \cos (c x+d)=\frac{\sin \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
5. $\sum \sin (c x+d)=-\frac{\cos \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
1.844 If $f(x)$ is a polynomial of degree n,

$$
\begin{gathered}
\sum a^{x} f(x)=\frac{a^{x}}{a^{h}-\mathrm{I}}\left\{f(x)-\frac{a^{h}}{a^{h}-\mathrm{I}} \Delta f(x)+\left(\frac{a^{h}}{a^{h}-\mathrm{I}}\right)^{2} \Delta^{2} f(x)-\ldots\right. \\
+\left(\frac{-a^{h}}{a^{h}-\mathrm{I}}\right)^{n} \Delta^{n} f(x)+C
\end{gathered}
$$

1.845 If $f(x)$ is a polynomial of degree n,
and

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

$$
\begin{aligned}
\Sigma f(x) & =F(x)+C \\
F(x) & =c_{0} x^{n+1}+c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}
\end{aligned}
$$

where

$$
\begin{gathered}
(n+\mathrm{I}) h c_{0}=a_{0} \\
\frac{(n+\mathrm{I}) n}{2!} h^{2} c_{0}+n h c_{1}=a_{1} \\
\frac{(n+\mathrm{I}) n(n-\mathrm{I})}{3!} h^{3} c_{0}+\frac{n(n-\mathrm{I})}{2!} h^{2} c_{1}+(n-\mathrm{I}) h c_{2}=a_{2}
\end{gathered}
$$

The coefficient c_{n+1} may be taken arbitrarily.
1.850 Definite Sums. From the indefinite sum,

$$
\Sigma f(x)=F(x)+C
$$

a definite sum is obtained by subtraction,

$$
\sum_{a+m h}^{a+n h} f(x)=F(a+n h)-F(a+m h)
$$

1.851

$$
\begin{aligned}
\sum_{a}^{a+n h} f(x) & =f(a)+f(a+h)+f(a+2 h)+\ldots+f(a+\overline{n-ธ} h) \\
& =F(a+n h)-F(a)
\end{aligned}
$$

By means of this formula many finite sums may be evaluated.

1.852

$$
\begin{aligned}
\sum_{a}^{a+n h}(x & -b)(x-b-h)(x-b-2 h) \ldots(x-b \ldots \overline{k-\mathrm{I}} h) \\
& =\frac{(a-b+n h)(a-b+\overline{n-\mathrm{I}} h) \ldots(a-b+\overline{n-k} h)}{(k+\mathrm{I}) h} \\
& -\frac{(a-b)(a-b-h) \ldots(a-b-k h)}{(k+\mathrm{I}) h}
\end{aligned}
$$

1.853

$$
\begin{gathered}
\sum_{a}^{a+n h}(x-a)(x-a-h) \ldots(x-a-\overline{k-\mathrm{I}} h) \\
=\frac{n(n-\mathrm{I})(n-2) \ldots(n-k)}{(k+\mathrm{I})} h^{k} .
\end{gathered}
$$

1.854 If $f(x)$ is a polynomial of degree m it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x-a)+A_{2}(x-a)(x-a-h)+\ldots \\
& +A_{m}(x-a)(x-a-h) \ldots(x-a-\overline{m-I} h) \\
\sum_{a}^{a+n h} f(x)= & A_{0} n+A_{1} \frac{n(n-\mathrm{I})}{2} h+A_{2} \frac{n(n-\mathrm{I})(n-2)}{3} h^{2} \\
& +A_{m} \frac{n(n-\mathrm{I}) \ldots(n-m)}{(m+1)} h^{m} .
\end{aligned}
$$

1.855 If $f(x)$ is a polynomial of degree $(m-1)$ or lower, it can be expressed:

$$
\begin{gathered}
f(x)=A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-1} h) \\
+\ldots+A_{m-1}(x+m h) \ldots(x+2 h)
\end{gathered}
$$

and,
$\sum_{a}^{a+n h} \frac{f(x)}{x(x+h)(x+2 h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{1}{a(a+h) \ldots(a+\overline{m-\mathrm{I}} h)}\right.$

$$
\begin{aligned}
&\left.-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-\mathrm{I}} h)}\right\} \\
&+ \frac{A_{1}}{(m-\mathrm{I}) h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-2} h)}-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-2} h)}\right\} \\
&+\ldots \ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\} .
\end{aligned}
$$

1.856 If $f(x)$ is a polynomial of degree m it can be expressed:

$$
\begin{gathered}
f(x)=A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-1} h)+\ldots \\
+A_{m}(x+m h) \ldots(x+h)
\end{gathered}
$$

and,

$$
\begin{aligned}
& \sum_{a}^{a+n h} \frac{f(x)}{x(x+h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-\mathrm{I}} h)}\right. \\
& \left.\quad-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{m+n-\mathrm{I}} h)}\right\} \\
& \quad+\ldots \ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\}+A_{m} \sum_{a}^{a+n h} \frac{\mathrm{I}}{x}
\end{aligned}
$$

where,

$$
\sum_{a}^{a+n h} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a+h}+\frac{\mathrm{I}}{a+2 h}+\ldots+\frac{\mathrm{I}}{a+\overline{n-\mathrm{I}} h}
$$

1.86 Euler's Summation Formula.

$$
\begin{aligned}
& \sum_{a}^{b} f(x)= \frac{I}{h} \int_{a}^{b} f(z) d z+A_{1}\{f(b)-f(a)\}+A_{2} h\left\{f^{\prime}(b)-f^{\prime}(a)\right\} \\
&+\ldots+A_{m-1} h^{m-2}\left\{f^{(m-2)}(b)-f^{(m-2)}(a)\right\} \\
&-\int_{0}^{h} \phi_{m}(z) \sum_{x=a}^{x=b} \frac{d^{m} f(x+h-z)}{h d x^{m}} \cdot d z \\
& \phi_{m}(z)=\frac{z^{m}}{m!}+A_{1} \frac{h z^{m-1}}{(m-1)!}+A_{2} \frac{h^{2} z^{m-2}}{(m-2)!}+\ldots+A_{m-1} h^{m-1} z
\end{aligned}
$$

$m!\phi_{m}(z)$, with $h=\mathrm{I}$, is the Bernoullian polynomial.
$A_{1}=-\frac{1}{2}, A_{2 k+1}=0$; the coefficients $A_{2 k}$ are connected with Bernoulli's numbers (6.902), B_{k}, by the relation,

$$
A_{2 k}=(-\mathrm{I})^{k+1} \frac{B_{k}}{(2 k)!}
$$

$$
A_{1}=-\frac{\mathrm{I}}{2}, \quad A_{2}=\frac{\mathrm{I}}{\mathrm{I} 2}, \quad A_{4}=-\frac{\mathrm{I}}{720}, \quad A_{6}=\frac{\mathrm{I}}{30240} \ldots
$$

1.861

$$
\begin{aligned}
\sum_{a}^{b} f(x) & =\frac{\mathrm{I}}{h} \int_{a}^{b} f(z) d z-\frac{\mathrm{I}}{2}\{f(b)-f(a)\}+\frac{h}{\mathrm{I} 2}\left\{f^{\prime}(b)-f^{\prime}(a)\right\} \\
& -\frac{h^{3}}{720}\left\{f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right\}+\frac{h^{5}}{30240}\left\{f^{\mathrm{v}}(b)-f^{\mathrm{v}}(a)\right\} \ldots
\end{aligned}
$$

1.862

$$
\sum u_{x}=C+\int u_{x} d x-\frac{\mathrm{I}}{2} u_{x}+\frac{\mathrm{I}}{\mathrm{I} 2} \frac{d u_{x}}{d x}-\frac{\mathrm{I}}{720} \frac{d^{3} u_{x}}{d x^{3}}+\frac{\mathrm{I}}{30240} \frac{d^{5} u_{x}}{d x^{5}}-\ldots .
$$

SPECIAL FINITE SERIES

1.871 Arithmetical progressions. If s is the sum, a the first term, δ the common difference, l the last term, and n the number of terms,

$$
\begin{aligned}
s & =a+(a+\delta)+(a+2 \delta)+\ldots[a+(n-1) \delta] \\
l & =a+(n-1) \delta \\
s & =\frac{n}{2}[2 a+(n-1) \delta] \\
& =\frac{n}{2}(a+l) .
\end{aligned}
$$

1.872 Geometrical progressions.

$$
\begin{aligned}
& s=a+a p+a p^{2}+\ldots .+a p^{n-1} \\
& s=a \frac{p^{n}-1}{p-1}
\end{aligned}
$$

If $p<\mathrm{I}, n=\infty, s=\frac{a}{\mathrm{I}-p}$.
1.873 Harmonical progressions. a, b, c, d, \ldots. form an harmonical progression if the reciprocals, $\mathrm{I} / a, \mathrm{I} / b, \mathrm{I} / c, \mathrm{I} / d, \ldots$ form an arithmetical progression.

1.874.

1. $\sum_{x=\mathrm{I}}^{x=n} x=\frac{n(n+\mathrm{I})}{2}$
2. $\sum_{x=1}^{x=n} x^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
3. $\sum_{x=1}^{x=n} x^{2}=\frac{n(n+1)(2 n+\mathrm{I})}{6}$
4. $\sum_{x=1}^{x=n} x^{4}=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}$.
1.875 In general,
$\sum_{x=1}^{x=n} x^{k}=\frac{n^{k+1}}{k+I}+\frac{n^{k}}{2}+\frac{I}{2}\binom{k}{\mathrm{I}} B_{1} n^{k-1}-\frac{I}{4}\binom{k}{3} B_{2} n^{k-3}+\frac{I}{6}\binom{k}{5} B_{3} n^{k-5}-\ldots$
 coefficients (1.51); the series ends with the term in n if k is even, and with the term in n^{2} if k is odd.
1.876

$$
\begin{aligned}
\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2} & +\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}+\ldots .+\frac{\mathrm{I}}{n}=\gamma+\log n+\frac{\mathrm{I}}{2 n}-\frac{a_{2}}{n(n+\mathrm{I})} \\
& -\frac{a_{3}}{n(n+\mathrm{I})(n+2)}-\cdots \cdot
\end{aligned}
$$

$\gamma=$ Euler's constant $=0.5772156649 \ldots$

$$
\begin{aligned}
& a_{2}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{3}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{4}=\frac{\mathrm{I} 9}{80} \quad a_{k}=\frac{\mathrm{I}}{k} \int_{0}^{\mathrm{I}} x(\mathrm{I}-x)(2-x) \ldots . .(k-\mathrm{I}-x) d x \\
& a_{5}=\frac{9}{20}
\end{aligned}
$$

1.877

$$
\begin{gathered}
\frac{\mathrm{I}}{\mathrm{I}^{2}}+\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{3^{2}}+\ldots+\frac{\mathrm{I}}{n^{2}}=\frac{\pi^{2}}{6}-\frac{b_{1}}{n+\mathrm{I}}-\frac{b_{2}}{(n+\mathrm{I})(n+2)} \\
\frac{b_{3}}{(n+\mathrm{I})(n+2)(n+3)}-\ldots \ldots \\
b_{k}=\frac{(k-\mathrm{I})!}{k}
\end{gathered}
$$

1.878

$$
\begin{gathered}
\begin{array}{c}
\frac{\mathrm{I}}{\mathrm{I}^{3}}+\frac{\mathrm{I}}{2^{3}}+\frac{\mathrm{I}}{3^{3}}+\ldots .+\frac{\mathrm{I}}{n^{3}}=C-\frac{c_{2}}{(n+\mathrm{I})(n+2)} \\
-\frac{c_{3}}{(n+\mathrm{I})(n+2)(n+3)}-\cdots \cdot \\
C=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{3}}=\mathrm{I} .202056903^{2} \\
c_{k}= \\
=\frac{(k-\mathrm{I})!}{k}\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots .+\frac{\mathrm{I}}{k-\mathrm{I}}\right) .
\end{array} .
\end{gathered}
$$

1.879 Stirling's Formula.

$$
\begin{aligned}
& \log (n!)=\log \sqrt{2 \pi}+\left(n+\frac{\mathrm{I}}{2}\right) \log n-n \\
& \quad+\frac{A_{2}}{n}+\ldots+A_{2 k-2} \frac{(2 k-4)!}{n^{2 k-3}} \\
& \quad+\theta A_{2 k} \frac{(2 k-2)!}{n^{2 k-1}}
\end{aligned}
$$

$0<\theta<$ I. The coefficients A_{k} are given in 1.86.

1.88

I. $\mathrm{I}+\mathrm{I}!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)!$
2. $\mathrm{I} \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+\ldots+n(n+\mathrm{I})(n+2)=\frac{\mathrm{I}}{4} n(n+\mathrm{I})(n+2)(n+3)$.
3. $\mathrm{I} \cdot 2 \cdot 3 \ldots(r+2 \cdot 3 \cdot 4 \ldots(r+\mathrm{I})+\ldots \ldots(n+1)(n+2)$
... $(n+r-\mathrm{I})$

$$
=\frac{n(n+1)(n+2) \ldots(n+r)}{r+1}
$$

4. $\mathrm{I} \cdot p+2(p+\mathrm{I})+3(p+2)+\ldots \ldots+n(p+n-\mathrm{I})$

$$
=\frac{1}{6} n(n+1)(3 p+2 n-2)
$$

5. $p \cdot q+(p-\mathrm{I})(q-\mathrm{I})+(\dot{p}-2)(q-2)+\ldots(p-n)(q-n)$

$$
=\frac{1}{6} n[6 p q-(n-1)(3 p+3 q-2 n+1)]
$$

6. $\mathrm{I}+\frac{b}{a}+\frac{b(b+\mathrm{I})}{a(a+\mathrm{I})}+\ldots+\frac{b(b+\mathrm{I}) \ldots(b+n-\mathrm{I})}{a(a+\mathrm{I}) \ldots(a+n-\mathrm{I})}$.

$$
=\frac{b(b+\mathrm{I}) \ldots(b+n)}{(b+\mathrm{I}-a) a(a+\mathrm{I}) \ldots(a+n-\mathrm{I})}-\frac{a-\mathrm{I}}{b+\mathrm{I}-a} .
$$

II. GEOMETRY

2.00 Transformation of coördinates in a plane.
2.001 Change of origin. Let x, y be a system of rectangular or oblique coördinates with origin at O. Referred to x, y the coördinates of the new origin O^{\prime} are a, b. Then referred to a parallel system of coördinates with origin at O^{\prime} the coördinates are x^{\prime}, y^{\prime}.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b
\end{aligned}
$$

2.002 Origin unchanged. Directions of axes changed. Oblique coördinates. Let ω be the angle between the $x-y$ axes measured counter-clockwise from the x - to the y-axis. Let the x^{\prime}-axis make an angle α with the x-axis and the y^{\prime}-axis an angle β with the x-axis. All angles are measured counter-clockwise from the x-axis. Then

$$
\begin{aligned}
x \sin \omega & =x^{\prime} \sin (\omega-\alpha)+y^{\prime} \sin (\omega-\beta) \\
y \sin \omega & =x^{\prime} \sin \alpha+y^{\prime} \sin \beta \\
\omega^{\prime} & =\beta-\alpha
\end{aligned}
$$

2.003 Rectangular axes. Let both new and old axes be rectangular, the new axes being turned through an angle θ with respect to the old axes. Then $\omega=\frac{\pi}{2}, \alpha=\theta, \beta=\frac{\pi}{2}+\theta$.

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

2.010 Polar coördinates. Let the y-axis make an angle ω with the x-axis and let the x-axis be the initial line for a system of polar coördinates r, θ. All angles are measured in a counter-clockwise direction from the x-axis.

$$
\begin{aligned}
& x=\frac{r \sin (\omega-\theta)}{\sin \omega} \\
& y=r \frac{\sin \theta}{\sin \omega}
\end{aligned}
$$

2.011 If the x, y axes are rectangular, $\omega=\frac{\pi}{2}$,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

2.020 Transformation of coördinates in three dimensions.
2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coördinates with origin at O. Referred to x, y, z the coördinates of the new origin O^{\prime} are a, b, c. Then referred to a parallel system of coördinates with origin at O^{\prime} the coördinates are $x^{\prime}, y^{\prime}, z^{\prime}$.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b \\
& z=z^{\prime}+c
\end{aligned}
$$

2.022 Transformation from one to another rectangular system. Origin unchanged. The two systems are x, y, z and $x^{\prime} y^{\prime} z^{\prime}$.

Referred to x, y, z the direction cosines of x^{\prime} are l_{1}, m_{1}, n_{1}
Referred to x, y, z the direction cosines of y^{\prime} are l_{2}, m_{2}, n_{2}
Referred to x, y, z the direction cosines of z^{\prime} are l_{3}, m_{3}, n_{3}
The two systems are connected by the scheme:

	x^{\prime}	y^{\prime}	z^{\prime}
x	l_{1}	l_{2}	l_{3}
y	m_{1}	m_{2}	m_{3}
z	n_{1}	n_{2}	n_{3}

$$
\begin{array}{lr}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} & x^{\prime}=l_{1} x+m_{1} y+n_{1} z \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} & y^{\prime}=l_{2} x+m_{2} y+n_{2} z \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} & z^{\prime}=l_{3} x+m_{3} y+n_{3} z \\
l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=\mathrm{I} & l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=\mathrm{I} \\
l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=\mathrm{I} & m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=\mathrm{I} \\
l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=\mathrm{I} & n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=\mathrm{I} \\
l_{1} m_{1}+l_{2} m_{2}+l_{3} m_{3}=0 & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0 \\
m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}=0 & l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}=0 \\
n_{1} l_{1}+n_{2} l_{2}+n_{3} l_{3}=0 & l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1}=0
\end{array}
$$

2.023 If the transformation from one to another rectangular system is a rotation through an angle θ about an axis which makes angles α, β, γ with x, y, z respectively,

$$
2 \cos \theta=l_{1}+m_{2}+n_{3}-\mathrm{I}
$$

$$
\frac{\cos ^{2} \alpha}{m_{2}+n_{3}-l_{1}-\mathrm{I}}=\frac{\cos ^{2} \beta}{n_{3}+l_{1}-m_{2}-\mathrm{I}}=\frac{\cos ^{2} \gamma}{l_{1}+m_{2}-n_{3}-\mathrm{I}}
$$

2.024 Transformation from a rectangular to an oblique system. x, y, z rectangular system: $x^{\prime}, y^{\prime}, z^{\prime}$ oblique system.
$\cos \widehat{x x^{\prime}}=l_{1}$
$\cos \widehat{x y^{\prime}}=l_{2}$
$\cos \widehat{x z^{\prime}}=l_{3}$
$\cos \widehat{y x^{\prime}}=m_{1}$
$\cos \widehat{y y^{\prime}}=m_{2}$
$\cos \widehat{y z^{\prime}}=m_{3}$
$\cos \widehat{z x^{\prime}}=n_{1}$
$\cos \widehat{z y^{\prime}}=n_{2}$
$\cos \widehat{z z^{\prime}}=n_{3}$

$$
\begin{gathered}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} \\
\cos \widehat{y^{\prime} z^{\prime}}=l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3} \\
\cos \widehat{z^{\prime} x^{\prime}}=l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1} \\
\cos \widehat{x^{\prime} y^{\prime}}=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\
l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=\mathbf{I} \\
l_{2}{ }^{2}+m_{2}^{2}+n_{2}^{2}=\mathbf{I} \\
l_{3}^{2}+m_{3}{ }^{2}+n_{3}{ }^{2}=\mathbf{I}
\end{gathered}
$$

2.025 Transformation from one to another oblique system.

$$
\begin{array}{lll}
\cos \widehat{x x^{\prime}}=l_{1} & \cos \widehat{x y^{\prime}}=l_{2} & \cos \widehat{x z^{\prime}}=l_{3} \\
\cos \widehat{y x^{\prime}}=m_{1} & \cos \widehat{y y^{\prime}}=m_{2} & \cos \widehat{y z z^{\prime}}=m_{3} \\
\cos \widehat{z x^{\prime}}=n_{1} & \cos \widehat{z y^{\prime}}=n_{2} & \cos \widehat{z z^{\prime}}=n_{3} \\
\Delta=\left|\begin{array}{ll}
l_{1} & l_{2} \\
l_{3} \\
m_{1} m_{2} m_{3} \\
n_{1} n_{2} n_{3}
\end{array}\right| & \\
& \begin{array}{l}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
y
\end{array} \\
& z=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{array}
$$

$\Delta \cdot x^{\prime}=\left(m_{2} n_{3}-m_{3} n_{2}\right) x+\left(n_{2} l_{3}-n_{3} l_{2}\right) y+\left(l_{2} m_{3}-l_{3} m_{2}\right) z$, $\Delta \cdot y^{\prime}=\left(m_{3} n_{1}-m_{1} n_{3}\right) x+\left(n_{3} l_{1}-n_{1} l_{3}\right) y+\left(l_{3} m_{1}-l_{1} m_{3}\right) z$, $\Delta \cdot z^{\prime}=\left(m_{1} n_{2}-m_{2} n_{1}\right) x+\left(n_{1} l_{2}-n_{2} l_{1}\right) y+\left(l_{1} m_{2}-l_{2} m_{1}\right) z$.
$l_{1}{ }^{2}+m_{1}{ }^{2}+n_{1}{ }^{2}+2 m_{1} n_{1} \cos \widehat{y z}+2 n_{1} l_{1} \cos \widehat{z x}+2 l_{1} m_{1} \cos \widehat{x y}=\mathrm{I}$, $l_{2}{ }^{2}+m_{2}{ }^{2}+n_{2}{ }^{2}+2 m_{2} n_{2} \cos \widehat{y z}+2 n_{2} l_{2} \cos \widehat{z x}+2 l_{2} m_{2} \cos \widehat{x y}=\mathrm{I}$, $l_{3}{ }^{2}+m_{3}{ }^{2}+n_{3}{ }^{2}+2 m_{3} n_{3} \cos \widehat{y z}+2 n_{3} l_{3} \cos \widehat{z x}+2 l_{3} m_{3} \cos \widehat{x y}=1$.

$$
\begin{aligned}
& x+y \cos \widehat{x y}+z \cos \widehat{x z}=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
& y+x \cos \widehat{x y}+z \cos \widehat{z y}=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
& z+x \cos \widehat{x z}+y \cos \widehat{z y}=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{aligned}
$$

2.026 Transformation from one to another oblique system.

If n_{x}, n_{y}, n_{z} are the normals to the planes $y z, z x, x y$ and $n_{x}^{\prime}, n_{y^{\prime}}, n_{z}^{\prime}$ the normals to the planes $y^{\prime} z^{\prime}, z^{\prime} x^{\prime}, x^{\prime} y^{\prime}$,

$$
\begin{aligned}
& x \cos \widehat{x n_{x}}=x^{\prime} \cos \widehat{x^{\prime} n_{x}}+y^{\prime} \cos \widehat{y^{\prime} n_{x}}+z^{\prime} \cos \widehat{z^{\prime} n_{x}} . \\
& y \cos \widehat{y n}_{y}=x^{\prime} \cos \widehat{x^{\prime} n_{y}}+y^{\prime} \cos \widehat{y}^{\prime} n_{y}+z^{\prime} \cos \widehat{z}^{\prime} \widehat{y}_{y} \\
& z \cos \widehat{z n_{z}}=x^{\prime} \cos {\widehat{x^{\prime} n}}_{z}+y^{\prime} \cos \widehat{y}^{\prime} n_{z}+z^{\prime} \cos \widehat{z}^{\prime} n_{z} .
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime} \cos {\widehat{x^{\prime} n}}_{x}^{\prime}=x \cos \widehat{x n}_{x}^{\prime}+y \cos \widehat{y n}_{x}^{\prime}+z \cos \widehat{z n}_{x}^{\prime} \\
& y^{\prime} \cos {\widehat{y^{\prime} n_{y}}}^{\prime}=x \cos \widehat{x n}_{y}^{\prime}+y \cos \widehat{y n}_{y}^{\prime}+z \cos \widehat{z n}_{y}^{\prime} \\
& z^{\prime} \cos {\widehat{z^{\prime} n}}_{z}^{\prime}=x \cos \widehat{x n}_{z}^{\prime}+y \cos \widehat{y n}_{z}^{\prime}+z \cos \widehat{z n}_{z}^{\prime} .
\end{aligned}
$$

2.030 Transformation from rectangular to spherical polar coördinates.
r, the radius vector to i point makes an angle θ with the z-axis, the projection of r on the $x-y$ plane makes an angle ϕ with the x-axis.

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & r^{2}=x^{2}+y^{2}+z^{2} \\
y=r \sin \theta \sin \phi & \theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
z=r \cos \theta & \phi=\tan ^{-1} \frac{y}{x}
\end{array}
$$

2.031 Transformation from rectangular to cylindrical coördinates.
ρ, the perpendicular from the z-axis to a point makes an angle θ with the $x-z$ plane.

$$
\begin{array}{ll}
x=\rho \cos \theta & \rho=\sqrt{x^{2}+y^{2}} \\
y=\rho \sin \theta & \theta=\tan ^{-1} \frac{y}{x} \\
z=z &
\end{array}
$$

2.032 Curvilinear coördinates in general.

See 4.0
2.040 Eulerian Angles.
$O x y z$ and $O x^{\prime} y^{\prime} z^{\prime}$ are two systems of rectangular axes with the same origin O. $O K$ is perpendicular to the plane $z O z^{\prime}$ drawn so that if $O z$ is vertical, and the projection of $O z^{\prime}$ perpendicular to $O z$ is directed to the south, then $O K$ is directed to the east.

$$
\text { Angles } \quad \begin{aligned}
\widehat{z^{\prime} O z} & =\theta \\
\widehat{y O K} & =\phi \\
y^{\widehat{O} K} & =\psi
\end{aligned}
$$

The direction cosines of the two systems of axes are given by the following scheme:

	x	y	z
x^{\prime}	$\cos \phi \cos \theta \cos \psi-\sin \phi \sin \psi$ y^{\prime} z^{\prime}	$\sin \phi \cos \theta \cos \psi+\cos \phi \sin \psi$ $-\cos \phi \cos \theta \sin \psi-\sin \phi \cos \psi$ $\cos \phi \sin \theta$	$-\sin \phi \sin \theta \cos \psi$ $\sin \theta \sin \psi+\cos \phi \cos \psi$ $\sin \phi \sin \theta$

2.050 Trilinear Coördinates.

A point in a plane is defined if its distances from two intersecting lines are given. Let $C A$, $C B$ (Fig. r) be these lines:

$$
P R=p, \quad P S=q, \quad P T=r .
$$

Taking $C A$ and $C B$ as the x-, y-axes, including an angle C,

$$
\begin{aligned}
& x=\frac{p}{\sin C} \\
& y=\frac{q}{\sin C}
\end{aligned}
$$

Fig. I

Any curve $f(x, y)=0$ becomes:

$$
f\left(\frac{p}{\sin C}, \frac{q}{\sin C}\right)=0
$$

If s is the area of the triangle $C A B$ (triangle of reference),

$$
\begin{gathered}
2 s=a p+b q+c r, \\
a=B C, \\
b=C A \\
c=A B
\end{gathered}
$$

and the equation of a curve may be written in the homogeneous form:

$$
f\left(\frac{2 s p}{(a p+b q+c r) \sin C}, \frac{2 s q}{(a p+b q+c r) \sin C}\right)=0 .
$$

2.060 Quadriplanar Coördinates.

These are the analogue in 3 dimensions of trilinear coördinates in a plane (2.050).
$x_{1}, x_{2}, x_{3}, x_{4}$ denote the distances of a point P from the four sides of a tetrahedron (the tetrahedron of reference); $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} ; l_{3}, m_{3}, n_{3} ;$ and l_{4}, m_{4}, n_{4} the direction cosines of the normals to the planes $x_{1}=0, x_{2}=0, x_{3}=0$, $x_{4}=0$ with respect to a rectangular system of coördinates x, y, z; and d_{1}, d_{2}, d_{3}, d_{4} the distances of these 4 planes from the origin of coördinates:

$$
\text { (I) }\left\{\begin{array}{l}
x_{1}=l_{1} x+m_{1} y+n_{1} z-d_{1} \\
x_{2}=l_{2} x+m_{2} y+n_{2} z-d_{2} \\
x_{3}=l_{3} x+m_{3} y+n_{3} z-d_{3} \\
x_{4}=l_{4} x+m_{4} y+n_{4} z-d_{4} .
\end{array}\right.
$$

s_{1}, s_{2}, s_{3}, and s_{4} are the areas of the 4 faces of the tetrahedron of reference and V its volume:

$$
3 V=x_{1} s_{1}+x_{2} s_{2}+x_{3} s_{3}+x_{4} s_{4} .
$$

By means of the first 3 equations of (г) x, y, z are determined:

$$
\begin{aligned}
& x=A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+D_{1}, \\
& y=A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+D_{2}, \\
& z=A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+D_{3} .
\end{aligned}
$$

The equation of any surface,

$$
F(x, y, z)=0,
$$

may be written in the homogeneous form :

$$
\begin{aligned}
F\{ & \left\{A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+\frac{D_{1}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right], \\
& {\left[A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+\frac{D_{2}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right], } \\
& {\left.\left[A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+\frac{D_{3}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right]\right\}=0 . }
\end{aligned}
$$

PLANE GEOMETRY

2.100 The equation of a line:

$$
A x+B y+C=0 .
$$

2.101 If p is the perpendicular from the origin upon the line, and α and β the angles p makes with the x - and y-axes:

$$
p=x \cos \alpha+y \cos \beta .
$$

2.102 If α^{\prime} and β^{\prime} are the angles the line makes with the x - and y-axes:

$$
p=y \cos \alpha^{\prime}-x \cos \beta^{\prime} .
$$

2.103 The equation of a line may be written

$$
y=a x+b
$$

$a=$ tangent of angle the line makes with the x-axis,
$b=$ intercept of the y-axis by the line.
2.104 The two lines:

$$
\begin{aligned}
& y=a_{1} x+b_{1} \\
& y=a_{2} x+b_{2}
\end{aligned}
$$

intersect at the point:

$$
x=\frac{b_{2}-b_{1},}{a_{1}-a_{2}} \quad y=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}-a_{2}}
$$

2.105 If ϕ is the angle between the two lines 2.104:

$$
\tan \phi= \pm \frac{a_{1}-a_{2}}{\mathrm{I}+a_{1} a_{2}}
$$

2.106 Equations of two parallel lines :

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ A x + B y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=a x+b_{2}
\end{array}\right.\right.
$$

2.107 Equations of two perpendicular lines:

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ B x - A y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=-\frac{x}{a}+b_{2}
\end{array}\right.\right.
$$

2.108 Equation of line through x_{1}, y_{1} and parallel to the line:

$$
\begin{array}{rlcc}
A x+B y+C=0 & \text { or } & y=a x+b \\
A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0 & \text { or } & y-y_{1}=a\left(x-x_{1}\right)
\end{array}
$$

2.109 Equation of line through x_{1}, y_{1} and perpendicular to the line

$$
\begin{array}{rlcc}
A x+B y+C=0 & \text { or } & y=a x+b \\
B\left(x-x_{1}\right)-A\left(y-y_{1}\right)=0 & \text { or } & y-y_{1}=-\frac{x-x_{1}}{a}
\end{array}
$$

2.110 Equation of line through x_{1}, y_{1} making an angle ϕ with the line $y=a x+b$:

$$
y-y_{1}=\frac{a+\tan \phi}{I-a \tan \phi}\left(x-x_{1}\right)
$$

2.111 Equation of line through the two points, x_{1}, y_{1}, and x_{2}, y_{2} :

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

2.112 Perpendicular distance from the point x_{1}, y_{1} to the line

$$
\begin{array}{lll}
A x+B y+C=0 & \text { or } & y=a x+b, \\
p=\frac{A x_{1}+B y_{1}+C}{\sqrt{A_{2}+B_{2}}} & \text { or } & p=\frac{y_{1}-a x_{1}-b}{\sqrt{I+a^{2}}} .
\end{array}
$$

2.113 Polar equation of the line $y=a x+b$:
where

$$
r=\frac{b \cos \alpha}{\sin (\theta-\alpha)}
$$

$$
\tan \alpha=a
$$

2.114 If p, the perpendicular to the line from the origin, makes an angle β with the axis:

$$
p=r \cos (\theta-\beta) .
$$

2.130 Area of polygon whose vertices are at $x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots \ldots$. $x_{n}, y_{n}=A$.

$$
2 A=y_{1}\left(x_{n}-x_{2}\right)+y_{2}\left(x_{1}-x_{3}\right)+y_{3}\left(x_{2}-x_{4}\right)+\ldots \ldots+y_{n}\left(x_{n-1}-x_{1}\right) .
$$

PLANE CURVES

2.200 The equation of a plane curve in rectangular coördinates may be given in the forms:
(a)

$$
y=f(x) .
$$

(b) $\quad x=f_{1}(t), y=f_{2}(t)$. The parametric form.
(c) $\quad F(x, y)=0$.
2.201 If τ is the angle between the tangent to the curve and the x-axis:
(a) $\tan \tau=\frac{d y}{d x}=y^{\prime}$.
(b) $\tan \boldsymbol{\tau}=\frac{\frac{d f_{2}(t)}{d t}}{\frac{d f_{1}(t)}{d t}}$.
(c) $\tan \tau=-\frac{\frac{\partial F(x, y)}{\partial x}}{\frac{\partial F(x, y)}{\partial y}}$.

In the following formulas,

$$
y^{\prime}=\frac{d y}{d x}=\tan \tau \text { (2.201). }
$$

Fig. 2
2.202 $O M=x, M P=y$, angle $X T P=\tau$.

$$
T P=y \csc \tau=\frac{y \sqrt{\mathrm{I}+y^{\prime 2}}}{y^{\prime}}=\text { tangent },
$$

$T M=\mathrm{y} \cot \tau=\frac{y}{y^{\prime}}=$ subtangent,
$P N=y \sec \tau=y \sqrt{\mathrm{I}+y^{\prime 2}}=$ normal,
$M N=y \tan \tau=y y^{\prime}=$ subnormal.
$2.203 O T=x-\frac{y}{y^{\prime}}=$ intercept of tangent on x-axis,
$O T^{\prime}=y-x y^{\prime}=$ intercept of tangent on y-axis,
$O N=x+y y^{\prime}=$ intercept of normal on x-axis,
$O N^{\prime}=y+\frac{x}{y^{\prime}}=$ intercept of normal on y-axis.
2.204 $O Q=\frac{y-x y^{\prime}}{\sqrt{I+y^{\prime 2}}}=\begin{gathered}\text { distance of tangent from origin }=P S=\text { projection of } \\ \text { radius vector on normal. }\end{gathered}$

Coördinates of $Q: \quad \frac{y^{\prime}\left(x y^{\prime}-y\right)}{I+y^{\prime 2}}, \frac{y-x y^{\prime}}{I+y^{\prime 2}}$.
2.205 $O S=\frac{x+y y^{\prime}}{\sqrt{I+y^{\prime 2}}}=\begin{gathered}\text { distance of normal from origin }=P Q=\text { projection of } \\ \text { radius vector on tangent. }\end{gathered}$ Coördinates of $S: \frac{x+y y^{\prime}}{1+y^{\prime 2}}, \frac{\left(x+y y^{\prime}\right) y^{\prime}}{I+y^{\prime 2}}$.
2.206 $O R=\frac{\sqrt{x^{2}+y^{2}}\left(y-x y^{\prime}\right)}{x+y y^{\prime}}=$ polar subtangent, $P R=\frac{\left(x^{2}+y^{2}\right) \sqrt{I+y^{\prime 2}}}{x+y y^{\prime}}=$ polar tangent,

Coördinates of $R: \frac{y\left(x y^{\prime}-y\right)}{x+y y^{\prime}}, \frac{x\left(y-x y^{\prime}\right)}{x+y y^{\prime}}$.
2.207 $O V=\frac{\sqrt{x^{2}+y^{2}}\left(x+y y^{\prime}\right)}{y-x y^{\prime}}=$ polar subnormal,

$$
P V=\frac{\left(x^{2}+y^{2}\right) \sqrt{I+y^{\prime 2}}}{y-x y^{\prime}}=\text { polar normal, }
$$

Coördinates of $V: \frac{y\left(x+y y^{\prime}\right)}{y-x y^{\prime}},-\frac{x\left(x+y y^{\prime}\right)}{y-x y^{\prime}}$.
2.210 The equations of the tangent at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) .
$$

(b)

$$
\left(y-y_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=\left(x-x_{1}\right) f_{2}{ }^{\prime}\left(t_{1}\right) .
$$

(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}}+\left(y-y_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=0 .
$$

2.211 The equations of the normal at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
f^{\prime}\left(x_{1}\right)\left(y-y_{1}\right)+\left(x-x_{1}\right)=0 .
$$

(b)

$$
\left(y-y_{1}\right) f_{2}^{\prime}\left(t_{1}\right)+\left(x-x_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=0 .
$$

(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=\left(y-y_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}} .
$$

2.212 The perpendicular from the origin upon the tangent to the curve $F(x, y)=0$ at the point x, y is:

$$
p=\frac{x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}}} .
$$

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve lies entirely on one side of the tangent, it is concave or convex upwards according as $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ is positive or negative. The positive direction of the axes are shown in figure 2.
2.220 Convention as to signs. The positive direction of the normal is related to the positive direction of the tangent as the positive y-axis is related to the positive x-axis. The angle τ is measured positively in the counter-clockwise direction from the positive x-axis to the positive tangent.
2.221 Radius of curvature $=\rho$; curvature $=1 / \rho$.

$$
\frac{\mathrm{I}}{\rho}=\frac{d \tau}{d s},
$$

where s is the arc drawn from a fixed point of the curve in the direction of the positive tangent.
2.222 Formulas for the radius of curvature of curves given in the three forms of 2.200 .
(a)

$$
\begin{gathered}
\rho=\frac{\left\{\mathrm{I}+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{3}}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left(\mathrm{I}+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime \prime}} \\
\rho=\frac{\left\{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}=\frac{\left(\frac{d s}{d t}\right)^{2}}{\left\{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}-\left(\frac{d^{2} s}{d t^{2}}\right)^{2}\right\}^{\frac{3}{2}}}
\end{gathered}
$$

If s is taken as the parameter t :
(c)

$$
\begin{gather*}
\frac{\mathrm{I}}{\rho}=\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}\right\}^{\frac{1}{2}} \tag{b'}\\
\rho=-\frac{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{\partial^{2} F}{\partial x^{2}}\left(\frac{\partial F}{\partial y}\right)^{2}-2 \frac{\partial^{2} F}{\partial x \partial y} \frac{\partial F}{\partial x} \frac{\partial F}{\partial y}+\frac{\partial^{2} F}{\partial y^{2}}\left(\frac{\partial F}{\partial x}\right)^{2}}
\end{gather*}
$$

2.223 The center of curvature is a point C (fig. 2) on the normal at P such that $P C=\rho$. If ρ is positive C lies on the positive normal (2.213); if negative, on the negative normal.
2.224 The circle of curvature is a circle with C as center and radius $=\rho$.
2.225 The chord of curvature is the chord of the circle of curvature passing through the origin and the point P.
2.226 The coördinates of the center of curvature at the point x, y are ξ, η :

$$
\xi=x-\rho \sin \tau \quad \tan \tau=\frac{d y}{d x}
$$

$$
\eta=y+\rho \cos \tau
$$

If l^{\prime}, m^{\prime} are the direction cosines of the positive normal,

$$
\begin{aligned}
& \xi=x+l^{\prime} \rho \\
& \eta=y+m^{\prime} \rho .
\end{aligned}
$$

2.227 If l, m are the direction cosines of the positive tangent and l^{\prime}, m^{\prime} those of the positive normal,

$$
\begin{aligned}
\frac{d l}{d s} & =\frac{l^{\prime}}{\rho}, \frac{d m}{d s}=\frac{m^{\prime}}{\rho} \\
l^{\prime} & =m, m^{\prime}=-l \\
\frac{d l^{\prime}}{d s} & =-\frac{l}{\rho}, \frac{d m^{\prime}}{d s}=-\frac{m}{\rho}
\end{aligned}
$$

2.228 If the tangent and normal at P are taken as the x - and y-axes, then

$$
\rho=\operatorname{limit}_{x \rightarrow 0}^{\operatorname{lin}} \frac{x^{2}}{2 y}
$$

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point of inflexion is a point at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ exists and is continuous and at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ vanishes and changes sign.

If the curve is given in the form (b) a point of inflexion, t_{1}, is a point at which the determinant:

$$
\left|\begin{array}{ll}
f_{1}^{\prime \prime}\left(t_{1}\right) & f_{2}^{\prime \prime}\left(t_{1}\right) \\
f_{1}^{\prime}\left(t_{1}\right) & f_{2}^{\prime}\left(t_{1}\right)
\end{array}\right|
$$

vanishes and changes sign.
2.230 Eliminating x and y between the coördinates of the center of curvature (2.226) and the corresponding equations of the curve (2.200) gives the equation of the evolute of the curve - the locus of the center of curvature. A curve which has a given curve for evolute is called an involute of the given curve.
2.231 The envelope to a family of curves,
I.

$$
F(x, y, a)=0,
$$

where a is a parameter, is obtained by eliminating a between (I) and
2.

$$
\frac{\partial F}{\partial \alpha}=0
$$

2.232 If the curve is given in the form,
I.

$$
\begin{aligned}
& x=f_{1}(t, a) \\
& y=f_{2}(t, a),
\end{aligned}
$$

the envelope is obtained by eliminating t and \boldsymbol{a} between (1), (2) and the functional determinant, 3.

$$
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(t, a)}=0 \quad(\text { see } 1.370)
$$

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed point upon the tangent to a given curve is the pedal of the given curve with reference to the fixed point.
2.240 Asymptotes. The line

$$
y=a x+b
$$

is an asymptote to the curve $y=f(x)$ if

$$
\begin{aligned}
a & =\operatorname{limit}_{x \rightarrow \infty} f^{\prime}(x) \\
b & =\operatorname{limit}_{x \rightarrow \infty}\left[f(x)-x f^{\prime}(x)\right]
\end{aligned}
$$

2.241 If the curve is

$$
x=f_{1}(t), y=f_{2}(t),
$$

and if for a value of t, t_{1}, f_{1} or f_{2} becomes infinite, there will be an asymptote if for that value of t the direction of the tangent to the curve approaches a limit and the distance of the tangent from a fixed point approaches a limit.
2.242 An asymptote may sometimes be determined by expanding the equation of the curve in a series,

If

$$
\begin{gathered}
y=\sum_{k=0}^{n} a_{k} x^{k}+\sum_{k=\mathrm{I}}^{\infty} \frac{b_{k}}{x^{k}} . \\
\operatorname{limit}_{x \rightarrow \infty}^{\infty} \sum_{k=\mathrm{I}}^{\infty} \frac{b_{k}}{x^{k}}=0,
\end{gathered}
$$

the equation of the asymptote is

$$
y=\sum_{k=0}^{n} a_{k} x^{k}
$$

If of the first degree in x, this represents a rectilinear asymptote; if of a higher degree, a curvilinear asymptote.
2.250 Singular Points. If the equation of the curve is $F(x, y)=0$, singular points are those for which

$$
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0
$$

Put,

$$
\Delta=\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}-\left(\frac{\partial^{2} F^{0}}{\partial x \partial y}\right)^{2}
$$

If $\Delta<0$ the singular point is a double point with two distinct tangents.
$\Delta>0$ the singular point is an isolated point with no real branch of the curve through it.
$\Delta=0$ the singular point is an osculating point, or a cusp. The curve has two branches, with a common tangent, which meet at the singular point.
If $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}, \frac{\partial^{2} F}{\partial x \partial y}$ simultaneously vanish at a point the singular point is one of higher order.

PLANE CURVES, POLAR COÖRDINATES

2.270 The equation of the curve is given in the form,

$$
r=f(\theta)
$$

In figure $2, O P=r$, angle $X O P=\theta$, angle $X T P=\tau$, angle $p P t=\phi$.
2.271θ is measured in the counter-clockwise direction from the initial line, $O X$, and s, the arc, is so chosen as to increase with θ. The angle ϕ is measured in the counter-clockwise direction from the positive radius vector to the positive tangent. Then,

$$
\tau=\theta+\phi
$$

2.272

$$
\begin{aligned}
& \tan \phi=\frac{r d \theta}{d r} \\
& \sin \phi=\frac{r d \theta}{d s} \\
& \cos \phi=\frac{d r}{d s}
\end{aligned}
$$

$$
\begin{aligned}
\tan \tau & =\frac{\sin \theta \frac{d r}{d \theta}+r \cos \theta}{\cos \theta \frac{d r}{d \theta}-r \sin \theta} \\
d s & =\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{1}{2}} d \theta
\end{aligned}
$$

2.274

$$
\begin{aligned}
& P R=r \sqrt{\mathrm{I}+\left(\frac{r d \theta}{d r}\right)^{2}}=\text { polar tangent } \\
& P V=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}
\end{aligned}=\text { polar normal } \quad \begin{array}{ll}
O R=r^{2} \frac{d \theta}{d r} & =\text { polar subtangent } \\
O V=\frac{d r}{d \theta} & =\text { polar subnormal. }
\end{array}
$$

$2.275 O Q=\frac{r^{2}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=p=$ distance of tangent from origin.
$O S=\frac{r \frac{d r}{d \theta}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=$ distance of normal from origin.
2.276 If $u=\frac{\mathrm{I}}{r}$, the curve $r=f(\theta)$ is concave or convex to the origin according as

$$
u+\frac{d^{2} u}{d \theta^{2}}
$$

is positive or negative. At a point of inflexion this quantity vanishes and changes sign.
2.280 The radius of curvature is,

$$
\rho=\frac{\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{3}{2}}}{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}}
$$

2.281 If $u=\frac{I}{r}$ the radius of curvature is

$$
\rho=\frac{\left\{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}\right\}^{\frac{3}{3}}}{u^{3}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)}
$$

2.282 If the equation of the curve is given in the form,

$$
r=f(s)
$$

where s is the arc measured from a fixed point of the curve,

$$
\rho=\frac{r \sqrt{\mathrm{I}-\left(\frac{d r}{d s}\right)^{2}}}{r \frac{d^{2} r}{d s^{2}}+\left(\frac{d r}{d s}\right)^{2}-\mathrm{I}} .
$$

2.283 If p is the perpendicular from the origin upon the tangent to the curve,
I.

$$
\rho=r \frac{d r}{d p}
$$

2. $\rho=p+\frac{d^{2} p}{d \tau^{2}}$
2.284 If $u=\frac{\mathrm{I}}{r}$

$$
\begin{aligned}
& \frac{\mathrm{I}}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2} \\
& \frac{d^{2} u}{d \theta^{2}}+u=\frac{r^{2}}{p^{3}}\left(\frac{d p}{d r}\right)
\end{aligned}
$$

2.286 Polar coördinates of the center of curvature, r_{1}, θ_{1} :

$$
\begin{aligned}
r_{1}^{2} & =\frac{r^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}+\left(\frac{d r}{d \theta}\right)^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}\right\}^{2}}{\left\{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}} \\
\theta_{1} & =\theta+\chi, \\
\tan \chi & =\frac{\left(\frac{d r}{d \theta}\right)^{3}+r^{2} \frac{d r}{d \theta}}{r\left(\frac{d r}{d \theta}\right)^{2}-r^{2} \frac{d^{2} r}{d \theta^{2}}} .
\end{aligned}
$$

2.287 If $2 c$ is the chord of curvature (2.225):

$$
\begin{aligned}
2 c & =2 p \frac{d r}{d p}=2 \rho \frac{p}{r}, \\
& =2 \frac{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}}{u^{2}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)} .
\end{aligned}
$$

2.290 Rectilinear Asymptotes. If r approaches ∞ as θ approaches an angle α, and if $r(\alpha-\theta)$ approaches a limit, b, then the straight line

$$
r \sin (\alpha-\theta)=b
$$

is an asymptote to the curve $r=f(\theta)$.
2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane curve is one giving the radius of curvature, ρ, as a function of the arc, s,

$$
\rho=f(s)
$$

If τ is the angle between the x-axis and the positive tangent (2.271):

$$
\begin{array}{ll}
d \tau=\frac{d s}{f(s)} & x=x_{0}+\int_{s_{0}}^{s} \cos \tau \cdot d s \\
\tau=\tau_{0}+\int_{s_{0}}^{s} \frac{d s}{f(s)} & y=y_{0}+\int_{s_{0}}^{s} \sin \tau \cdot d s
\end{array}
$$

2.300 The general equation of the second degree:

$$
\begin{aligned}
& a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} x+2 a_{23} y+a_{33}=0 \\
& A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| ; a_{h k}=a_{k h} \\
& A_{h k}=\text { Minor of } a_{h k} .
\end{aligned}
$$

Criterion giving the nature of the curve:

(Pascal: Repertorium der höheren Mathematik, II, i, p. 228)
2.400 Parabola (Fig. 3).
2.401 O, Vertex; F, Focus; ordinate through D, Directrix.

Equation of parabola, origin at O,

$$
\begin{aligned}
y^{2} & =4 a x \\
x & =O M, y=M P, \\
O F & =O D=a \\
F L & =2 a=\text { semi latus }
\end{aligned}
$$ rectum.

$$
F P=D^{\prime} P
$$

$2.402 F P=F T=M D$

$$
=x+a .
$$

Fig. 3

$$
\begin{aligned}
& N P=2 \sqrt{a(a+x)}, T M=2 x, M N=2 a, O N=x+2 a . \\
& O N^{\prime}=\sqrt{\frac{x}{a}}(x+2 a), O Q=x \sqrt{\frac{a}{a+x}}, O S=(x+2 a) \sqrt{\frac{x}{a+x}}
\end{aligned}
$$

$F B$ perpendicular to tangent $\dot{T} P$.

$$
\begin{aligned}
F B & =\sqrt{a(a+x)}, T P=2 T B=2 \sqrt{x(a+x)} . \\
\overline{F B}^{2} & =F T \times F O=F P \times F O .
\end{aligned}
$$

The tangents $T P$ and $U P^{\prime}$ at the extremities of a focal chord $P F P^{\prime}$ meet on the directrix at U at right angles.

$$
\tau=\text { angle } X T P
$$

$$
\tan \boldsymbol{\tau}=\sqrt{\frac{a}{x}}
$$

The tangent at P bisects the angles $F P D^{\prime}$ and $F U D^{\prime}$.
2.403 Radius of curvature:

$$
\rho=\frac{2(x+a)^{\frac{2}{2}}}{\sqrt{a}}=\frac{\mathrm{I}}{4} \frac{\overline{N P}^{3}}{a^{2}} .
$$

Coördinates of center of curvature:

$$
\xi=3 x+2 a, \eta=-2 x \sqrt{\frac{\bar{x}}{a}}
$$

Equation of Evolute:

$$
27 a y^{2}=4(x-2 a)^{3} .
$$

2.404 Length of arc of parabola measured from vertex,

$$
s=\sqrt{x(x+a)}+a \log \left(\sqrt{1+\frac{x}{a}}+\sqrt{\frac{x}{a}}\right)
$$

Area $O P M O=\frac{1}{3} x y$.
2.405 Polar equation of parabola:

$$
\begin{aligned}
r & =F P \\
\theta & =\text { angle } X F P \\
r & =\frac{2 a}{\mathrm{I}-\cos \theta}
\end{aligned}
$$

2.406 Equation of Parabola in terms of p, the perpendicular from F upon the tangent, and r, the radius vector $F P$:

$$
\frac{l}{p^{2}}=\frac{2}{r}
$$

$$
l=\text { semi latus rectum. }
$$

2.410 Ellipse (Fig. 4).

Fig. 4
2.411 O, Centre; F, F^{\prime}, Foci.

Equation of Ellipse origin at O :

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
x=O M, y=M P, a=O A, b=O B
\end{gathered}
$$

2.412 Parametric Equations of Ellipse,

$$
x=a \cos \phi, \quad y=b \sin \phi .
$$

$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at P meets the eccentric circle, drawn with O as center and radius a.
2.413 $O F=O F^{\prime}=e a$

$$
e=\text { eccentricity }=\frac{\sqrt{a^{2}-b^{2}}}{a}
$$

$$
F L=\frac{b^{2}}{a}=a\left(\mathrm{r}-e^{2}\right)=\text { semi latus rectum: }
$$

$$
\begin{aligned}
F^{\prime} P & =a+e x, F P=a-e x, F P+F^{\prime} P=2 a . \\
\tau & =\text { angle } X T T^{\prime} .
\end{aligned}
$$

$$
\tan \tau=-\frac{b x}{a \sqrt{a^{2}-x^{2}}}
$$

$$
N M=\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}, M T=\frac{a^{2}-x^{2}}{x},
$$

$$
P T=\frac{\sqrt{a^{2}-x^{2}} \sqrt{a^{2}-e^{2} x^{2}}}{x}, O N^{\prime}=\frac{e^{2} a \sqrt{b} \sqrt{a^{2}-x^{2}}, P S=\frac{a b}{\sqrt{a^{2}-e^{2} x^{2}}}, \text {, }, \text {. }{ }^{2}}{}
$$

$$
O S=\frac{e^{2} x \sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}-e^{2} x^{2}}} .
$$

2.414 $D D^{\prime}$ parallel to $T^{\prime} T ; D D^{\prime}$ and $P P^{\prime}$ are conjugate diameters:

$$
\begin{aligned}
O D^{2} & =a^{2}-e^{2} x^{2}=F P \times F^{\prime} P . \\
O P^{2}+O D^{2} & =a^{2}+b^{2} . \\
P S \times O D & =a b .
\end{aligned}
$$

Equation of Ellipse referred to conjugate diameters as axes:

$$
\begin{array}{lll}
& \frac{x^{2}}{a^{\prime 2}}+\frac{y^{2}}{b^{\prime 2}}=1 & \begin{array}{l}
\alpha=\text { angle XOP } \\
\beta=\text { angle } X O D
\end{array} \\
a^{\prime}=O D^{\prime} & a^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} & \tan \alpha \tan \beta=-\frac{b^{2}}{a^{2}} \\
b^{\prime}=O P & b^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \beta+b^{2} \cos ^{2} \beta} &
\end{array}
$$

2.415 Radius of curvature of Ellipse:

$$
\rho=\frac{\left(a^{4} y^{2}+b^{4} x^{2}\right)^{\frac{1}{2}}}{a^{4} b^{4}}=\frac{\left(a^{2}-e^{2} x^{2}\right)^{\frac{1}{2}}}{a b} .
$$

angle $F P N=$ angle $F^{\prime} P N=\omega$,

$$
\tan \omega=\frac{e a y}{b^{2}},
$$

$$
\frac{2}{\rho \cos \omega}=\frac{\mathrm{I}}{F P}+\frac{\mathrm{I}}{F^{\prime} P} .
$$

Coördinates of center of curvature:

$$
\xi=\frac{e^{2} x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}} .
$$

Equation of Evolute of Ellipse,

$$
\left(\frac{a x}{e^{2}}\right)^{\frac{3}{3}}+\left(\frac{b y}{e^{2}}\right)^{\frac{3}{3}}=\mathrm{I} .
$$

2.416 Area of Ellipse, $\pi a b$.

Length of arc of Ellipse,

$$
s=a \int_{0}^{\phi} \sqrt{I-e^{2} \sin ^{2} \phi} d \phi
$$

2.417 Polar Equation of Ellipse,

$$
\begin{aligned}
r=F^{\prime} P, \theta & =\text { angle } X F^{\prime} P, \\
r & =\frac{a\left(\mathrm{x}-e^{2}\right)}{\mathrm{T}-e \cos \theta}
\end{aligned}
$$

2.418

$$
\begin{aligned}
r=O P, \theta & =\text { angle } X O P, \\
r & =\frac{b}{\sqrt{\mathrm{I}-e^{2} \cos ^{2} \theta}}
\end{aligned}
$$

2.419 Equation of Ellipse in terms of p, the perpendicular from F upon the tangent at P, and r, the radius vector $F P$:

$$
\begin{aligned}
\frac{l}{p^{2}} & =\frac{2}{r}-\frac{1}{a} \\
l & =\text { semi latus rectum. }
\end{aligned}
$$

2.420 Hyperbola (Fig. 5).
2.421 O, Center; F, F^{\prime}, Foci.

Equation of hyperbola, origin at O,

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathbf{I} \\
x=O M, y=M P, a=O A=O A^{\prime} .
\end{gathered}
$$

2.422 Parametric Equations of hyperbola,

$$
x=a \cosh u, y=b \sinh u .
$$

or

$$
x=a \sec \phi, \quad y=b \tan \phi .
$$

$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at T meets the circle of radius a, center O.
2.423 $O F=O F^{\prime}=e a$.

$$
e=\text { eccentricity }=\frac{\sqrt{a^{2}+b^{2}}}{a}
$$

Fig. 5

$$
\begin{aligned}
F L & =\frac{b^{2}}{a}=a\left(e^{2}-1\right)=\text { semi latus rectum } \\
F^{\prime} P & =e x+a, F P=e x-a, F^{\prime} P-F P=2 a \\
\tau & =\text { angle } X T P
\end{aligned}
$$

$$
\tan \tau=\frac{b x}{a \sqrt{x^{2}-a^{2}}}
$$

$$
N M=\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}
$$

$$
M T=\frac{x^{2}-a^{2}}{x}, P T=\frac{\sqrt{x^{2}-a^{2}} \sqrt{e^{2} x^{2}-a^{2}}}{x}, O N^{\prime}=\frac{e^{2} a}{b} \sqrt{x^{2}-a^{2}}
$$

$$
P S=\frac{a b}{\sqrt{e^{2} x^{2}-a^{2}}}, O S=\frac{e^{2} x \sqrt{x^{2}-a^{2}}}{\sqrt{e^{2} x^{2}-a^{2}}}
$$

$$
\tan X O U=\frac{b}{a}
$$

$b=$ distance of vertex A from asymptote.
2.425 Radius of curvature of hyperbola,

$$
\begin{aligned}
\rho & =\frac{\left(e^{2} x^{2}-a^{2}\right)^{\frac{3}{2}}}{a b} . \\
\text { angle } F^{\prime} P T & =\text { angle } F P T . \\
\text { angle } F P N & =\omega=\frac{\pi}{2}-F P T . \\
\text { angle } F^{\prime} P N & =\omega^{\prime}=\frac{\pi}{2}+F^{\prime} P T . \\
\tan \omega & =\frac{a e y}{b^{2}} . \\
\cos \omega & =\frac{b}{\sqrt{e^{2} x^{2}-a^{2}}} \\
\frac{2}{\rho \cos \omega} & =\frac{I}{F P}-\frac{\mathrm{I}}{F^{\prime} P} .
\end{aligned}
$$

Coördinates of center of curvature,

$$
\xi=\frac{e^{2} x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}}
$$

Equation of Evolute of hyperbola,

$$
\left(\frac{a x}{e^{2}}\right)^{3}-\left(\frac{b y}{e^{2}}\right)^{3}=\mathrm{I}
$$

2.426 In a rectangular hyperbola $b=a$; the asymptotes are perpendicular to each other. Equation of rectangular hyperbola with asymptotes as axes and origin at O :

$$
x y=\frac{a^{2}}{2}
$$

2.427 Length of arc of hyperbola,

$$
s=\frac{b^{2}}{a e} \int_{0}^{\phi} \frac{\sec ^{2} \phi d \phi}{\sqrt{I-k^{2} \sin ^{2} \phi}}, \quad k=\frac{\mathrm{I}}{e}, \quad \tan \phi=\frac{a e y}{b^{2}} .
$$

2.428 Polar Equation of hyperbola:

$$
\begin{aligned}
& r=F^{\prime} P, \quad \theta=X F^{\prime} P, \quad r=a \frac{e^{2}-\mathrm{I}}{e \cos \theta-\mathrm{I}}, \\
& r=O P, \quad \theta=X O P, \quad r^{2}=\frac{b^{2}}{e^{2} \cos ^{2} \theta-\mathrm{I}} .
\end{aligned}
$$

2.429 Equation of right-hand branch of hyperbola in terms of p, the perpendicular from F upon the tangent at P and r, the radius vector $F P$,

$$
\begin{aligned}
\frac{l}{p^{2}} & =\frac{2}{r}+\frac{\mathrm{I}}{a} \\
l & =\text { semi latus rectum }
\end{aligned}
$$

2.450 Cycloids and Trochoids.

If a circle of radius a rolls on a straight line as base the extremity of any radius, a, describes a cycloid. The rectangular equation of a cycloid is:

$$
\begin{aligned}
& x=a(\phi-\sin \phi), \\
& y=a(\mathrm{I}-\cos \phi),
\end{aligned}
$$

where the x-axis is the base with the origin at the initial point of contact. ϕ is the angle turned through by the moving circle. (Fig. 6.)

$A=$ vertex of cycloid.
$C=$ center of generating circle, drawn tangent at A.
The tangent to the cycloid at P is parallel to the chord $A Q$.
Arc $A P=2 \times$ chord $A Q$.
The radius of curvature at P is parallel to the chord $Q D$ and equal to $2 \times$ chord $Q D$. $P Q=$ circular arc $A Q$.
Length of cycloid: $s=8 a ; a=C A$.
Area of cycloid: $S=3 \pi a^{2}$.
2.451 A point on the radius, $b>a$, describes a prolate trochoid. A point, $b<a$, describes a curtate trochoid. The general equation of trochoids and cycloids is

$$
\begin{aligned}
& x=a \phi-(a+d) \sin \phi, \\
& y=(a+d)(\mathrm{I}-\cos \phi), \\
& d=0 \text { Cycloid, } \\
& d>0 \text { Prolate trochoid, } \\
& d<0 \text { Curtate trochoid. }
\end{aligned}
$$

Radius of curvature:

$$
\rho=\frac{\left(2 a v+d^{2}\right)^{\frac{3}{2}}}{a y+a d+d^{2}} .
$$

2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a circle of radius a that rolls on the convex side o a fixed circle of radius b. An hypocycloid is described by a point on a circle of radius a that rolls on the concave side of a fixed circle of radius b.

Equations of epi- and hypocycloids.
Upper sign: Epicycloid,
Lower sign: Hypocycloid.

$$
\begin{aligned}
& x=(b \pm a) \cos \phi \mp \cos \frac{b \pm a}{a} \phi \\
& y=(b \pm a) \sin \phi-a \sin \frac{b \pm a}{a} \phi
\end{aligned}
$$

The origin is at the center of the fixed circle. The x-axis is the line joining the centers of the two circles in the initial position and ϕ is the angle turned through by the moving circle.

Radius of curvature:

$$
\rho=\frac{2 a(b \pm a)}{b \pm 2 a} \sin \frac{a}{2 b} \phi
$$

2.453 In the epicycloid put $b=a$. The curve becomes a Cardioid:

$$
\left(x^{2}+y^{2}\right)^{2}-6 a^{2}\left(x^{2}+y^{2}\right)+8 a^{3} x=3 a^{4} .
$$

2.454 Catenary. The equation may be written:
I.

$$
\begin{aligned}
& y=\frac{1}{2} a\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right) . \\
& y=a \cosh \frac{x}{a} \\
& x=a \log \frac{y \pm \sqrt{y^{2}-a^{2}}}{a} .
\end{aligned}
$$

The radius of curvature, which is equal to the length of the normal, is:

$$
\rho=a \cosh ^{2} \frac{x}{a}
$$

2.455 Spiral of Archimedes. A point moving uniformly along a line which rotates uniformly about a fixed point describes a spiral of Archimedes. The equation is:

$$
r=a \theta
$$

or

$$
\sqrt{x^{2}+y^{2}}=a \tan ^{-1} \frac{y}{x}
$$

The polar subtangent $=$ polar subnormal $=a$.
Radius of curvature:

$$
\rho=\frac{r\left(\mathrm{I}+\theta^{2}\right)^{\frac{3}{2}}}{\theta\left(2+\theta^{2}\right)}=\frac{\left(r^{2}+a^{2}\right)^{\frac{3}{2}}}{r^{2}+2 a^{2}}
$$

2.456 Hyperbolic spiral:

$$
r \theta=a .
$$

2.457 Parabolic spiral:

$$
r^{2}=a^{2} \theta
$$

2.458 Logarithmic or equiangular spiral:
$r=a e^{n \theta}$,
$n=\cot \alpha=$ const.,
$\alpha=$ angle tangent to curve makes with the radius vector.
2.459 Lituus:

$$
r \sqrt{\theta}=a .
$$

2.460 Neoid:

$$
r=a+b \theta
$$

2.461 Cissoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) x & =2 a y^{2} \\
r & =2 a \tan \theta \sin \theta
\end{aligned}
$$

2.462 Cassinoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}+a^{2}\right)^{2} & =4 a^{2} x^{2}+b^{4} \\
r^{4}-2 a^{2} r^{2} \cos 2 \theta & =b^{4}-a^{4}
\end{aligned}
$$

2.463 Lemniscate ($b=a$ in Cassinoid):

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =2 a^{2}\left(x^{2}-y^{2}\right) \\
r^{2} & =2 a^{2} \cos 2 \theta
\end{aligned}
$$

2.464 Conchoid:

$$
x^{2} y^{2}=(b+y)^{2}\left(a^{2}-y^{2}\right) .
$$

2.465 Witch of Agnesi:

$$
x^{2} y=4 a^{2}(2 a-y)
$$

2.466 Tractrix:

$$
\begin{aligned}
x & =\frac{1}{2} a \log \frac{a+\sqrt{a^{2}-y^{2}}}{a-\sqrt{a^{2}-y^{2}}}-\sqrt{a^{2}-y^{2}} \\
\frac{d y}{d x} & =-\frac{y}{\sqrt{a^{2}-y^{2}}} \\
\rho & =\frac{a \sqrt{a^{2}-y^{2}}}{y}
\end{aligned}
$$

SOLID GEOMETRY

2.600 The Plane. The general equation of the plane is:

$$
A x+B y+C z+D=0
$$

$2.601 l, m, n$ are the direction cosines of the normal to the plane and p is the perpendicular distance from the origin upon the plane.

$$
\begin{aligned}
l, m, n & =\frac{A, B, C}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
p & =l x+m y+n z \\
p & =-\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

2.602 The perpendicular from the point x_{1}, y_{1}, z_{1} upon the plane $A x+B y+$ $C z+D=0$ is:

$$
d=\frac{A x_{1}+B v_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

2.603θ is the angle between the two planes:

$$
\begin{aligned}
& A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\
& A_{2} x+B_{2} y+C_{2} z+D_{2}=0 \\
\cos \theta= & \frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}} \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}
\end{aligned}
$$

2.604 Equation of the plane passing through the three points $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ $\left(x_{3}, y_{3}, z_{3}\right)$:

$$
x\left|\begin{array}{lll}
y_{1} & z_{1} & \mathrm{I} \\
y_{2} & z_{2} & \mathrm{I} \\
y_{3} & z_{3} & \mathrm{I}
\end{array}\right|+y\left|\begin{array}{lll}
z_{1} & x_{1} & \mathrm{I} \\
z_{2} & x_{2} & I \\
z_{3} & x_{3} & \mathrm{I}
\end{array}\right|+z\left|\begin{array}{lll}
x_{1} & y_{1} & \mathrm{I} \\
x_{2} & y_{2} & \mathrm{I} \\
x_{3} & y_{3} & \mathrm{I}
\end{array}\right|=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

THE RIGHT LINE

2.620 The equations of a right line passing through the point x_{1}, y_{1}, z_{1}, and whose direction cosines are l, m, n are:

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} .
$$

2.621θ is the angle between the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} :

$$
\begin{aligned}
& \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\
& \sin ^{2} \theta=\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}
\end{aligned}
$$

2.622 The direction cosines of the normal to the plane defined by the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and $l_{2}, m_{2} n_{2}$ are:

$$
\frac{m_{1} n_{2}-m_{2} n_{1}}{\sin \theta}, \quad \frac{n_{1} l_{2}-n_{2} l_{1}}{\sin \theta}, \quad \frac{l_{1} m_{2}-l_{2} m_{1}}{\sin \theta}
$$

2.623 The shortest distance between the two lines:

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad \text { and } \quad \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}
$$

is:
$d=\frac{\left(x_{1}-x_{2}\right)\left(m_{1} n_{2}-m_{2} n_{1}\right)+\left(y_{1}-y_{2}\right)\left(n_{1} l_{2}-n_{2} l_{1}\right)+\left(z_{1}-z_{2}\right)\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left\{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\right\}^{\frac{1}{2}}}$,
2.624 The direction cosines of the shortest distance between the two lines are:

$$
\frac{\left(m_{1} n_{2}-n_{2} m_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left\{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\right\}^{\frac{1}{2}}}
$$

2.625 The perpendicular distance from the point x_{2}, y_{2}, z_{2} to the line:

$$
\frac{x-x_{1}}{l_{1}}=\frac{\dot{y}-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}
$$

is:
$d=\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{2}-\left\{l_{1}\left(x_{2}-x_{1}\right)+m_{1}\left(y_{2}-y_{1}\right)+n_{1}\left(z_{1}-z_{1}\right)\right\}$.
2.626 The direction cosines of the line passing through the two points x_{1}, y_{1}, z_{1} and x_{2}, y_{2}, z_{2} are:

$$
\frac{\left(x_{2}-x_{1}\right), \quad\left(y_{2}-y_{1}\right), \quad\left(z_{2}-z_{1}\right)}{\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{\frac{1}{2}}}
$$

2.627 The two lines:

$$
\begin{aligned}
& x=m_{1} z+p_{1}, \\
& y=n_{1} z+q_{1},
\end{aligned} \quad \text { and } \quad \begin{aligned}
& x=m_{2} z+p_{2}, \\
& y=n_{2} z+q_{2},
\end{aligned}
$$

intersect at a point if,

$$
\left(m_{1}-m_{2}\right)\left(q_{1}-q_{2}\right)-\left(n_{1}-n_{2}\right)\left(p_{1}-p_{2}\right)=0 .
$$

The coördinates of the point of intersection are:

$$
x=\frac{m_{1} p_{2}-m_{2} p_{1}}{m_{1}-m_{2}}, \quad y=\frac{n_{1} q_{2}-n_{2} q_{1}}{n_{1}-n_{2}}, \quad z=\frac{p_{2}-p_{1}}{m_{1}-m_{2}}=\frac{q_{2}-q_{1}}{n_{1}-n_{2}} .
$$

The equation of the plane containing the two lines is then

$$
\left(n_{1}-n_{2}\right)\left(x-m_{1} z-p_{1}\right)=\left(m_{1}-m_{2}\right)\left(y-n_{1} z-q_{1}\right) .
$$

SURFACES

2.640 A single equation in x, y, z represents a surface:

$$
F(x, y, z)=0 .
$$

2.641 The direction cosines of the normal to the surface are:

$$
l, m, n=\frac{\frac{\partial F}{\partial x}, \quad \frac{\partial F}{\partial y}, \quad \frac{\partial F}{\partial z}}{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}\right\}^{\frac{3}{z}}}
$$

2.642 The perpendicular from the origin upon the tangent plane at x, y, z is:

$$
p=l x+m y+n z .
$$

2.643 The two principal radii of curvature of the surface $F(x, y, z)=0$ are given by the two roots of:
where:
$\left|\begin{array}{cccc}\frac{k}{\rho}+\frac{\partial^{2} F}{\partial x^{2}} & \frac{\partial^{2} F}{\partial x \partial y} & \frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial F}{\partial x} \\ \frac{\partial^{2} F}{\partial x \partial y} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial y^{2}} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{\partial F}{\partial y} \\ \frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial z^{2}} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} & 0\end{array}\right|=0$,

$$
k^{2}=\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}
$$

2.644 The coördinates of each center of curvature are:

$$
\xi=x+\frac{\rho}{k} \frac{\partial F}{\partial x}, \quad \eta=y+\frac{\rho}{k} \frac{\partial F}{\partial y}, \quad \zeta=z+\frac{\rho}{k} \frac{\partial F}{\partial z} .
$$

2.645 The envelope of a family of surfaces:
I.

$$
F(x, y, z, \alpha)=0
$$

is found by eliminating α between (I) and
2. $\frac{\partial F}{\partial \alpha}=0$.
2.646 The characteristic of a surface is a curve defined by the two equations (1) and (2) in 2.645.
2.647 The envelope of a family of surfaces with two variable parameters, α, β, is obtained by eliminating α and β between:
I.

$$
\begin{aligned}
F(x, y, z, \alpha, \beta) & =0 . \\
\frac{\partial F}{\partial \alpha} & =0 . \\
\frac{\partial F}{\partial \beta} & =0 .
\end{aligned}
$$

2.648 The equations of a surface may be given in the parametric form:

$$
x=f_{1}(u, v), \quad y=f_{2}(u, v), \quad z=f_{3}(u, v) .
$$

The equation of a tangent plane at x_{1}, y_{1}, z_{1} is:
where

$$
\left(x-x_{1}\right) \frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}+\left(y-y_{1}\right) \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}+\left(z-z_{1}\right) \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}=0,
$$

$$
\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} \\
\frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v}
\end{array}\right|, \text { etc. See 1.370. }
$$

2.649 The direction cosines to the normal to the surface in the form 2.648 are:

$$
l, m, n=\frac{\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}, \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}, \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}}{\left\{\left(\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}\right)^{2}\right\}^{3}} .
$$

2.650 If the equation of the surface is:

$$
z=f(x, y),
$$

the equation of the tangent plane at x_{1}, y_{1}, z_{1} is:

$$
z-z_{1}=\left(\frac{\partial f}{\partial x}\right)_{1}\left(x-x_{1}\right)+\left(\frac{\partial f}{\partial y}\right)_{1}\left(y-y_{1}\right) .
$$

2.651 The direction cosines of the normal to the surface in the form 2.650 are:

$$
l, m, n=\frac{-\left(\frac{\partial f}{\partial x}\right),-\left(\frac{\partial f}{\partial y}\right),+\mathrm{I}}{\left\{\mathrm{I}+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right\}^{\frac{1}{2}}}
$$

2.652 The two principal radii of curvature of the surface in the form $\mathbf{2 . 6 5 0}$ are given by the two roots of:

$$
\left(r t-s^{2}\right) \rho^{2}-\left\{\left(\mathrm{I}+q^{2}\right) r-2 p q s+\left(\mathrm{I}+p^{2}\right) t\right\} \sqrt{\mathrm{I}+p^{2}+q^{2}} \rho+\left(\mathrm{I}+p^{2}+q^{2}\right)^{2}=0,
$$ where

$$
p=\frac{\partial f}{\partial x}, \quad q=\frac{\partial f}{\partial y}, \quad r=\frac{\partial^{2} f}{\partial x^{2}}, \quad s=\frac{\partial^{2} f}{\partial x \partial y}, \quad t=\frac{\partial^{2} f}{\partial y^{2}} .
$$

2.653 If ρ_{1} and ρ_{2} are the two principal radii of curvature of a surface, and ρ is the radius of curvature in a plane making an angle ϕ with the plane of ρ_{1},

$$
\frac{I}{\rho}=\frac{\cos ^{2} \phi}{\rho_{1}}+\frac{\sin ^{2} \phi}{\rho_{2}}
$$

2.654 If ρ and ρ^{\prime} are the radii of curvature in any two mutually perpendicular planes, and ρ_{1} and ρ_{2} the two principal radii of curvature:

$$
\frac{\mathrm{I}}{\rho}+\frac{\mathrm{I}}{\rho^{\prime}}=\frac{\mathrm{I}}{\rho_{1}}+\frac{\mathrm{I}}{\rho_{2}}
$$

2.655 Gauss's measure of the curvature of a surface is:

$$
\frac{\mathrm{I}}{\rho}=\frac{\mathrm{I}}{\rho_{1} \rho_{2}}
$$

SPACE CURVES

2.670 The equations of a space curve may be given in the forms:

$$
\begin{equation*}
F_{1}(x, y, z)=0, \quad F_{2}(x, y, z)=0 . \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
x=f_{1}(t), \quad y=f_{2}(t), \quad z=f_{3}(t) . \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
y=\phi(x), z=\psi(x) \tag{c}
\end{equation*}
$$

2.671 The direction cosines of the tangent to a space curve in the form (a) are:

$$
\begin{aligned}
& l=\frac{\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial z}-\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial y}}{T} \\
& m=\frac{\frac{\partial F_{1}}{\partial z} \cdot \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial z}}{T} \\
& n=\frac{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial y}-\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial x}}{T}
\end{aligned}
$$

where T is the positive root of:

$$
\begin{aligned}
T^{2}=\left\{\left(\frac{\partial F_{1}}{\partial x}\right)^{2}+\left(\frac{\partial F_{1}}{\partial y}\right)^{2}+\left(\frac{\partial F_{1}}{\partial z}\right)^{2}\right\}\left\{\left(\frac{\partial F_{2}}{\partial x}\right)^{2}\right. & \left.+\left(\frac{\partial F_{2}}{\partial y}\right)^{2}+\left(\frac{\partial F_{2}}{\partial z}\right)^{2}\right\} \\
& -\left\{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial x}+\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial y}+\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial z}\right\}^{2}
\end{aligned}
$$

2.672 The direction cosines of the tangent to a space curve in the form (b) are:

$$
l, m, n=\frac{x^{\prime}, y^{\prime}, z^{\prime}}{\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{2}}}
$$

where the accents denote differentials with respect to t.
2.673 If s, the length of arc measured from a fixed point on the curve is the parameter, t :

$$
l, m, n=\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}
$$

2.674 The principal radius of curvature of a space curve in the form (b) is:

$$
\begin{aligned}
\rho & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{3}{2}}}{\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =\frac{s^{\prime 2}}{\left(x^{\prime / 2}+y^{\prime 2}+z^{\prime \prime 2}-s^{\prime \prime 2}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

where the double accents denote second differentials with respect to t, and s, the length of arc, is a function of t.
2.675 When $t=s$:

$$
\frac{\mathrm{I}}{\rho}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}+\left(\frac{d^{2} z}{d s^{2}}\right)^{2}\right\}^{1}
$$

2.676 The direction cosines of the principal normal to the space curve in the form (b) are:

$$
\begin{aligned}
l^{\prime} & =\frac{z^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)-y^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)}{L} \\
m^{\prime} & =\frac{x^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)-z^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)}{L}
\end{aligned}
$$

$$
n^{\prime}=\frac{y^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)-x^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)}{L},
$$

where

$$
L=\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{2}}\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}}
$$

2.677 The direction cosines of the binormal to the curve in the form (b) are:

$$
\begin{aligned}
l^{\prime \prime} & =\frac{y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}}{S} \\
m^{\prime \prime} & =\frac{z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}}{S} \\
n^{\prime \prime} & =\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{S}
\end{aligned}
$$

where

$$
S=\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}}
$$

2.678 If s, the distance measured along the curve from a fixed point on it is the parameter, t :

$$
l^{\prime}=\rho \frac{d^{2} x}{d s^{2}}, m^{\prime}=\rho \frac{d^{2} y}{d s^{2}}, n^{\prime}=\rho \frac{d^{2} z}{d s^{2}},
$$

where ρ is the principal radius of curvature; and

$$
\begin{aligned}
l^{\prime \prime} & =\rho\left(\frac{d y}{d s} \frac{d^{2} z}{d s^{2}}-\frac{d z}{d s} \frac{d^{2} y}{d s^{2}}\right) \\
m^{\prime \prime} & =\rho\left(\frac{d z}{d s} \frac{d^{2} x}{d s^{2}}-\frac{d x}{d s} \frac{d^{2} z}{d s^{2}}\right) \\
n^{\prime \prime} & =\rho\left(\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}\right) .
\end{aligned}
$$

2.679 The radius of torsion, or radius of second curvature of a space curve is:

$$
\begin{aligned}
\tau & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{1}{2}}}{\left\{\left(\frac{\partial l^{\prime \prime}}{\partial t}\right)^{2}+\left(\frac{\partial m^{\prime \prime}}{\partial t}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial t}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =-\frac{1}{S^{2}}\left|\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & z^{\prime \prime} \\
x^{\prime \prime \prime} & y^{\prime \prime \prime} & z^{\prime \prime \prime}
\end{array}\right|
\end{aligned}
$$

where S is given in 2.677 .
2.680 When $t=s$:

$$
\frac{\mathbf{I}}{\boldsymbol{\tau}}=\left\{\left(\frac{\partial l^{\prime \prime}}{\partial s}\right)^{2}+\left(\frac{\partial m^{\prime \prime}}{\partial s}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial s}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
=-\rho^{2}\left|\begin{array}{lll}
\frac{d x}{d s} & \frac{d y}{d s} & \frac{d z}{d s} \\
\frac{d^{2} x}{d s^{2}} & \frac{d^{2} y}{d s^{2}} & \frac{d^{2} z}{d s^{2}} \\
\frac{d^{3} x}{d s^{3}} & \frac{d^{3} y}{d s^{3}} & \frac{d^{3} z}{d s^{3}}
\end{array}\right| .
$$

2.681 The direction cosines of the tangent to a space curve in the form (c) are:

$$
l, m, n=\frac{\mathrm{I}, y^{\prime}, z^{\prime}}{\sqrt{\mathrm{I}+y^{\prime 2}+z^{\prime 2}}}
$$

where accents denote differentials with respect to x :

$$
y^{\prime}=\frac{d \phi(x)}{d x}, \quad z^{\prime}=\frac{d \psi(x)}{d x}
$$

2.682 The principal radius of curvature of a space curve in the form (c) is:

$$
\rho=\left\{\frac{\left(1+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+y^{\prime \prime 2}+z^{\prime \prime 2}}\right\}^{\frac{1}{2}}
$$

2.683 The radius of torsion of a space curve in the form (c) is:

$$
\tau=\frac{\left(\mathrm{I}+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\rho^{2}\left(y^{\prime \prime} z^{\prime \prime \prime}-z^{\prime \prime} y^{\prime \prime \prime}\right)}
$$

2.690 The relation between the direction cosines of the tangent, principal normal and binormal to a space curve is:

$$
\left|\begin{array}{lll}
l & m & n \\
l^{\prime} & m^{\prime} & n^{\prime} \\
l^{\prime \prime} & m^{\prime \prime} & n^{\prime \prime}
\end{array}\right|=\mathrm{I}
$$

2.691 The tangent, principal normal and binormal all being mutually perpendicular the relations of 2.00 hold among their direction cosines.

III. TRIGONOMETRY

$3.00 \tan x=\frac{\sin x}{\cos x}, \sec x=\frac{\mathrm{I}}{\cos x}, \csc x=\frac{\mathrm{I}}{\sin x}, \cot x=\frac{\mathrm{I}}{\tan x}$,
$\sec ^{2} x=\mathrm{I}+\tan ^{2} x, \csc ^{2} x=\mathrm{I}+\cot ^{2} x, \sin ^{2} x+\cos ^{2} x=\mathrm{I}$, versin $x=\mathrm{I}-\cos x$, coversin $x=\mathrm{I}-\sin x$, haversin $x=\sin ^{2} \frac{x}{2}$.
$3.01 \sin x=-\sin (-x)=\sqrt{\frac{1-\cos 2 x}{2}},=2 \sqrt{\cos ^{2} \frac{x}{2}-\cos ^{4} \frac{x}{2}}$,

$$
\begin{aligned}
& =2 \sin \frac{x}{2} \cos \frac{x}{2}=\frac{\tan x}{\sqrt{I+\tan ^{2} x}}=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}, \\
& =\frac{1}{\sqrt{I+\cot ^{2} x}}=\frac{1}{\cot \frac{x}{2}-\cot x}=\frac{1}{\tan \frac{x}{2}+\cot x}, \\
& =\cot \frac{x}{2} \cdot(I-\cos x)=\tan \frac{x}{2} \cdot(I+\cos x), \\
& =\sin y \cos (x-y)+\cos y \sin (x-y), \\
& =\cos y \sin (x+y)-\sin y \cos (x+y), \\
& =-\frac{1}{2} i\left(e^{i x}-e^{-i x}\right) .
\end{aligned}
$$

$3.02 \cos x=\cos (-x)=\sqrt{\frac{1+\cos 2 x}{2}}=1-2 \sin ^{2} \frac{x}{2}$,

$$
\begin{aligned}
& =\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=2 \cos ^{2} \frac{x}{2}-\mathrm{I}=\frac{\mathrm{I}}{\sqrt{I+\tan ^{2} x}} \\
& =\frac{\mathrm{I}-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{\mathrm{I}}{1+\tan x \tan \frac{x}{2}}=\frac{\mathrm{I}}{\tan x \cot \frac{x}{2}-\mathrm{I}} \\
& =\frac{\cot \frac{x}{2}-\tan \frac{x}{2}}{\cot \frac{x}{2}+\tan \frac{x}{2}}=\frac{\cot x}{\sqrt{I+\cot ^{2} x}}=\frac{\sin 2 x}{2 \sin x} \\
& =\cos y \cos (x+y)+\sin y \sin (x+y), \\
& =\cos y \cos (x-y)-\sin y \sin (x-y) \\
& =\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
\end{aligned}
$$

$3.03 \tan x=-\tan (-x)=\frac{\sin 2 x}{1+\cos 2 x}=\frac{1-\cos 2 x}{\sin 2 x},=$

$$
\begin{aligned}
& \sqrt{\frac{\mathrm{I}-\cos 2 x}{\mathrm{I}+\cos 2 x}}=\frac{\sin (x+y)+\sin (x-y)}{\cos (x+y)+\cos (x-y)}, \\
= & \frac{\cos (x-y)-\cos (x+y)}{\sin (x+y)-\sin (x-y)}=\cot x-2 \cot 2 x, \\
= & \frac{\tan \frac{x}{2}}{\mathrm{I}-\tan \frac{x}{2}}+\frac{\tan \frac{x}{2}}{\mathrm{I}+\tan \frac{x}{2}}=\frac{2 \tan \frac{x}{2}}{\mathrm{I}-\tan ^{2} \frac{x}{2}}, \\
= & \frac{\mathrm{I}}{\mathrm{I}-\tan \frac{x}{2}}-\frac{\mathrm{I}}{\mathrm{I}+\tan \frac{x}{2}}, \\
= & i \frac{\mathrm{I}-e^{2 i x}}{\mathrm{I}+e^{2 i x}} .
\end{aligned}
$$

3.04 The values of five trigonometric functions in terms of the sixth are given in the following table. (For signs, see 3.05.)

	$\sin x=a$	$\cos x=a$	$\tan x=a$	$\cot x=a$	$\sec x=a$	$\csc x=a$
$\sin x=$	a	$\sqrt{I-a^{2}}$	$\frac{a}{\sqrt{\text { I }+a^{2}}}$	$\frac{I}{\sqrt{I+a^{2}}}$	$\frac{\sqrt{a^{2}-\mathrm{I}}}{a}$	$\frac{1}{\square}$
$\cos x=$	$\sqrt{\text { I-a }}$	a	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{a}{\sqrt{I+a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{a^{2}-1}}{a}$
$\tan x=$	$\frac{a}{\sqrt{\text { I-a }}}$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	a	$\frac{\mathrm{I}}{a}$	$\sqrt{a^{2}-\mathrm{I}}$	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$
$\cot x=$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	$\frac{a}{\sqrt{1-a^{2}}}$	$\frac{\mathrm{I}}{\square}$	a	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$	$\sqrt{a^{2}-\mathrm{I}}$
$\sec x=$	$\frac{1}{\sqrt{1-a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\sqrt{\mathrm{I}+a^{2}}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$	a	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$
$\csc x=$	$\frac{\mathrm{I}}{a}$	$\frac{\mathrm{I}}{\sqrt{1-a^{2}}}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$	$\sqrt{1+a^{2}}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	a

3.05 The trigonometric functions are periodic, the periods of the $\sin , \cos , \mathrm{sec}$, \csc being 2π, and those of the tan and cot, π. Their signs may be determined from the following table. In using formulas giving any of the trigonometric
functions by the root of some quantity, the proper sign may be taken from this table.

	0°	$\begin{aligned} & 0-\frac{\pi}{2} \\ & 0-90^{\circ} \end{aligned}$	$\frac{\pi}{2}$ 90°	$\begin{gathered} \frac{\pi}{2}-\pi \\ 90^{\circ}-180^{\circ} \end{gathered}$	$\begin{gathered} \pi \\ 180^{\circ} \end{gathered}$	$\begin{gathered} \pi-\frac{3}{2} \pi \\ 180^{\circ}-270^{\circ} \end{gathered}$	$\begin{gathered} \frac{3}{2} \pi \\ 270^{\circ} \end{gathered}$	$\begin{gathered} \frac{3}{2} \pi-2 \pi \\ 270^{\circ}-360^{\circ} \end{gathered}$	2π 360°
\sin	\bigcirc	$+$	I	+	\bigcirc	-	- I	-	\bigcirc
\cos	I	+	\bigcirc	-	- I	-	\bigcirc	+	I
\tan	\bigcirc	+	$\pm \infty$	-	\bigcirc	+	$\pm \infty$	-	\bigcirc
\cot	$\mp \infty$	+	\bigcirc	-	$\mp \infty$	$+$	\bigcirc	-	$\mp \infty$
sec	I	+	$\pm \infty$	-	-I	-	$\pm \infty$	+	I
Csc	$\mp \infty$	+	I	+	$\pm \infty$	-	- I	-	$\mp \infty$

3.10 Functions of Half an Angle. (See 3.05 for signs.)
3.101

$$
\begin{aligned}
\sin \frac{I}{2} x & = \pm \sqrt{\frac{I-\cos x}{2}} \\
& =\frac{1}{2}\{ \pm \sqrt{I+\sin x} \mp \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I-\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.102

$$
\begin{aligned}
\cos \frac{\mathrm{I}}{2} x & = \pm \sqrt{\frac{I+\cos x}{2}} \\
& =\frac{I}{2}\{ \pm \sqrt{I+\sin x} \pm \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I+\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.103

$$
\tan \frac{1}{2} x= \pm \sqrt{\frac{I-\cos x}{I+\cos x}}
$$

$$
\begin{aligned}
& =\frac{\sin x}{I+\cos x}=\frac{I-\cos x}{\sin x}, \\
& =\frac{ \pm \sqrt{I+\tan ^{2} x}-I}{\tan x} .
\end{aligned}
$$

3.11 Functions of the Sum and Difference of Two Angles.
3.111

$$
\begin{aligned}
\sin (x \pm y) & =\sin x \cos y \pm \cos x \sin y \\
& =\cos x \cos y(\tan x \pm \tan y), \\
& =\frac{\tan x \pm \tan y}{\tan x \mp \tan y} \sin (x \mp y), \\
& =\frac{1}{2}\{\cos (x+y)+\cos (x-y)\}(\tan x \pm \tan y) .
\end{aligned}
$$

3.112

$$
\begin{aligned}
\cos (x \pm y) & =\cos x \cos y \mp \sin x \sin y, \\
& =\cos x \cos y(\mathrm{I} \mp \tan x \tan y), \\
& =\frac{\cot x \mp \tan y}{\cot x \pm \tan y} \cos (x \mp y), \\
& =\frac{\cot y \mp \tan x}{\cot y \tan x \mp \mathrm{I}} \sin (x \mp y), \\
& =\cos x \sin y(\cot y \mp \tan x) .
\end{aligned}
$$

3.113

$$
\begin{aligned}
\tan (x \pm y) & =\frac{\tan x \pm \tan y}{\mathrm{I} \mp \tan x \tan y}, \\
& =\frac{\cot y \pm \cot x}{\cot x \cot y \mp \mathrm{I}}, \\
& =\frac{\sin 2 x \pm \sin 2 y}{\cos 2 x+\cos 2 y} .
\end{aligned}
$$

3.114

$$
\begin{aligned}
\cot (x \pm y) & =\frac{\cot x \cot y \mp \mathrm{I}}{\cot y \pm \cot x} \\
& =-\frac{\sin 2 x \mp \sin 2 y}{\cos 2 x-\cos 2 y}
\end{aligned}
$$

3.115 The cosine and sine of the sum of any number of angles in terms of the sine and cosine of the angles are given by the real and imaginary parts of $\cos \left(x_{1}+x_{2}+\ldots+x_{n}\right)+i \sin \left(x_{1}+x_{2}+\ldots+x_{n}\right)$

$$
=\left(\cos x_{1}+i \sin x_{1}\right)\left(\cos x_{2}+i \sin x_{2}\right) \ldots\left(\cos x_{n}+i \sin x_{n}\right)
$$

3.12 Sums and Differences of Trigonometric Functions.
3.121

$$
\begin{aligned}
\sin x \pm \sin y & =2 \sin \frac{1}{2}(x \pm y) \cos \frac{1}{2}(x \mp y), \\
& =(\cos x+\cos y) \tan \frac{1}{2}(x \pm y), \\
& =(\cos y-\cos x) \cot \frac{1}{2}(x \mp y), \\
& =\frac{\tan \frac{1}{2}(x \pm y)}{\tan \frac{1}{2}(x \mp y)}(\sin x \mp \sin y) .
\end{aligned}
$$

3.122

$$
\begin{aligned}
\cos x+\cos y & =2 \cos \frac{1}{2}(x+y) \cos \frac{1}{2}(x-y) \\
& =\frac{\sin x \pm \sin y}{\tan \frac{1}{2}(x \pm y)} \\
& =\frac{\cot \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}(\cos y-\cos x)
\end{aligned}
$$

3.123

$$
\begin{aligned}
\cos x-\cos y & =2 \sin \frac{1}{2}(y+x) \sin \frac{1}{2}(y-x) \\
& =-(\sin x \pm \sin y) \tan \frac{1}{2}(x \mp y)
\end{aligned}
$$

$3.124 \quad \tan x \pm \tan y=\frac{\sin (x \pm y)}{\cos x \cdot \cos y}$.

$$
=\frac{\sin (x \pm y)}{\sin (x \mp y)}(\tan x \mp \tan y)
$$

$$
=\tan y \tan (x \pm y)(\cot y \mp \tan x)
$$

$$
=\frac{\mathrm{I} \mp \tan x \tan y}{\cot (x \pm y)}
$$

$$
=(\mathrm{I} \mp \tan x \tan y) \tan (x \pm y)
$$

$$
\cot x \pm \cot y= \pm \frac{\sin (x \pm y)}{\sin x \sin y}
$$

I.
2.
3.

$$
\begin{aligned}
& \frac{\sin x \pm \sin y}{\cos x+\cos y}=\tan \frac{1}{2}(x \pm y) \\
& \frac{\sin x \pm \sin y}{\cos x-\cos y}=-\cot \frac{1}{2}(x \mp y) \\
& \frac{\sin x+\sin y}{\sin x-\sin y}=\frac{\tan \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}
\end{aligned}
$$

3.140
I.
2.

$$
\sin ^{2} x-\sin ^{2} y=\cos ^{2} y-\cos ^{2} x
$$

$$
=\sin (x+y) \sin (x-y)
$$

3.

$$
\cos ^{2} x-\sin ^{2} y=\cos (x+y) \cos (x-y)
$$

4.

$$
\sin ^{2}(x+y)+\sin ^{2}(x-y)=1-\cos 2 x \cos 2 y
$$

5.
6.
7.

$$
\sin ^{2} x+\sin ^{2} y=1-\cos (x+y) \cos (x-y)
$$

$$
\sin ^{2}(x+y)-\sin ^{2}(x-y)=\sin 2 x \sin 2 y
$$

$$
\cos ^{2}(x+y)+\cos ^{2}(x-y)=1+\cos 2 x \cos 2 y
$$

$$
\cos ^{2}(x+y)-\cos ^{2}(x-y)=-\sin 2 x \sin 2 y
$$

3.150
I. $\cos n x \cos m x=\frac{1}{2} \cos (n-m) x+\frac{1}{2} \cos (n+m) x$.
2.
3. $\sin n x \sin m x=\frac{1}{2} \cos (n-m) x-\frac{1}{2} \cos (n+m) x$. $\cos n x \sin m x=\frac{1}{2} \sin (n+m) x-\frac{1}{2} \sin (n-m) x$.
3.160
I.

$$
\begin{aligned}
e^{x+i y} & =e^{x}(\cos y+i \sin y) \\
a^{x+i y} & =a^{x}\{\cos (y \log a)+i \sin (y \log a)\} . \\
(\cos x \pm i \sin x)^{n} & =\cos n x \pm i \sin n x
\end{aligned}
$$

[De Moivre's Theorem].
$\sin (x \pm i y)=\sin x \cosh y \pm i \cos x \sinh y$. $\cos (x \pm i y)=\cos x \cosh y \mp i \sin x \sinh y$.
$\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$.

$$
\sin x=-\frac{i}{2}\left(e^{i x}-e^{-i x}\right)
$$

8.
9.

$$
e^{i x}=\cos x+i \sin x
$$

$$
e^{-i x}=\cos x-i \sin x
$$

3.170 Sines and Cosines of Multiple Angles.
$3.171 n$ an even integer:
$\sin n x=n \cos x\left\{\sin x-\frac{\left(n^{2}-2^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$. $\cos n x=\mathrm{I}-\frac{n^{2}}{2!} \sin ^{2} x+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} \sin ^{4} x-\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} \sin ^{6} x+\ldots$
$3.172 n$ an odd integer:
$\sin n x=n\left\{\sin x-\frac{\left(n^{2}-1^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$.
$\cos n x=\cos x\left\{\mathrm{I}-\frac{\left(n^{2}-\mathrm{I}^{2}\right)}{2!} \sin ^{2} x+\frac{\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{4!} \sin ^{4} x-\ldots\right\}$.
$3.173 n$ an even integer:
$\sin n x=(-\mathrm{I})^{\frac{n}{2}-\mathrm{I}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{(n-2)}{\mathrm{I}!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots\}
\end{array}
$$

$\cos n x=(-\mathrm{I})^{\frac{n}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{1!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right.$

$$
\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\}
$$

$3.174 n$ an odd integer:

$$
\begin{aligned}
& \sin n x=(-1)^{\frac{n-1}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{1!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right. \\
&\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\} .
\end{aligned}
$$

$\cos n x=(-1)^{\frac{n-1}{2}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{n-2}{1!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots \ldots\}
\end{array}
$$

$3.175 n$ any integer :
$\sin n x=\sin x\left\{2^{n-1} \cos ^{n-1} x-\frac{n-2}{\mathrm{I}!} 2^{n-3} \cos ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \cos ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \cos ^{n-7} x \\
+\ldots\}
\end{array}
$$

$\cos n x=2^{n-1} \cos ^{n} x-\frac{n}{1!} 2^{n-3} \cos ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \cos ^{n-4} x$

$$
-\frac{n(n-4)(n-5)}{3!} 2^{n-7} \cos ^{n-6} x+\ldots
$$

3.176

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x \\
\sin 3 x & =\sin x\left(3-4 \sin ^{2} x\right) \\
& =\sin x\left(4 \cos ^{2} x-\mathrm{I}\right) \\
\sin 4 x & =\sin x\left(8 \cos ^{3} x-4 \cos x\right) \\
\sin 5 x & =\sin x\left(5-20 \sin ^{2} x+\mathrm{I} 6 \sin ^{4} x\right) \\
& =\sin x\left(16 \cos ^{4} x-\mathrm{I} 2 \cos ^{2} x+\mathrm{I}\right) \\
\sin 6 x & =\sin x\left(32 \cos ^{5} x-32 \cos ^{3} x+6 \cos x\right)
\end{aligned}
$$

3.177

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =\mathrm{I}-2 \sin ^{2} x \\
& =2 \cos ^{2} x-\mathrm{I} \\
\cos 3 x & =\cos x\left(4 \cos ^{2} x-3\right) \\
& =\cos x\left(\mathrm{I}-4 \sin ^{2} x\right) \\
\cos 4 x & =8 \cos ^{4} x-8 \cos ^{2} x+\mathrm{I} \\
\cos 5 x & =\cos x\left(\mathrm{I} 6 \cos ^{4} x-20 \cos ^{2} x+5\right) \\
& =\cos x\left(\mathrm{I} 6 \sin ^{4} x-\mathrm{I} 2 \sin ^{2} x+\mathrm{I}\right) \\
\cos 6 x & =32 \cos ^{6} x-48 \cos ^{4} x+\mathrm{I} 8 \cos ^{2} x-\mathrm{I}
\end{aligned}
$$

3.178

$$
\begin{aligned}
& \tan 2 x=\frac{2 \tan x}{I-\tan ^{2} x} \\
& \cot 2 x=\frac{\cot ^{2} x-I}{2 \cot x}
\end{aligned}
$$

3.180 Integral Powers of Sine and Cosine.
$3.181 n$ an even integer:

$$
\begin{aligned}
\sin ^{n} x= & \frac{(-1)^{\frac{n}{2}}}{2^{n-1}}\left\{\cos n x-n \cos (n-2) x+\frac{n(n-1)}{2!} \cos (n-4) x\right. \\
& \left.-\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots \ldots+(-1)^{\frac{n}{2} \frac{1}{2}} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}!\right\}
\end{aligned}
$$

$\cos ^{n} x=\frac{\mathrm{I}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-\mathrm{x})}{2!} \cos (n-4) x\right.$

$$
\left.+\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots+\frac{1}{2} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \cdot\right\}
$$

$3.182 n$ an odd integer:
$\sin ^{n} x=\frac{(-1)^{\frac{n-1}{2}}}{2^{n-1}}\left\{\sin n x-n \sin (n-2) x+\frac{n(n-\mathrm{I})}{2!} \sin (n-4) x\right.$
$\left.-\frac{n(n-\mathrm{I})(n-2)}{3!} \sin (n-6) x+\ldots+(-\mathrm{I})^{\frac{n-1}{2}} \frac{n!}{\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)!} \sin x\right\}$.
$\cos ^{n} x=\frac{\mathrm{I}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-\mathrm{I})}{2!} \cos (n-4) x\right.$

$$
\left.+\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots \ldots+\frac{n!}{\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)!} \quad \cos x\right\}
$$

3.183

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) . \\
& \sin ^{3} x=\frac{1}{4}(3 \sin x-\sin 3 x) . \\
& \sin ^{4} x=\frac{1}{8}(\cos 4 x-4 \cos 2 x+3) . \\
& \sin ^{5} x=\frac{1}{16}(\sin 5 x-5 \sin 3 x+10 \sin x) . \\
& \sin ^{6} x=-\frac{1}{32}(\cos 6 x-6 \cos 4 x+15 \cos 2 x-10) .
\end{aligned}
$$

3.184

$$
\begin{aligned}
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) . \\
& \cos ^{3} x=\frac{1}{4}(3 \cos x+\cos 3 x) . \\
& \cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x) . \\
& \cos ^{5} x=\frac{1}{16}(10 \cos x+5 \cos 3 x+\cos 5 x) . \\
& \cos ^{6} x=\frac{1}{32}(10+15 \cos 2 x+6 \cos 4 x+\cos 6 x) .
\end{aligned}
$$

INVERSE CIRCULAR FUNCTIONS

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if

$$
0<\sin ^{-1} x<\frac{\pi}{2},
$$

the solution of $x=\sin \theta$ is:

$$
\theta=2 n \pi+\sin ^{-1} x,
$$

where n is a positive integer. In the following formulas the cyclic constants are omitted.

$$
\begin{aligned}
\sin ^{-1} x & =-\sin ^{-1}(-x)=\frac{\pi}{2}-\cos ^{-1} x=\cos ^{-1} \sqrt{I-x^{2}} \\
& =\frac{\pi}{2}-\sin ^{-1} \sqrt{I-x^{2}}=\frac{\pi}{4}+\frac{I}{2} \sin ^{-1}\left(2 x^{2}-\mathrm{I}\right) \\
& =\frac{I}{2} \cos ^{-1}\left(I-2 x^{2}\right)=\tan ^{-1} \frac{x}{\sqrt{I-x^{2}}} \\
& =2 \tan ^{-1}\left\{\frac{I-\sqrt{I-x^{2}}}{x}\right\}=\frac{I}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{I-x^{2}}}{I-2 x^{2}}\right\} \\
& =\cot ^{-1} \frac{\sqrt{I-x^{2}}}{x}=\frac{\pi}{2}-i \log \left(x+\sqrt{\left.x^{2}-I\right)} .\right.
\end{aligned}
$$

3.22

$$
\begin{aligned}
\cos ^{-1} x & =\pi-\cos ^{-1}(-x)=\frac{\pi}{2}-\sin ^{-1} x=\frac{\mathrm{I}}{2} \cos ^{-1}\left(2 x^{2}-\mathrm{I}\right) \\
& =2 \cos ^{-1} \sqrt{\frac{I+x}{2}}=\sin ^{-1} \sqrt{\mathrm{I}-x^{2}}=\tan ^{-1} \frac{\sqrt{\mathrm{I}-x^{2}}}{x} \\
& =2 \tan ^{-1} \sqrt{\frac{I-x}{I+x}}=\frac{\mathrm{I}}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{\mathrm{I}-x^{2}}}{2 x^{2}-\mathrm{I}}\right\}=\cot ^{-1} \frac{x}{\sqrt{I-x^{2}}} \\
& =i \log \left(x+\sqrt{x^{2}-\mathrm{I}}\right)=\pi-i \log \left(\sqrt{x^{2}-\mathrm{I}}-x\right) .
\end{aligned}
$$

3.23

$$
\begin{aligned}
\tan ^{-1} x & =-\tan ^{-1}(-x)=\sin ^{-1} \frac{x}{\sqrt{\mathrm{I}+x^{2}}}=\cos ^{-1} \frac{\mathrm{I}}{\sqrt{\mathrm{I}+x^{2}}} \\
& =\frac{\mathrm{I}}{2} \sin ^{-1} \frac{2 x}{\mathrm{I}+x^{2}}=\frac{\pi}{2}-\cot ^{-1} x=\sec ^{-1} \sqrt{\mathrm{I}+x^{2}} \\
& =\frac{\pi}{2}-\tan ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{2} \cos ^{-1} \frac{\mathrm{I}-x^{2}}{\mathrm{I}+x^{2}} \\
& =2 \cos ^{-1}\left\{\frac{\mathrm{I}+\sqrt{\mathrm{I}+x^{2}}}{2 \sqrt{\mathrm{I}+x^{2}}}\right\}^{\frac{I}{2}}=2 \sin ^{-1}\left\{\frac{\sqrt{\mathrm{I}+x^{2}}-\mathrm{I}}{2 \sqrt{\mathrm{I}+x^{2}}}\right\}^{\frac{3}{3}} \\
& =\frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 x}{\mathrm{I}-x^{2}}=2 \tan ^{-1}\left\{\frac{\sqrt{\mathrm{I}+x^{2}}-\mathrm{I}}{x}\right\} \\
& =-\tan ^{-1} c+\tan ^{-1} \frac{x+c}{\mathrm{I}-c x} \\
& =\frac{\mathrm{I}}{2} i \log \frac{\mathrm{I}-i x}{\mathrm{I}+i x}=\frac{\mathrm{I}}{2} i \log \frac{i+x}{i-x}=-\frac{\mathrm{I}}{2} i \log \frac{\mathrm{I}+i x}{\mathrm{I}-i x} .
\end{aligned}
$$

3.25
I.

$$
\begin{aligned}
\sin ^{-1} x \pm \sin ^{-1} y & =\sin ^{-1}\left\{x \sqrt{I-y^{2}} \pm y \sqrt{I-x^{2}}\right\} . \\
\cos ^{-1} x \pm \cos ^{-1} y & =\cos ^{-1}\left\{x y \mp \sqrt{\left(I-x^{2}\right)\left(I-y^{2}\right)}\right\} . \\
\sin ^{-1} x \pm \cos ^{-1} y & =\sin ^{-1}\left\{x y \pm \sqrt{\left(1-x^{2}\right)\left(I-y^{2}\right.}\right) \\
& =\cos ^{-1}\left\{y \sqrt{I-x^{2}} \mp x \sqrt{I-y^{2}}\right\} .
\end{aligned}
$$

4.

$$
\begin{aligned}
\tan ^{-1} x \pm \tan ^{-1} y & =\tan ^{-1} \frac{x \pm y}{\mathrm{I} x y} \\
\tan ^{-1} x \pm \cot ^{-1} y & =\tan ^{-1} \frac{x y \pm \mathrm{I}}{y \mp x} \\
& =\cot ^{-1} \frac{y \mp x}{x y \pm 1} .
\end{aligned}
$$

HYPERBOLIC FUNCTIONS

3.30 Formulas for the hyperbolic functions may be obtained from the corresponding formulas for the circular functions by replacing x by $i x$ and using the following relations:
I.

$$
\sin i x=\frac{1}{2} i\left(e^{x}-e^{-x}\right)=i \sinh x .
$$

2. $\cos i x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh x$.
3.

$$
\tan i x=\frac{i\left(e^{2 x}-\mathrm{I}\right)}{e^{2 x}+\mathrm{I}}=i \tanh x .
$$

4. $\cot i x=-i \frac{e^{2 x}+\mathrm{I}}{e^{2 x}-\mathrm{I}}=-i \operatorname{coth} x$.
5.

$$
\sec i x=\frac{2}{e^{x}+e^{-x}}=\operatorname{sech} x
$$

6.

$$
\csc i x=-\frac{2 i}{e^{x}-e^{-x}}=-i \operatorname{csch} x
$$

7.

$$
\sin ^{-1} i x=i \sinh ^{-1} x=i \log \left(x+\sqrt{1+x^{2}}\right)
$$

8.

$$
\cos ^{-1} i x=-i \cosh ^{-1} x=\frac{\pi}{2}-i \log \left(x+\sqrt{I+x^{2}}\right)
$$

9.

$$
\tan ^{-1} i x=i \tanh ^{-1} x=i \log \sqrt{\frac{\mathrm{I}+x}{\mathrm{I}-x}} .
$$

10. $\quad \cot ^{-1} i x=-i \operatorname{coth}^{-1} x=-i \log \sqrt{\frac{x+1}{x-1}}$.
3.310 The values of five hyperbolic functions in terms of the sixth are given in the following table :

	$\sinh x=a$	$\cosh x=a$	$\tanh x=a$	$\operatorname{coth} x=a$	$\operatorname{sech} x=a$	$\operatorname{csch} x=a$
$\sinh x=$	a	$\sqrt{a^{2}-1}$	$\frac{a}{\sqrt{1-a^{2}}}$	$\frac{\mathrm{I}}{\sqrt{\sqrt{a^{2}-\mathrm{I}}}}$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	$\frac{1}{a}$
$\cosh x=$	$\sqrt{1+a^{2}}$	a	$\frac{\mathrm{I}}{\sqrt{\text { I }-a^{2}}}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$
$\tanh x=$	$\frac{a}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\sqrt{a^{2}-\mathrm{I}}}{a}$	a	$\frac{\mathrm{I}}{\square}$	$\sqrt{\mathrm{I}-a^{2}}$	$\frac{\mathrm{I}}{\sqrt{1+a^{2}}}$
$\operatorname{coth} x=$	$\frac{\sqrt{a^{2}+\mathrm{I}}}{a}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\mathrm{I}}{a}$	a	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}-a^{2}}}$	$\sqrt{I+a^{2}}$
$\operatorname{sech} x=$	$\frac{I}{\sqrt{I+a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\sqrt{1-a^{2}}$	$\frac{\sqrt{a^{2}-\mathrm{I}}}{a}$	a	$\frac{a}{\sqrt{1+a^{2}}}$
$\operatorname{csch} x=$	$\frac{\mathrm{I}}{\bar{a}}$	$\frac{\stackrel{\rightharpoonup}{I}}{\text { I }}$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	$\sqrt{a^{2}-\mathrm{I}}$	$\frac{a}{\sqrt{\text { I }-a^{2}}}$	a

3.311 Periodicity of the Hyperbolic Functions.

The functions $\sinh x, \cosh x, \operatorname{sech} x, \operatorname{csch} x$ have an imaginary period $2 \pi i$, e.g. :

$$
\cosh x=\cosh (x+2 \pi i n)
$$

where n is any integer. The functions $\tanh x, \operatorname{coth} x$ have an imaginary period πi.
The values of the hyperbolic functions for the argument $o, \frac{\pi}{2} i, \pi i, \frac{3 \pi i}{2}$, are given in the following table :

	\circ	$\frac{\pi}{2} i$	πi	$3 \frac{\pi}{2} i$
\sinh	\circ	i	\circ	$-i$
\cosh	I	0	-I	0
\tanh	\circ	$\infty \cdot i$	0	$\infty \cdot i$
coth	∞	0	∞	0
sech	I	∞	-I	∞
csch	∞	$-i$	∞	i

I.
$\sinh \frac{1}{2} x=\sqrt{\frac{\cosh x-1}{2}}$
2.
$\cosh \frac{\mathrm{I}}{2} x=\sqrt{\frac{\cosh x+\mathrm{I}}{2}}$
3.
$\tanh \frac{I}{2} x=\frac{\cosh x-1}{\sinh x}=\frac{\sinh x}{\cosh x+1}=\sqrt{\frac{\cosh x-1}{\cosh x+1}}$.
3.33
I. $\quad \sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$.
2. $\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$. $\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{\mathrm{I} \pm \tanh x \tanh y}$. $\operatorname{coth}(x \pm y)=\frac{\operatorname{coth} x \operatorname{coth} y \pm \mathrm{I}}{\operatorname{coth} y \pm \operatorname{coth} x}$.

3.34

I.
2.
3.
4.
$\sinh x+\sinh y=2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
$\sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$.
$\cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
$\cosh x-\cosh y=2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$.
5.
$\tanh x+\tanh y=\frac{\sinh (x+y)}{\cosh x \cosh y}$.
6. $\tanh x-\tanh y=\frac{\sinh (x-y)}{\cosh x \cosh y}$.
7. $\quad \operatorname{coth} x+\operatorname{coth} y=\frac{\sinh (x+y)}{\sinh x \sinh y}$.
8. $\quad \operatorname{coth} x-\operatorname{coth} y=-\frac{\sinh (x-y)}{\sinh x \sinh y}$.
3.35
I.
2.
3.
4.
5.
6.
$\sinh (x+y)+\sinh (x-y)=2 \sinh x \cosh y$.
$\sinh (x+y)-\sinh (x-y)=2 \cosh x \sinh y$. $\cosh (x+y)+\cosh (x-y)=2 \cosh x \cosh y$. $\cosh (x+y)-\cosh (x-y)=2 \sinh x \sinh y$. $\tanh \frac{1}{2}(x \pm y)=\frac{\sinh x \pm \sinh y}{\cosh x+\cosh y}$. $\operatorname{coth} \frac{1}{2}(x \pm y)=\frac{\sinh x \mp \sinh y}{\cosh x-\cosh y}$. $\frac{\tanh x+\tanh y}{\tanh x-\tanh y}=\frac{\sinh (x+y) .}{\sinh (x-y) .}$ $\frac{\operatorname{coth} x+\operatorname{coth} y}{\operatorname{coth} x-\operatorname{coth} y}=-\frac{\sinh (x+y)}{\sinh (x-y)}$.
3.36
I. $\sinh (x+y)+\cosh (x+y)=(\cosh x+\sinh x)(\cosh y+\sinh y)$.
2. $\quad \sinh (x+y) \sinh (x-y)=\sinh ^{2} x-\sinh ^{2} y$

$$
=\cosh ^{2} x-\cosh ^{2} y .
$$

3. $\quad \cosh (x+y) \cosh (x-y)=\cosh ^{2} x+\sinh ^{2} y$

$$
=\sinh ^{2} x+\cosh ^{2} y .
$$

4.

$$
\sinh x+\cosh x=\frac{I+\tanh \frac{1}{2} x}{I-\tanh \frac{1}{2} x}
$$

5. $\quad(\sinh x+\cosh x)^{n}=\cosh n x+\sinh n x$.

3.37

I.

$$
e^{x}=\cosh x+\sinh x
$$

2.

$e^{-x}=\cosh x-\sinh x$.
3.
4.

$$
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) .
$$

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

I.
$\sinh 2 x=2 \sinh x \cosh x$,

$$
=\frac{2 \tanh x}{I-\tanh ^{2} x} .
$$

2.

$$
\begin{aligned}
\cosh 2 x & =\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-\mathrm{I}, \\
& =\mathrm{I}+2 \sinh ^{2} x, \\
& =\frac{\mathrm{I}+\tanh ^{2} x}{\mathrm{I}-\tanh ^{2} x} .
\end{aligned}
$$

3.

$\tanh 2 x=\frac{2 \tanh x}{1+\tanh ^{2} x}$.
$\sinh 3 x=3 \sinh x+4 \sinh ^{3} x$.
5.
$\cosh 3 x=4 \cosh ^{3} x-3 \cosh x$. $\tanh 3 x=\frac{3 \tanh x+\tanh ^{3} x}{\mathbf{I}+3 \tanh ^{2} x}$.

3.40 Inverse Hyperbolic Functions.

The hyperbolic functions being periodic, the inverse functions are multiple valued (3.311). In the following formulas the periodic constants are omitted, the principal values only being given.
I.

$$
\begin{aligned}
& \sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)=\cosh ^{-1} \sqrt{x^{2}+1} \\
& \cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)=\sinh ^{-1} \sqrt{x^{2}-\mathrm{I}}
\end{aligned}
$$

$$
\tanh ^{-1} x=\log \sqrt{\frac{\mathrm{I}+x}{\mathrm{I}-x}}
$$

$$
\operatorname{coth}^{-1} x=\log \sqrt{\frac{x+1}{x-1}}=\tanh ^{-1} \frac{\mathrm{I}}{x}
$$

$$
\operatorname{sech}^{-1} x=\log \left(\frac{\mathrm{I}}{x}+\sqrt{\frac{I}{x^{2}}-\mathrm{I}}\right)=\cosh ^{-1} \frac{\mathrm{I}}{x}
$$

6.

$$
\operatorname{csch}^{-1} x=\log \left(\frac{I}{x}+\sqrt{\frac{I}{x^{2}}+I}\right)=\sinh ^{-1} \frac{I}{x}
$$

3.41

I.

$$
2 .
$$

$$
3
$$

$$
\begin{aligned}
& \sinh ^{-1} x \pm \sinh ^{-1} y=\sinh ^{-1}\left(x \sqrt{I+y^{2}} \pm y \sqrt{I+x^{2}}\right) \\
& \cosh ^{-1} x \pm \cosh ^{-1} y=\cosh ^{-1}\left(x y \pm \sqrt{\left(x^{2}-1\right)\left(y^{2}-I\right)}\right) \\
& \tanh ^{-1} x \pm \tanh ^{-1} y=\tanh ^{-1} \frac{x \pm y}{I \pm x y}
\end{aligned}
$$

3.42

I.

$$
\begin{aligned}
\cosh ^{-1} \frac{I}{2}\left(x+\frac{I}{x}\right) & =\sinh ^{-1} \frac{I}{2}\left(x-\frac{I}{x}\right), \\
& =\tanh ^{-1} \frac{x^{2}-\mathrm{I}}{x^{2}+\mathrm{I}}=2 \tanh ^{-1} \frac{x-\mathrm{I}}{x+\mathrm{I}}, \\
& =\log x .
\end{aligned}
$$

2.

$$
\begin{aligned}
\cosh ^{-1} \csc 2 x & =-\sinh ^{-1} \cot 2 x=-\tanh ^{-1} \cos 2 x, \\
& =\log \tan x .
\end{aligned}
$$

3. $\tanh ^{-1} \tan ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)=\frac{I}{I} \log \csc x$.
4.

$$
\tanh ^{-1} \tan ^{2} \frac{x}{2}=\frac{1}{2} \log \sec x
$$

3.43 The Gudermannian.

If,
I.
2.

$$
\sinh x=\tan \theta
$$

3.

$$
e^{x}=\sec \theta+\tan \theta=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
$$

4.
5.

$$
\cosh x=\sec \theta .
$$

$$
x=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
$$

$$
\theta=\operatorname{gd} x
$$

3.44

I.
2.
3.
4.
5.

$$
\sinh x=\tan \operatorname{gd} x
$$

$\cosh x=\sec \mathrm{gd} x$.
$\tanh x=\sin \operatorname{gd} x$.
$\tanh \frac{x}{2}=\tan \frac{\mathrm{I}}{2} \operatorname{gd} x$.

$$
e^{x}=\frac{\mathrm{I}+\sin \mathrm{gd} x}{\cos \operatorname{gd} x}=\frac{\mathrm{I}-\cos \left(\frac{\pi}{2}+\mathrm{gd} x\right)}{\sin \left(\frac{\pi}{2}+\operatorname{gd} x\right)}
$$

6. $\tanh ^{-1} \tan x=\frac{1}{2} \operatorname{gd} 2 x$.
7. $\quad \tan ^{-1} \tanh x=\frac{1}{2} \mathrm{gd}^{-1} 2 x$.
$a, b, c=$ Sides of triangle,
$\alpha, \beta, \gamma=$ angles opposite to a, b, c, respectively,

$$
A=\text { area of triangle }
$$

$$
s=\frac{1}{2}(a+b+c)
$$

Given
Sought
a, b, c
α

A
$a, b, \alpha \quad \beta$

$$
\sin \beta=\frac{b \sin \alpha}{a}
$$

When $a>b, \beta<\frac{\pi}{2}$ and but one value results. When $b>a$ β has two values.
γ

$$
\begin{aligned}
\gamma & =180^{\circ}-(\alpha+\beta) \\
c & =\frac{a \sin \gamma}{\sin \alpha}
\end{aligned}
$$

A
$a, \alpha, \beta \quad b$
c

$$
A=\frac{1}{2} a b \sin \gamma
$$

.

$$
b=\frac{a \sin \beta}{\sin \alpha}
$$

Formula
$\sin \frac{I}{2} \alpha=\sqrt{\frac{(s-b)(s-c)}{b c}}$.
$\cos \frac{\mathrm{I}}{2} \alpha=\sqrt{\frac{s(s-a)}{b c}}$.
$\tan \frac{\mathbf{I}}{2} \alpha=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.
$\cos \alpha=\frac{c^{2}+b^{2}-a^{2}}{2 b c}$.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

In

$$
\gamma=180^{\circ}-(\alpha+\beta)
$$

$\gamma=180^{\circ}-(\alpha+\beta)$.

$$
c=\frac{a \sin \gamma}{\sin \alpha}=\frac{a \sin (\alpha+\beta)}{\sin \alpha}
$$

$c=\frac{a \sin \gamma}{\sin \alpha}=\frac{a \sin (\alpha+\beta)}{\sin \alpha}$.

Given Sought
A
$a, b, \gamma \quad \alpha \quad \tan \alpha=\frac{a \sin \gamma}{b-a \cos \gamma}$.

$$
A=\frac{\mathrm{I}}{2} a b \sin \gamma=\frac{\mathrm{I}}{2} a^{2} \frac{\sin \beta \sin \gamma}{\sin \alpha} .
$$

$$
\tan \alpha=\frac{a \sin \gamma}{b-a \cos \gamma}
$$

$$
\alpha, \beta \quad \frac{1}{2}(\alpha+\beta)=90^{\circ}-\frac{1}{2} \gamma .
$$

$$
\tan \frac{1}{2}(\alpha-\beta)=\frac{a-b}{a+b} \cot \frac{1}{2} \gamma
$$

c

$$
\begin{aligned}
c & =\left(a^{2}+b^{2}-2 a b \cos \gamma\right)^{\frac{\pi}{2}} \\
& =\left\{(a+b)^{2}-4 a b \cos ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} \\
& =\left\{(a-b)^{2}+4 a b \sin ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} . \\
& =\frac{a-b}{\cos \phi} \text { where } \tan \phi=2 \sqrt{a b} \frac{\sin \frac{1}{2} \gamma}{a-b} \\
& =\frac{a \sin \gamma}{\sin \alpha}
\end{aligned}
$$

A

Formula

$$
A=\frac{1}{2} a b \sin \gamma
$$

SOLUTION OF SPHERICAL TRIANGLES

3.51 Right-angled spherical triangles.
$a, b, c=$ sides of triangle, c the side opposite γ, the right angle.
$\alpha, \beta, \gamma=$ angles opposite a, b, c, respectively.
3.511 Napier's Rules:

The five parts are $a, b, \operatorname{co} c, \operatorname{co} \alpha$, co β, where $\cos c=\frac{\pi}{2}-c$. The right angle γ is omitted.

The sine of the middle part is equal to the product of the tangents of the adjacent parts.

The sine of the middle part is equal to the product of the cosines of opposite parts.

From these rules the following equations follow:

$$
\begin{aligned}
\sin a & =\sin c \sin \alpha \\
\tan a & =\tan c \cos \beta=\sin b \tan \alpha \\
\sin b & =\sin c \sin \beta \\
\tan b & =\tan c \cos \alpha=\sin a \tan \beta \\
\cos \alpha & =\cos a \sin \beta \\
\cos \beta & =\cos b \sin \alpha \\
\cos c & =\cot \alpha \cot \beta=\cos a \cos b
\end{aligned}
$$

3.52 Oblique-angled spherical triangles.

$$
\begin{aligned}
a, b, \quad c & =\text { sides of triangle. } \\
\alpha, \beta, \gamma & =\text { angles opposite to } a, b, c, \text { respectively. } \\
s & =\frac{1}{2}(a+b+c), \\
\sigma & =\frac{1}{2}(\alpha+\beta+\gamma) \\
\epsilon & =\alpha+\beta+\gamma-180=\text { spherical excess }, \\
S & =\text { surface of triangle on sphere of radius } r .
\end{aligned}
$$

Given
Sought

Formula

a, b, c
α

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} \alpha & =\text { haversin } \alpha, \\
& =\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c} \\
\tan ^{2} \frac{1}{2} \alpha & =\frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)} . \\
\cos ^{2} \frac{1}{2} \alpha & =\frac{\sin s \sin (s-a)}{\sin b \sin c} . \\
\text { haversin } \alpha & =\frac{\text { hav } a-\text { hav }(b-c)}{\sin b \sin c} .
\end{aligned}
$$

α, β, γ

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} a & =\text { haversin } a, \\
& =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\sin \beta \sin \gamma} \\
\tan ^{2} \frac{1}{2} a & =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\cos (\sigma-\beta) \cos (\sigma-\gamma)} . \\
\cos ^{2} \frac{1}{2} a & =\frac{\cos (\sigma-\beta) \cos (\sigma-\gamma)}{\sin \beta \sin \gamma} .
\end{aligned}
$$

a, c, α
Ambiguous case.
$\gamma \quad \sin \gamma=\frac{\sin \alpha \sin c}{\sin a}$.
Two solutions possible.

$$
\begin{aligned}
& \beta\left\{\begin{aligned}
\tan \theta & =\tan \alpha \cos c . \\
\sin (\beta+\theta) & =\sin \theta \tan c \cot a
\end{aligned}\right. \\
& b\left\{\begin{aligned}
\cot \phi & =\tan c \cos \alpha \\
\sin (b+\phi) & =\frac{\cos a \sin \phi}{\cos c} .
\end{aligned}\right.
\end{aligned}
$$

α, γ, c
Ambiguous case. Two solutions possible.
$c \quad \sin c=\frac{\sin a \sin \gamma}{\sin \alpha}$.

Given
Sought $b\left\{\begin{aligned} \tan \theta & =\tan a \cos \gamma . \\ \sin (b-\theta) & =\cot \alpha \tan \gamma \sin \theta .\end{aligned}\right.$
$b\left\{\begin{aligned} \tan \frac{1}{2} b & =\frac{\sin \frac{1}{2}(\alpha+\gamma)}{\sin \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a-c) \\ & =\frac{\cos \frac{1}{2}(\alpha+\gamma)}{\cos \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a+c) .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \phi & =\cos a \tan \gamma \\ \sin (\beta-\phi) & =\frac{\cos \alpha \sin \phi}{\cos \gamma} .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \frac{1}{2} \beta & =\frac{\sin \frac{1}{2}(a+c)}{\sin \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha-\gamma) . \\ & =\frac{\cos \frac{1}{2}(a+c)}{\cos \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha+\gamma) .\end{aligned}\right.$
a, b, γ
$\tan \theta=\tan a \cos \gamma$
$\tan \phi=\tan b \cos \gamma \quad c$
c
.
$\cos c=\cos a \cos b+\sin a \sin b \cos \gamma$.
$\cos c=\frac{\cos a \cos (b-\theta)}{\cos \theta}$
$=\frac{\cos b \cos (a-\phi)}{\cos \phi}$.
hav $c=\operatorname{hav}(a-b)+\sin a \sin b$ hav γ
$\tan \alpha=\frac{\sin \theta \tan \gamma}{\sin (b-\theta)}$.
$\sin \beta=\frac{\sin \gamma \sin b}{\sin c}$.
$=\frac{\sin \alpha \sin b}{\sin a}$.
$\tan \beta=\frac{\sin \phi \tan \gamma}{\sin (a-\phi)}$.
$\alpha, \beta\left\{\begin{array}{l}\tan \frac{1}{2}(\alpha+\beta)=\frac{\cos \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\cos \frac{1}{2}(a+b)} \\ \tan \frac{1}{2}(\alpha-\beta)=\frac{\sin \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\sin \frac{1}{2}(a+b)} .\end{array}\right.$
$c, \alpha, \beta \quad \gamma$
$\tan \theta=\cos c \tan \alpha$
$\tan \phi=\cos c \tan \beta$
$\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos c$.
$\cos \gamma=\frac{\cos \alpha \cos (\beta+\theta)}{\cos \theta}$.
$=\frac{\cos \beta \cos (\alpha+\phi)}{\cos \phi}$.
$\tan a=\frac{\tan c \sin \theta}{\sin (\beta+\theta)}$.

Given
Sought

$$
\begin{aligned}
& \tan b=\frac{\tan c \sin \phi}{\sin (\alpha+\phi)} \\
& a, b\left\{\begin{aligned}
\tan \frac{1}{2}(a+b) & =\frac{\cos \frac{1}{2}(\alpha-\beta) \tan \frac{1}{2} c}{\cos \frac{1}{2}(\alpha+\beta)} \\
\tan \frac{1}{2}(a-b) & =\frac{\sin \frac{1}{2}(\alpha-\beta) \tan \frac{1}{2} c}{\sin \frac{1}{2}(\alpha+\beta)}
\end{aligned}\right.
\end{aligned}
$$

a, b, γ
a, b, c
ϵ
$\cot \frac{1}{2} \epsilon=\frac{\cot \frac{1}{2} a \cot \frac{1}{2} b+\cos \gamma}{\sin \gamma}$.
ϵ

$$
\begin{array}{r}
\tan ^{2} \frac{1}{4} \epsilon=\tan \frac{1}{2} s \tan \frac{1}{2}(s-a) \tan \frac{1}{2}(s-b) \\
\tan \frac{1}{2}(s-c) .
\end{array}
$$

ϵ, γ
S
$S=\frac{\epsilon}{180^{\circ}} \pi r^{2}$.

FINITE SERIES OF CIRCULAR FUNCTIONS

3.60 If the sum, $f(r)$, of the finite or infinite series:

$$
f(r)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots \ldots
$$

is known, the sums of the series:

$$
\begin{aligned}
& S_{1}=a_{0} \cos x+a_{1} r \cos (x+y)+a_{2} r^{2} \cos (x+2 y)+\ldots \\
& S_{2}=a_{0} \sin x+a_{1} r \sin (x+y)+a_{2} r^{2} \sin (x+2 y)+\ldots
\end{aligned}
$$

are:

$$
\begin{aligned}
& S_{1}=\frac{1}{2}\left\{e^{i x} f\left(r e^{i y}\right)+e^{-i x} f\left(r e^{-i y}\right)\right\} \\
& S_{2}=-\frac{i}{2}\left\{e^{i x} f\left(r e^{i y}\right)-e^{-i x} f\left(r e^{-i y}\right)\right\}
\end{aligned}
$$

3.61 Special Finite Series.
I. $\sum_{k=1}^{n} \sin k x=\frac{\sin \frac{n x}{2} \sin \frac{n+1}{2} x}{\sin \frac{x}{2}}$.
2. $\sum_{k=0}^{n} \cos k x=\frac{\cos \frac{n x}{2} \sin \frac{n+1}{2} x}{\sin \frac{x}{2}}$.
3. $\sum_{k=1}^{n} \sin ^{2} k x=\frac{n}{2}-\frac{\cos (n+\mathrm{I}) x \cdot \sin n x}{2 \sin x}$.
4. $\sum_{k=0}^{n} \cos ^{2} k x=\frac{n+2}{2}+\frac{\cos (n+I) x \cdot \sin n x}{2 \sin x}$.
5. $\sum_{k=1}^{n-1} k \sin k x=\frac{\sin n x}{4 \sin ^{2} \frac{x}{2}}-\frac{n \cos \left(\frac{2 n-1}{2}\right) x}{2 \sin \frac{x}{2}}$.
6. $\sum_{k=1}^{n-1} k \cos k x=\frac{n \sin \left(\frac{2 n-\mathrm{I}}{2}\right) x}{2 \sin \frac{x}{2}}-\frac{\mathrm{I}-\cos n x}{4 \sin ^{2} \frac{x}{2}}$.
7. $\sum_{k=1}^{n} \sin (2 k-\mathrm{x}) x=\frac{\sin ^{2} n x}{\sin x}$.
8. $\sum_{k=0}^{n} \sin (x+k y)=\frac{\sin \left(x+\frac{n y}{2}\right) \sin \left(\frac{n+1}{2} y\right)}{\sin \frac{y}{2}}$.
9. $\sum_{k=0}^{n} \cos (x+k y)=\frac{\cos \left(x+\frac{n}{2} y\right) \sin \left(\frac{n+\mathrm{I}}{2} y\right)}{\sin \frac{y}{2}}$.

IO. $\sum_{k=\mathrm{I}}^{n+\mathrm{I}}(-\mathrm{I})^{k-1} \sin (2 k-\mathrm{I}) x=(-\mathrm{I})^{n} \frac{\sin (2 n+2) x}{2 \cos x}$.
II. $\sum_{k=1}^{n}(-\mathrm{I})^{k} \cos k x=-\frac{\mathrm{I}}{2}+(-\mathrm{I})^{n} \frac{\cos \left(\frac{2 n+\mathrm{I}}{2} x\right)}{2 \cos _{2}^{x}}$.

I2. $\sum_{k=1}^{n-1} r^{k} \sin k x=\frac{r \sin x\left(1-r^{n} \cos n x\right)-(1-r \cos x) r^{n} \sin n x}{I-2 r \cos x+r^{2}}$.
13. $\sum_{k=0}^{n-1} r^{k} \cos k x=\frac{(\mathrm{I}-r \cos x)\left(\mathrm{I}-r^{n} \cos n x\right)+r^{n+1} \sin x \sin n x}{\mathrm{I}-2 r \cos x+r^{2}}$.
14. $\sum_{k=1}^{n}\left(\frac{\mathrm{I}}{2^{k}} \sec \frac{x}{2^{k}}\right)^{2}=\csc ^{2} x-\left(\frac{\mathrm{I}}{2^{n}} \csc \frac{x}{2^{n}}\right)^{2}$.

I5. $\quad \sum_{k=1}^{n}\left(2^{k} \sin ^{2} \frac{x}{2^{k}}\right)^{2}=\left(2^{n} \sin \frac{x}{2^{n}}\right)^{2}-\sin ^{2} x$.
16. $\sum_{k=0}^{n} \frac{\mathrm{I}}{2^{k}} \tan \frac{x}{2^{k}}=\frac{\mathrm{I}}{2^{n}} \cot \frac{x}{2^{n}}-2 \cot 2 x$.
17. $\sum_{k=0}^{n-\mathrm{r}} \cos \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(\mathrm{I}+\cos \frac{n \pi}{2}+\sin \frac{n \pi}{2}\right)$.
18. $\sum_{k=1}^{n-\mathrm{I}} \sin \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(\mathrm{I}+\cos \frac{n \pi}{2}-\sin \frac{n \pi}{2}\right)$.
19. $\sum_{k=1}^{n-1} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n}$.
20. $\sum_{k=0}^{n} \frac{1}{2^{2 k}} \tan ^{2} \frac{x}{2^{k}} \frac{2^{2 n+2}-1}{3 \cdot 2^{2 n-1}}+4 \cot ^{2} 2 x-\frac{1}{2^{2 n}} \cot \frac{x}{2^{n}}$.
3.62

$$
S_{n}=\sum_{k=1}^{n-1} \csc \frac{k \pi}{n}
$$

Watson (Phil. Mag. 3I, p. III, 1916) has obtained an asymptotic expansion for this sum, and has given the following approximation:
$S_{n}=2 n\left\{0.7329355992 \log _{10}(2 n)-0.180645387 \mathrm{I}\right\}$

$$
-\frac{0.087266}{n}+\frac{0.01035}{n^{3}}-\frac{0.004}{n^{5}}+\frac{0.005}{n^{7}}-\ldots
$$

Values of S_{n} are tabulated by integers from $n=2$ to $n=30$, and from $n=30$ to $n=100$ at intervals of 5 .

The expansion of

$$
T_{n}=\sum_{k=\mathrm{r}}^{n-\mathrm{I}} \csc \left(\frac{k \pi}{n}-\frac{\beta}{2}\right)
$$

where

$$
-\frac{2 \pi}{n}<\beta<\frac{2 \pi}{n}
$$

is also obtained.
3.70 Finite Products.
I.

$$
\sin n x=n \sin x \cos x \prod_{k=1}^{\frac{n}{2}-1}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{k \pi}{n}}\right) n \text { even }
$$

2.

$$
\cos n x=\prod_{k=I_{r}}^{\frac{n}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-\mathrm{I}}{2 n} \pi}\right) n \text { even. }
$$

$$
\sin n x=n \sin x \prod_{k=1}^{\frac{n-\mathrm{I}}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{k \pi}{n}}\right) n \text { odd }
$$

4.

$\cos n x=\cos x \prod_{k=1}^{\frac{n-1}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-\mathrm{I}}{2 n} \pi}\right) n$ odd.
5.
$\cos n x-\cos n y=2^{n-1} \prod_{k=0}^{n-1}\left\{\cos x-\cos \left(y+\frac{2 k \pi}{n}\right)\right\}$.
6. $a^{2 n}-2 a^{n} b^{n} \cos n x+b^{2 n}=\prod_{k=0}^{n-1}\left\{a^{2}-2 a b \cos \left(x+\frac{2 k \pi}{n}\right)+b^{2}\right\}$.

ROOTS OF TRANSCENDENTAL EQUATIONS

$3.800 \tan x=x$.
The first I_{7} roots, and the corresponding maxima and minima of $\frac{\sin x}{x}$ are given in the following table (Lommel, Abh. Munch. Akad. (2) 15, 123, 1886):

n	x_{n}	$\begin{aligned} & \operatorname{Max} \sin x \\ & \operatorname{Min} \end{aligned}$
I	\bigcirc	1
2	4.4934	-0.2172
3	7.7253	+0.1284
4	10.9041	-0.0913
5	14.0662	+0.0709
6	17.2208	-0.0580
7	20.3713	+0.0490
8	23.5195	-0.0425
9	26.6661	+0.0375
10	29.8 II 6	-0.0335
II	32.9564	+0.0303
12	36.1006	-0.0277
13	39.2444	+0.0255
14	42.3879	-0.0236
15	45.53II	+0.0220
16	48.6741	-0.0205
17	51.8170	+0.0193

3.801

$$
\tan x=\frac{2 x}{2-x^{2}} .
$$

The first three roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=119.26 \frac{\pi}{180}, \\
& x_{3}=340.35 \frac{\pi}{180} .
\end{aligned}
$$

If x is large

$$
\begin{aligned}
& x_{n}=n \pi-\frac{2}{n \pi}-\frac{16}{3 n^{3} \pi^{3}}+\ldots \\
& \quad \text { (Rayleigh, Theory of Sound, II, p. 265.) }
\end{aligned}
$$

3.802

$$
\tan x=\frac{x^{3}-9 x}{4 x^{2}-9}
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=3.3422 .
\end{aligned}
$$

3.803

$$
\tan x=\frac{x}{1-x^{2}} .
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=2.744 .
\end{aligned}
$$

(J. J. Thomson, Recent Researches, p. 373.)

3.804

$$
\tan x=\frac{3 x}{3-x^{2}}
$$

The first seven roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=1.8346 \pi \\
& x_{3}=2.8950 \pi \\
& x_{4}=3.9225 \pi \\
& x_{5}=4.9385 \pi \\
& x_{6}=5.9489 \pi \\
& x_{7}=6.9563 \pi \\
& \text { (Lamb, London Math. Soc. Proc. I3, I882.) }
\end{aligned}
$$

3.805

$$
\tan x=\frac{4 x}{4-3 x^{2}}
$$

The first seven roots are:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=0.8 \mathrm{I} 60 \pi \\
& x_{3}=1.9285 \pi \\
& x_{4}=2.9359 \pi \\
& x_{5}=3.9658 \pi \\
& x_{6}=4.9728 \pi \\
& x_{7}=5.9774 \pi
\end{aligned}
$$

3.806

(Lamb, l. c.)

The roots are:

3.807

$$
\cos x \cosh x=\mathrm{I}
$$

$$
\begin{aligned}
& x_{1}=4.7300408, \\
& x_{2}=7.8532046, \\
& x_{3}=10.9956078, \\
& x_{4}=14.1371655, \\
& x_{5}=17.2787596, \\
& x_{n}=\frac{1}{2}(2 n+\text { I }) \pi n>5 . \\
& \quad \quad \quad \text { (Rayleigh, Theory of Sound, I, p. } 278 .)
\end{aligned}
$$

The roots are:

$$
\begin{aligned}
& x_{1}=1.875104, \\
& x_{2}=4.694098, \\
& x_{3}=7.854757, \\
& x_{4}=10.99554 \mathrm{I}, \\
& x_{5}=14.137168, \\
& x_{6}=17.278759, \\
& x_{n}=\frac{1}{2}(2 n-\mathrm{I}) \pi \quad n>6 .
\end{aligned}
$$

3.808

The roots are:
3.809 The smallest root of

$$
\mathrm{I}-\left(\mathrm{I}+x^{2}\right) \cos x=0 .
$$

$$
\begin{aligned}
& x_{1}=1.1025 \mathrm{Q} 6, \\
& x_{2}=4.75476 \mathrm{I}, \\
& x_{3}=7.837964, \\
& x_{4}=11.003766, \\
& x_{5}=14.132185, \\
& x_{6}=17.282097 .
\end{aligned}
$$

(Schlömilch: Ubungsbuch, I, p. 354.) is

$$
\theta-\cot \theta=0,
$$

$$
\theta=49^{\circ} 17^{\prime} 36^{\prime \prime} .5 .
$$

(1. c. p. 355.)
3.810 The smallest root of

$$
\theta-\cos \theta=0
$$

is

$$
\begin{equation*}
\theta=42^{\circ} 20^{\prime} 47^{\prime \prime} \cdot 3 \tag{1.c.p.353.}
\end{equation*}
$$

3.811 The smallest root of

$$
\begin{align*}
& x e^{x}-2=0 \\
& x=0.8526 \tag{l.c.p.353.}
\end{align*}
$$

3.812 The smallest root of

$$
\begin{gather*}
\log (\mathrm{I}+x)-\frac{3}{4} x=0, \\
x=0.73360 \tag{l.c.p.353.}
\end{gather*}
$$

3.813

$$
\tan x-x+\frac{\mathrm{I}}{x}=0
$$

The first roots are:

$$
\begin{aligned}
& x_{1}=4.480 \\
& x_{2}=7.723 \\
& x_{3}=10.90 \\
& x_{4}=14.07 \\
& \text { (Collo, Annalen der Physik, } 65, \text { p. } 45, \text { I92I.) }
\end{aligned}
$$

3.814

$$
\cot x+x-\frac{1}{x}=0
$$

The first roots are:

$$
\begin{align*}
& x_{1}=0, \\
& x_{2}=2.744, \\
& x_{3}=6.1 \mathrm{I} 7, \\
& x_{4}=9.317, \\
& x_{5}=12.48, \\
& x_{6}=15.64, \\
& x_{7}=18.80 . \tag{Collo,l.c.}
\end{align*}
$$

3.90 Special Tables.
$\sin \theta, \cos \theta$: The British Association Report for 1916 contains the following tables:

Table I, p. 60. $\sin \theta, \cos \theta, \theta$ expressed in radians from $\theta=0$ to $\theta=1.600$, interval 0.001, Io decimal places.

Table II, p. 88. $\theta-\sin \theta, \mathrm{I}-\cos \theta, \theta=0.0000$ I to $\theta=0.00100$, interval 0.00001 , Io decimal places.

Table III, p. 90. $\sin \theta, \cos \theta ; \theta=0.1$ to $\theta=10.0$, interval 0.I, 15 decimal places.
J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, 191I) has given sines and cosines for every sexagesimal second to 2 I places.
hav $\theta, \log _{10}$ hav θ : Bowditch, American Practical Navigator, five-place tables, $0^{\circ}-180^{\circ}$, for $15^{\prime \prime}$ intervals.

Tables for Solution of Spherical Triangles.
Aquino's Altitude and Azimuth Tables, London, r918. Reprinted in Hydrographic Office Publication, No. 200, Washington, 1918.

Hyperbolic Functions.
The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the most complete five-place tables of Hyperbolic Functions.

Table I. The common logarithms (base io) of $\sinh u, \cosh u, \tanh u, \operatorname{coth} u$:

$$
\begin{aligned}
& u=0.000 \mathrm{I} \text { to } u=0.1000 \text { interval } 0.000 \mathrm{I}, \\
& u=0.00 \mathrm{I} \text { to } u=3.000 \text { interval } 0.00 \mathrm{I}, \\
& u=3.00 \quad \text { to } u=6.00 \text { interval } 0.01 .
\end{aligned}
$$

Table II. $\sinh u, \cosh u, \tanh u$, $\operatorname{coth} u$. Same ranges and intervals.
Table III. $\sin u, \cos u, \log _{10} \sin u, \log _{10} \cos u$:

$$
\begin{aligned}
& u=0.0001 \text { to } u=0.1000 \text { interval } 0.0001, \\
& u=0.100 \text { to } u=1.600 \text { interval } 0.001 .
\end{aligned}
$$

Table IV. $\log _{10} e^{u}$ (7 places), e^{u} and e^{-u} (7 significant figures):

$$
\begin{aligned}
& u=0.001 \text { to } u=2.950 \text { interval } 0.001, \\
& u=3.00 \text { to } u=6.00 \text { interval 0.01, } \\
& u=1.0 \quad \text { to } u=100 \text { interval I.0 } \quad \text { (9-10 figures). }
\end{aligned}
$$

Table V. five-place table of natural logarithms, $\log u$.

$$
\begin{aligned}
& u=1.0 \text { to } u=1000 \text { interval I. } 0, \\
& u=1000 \text { to } u=10,000 \text { varying intervals. }
\end{aligned}
$$

Table VI. $g d u$ (7 places); u expressed in radians, $u=0.00 \mathrm{I}$ to $u=3.000$, interval 0.001, and the corresponding angular measure. $u=3.00$ to $u=6.00$, interval o.or.

Table VII. $g d^{-1} u$, to o^{\prime}. or, in terms of $g d u$ in degrees and minutes from $0^{\circ} \mathrm{I}^{\prime}$ to $89^{\circ} 59^{\prime}$.

Table VIII. Table for conversion of radians into angular measure.

Kennelly: Tables of Complex Hyperbolic and Circular Functions. Cambridge, Harvard University Press, 1914.

The complex argument, $x+i q=\rho e^{i \delta}$. In the tables this is denoted $\rho \angle \delta$. $\rho=\sqrt{x^{2}+q^{2}}, \tan \delta=q / x$.

Tables I, II, III give the hyperbolic sine, cosine and tangent of ($\rho \angle \delta$) expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\delta=45^{\circ} \text { to } \delta=90^{\circ} & \text { interval } \mathrm{I}^{\circ} \\
\rho=0.0 \text { I to } \rho=3.0 & \text { interval o.I. }
\end{array}
$$

Tables IV and V give $\frac{\sinh \theta}{\theta}, \frac{\tanh \theta}{\theta}$ expressed as $r \angle \gamma, \theta=\rho \angle \delta$,

$$
\begin{array}{ll}
\rho=0 . \mathrm{I} \text { to } \rho=3.0 & \text { interval o.I, } \\
\delta=45^{\circ} \text { to } \delta=90^{\circ} & \text { interval } \mathrm{I}^{\circ} .
\end{array}
$$

Table VI gives $\sinh \left(\rho \angle 45^{\circ}\right), \cosh \left(\rho \angle 45^{\circ}\right), \tanh \left(\rho \angle 45^{\circ}\right)$, $\operatorname{coth}\left(\rho \angle 45^{\circ}\right)$, $\operatorname{sech}\left(\rho \angle 45^{\circ}\right), \operatorname{csch}\left(\rho \angle 45^{\circ}\right)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\rho=0 \quad \text { to } \rho=6.0 & \text { interval } 0 . \mathrm{I}, \\
\rho=6.05 \text { to } \rho=20.50 & \text { interval } 0.05 .
\end{array}
$$

Tables VII, VIII and IX give $\sinh (x+i q), \cosh (x+i q), \tanh (x+i q)$, expressed as $u+i v$:

$$
\begin{aligned}
& x=0 \text { to } x=3.95 \quad \text { interval } 0.05, \\
& q=0 \text { to } q=2.0 \quad \text { interval } 0.05 .
\end{aligned}
$$

Tables X, XI, XII give sinh $(x+i q), \cosh (x+i q), \tanh (x+i q)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
x=0 \text { to } x=3.95 & \text { interval } 0.05 \\
q=0 \text { to } q=2.0 & \text { interval } 0.05 .
\end{array}
$$

Table XIII gives $\sinh (4+i q), \cosh (4+i q), \tanh (4+i q)$ expressed both as $u+i v$ and $r \angle \gamma$:

$$
q=0 \text { to } q=2.0 \text { interval } 0.05 .
$$

Table XIV gives $\frac{e^{x}}{2}$ and $\log _{10} \frac{e^{x}}{2}$.

$$
x=4.00 \text { to } x=10.00 \text { interval } 0.01 \text {. }
$$

Table XV gives the real hyperbolic functions: $\sinh \theta, \cosh \theta, \tanh \theta, \operatorname{coth} \theta$, $\operatorname{sech} \theta, \operatorname{csch} \theta$.

$$
\begin{array}{ll}
\theta=0 \text { to } \theta=2.5 & \text { interval 0.OI } \\
\theta=2.5 & \text { to } \theta=7.5
\end{array} \text { interval o.I. }
$$

Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant Figures. Berkeley, University of California Press, 1918.

Table I. $\log _{10} \sinh x$, with the first three differences.

$$
x=.0000 \text { to } x=2.018 \text { nterval } 0.00 \mathrm{I} .
$$

Table II. $\quad \log _{10} \cosh x$.

$$
x=0.000 \text { to } x=2.032 \text { interval 0.001. }
$$

Table III. $\log _{10} \tanh x$.

$$
x=0.000 \text { to } x=2.018 \text { interval 0.00I. }
$$

Table IV. $\log _{10} \frac{\sinh x}{x}$.

$$
x=0.00 \text { to } x=0.506 \text { interval } 0.00 \mathrm{I} .
$$

Table V. $\log _{10} \frac{\tanh x}{x}$.

$$
x=0.000 \text { to } x=0.506 \text { interval } 0.00 \mathrm{I} .
$$

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV, fifth memoir, Washington, 1921 .

Tables of $\frac{\mathrm{I}}{n!}, e^{x}, e^{-x}, e^{n \pi}, e^{-n \pi}, e^{ \pm \frac{n \pi}{360}}, \sin x, \cos x$, to $23-62$ decimal places or significant figures.

IV. VECTOR ANALYSIS

4.000 A vector A has components along the three rectangular axes, x, y, z : A_{x}, A_{y}, A_{z}.

$$
\begin{aligned}
& A=\text { length of vector. } \\
& A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z}{ }^{2}} .
\end{aligned}
$$

Direction cosines of A, $\frac{A_{x}}{A}, \frac{A_{y}}{A}, \frac{A_{z}}{A}$.
4.001 Addition of vectors.

$$
\mathrm{A}+\mathrm{B}=\mathbf{C}
$$

C is a vector with components.

$$
\begin{aligned}
& C_{x}=A_{x}+B_{x} . \\
& C_{y}=A_{y}+B_{y} . \\
& C_{z}=A_{z}+B_{z} .
\end{aligned}
$$

$4.002 \theta=$ angle between \mathbf{A} and B.

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}+2 A B \cos \theta} . \\
\cos \theta & =\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B} .
\end{aligned}
$$

4.003 If a, b, c are any three non-coplanar vectors of unit length, any vector, R , may be expressed:

$$
\mathbf{R}=a \mathbf{a}+b \mathbf{b}+c \mathbf{c},
$$

where a, b, c are the lengths of the projections of R upon $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively.
4.004 Scalar product of two vectors:

$$
S \mathrm{AB}=(\mathrm{AB})=\mathrm{AB}
$$

are equivalent notations.

$$
\mathrm{AB}=A B \cos \widehat{A B}
$$

4.005 Vector product of two vectors:

$$
V \mathrm{AB}=\mathbf{A} \times \mathbf{B}=[\mathrm{AB}]=\mathbf{C} .
$$

C is a vector whose length is

$$
C=A B \sin \widehat{A B}
$$

The direction of \mathbf{C} is perpendicular to both \mathbf{A} and \mathbf{B} such that a right-handed rotation about \mathbf{C} through the angle $\widehat{A B}$ turns \mathbf{A} into \mathbf{B}.
$4.006 \mathrm{i}, \mathrm{j}, \mathrm{k}$ are three unit vectors perpendicular to each other. If their directions coincide with the axes x, y, z of a rectangular system of coördinates:

$$
\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}
$$

4.007

$$
\begin{aligned}
& \mathrm{ii}=\mathrm{i}^{2}=\mathrm{j} \mathbf{j}=\mathrm{j}^{2}=\mathbf{k} \mathbf{k}=\mathbf{k}^{2}=\mathrm{I} \\
& \mathrm{ij}=\mathrm{ji}=\mathrm{jk}=\mathbf{k j}=\mathbf{k i}=\mathrm{ik}=0
\end{aligned}
$$

4.008

$$
\begin{aligned}
V \mathrm{ij} & =-V \mathrm{ji}=\mathbf{k} \\
V \mathrm{jk} & =-V \mathrm{kj}=\mathbf{i}, \\
V \mathrm{ki} & =-V \mathrm{ik}=\mathbf{j} .
\end{aligned}
$$

4.009

$$
\mathbf{A B}=\mathbf{B A}=A B \cos \widehat{A B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

4.010

$$
\begin{aligned}
& V \mathbf{A B}=-V \mathbf{B A}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k} .
\end{aligned}
$$

4.10 If $\mathbf{A}, \mathbf{B}, \mathbf{C}$, are any three vectors:

$$
\mathrm{A} V \mathrm{BC}=\mathrm{B} V \mathrm{C} \mathbf{A}=\mathrm{C} V \mathrm{AB}
$$

$=$ Volume of parallelepipedon having $\mathbf{A}, \mathbf{B}, \mathbf{C}$ as edges
$=$

$$
\left|\begin{array}{ccc}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

4.11
I. $V \mathbf{A}(\mathrm{~B}+\mathbf{C})=V \mathrm{AB}+V \mathrm{AC}$.
2. $V(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})=V \mathbf{A}(\mathbf{C}+\mathrm{D})+V \mathbf{B}(\mathbf{C}+\mathrm{D})$.
3. $V \mathrm{~A} V \mathrm{BC}=\mathrm{B} S \mathrm{AC}-\mathrm{C} S \mathrm{AB}$.
4. $V \mathrm{~A} V \mathrm{BC}+V \mathrm{~B} V \mathrm{CA}+V \mathrm{C} V \mathrm{AB}=0$.
5. $V \mathrm{AB} \cdot V \mathrm{CD}=\mathrm{AC} \cdot \mathrm{BD}-\mathrm{BC} \cdot \mathrm{AD}$.
6. $V(V \mathbf{A B} \cdot V \mathbf{C D})=\mathbf{C} S(\mathbf{D} V \mathbf{A B})-\mathrm{D} S(\mathbf{C} V \mathbf{A B})$
$=\mathbf{C} S(\mathbf{A} V \mathbf{B D})-\mathbf{D} S(\mathbf{A} V \mathbf{B C})$
$=\mathbf{B} S(\mathbf{A} V \mathbf{C D})-\mathbf{A} S(\mathbf{B} V \mathbf{C D})$
$=\mathbf{B} S(\mathbf{C} V \mathbf{D A})-\mathbf{A} S(\mathbf{C} V \mathrm{DB})$.
4.20
I.

$$
\begin{aligned}
d \mathbf{A B} & =\mathbf{A} d \mathbf{B}+\mathbf{B} d \mathbf{A} . \\
d V \mathbf{A B} & =V \mathbf{A} d \mathbf{B}+V d \mathbf{A B} \\
& =V \mathbf{A} d \mathbf{B}-V \mathbf{B} d \mathbf{A} .
\end{aligned}
$$

4.21

I. $\quad \nabla=\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}$.
2. $\nabla \mathbf{A}=\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$.
3. $\nabla \phi=\operatorname{grad} \phi=\mathbf{i} \frac{\partial \phi}{\partial x}+\mathrm{j} \frac{\partial \phi}{\partial y}+\mathrm{k} \frac{\partial \phi}{\partial z}$.
4. $V \nabla \mathbf{A}=\operatorname{curl} \mathbf{A}=\operatorname{rot} \mathbf{A}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& =\mathbf{i}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{j}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
\end{aligned}
$$

5. $\nabla \nabla=\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$.

4.22

I. curl $\operatorname{grad} \phi=\operatorname{curl} \nabla \phi=V \nabla \nabla \phi=0$.
2. div $\operatorname{grad} \phi=\nabla \nabla \phi=\bar{\nabla}^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$.
3. $\operatorname{div} \operatorname{curl} \mathbf{A}=0$.
4. $\operatorname{curl} \operatorname{curl} \mathbf{A}=\operatorname{curl}^{2} \mathbf{A}=\nabla \operatorname{div} \mathbf{A}-\overline{\mathrm{V}}^{2} \mathbf{A}$.
5. $\quad-\bar{\nabla}^{2} \mathbf{A}=\mathbf{i} \bar{\nabla}^{2} \mathbf{A}_{x}+\mathbf{j} \bar{\nabla}^{2} A_{y}+\mathbf{k} \bar{\nabla}^{2} A_{z}$.
6. $\quad \mathbf{A} \nabla=A_{x} \frac{\partial}{\partial x}+A_{y} \frac{\partial}{\partial y}+A_{z} \frac{\partial}{\partial z}$.
4.23
I. $\quad \nabla \mathbf{A B}=\operatorname{grad} \mathbf{A B}=(\mathbf{A} \nabla) \mathbf{B}+(\mathbf{B} \nabla) \mathbf{A}+V \cdot \mathbf{A} \operatorname{curl} \mathbf{B}+V . \mathbf{B}$ curl \mathbf{A}.
2. $\nabla V \mathbf{A B}=\operatorname{div} V \mathbf{A B}=\mathbf{B}$ curl $\mathbf{A}-\mathbf{A} \operatorname{curl} \mathbf{B}$.
$V \nabla V \mathbf{A B}=(\mathbf{B} \nabla) \mathbf{A}-(\mathbf{A} \nabla) \mathbf{B}+\mathbf{A} \operatorname{div} B-\mathbf{B} \operatorname{div} \mathbf{A}$.
$\operatorname{div} \phi \mathbf{A}=\phi \operatorname{div} \mathbf{A}+\mathbf{A} \nabla \phi$.
$\operatorname{curl} \phi \mathbf{A}=V \cdot \nabla \phi \mathbf{A}+\phi \operatorname{curl} \mathbf{A}=V \cdot \operatorname{grad} \phi \cdot \mathbf{A}+\phi \operatorname{curl} \mathbf{A}$.
6. $\quad \nabla \mathbf{A}^{2}=2(\mathbf{A} \nabla) \mathbf{A}+2 V \mathbf{A}$ curl \mathbf{A}.
$\mathbf{C}(\mathbf{A} \nabla) \mathbf{B}=\mathbf{A}(\mathbf{C} \nabla) \mathbf{B}+\mathbf{A} V \mathbf{C}$ curl \mathbf{B}.
8. $\quad \mathbf{B} \nabla \mathbf{A}^{2}={ }_{2} \mathbf{A}(\mathbf{B} \nabla) \mathbf{A}$.
4.24 R is a radius vector of length r and r a unit vector in the direction of \mathbf{R}.
I.

$$
\begin{aligned}
\mathrm{R} & =r \mathrm{r} \\
r^{2} & =x^{2}+y^{2}+z^{2} . \\
\nabla \frac{\mathrm{I}}{r} & =-\frac{\mathrm{I}}{r^{3}} \mathbf{R}=-\frac{\mathrm{I}}{r^{2}} \mathbf{r} .
\end{aligned}
$$

2.
3. $\nabla^{2} \frac{I}{r}=0$.

$$
\nabla r=\frac{\mathrm{I}}{r} \mathrm{R}=\mathrm{r}=\operatorname{grad} r
$$

4.

$$
\bar{\nabla}^{2} r=\frac{2}{r}
$$

5.

$$
V \nabla \mathbf{R}=\operatorname{curl} \mathbf{R}=0
$$

6.

$$
\nabla \mathbf{R}=\operatorname{div} \mathbf{R}=3
$$

7.

$$
\frac{d \phi}{d r}=\mathbf{r} \nabla \phi
$$

8.

$(\mathbf{R} \nabla) \mathbf{A}=r \frac{d \mathbf{A}}{d r}$.
9.

$$
(\mathbf{r} \nabla) \mathbf{A}=\frac{d \mathbf{A}}{d r}
$$

10.

$$
(\mathbf{A} \nabla) \mathbf{R}=\mathbf{A} .
$$

4.30 $d \mathbf{S}=$ an element of area of a surface regarded as a vector whose direction is that of the positive normal to the surface.
$d V=$ an element of volume - a scalar.
$d \mathbf{s}=$ an element of arc of a curve regarded as a vector whose direction is that of the positive tangent to the curve.
4.31 Gauss's Theorem:

$$
\int \mathcal{S} \mathcal{S} \operatorname{div} \mathbf{A} d V=\iint \operatorname{A} d \mathbf{S} .
$$

4.32 Green's Theorem:
I. $\int \mathcal{S} \mathcal{S} \phi \nabla^{2} \psi d V+\mathcal{S} \mathcal{S} \mathcal{S} \nabla \phi \nabla \psi d V=\int \mathcal{S} \phi \nabla \psi d \mathrm{~S}$
2. $\mathcal{S} \mathcal{S} \mathcal{S}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\int \mathcal{S}(\phi \nabla \psi-\psi \nabla \phi) d \mathrm{~S}$.
4.33 Stokes's Theorem:

$$
\int \mathcal{S} \operatorname{curl} \mathbf{A} d \mathbf{S}=\int \mathbf{A} d \mathrm{~s}
$$

4.40 A polar vector is one whose components, referred to a rectangular system of axes, all change in sign when the three axes are reversed.
4.401 An axial vector is one whose components are unchanged when the axes are reversed.
4.402 The vector product of two polar or of two axial vectors is an axial vector.
4.403 The vector product of a polar and an axial vector is a polar vector.
4.404 The curl of a polar vector is an axial vector and the curl of an axial vector is a polar vector.
4.405 The scalar product of two polar or of two axial vectors is a true scalar, i.e., it keeps its sign if the axes to which the vectors are referred are reversed.
4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar, i.e., it changes in sign when the axes of reference are reversed.
4.407 The product or quotient of a polar vector and a true scalar is a polar vector; of an axial vector and a true scalar an axial vector; of a polar vector and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a polar vector.
4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudoscalar is an axial vector.
4.409 The divergence of a polar vector is a true scalar; of an axial vector a pseudo-scalar.

4.6 Linear Vector Functions.

4.610 A vector Q is a linear vector function of a vector R if its components, Q_{1}, Q_{2}, Q_{3}, along any three non-coplanar axes are linear functions of the components R_{1}, R_{2}, R_{3} of R along the same axes.
4.611 Linear Vector Operator. If $\hat{\omega}$ is the linear vector operator,

$$
\mathrm{Q}=\hat{\omega} \mathrm{R} .
$$

This is equivalent to the three scalar equations,

$$
\begin{aligned}
& Q_{1}=\omega_{11} R_{1}+\omega_{12} R_{2}+\omega_{13} R_{3}, \\
& Q_{2}=\omega_{21} R_{1}+\omega_{22} R_{2}+\omega_{23} R_{3}, \\
& Q_{3}=\omega_{31} R_{1}+\omega_{32} R_{2}+\omega_{33} R_{3} .
\end{aligned}
$$

4.612 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the three non-coplanar unit axes,

$$
\begin{array}{lll}
\omega_{11}=S . \mathrm{a} \omega \mathrm{a}, & \omega_{21}=S . \mathrm{b} \hat{\omega} \mathrm{a}, & \omega_{31}=S . \mathbf{c} \hat{\omega} \mathrm{a}, \\
\omega_{12}=S . \mathrm{a} \hat{\omega} \mathrm{~b}, & \omega_{22}=S . \mathrm{b} \hat{\omega} \mathrm{~b}, & \omega_{32}=S . \mathbf{c} \hat{\mathrm{b}}, \\
\omega_{13}=S . \mathrm{a} \hat{\mathrm{c}}, & \omega_{23}=S . \mathrm{b} \hat{\mathrm{c}} & \omega_{33}=S . \mathbf{c} \hat{\mathrm{c}} .
\end{array}
$$

4.613 The conjugate linear vector operator $\hat{\omega}^{\prime}$ is obtained from $\hat{\omega}$ by replacing $\omega_{h k}$ by $\omega_{k h} ; h, k=1,2,3$.
4.614 In the symmetrical, or self-conjugate linear vector operator, denoted by ω,

Hence by 4.612

$$
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right) .
$$

$$
S . \mathrm{a} \omega \mathrm{~b}=S . \mathrm{b} \omega \mathrm{a}, \mathrm{etc} .
$$

4.615 The general linear vector function $\hat{\omega} \mathrm{R}$ may always be resolved into the sum of a self-conjugate linear vector function of \mathbf{R} and the vector product of R by a vector c :
where

$$
\omega \mathrm{R}=\omega \mathrm{R}+V \cdot \mathrm{cR},
$$

and

$$
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right)
$$

$$
\mathbf{c}=\frac{1}{2}\left(\omega_{32}-\omega_{23}\right) \mathbf{i}+\frac{1}{2}\left(\omega_{13}-\omega_{31}\right) \mathbf{j}+\frac{1}{2}\left(\omega_{21}-\omega_{12}\right) \mathbf{k},
$$

if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are three mutually perpendicular unit vectors.
4.616 The general linear vector operator $\hat{\omega}$ may be determined by three noncoplanar vectors, A, B, C, where,
$\mathbf{A}=\mathbf{a} \omega_{11}+\mathbf{b} \omega_{12}+\mathbf{c} \omega_{13}$,
$\mathbf{B}=\mathrm{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23}$,
$\mathbf{C}=\mathbf{a} \omega_{31}+\mathrm{b} \omega_{32}+\mathbf{c} \omega_{33}$,
and

$$
\hat{\omega}=\mathrm{a} S . \mathbf{A}+\mathrm{b} S . \mathbf{B}+\mathbf{c} S . \mathbf{C} .
$$

4.617 If $\hat{\omega}$ is the general linear vector operator and $\hat{\omega}^{\prime}$ its conjugate,

$$
\begin{aligned}
\hat{\omega} \mathrm{R} & =\mathbf{R} \hat{\omega}^{\prime} \\
\hat{\omega}^{\prime} \mathbf{R} & =\mathbf{R} \hat{\omega}
\end{aligned}
$$

4.620 The symmetrical or self-conjugate linear vector operator has three mutually perpendicular axes. If these be taken along $\mathbf{i}, \mathbf{j}, \mathbf{k}$,

$$
\omega=\mathrm{i} S \cdot \omega_{1} \mathrm{i}+\mathrm{j} S \cdot \omega_{2} \mathrm{j}+\mathrm{k} S \cdot \omega_{3} \mathrm{k}
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are scalar quantities, the principal values of ω.
4.621 Referred to any system of three mutually perpendicular unit vectors, a, b, c, the self-conjugate operator, ω, is determined by the three vectors (4.616):

$$
\begin{aligned}
& \mathbf{A}=\omega \mathbf{a}=\mathrm{a} \omega_{11}+\mathrm{b} \omega_{12}+\mathbf{c} \omega_{13} \\
& \mathbf{B}=\omega \mathbf{b}=\mathrm{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23} \\
& \mathbf{C}=\omega \mathbf{c}=\mathrm{a} \omega_{31}+\mathrm{b} \omega_{32}+\mathbf{c} \omega_{33}
\end{aligned}
$$

where

$$
\begin{aligned}
\omega_{h \cdot k} & =\omega_{k h} \\
\omega & =\mathrm{a} S . \mathbf{A}+\mathrm{b} S . \mathbf{B}+\mathbf{c} S . \mathbf{C} .
\end{aligned}
$$

4.622 If n is one of the principal values, $\omega_{1}, \omega_{2}, \omega_{3}$, these are given by the roots of the cubic,

$$
n^{3}-n^{2}(S . \mathbf{A} \mathbf{a}+S . \mathbf{B b}+S . \mathbf{C c})+n(S . \mathbf{a} V \mathbf{B C}+S . \mathrm{b} V \mathbf{C A}+\mathbf{S . c} V \mathbf{A} B)
$$

$$
-S . \mathbf{A} V \mathbf{B C}=0
$$

4.623 In transforming from one to another system of rectangular axes the following are invariant:

$$
\begin{aligned}
S . \mathbf{A a}+S . \mathbf{B b}+S . \mathbf{C} \mathbf{c} & =\omega_{1}+\omega_{2}+\omega_{3} . \\
S \mathrm{a} V \mathbf{B C}+S . \mathrm{b} V \mathbf{C A}+S . \mathbf{c} V \mathbf{A B} & =\omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2} . \\
S . \mathbf{A} V \mathbf{B C} & =\omega_{1} \omega_{2} \omega_{3} .
\end{aligned}
$$

4.624

$$
\begin{aligned}
& \omega_{1}+\omega_{2}+\omega_{3}=\omega_{11}+\omega_{22}+\omega_{33} \\
& \omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2}=\omega_{22} \omega_{33}+\omega_{33} \omega_{11}+\omega_{11} \omega_{22}-\omega^{2}{ }_{23}-\omega_{31}^{2}+\omega_{12}^{2} \\
& \omega_{1} \omega_{2} \omega_{3}=\omega_{11} \omega_{22} \omega_{33}+{ }_{2} \omega_{23} \omega_{31} \omega_{12}-\omega_{11} \omega_{23}^{2}-\omega_{22} \omega_{31}^{2}-\omega_{33} \omega_{12}^{2}
\end{aligned}
$$

4.625 The principal axes of the self-conjugate operator, ω, are those of the quadric:

$$
\omega_{11} x^{2}+\omega_{22} y^{2}+\omega_{33} z^{2}+2 \omega_{23} y z+2 \omega_{31} z x+2 \omega_{12} x y=\text { const. }
$$

where x, y, z are rectangular axes in the direction of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively.
4.626 Referred to its principal axes the equation of the quadric is,

$$
\omega_{1} x^{2}+\omega_{2} y^{2}+\omega_{3} z^{2}=\text { const. }
$$

4.627 Applying the self-conjugate operator, ω, successively,

$$
\begin{aligned}
\omega \mathrm{R} & =\mathrm{i} \omega_{1} R_{1}+\mathrm{j} \omega_{2} R_{2}+\mathbf{k} \omega_{3} R_{3} \\
\omega \omega \mathrm{R} & =\omega^{2} \mathrm{R}=\omega_{1}{ }^{2} R_{1}+\mathrm{j} \omega_{2}{ }^{2} R_{2}+\mathrm{k} \omega_{3}{ }^{2} R_{3} \\
\omega \omega^{2} \mathrm{R} & =\omega^{3} \mathrm{R}=\mathrm{i} \omega_{1}{ }^{3} R_{1}+\mathrm{j} \omega_{2}{ }^{3} R_{2}+\mathbf{k} \omega_{3}{ }^{3} R_{3}
\end{aligned}
$$

. . .

$$
\omega^{-1} \mathrm{R}=\mathrm{i} \frac{R_{1}}{\omega_{1}}+\mathrm{j} \frac{R_{2}}{\omega_{2}}+\mathbf{k} \frac{R_{3}}{\omega_{3}}
$$

-••
. . .
4.628 Applying a number of self-conjugate operators, α, β, \ldots. all with the same axes but with different principal values $\left(\alpha_{1} a_{2} a_{3}\right),\left(\beta_{1} \beta_{2} \beta_{3}\right), \ldots$

$$
\begin{aligned}
a \mathrm{R} & =\mathrm{i} \alpha R_{1}+\mathrm{j} \alpha_{2} R_{2}+\mathrm{k} \alpha_{3} R_{3} \\
\beta a \mathrm{R} & =a \beta \mathrm{R}=\mathrm{i} \alpha_{1} \beta_{1} R_{1}+\mathrm{j} \alpha_{2} \beta_{2} R_{2}+\mathrm{k} \alpha_{3} \beta_{3} R_{3} .
\end{aligned}
$$

4.629

$$
\begin{aligned}
S . \mathrm{Q} \omega \mathrm{R} & =S . \mathrm{R} \omega Q \\
& =\omega_{1} Q_{1} R_{1}+\omega_{2} Q_{2} R_{2}+\omega_{3} Q_{3} R_{3} .
\end{aligned}
$$

V. CURVILINEAR COÖRDINATES

5.00 Given three surfaces.
I.

$$
\begin{gathered}
\left\{\begin{array}{c}
u=f_{1}(x, y, z), \\
v=f_{2}(x, y, z), \\
w=f_{3}(x, y, z) .
\end{array}\right. \\
\left\{\begin{array}{l}
x=\phi_{1}(u, v, w), \\
y=\phi_{2}(u, v, w), \\
z=\phi_{3}(u, v, w)
\end{array}\right. \\
\left\{\begin{array}{l}
\frac{I}{h_{1}^{2}}=\left(\frac{\partial \phi_{1}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial u}\right)^{2} \\
\frac{I}{h_{2}{ }^{2}}=\left(\frac{\partial \phi_{1}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial v}\right)^{2} \\
\frac{I}{h_{3}{ }^{2}}=\left(\frac{\partial \phi_{1}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial w}\right)^{2} . \\
g_{1}=\frac{\partial \phi_{1}}{\partial v} \frac{\partial \phi_{1}}{\partial w}+\frac{\partial \phi_{2}}{\partial v} \frac{\partial \phi_{2}}{\partial w}+\frac{\partial \phi_{3}}{\partial v} \frac{\partial \phi_{3}}{\partial w}, \\
g_{2}=\frac{\partial \phi_{1}}{\partial w} \frac{\partial \phi_{1}}{\partial u}+\frac{\partial \phi_{2}}{\partial w} \frac{\partial \phi_{2}}{\partial u}+\frac{\partial \phi_{3}}{\partial w} \frac{\partial \phi_{3}}{\partial u}, \\
g_{3}=\frac{\partial \phi_{1}}{\partial u} \frac{\partial \phi_{1}}{\partial v}+\frac{\partial \phi_{2}}{\partial u} \frac{\partial \phi_{2}}{\partial v}+\frac{\partial \phi_{3}}{\partial u} \frac{\partial \phi_{3}}{\partial v}
\end{array}\right.
\end{gathered}
$$

5.01 The linear element of arc, $d s$, is given by:
$d s^{2}=d x^{2}+d y^{2}+d z^{2}=\frac{d u^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}{ }^{2}}+\frac{d w^{2}}{h_{3}{ }^{2}}+2 g_{1} d v d w+2 g_{2} d w d u+2 g_{3} d u d v$.
5.02 The surface elements, areas of parallelograms on the three surfaces, are:

$$
\begin{aligned}
& d S_{u}=\frac{d v d w}{h_{2} h_{3}} \sqrt{\mathrm{I}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}{ }^{2}} \\
& d S_{v}=\frac{d w d u}{h_{3} h_{1}} \sqrt{I-h_{3}{ }^{2} h_{1}^{2} g_{2}^{2}} \\
& d S_{w}=\frac{d u d v}{h_{1} h_{2}} \sqrt{I-h_{1}{ }^{2} h_{2}{ }^{2} g_{3}{ }^{2}}
\end{aligned}
$$

5.03 The volume of an elementary parallelepipedon is:

$$
d \tau=\frac{d u d v d w}{h_{1} h_{2} h_{3}}\left\{\mathrm{I}-h_{1}{ }^{2} h_{2}{ }^{2} g_{3}{ }^{2}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}{ }^{2}-h_{3}{ }^{2} h_{1}{ }^{2} g_{2}{ }^{2}+h_{1}{ }^{2} h_{2}{ }^{2} h_{3}{ }^{2} g_{1} g_{2} g_{3}\right\}^{\frac{1}{2}}
$$

$5.04 \omega_{1}, \omega_{2}, \omega_{3}$ are the angles between the normals to the surface $f_{2}, f_{3} ; f_{3}, f_{1}$; f_{1}, f_{2} respectively:

$$
\begin{aligned}
& \cos \omega_{1}=h_{2} h_{3} g_{1} \\
& \cos \omega_{2}=h_{3} h_{1} g_{2} \\
& \cos \omega_{3}=h_{1} h_{2} g_{3}
\end{aligned}
$$

5.05 Orthogonal Curvilinear Coördinates.

$$
\begin{aligned}
g_{1} & =g_{2}=g_{3}=0 \\
d s^{2} & =\frac{d u^{2}}{h_{1}^{2}}+\frac{d v^{2}}{h_{2}^{2}}+\frac{d w^{2}}{h_{3}^{2}} \\
d S_{u} & =\frac{d v d w}{h_{2} h_{3}}, d S_{v}=\frac{d w d u}{h_{3} h_{1}}, d S_{w}=\frac{d u d v}{h_{1} h_{2}} \\
d \tau & =\frac{d u d v d w}{h_{1} h_{2} h_{3}}
\end{aligned}
$$

$5.06 h_{1}{ }^{2}, h_{2}{ }^{2}, h_{3}{ }^{2}$ are given by $5.00(3)$ and also by:

$$
\begin{aligned}
& h_{1}^{2}=\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}+\left(\frac{\partial f_{1}}{\partial z}\right)^{2} \\
& h_{2}^{2}=\left(\frac{\partial f_{2}}{\partial x}\right)^{2}+\left(\frac{\partial f_{2}}{\partial y}\right)^{2}+\left(\frac{\partial f_{2}}{\partial z}\right)^{2} \\
& h_{3}^{2}=\left(\frac{\partial f_{3}}{\partial x}\right)^{2}+\left(\frac{\partial f_{3}}{\partial y}\right)^{2}+\left(\frac{\partial f_{3}}{\partial z}\right)^{2}
\end{aligned}
$$

5.07 A vector, A, will have three components in the directions of the normals to the orthogonal surfaces u, v, w :

$$
A=\sqrt{A_{u}^{2}+A_{v}^{2}+A_{w}^{2}}
$$

5.08

I. $\operatorname{div} \mathbf{A}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{A_{u}}{h_{2} h_{3}}\right)+\frac{\partial}{\partial v}\left(\frac{A_{v}}{h_{3} h_{1}}\right)+\frac{\partial}{\partial w}\left(\frac{A_{w}}{h_{1} h_{2}}\right)\right\}$.
2. $\bar{\nabla}^{2}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{h_{1}}{h_{2} h_{3}} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{2}}{h_{3} h_{1}} \frac{\partial}{\partial v}\right)+\frac{\partial}{\partial w}\left(\frac{h_{3}}{h_{1} h_{2}} \frac{\partial}{\partial w}\right)\right\}$.
3.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{u} \mathbf{A}=h_{2} h_{3}\left\{\frac{\partial}{\partial v}\left(\frac{A_{w}}{h_{3}}\right)-\frac{\partial}{\partial w}\left(\frac{A_{v}}{h_{2}}\right)\right\} \\
\operatorname{curl}_{v} \mathbf{A}=h_{3} h_{1}\left\{\frac{\partial}{\partial w}\left(\frac{A_{u}}{h_{1}}\right)-\frac{\partial}{\partial u}\left(\frac{A_{w}}{h_{3}}\right)\right\} \\
\operatorname{curl}_{w} \mathbf{A}=h_{1} h_{2}\left\{\frac{\partial}{\partial u}\left(\frac{A_{v}}{h_{2}}\right)-\frac{\partial}{\partial v}\left(\frac{A_{u}}{h_{1}}\right)\right\}
\end{array}\right.
$$

5.09 The gradient of a scalar function, ψ, has three components in the directions of the normals to the three orthogonal surfaces:

$$
h_{1} \frac{\partial \psi}{\partial u}, h_{2} \frac{\partial \psi}{\partial v}, h_{3} \frac{\partial \psi}{\partial w} .
$$

5.20 Spherical Polar Coördinates.
I.

$$
\left\{\begin{aligned}
u & =r \\
v & =\theta \\
w & =\phi
\end{aligned}\right.
$$

2.

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{array}\right.
$$

3.

$$
h_{1}=\mathrm{I}, h_{2}=\frac{\mathrm{r}}{r}, h_{3}=\frac{\mathrm{I}}{r \sin \theta} .
$$

4.

$$
\left\{\begin{array}{l}
d S_{r}=r^{2} \sin \theta d \theta d \phi \\
d S_{\theta}=r \sin \theta d r d \phi \\
d S_{\phi}=r d r d \theta
\end{array}\right.
$$

5.

$$
d \tau=r^{2} \sin \theta d r \dot{d} \theta d \phi
$$

6. $\quad \operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+r \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+r \frac{\partial A_{\phi}}{\partial \phi}\right\}$.
7.

$$
\bar{\nabla}^{2}=\frac{I}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{I}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right\}
$$

8.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{r} \mathbf{A}=\frac{\mathrm{I}}{r \sin \theta}\left\{\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial A_{\phi}}{\partial \phi}\right\} \\
\operatorname{curl}_{\theta} \mathbf{A}=\frac{\mathrm{I}}{r \sin \theta}\left\{\frac{\partial A_{r}}{\partial \phi}-\sin \theta \frac{\partial\left(r A_{\phi}\right)}{\partial r}\right\} \\
\operatorname{curl}_{\phi} \mathbf{A}=\frac{\mathrm{I}}{r}\left\{\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right\}
\end{array}\right.
$$

5.21 Cylindrical Coördinates.
I.

$$
\left\{\begin{array}{l}
u=\rho \\
v=\theta \\
w=z
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x=\rho \cos \theta \\
y=\rho \sin \theta \\
z=z
\end{array}\right.
$$

3.
4.

$$
h_{1}=\mathrm{I}, \quad h_{2}=\frac{\mathrm{I}}{\rho}, \quad h_{3}=\mathrm{I} .
$$

$$
\left\{\begin{array}{l}
d S_{r}=\rho d \theta d z \\
d S_{\theta}=d z d \rho \\
d S_{z}=\rho d \rho d \theta
\end{array}\right.
$$

5.

$$
d \tau=\rho d \rho d \theta d z
$$

6.

$$
\operatorname{div} \mathbf{A}=\frac{\mathbf{I}}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{\partial A_{\theta}}{\partial \theta}+\rho \frac{\partial A_{z}}{\partial z}\right\} .
$$

7.

$$
\bar{\nabla}^{2}=\frac{I}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{I}{\rho} \frac{\partial^{2}}{\partial \theta^{2}}+\rho \frac{\partial^{2}}{\partial z^{2}}\right\}
$$

8.

$$
\left\{\begin{aligned}
\operatorname{curl}_{\rho} \mathbf{A} & =\frac{\mathrm{I}}{\rho} \frac{\partial A_{z}}{\partial \theta}-\frac{\partial A_{\theta}}{\partial z} \\
\operatorname{curl}_{g} \mathbf{A} & =\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho} \\
\operatorname{curl}_{z} \mathbf{A} & =\frac{\mathrm{I}}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\theta}\right)-\frac{\partial A_{\rho}}{\partial \theta}\right\}
\end{aligned}\right.
$$

5.22 Ellipsoidal Coördinates.
u, v, w are the three roots of the equation:
I.

$$
\begin{gathered}
\frac{x^{2}}{a^{2}+\theta}+\frac{v^{2}}{b^{2}+\theta}+\frac{z^{2}}{c^{2}+\theta}=\mathrm{I} \\
a>b>c, \quad u>v>w .
\end{gathered}
$$

$\theta=u: \quad$ Ellipsoid.
$\theta=v: \quad H y p e r b o l o i d$ of one sheet.
$\theta=w: ~ H y p e r b o l o i d ~ o f ~ t w o ~ s h e e t s . ~$
2.
4. $\operatorname{div} \mathbf{A}=2 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)(u-w)} \frac{\partial}{\partial u}\left(\sqrt{(u-v)(u-w)} A_{u}\right)$

$$
\begin{aligned}
& \quad+2 \frac{\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}}{(v-w)(u-v)} \frac{\partial}{\partial v}\left(\sqrt{(w-v)(u-v)} A_{v}\right) \\
& +2 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(u-w)(v-w)} \frac{\partial}{\partial w}\left(\sqrt{(u-w)(v-w)} A_{w}\right) .
\end{aligned}
$$

5. $\bar{\nabla}^{2}=4 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)} \frac{\partial}{\partial u}\left(\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)} \frac{\partial}{\partial u}\right)$

$$
\begin{aligned}
& +4 \frac{\sqrt{\left(a^{2}+v\right)(2+v)\left(b c^{2}+v\right)}}{(u-v)(v-w)} \frac{\partial}{\partial v}\left(\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)} \frac{\partial}{\partial v}\right) \\
& +4 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(a-w)(v-w)}\left(\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)} \frac{\partial}{\delta w}\right) .
\end{aligned}
$$

6.

$$
\left\{\begin{array}{c}
\operatorname{curl}_{u} \mathbf{A}=\frac{2}{v-w}\left\{\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{u-v}} \frac{\partial}{\partial v}\left(\sqrt{w-v} A_{w}\right)\right. \\
-\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{u-w}} \frac{\partial}{\partial w}\left(\sqrt{v-w} A_{v}\right\}
\end{array}\right.
$$

$\left\{\operatorname{curl}_{v} \mathbf{A}=\frac{2}{u-w}\left\{\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{v-w}} \frac{\partial}{\partial w}\left(\sqrt{u-w} A_{u}\right)\right.\right.$

$$
\left.-\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{v-u}} \frac{\partial}{\partial u}\left(\sqrt{w-u} A_{w}\right)\right\}
$$

$$
\operatorname{curl}_{w} \mathbf{A}=\frac{2}{u-v}\left\{\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{w-u}} \frac{\partial}{\partial u}\left(\sqrt{v-u} A_{v}\right)\right.
$$

$$
\left.-\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{w-v}} \frac{\partial}{\partial v}\left(\sqrt{u-v} A_{u}\right)\right\}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
x^{2}=\frac{\left(a^{2}+u\right)\left(a^{2}+v\right)\left(a^{2}+w\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}, \\
y^{2}=-\frac{\left(b^{2}+u\right)\left(b^{2}+v\right)\left(b^{2}+w\right)}{\left(b^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)}, \\
z^{2}=\frac{\left(c^{2}+u\right)\left(c^{2}+v\right)\left(c^{2}+w\right)}{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)} .
\end{array}\right. \\
& \left\{\begin{array}{l}
h_{1}{ }^{2}=\frac{4\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{(u-v)(u-w)}, \\
h_{2}{ }^{2}=\frac{4\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{(v-w)(v-u)}, \\
h_{3}{ }^{2}=\frac{4\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{(w-u)(w-v)} .
\end{array}\right.
\end{aligned}
$$

5.23 Conical Coördinates.

The three orthogonal surfaces are: the spheres,
I.

$$
x^{2}+y^{2}+z^{2}=u^{2},
$$

the two cones:
2.

$$
\frac{x^{2}}{v^{2}}+\frac{y^{2}}{v^{2}-b^{2}}+\frac{z^{2}}{v^{2}-c^{2}}=0 .
$$

3.

$$
\frac{x^{2}}{w^{2}}+\frac{y^{2}}{w^{2}-b^{2}}+\frac{z^{2}}{w^{2}-c^{2}}=0 .
$$

$$
c^{2}>v^{2}>b^{2}>w^{2} .
$$

$$
\left\{\begin{array}{l}
x^{2}=\frac{u^{2} v^{2} w^{2}}{b^{2} c^{2}} \\
y^{2}=\frac{u^{2}\left(v^{2}-b^{2}\right)\left(w^{2}-b^{2}\right)}{b^{2}\left(b^{2}-c^{2}\right)} \\
z^{2}=\frac{u^{2}\left(v^{2}-c^{2}\right)\left(w^{2}-c^{2}\right)}{c^{2}\left(c^{2}-b^{2}\right)}
\end{array}\right.
$$

5. $\quad h_{1}=\mathrm{I}, \quad h_{2}{ }^{2}=\frac{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}$.
6. $\operatorname{div} \mathbf{A}=\frac{1}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} A_{u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{v}\right.$

$$
+\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{w}\right)
$$

7. $\bar{\nabla}^{2}=\frac{\mathrm{r}}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} \frac{\partial}{\partial u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\partial}{\partial v}\right)$.

$$
+\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\right)
$$

$$
\left\{\begin{aligned}
& \operatorname{curl}_{u} \mathbf{A}= \frac{\mathrm{I}}{u\left(v^{2}-w^{2}\right)}\left\{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{w}\right)\right. \\
&\left.-\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{v}\right)\right\}, \\
& \operatorname{curl}_{v} \mathbf{A}=\left.\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u \sqrt{v^{2}-w^{2}}} \frac{\partial A_{u}}{\partial w}-\frac{\mathrm{I}}{u} \frac{\partial}{\partial u}\left(u A_{u}\right)\right\}, \\
& \operatorname{curl}_{w} \mathbf{A}=\frac{\mathrm{I}}{u} \frac{\partial}{\partial u}\left(u A_{v}\right)-\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u \sqrt{v^{2}-w^{2}}} \frac{\partial A_{u}}{\partial v} .
\end{aligned}\right.
$$

5.30 Elliptic Cylinder Coördinates.

The three orthogonal surfaces are:
r. The elliptic cylinders:

$$
\frac{x^{2}}{c^{2} u^{2}}+\frac{y^{2}}{c^{2}\left(u^{2}-\mathrm{I}\right)}=\mathrm{I}
$$

2. The hyperbolic cylinders:

$$
\frac{x^{2}}{c^{2} v^{2}}-\frac{y^{2}}{c^{2}\left(\mathrm{I}-v^{2}\right)}=\mathrm{I}
$$

3. The planes:

$$
z=w .
$$

$2 c$ is the distance between the foci of the confocal ellipses and hyperbolas:
4.
5.

$$
\begin{aligned}
x & =c u v . \\
y & =c \sqrt{u^{2}-\mathrm{I}} \sqrt{\mathrm{I}-v^{2}} . \\
\frac{\mathrm{I}}{h_{1}^{2}} & =\frac{\mathrm{I}}{h_{2}^{2}}=c^{2}\left(u^{2}-v^{2}\right), \quad h_{3}=\mathrm{I} .
\end{aligned}
$$

7. $\operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{u^{2}-v^{2}} A_{v}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\bar{\nabla}^{2}=\frac{I}{c^{2}\left(u^{2}-v^{2}\right)}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+\frac{\partial^{2}}{\partial z^{2}}$.
9. $\left\{\begin{array}{l}\operatorname{curl}_{u} \mathbf{A}=\frac{\mathrm{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial v}-\frac{\partial A_{v}}{\partial z}, \\ \operatorname{curl}_{v} \mathbf{A}=\frac{\partial A_{u}}{\partial z}-\frac{\mathrm{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial u},\end{array}\right.$
$\operatorname{curl}_{z} \mathbf{A}=\frac{\mathbf{I}}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)\right\}$.
5.31 Parabolic Cylinder Coördinates.

The three orthogonal surfaces are the two parabolic cylinders:
I.

$$
\begin{aligned}
& y^{2}=4 c u x+4 c^{2} u^{2} \\
& y^{2}=-4 c v x+4 c^{2} v^{2}
\end{aligned}
$$

2.

And the planes:
3.

$$
\begin{aligned}
& z=w . \\
& x=c(v-u) . \\
& y=2 c \sqrt{u v} .
\end{aligned}
$$

6.

$$
\frac{\mathrm{I}}{h_{1}^{2}}=\frac{u+v}{u}, \quad \frac{\mathrm{I}}{h_{2}^{2}}=\frac{u+v}{v}, \quad h_{3}=\mathrm{I} .
$$

7. $\operatorname{div} \mathbf{A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{u+v}{v}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{\frac{u+v}{u}} A_{v}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\bar{\nabla}^{2}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\frac{u}{v} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{v}{u} \frac{\partial}{\partial v}\right)\right\}+\frac{\partial^{2}}{\partial z^{2}}$.
9. $\left\{\begin{array}{l}\operatorname{curl}_{u} \mathrm{~A}=\sqrt{\frac{v}{u+v}} \frac{\partial A_{z}}{\partial v}-\frac{v}{u+v} \frac{\partial A_{v}}{\partial z}, \\ \operatorname{curl}_{v} \mathrm{~A}=\frac{u}{u+v} \frac{\partial A_{u}}{\partial z}-\sqrt{\frac{u}{u+v}} \frac{\partial A_{z}}{\partial u}, \\ \operatorname{curl}_{z} \mathrm{~A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{v}{u+v}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{\frac{u}{u+v}} A_{u}\right)\right\} .\end{array}\right.$
5.40 Helical Coördinates. (Nicholson, Phil. Mag. 19, 77, 1910.)

A cylinder of any cross-section is wound on a circular cylinder in the form of a helix of angle $\alpha, \quad a=$ radius of circular cylinder on which the central line of the normal cross-sections of the helical cylinder lies. The z-axis is along the axis of the cylinder of radius a.
$u=\rho$ and $v=\phi$ are the polar coördinates in the plane of any normal section of the helical cylinder. ϕ is measured from a line perpendicular to z and to the tangent to the cylinder.
$w=\theta=$ the twist in a plane perpendicular to z of the radius in that plane measured from a line parallel to the x-axis:
I.

$$
\left\{\begin{array}{l}
x=(a+\rho \cos \phi) \cos \theta+\rho \sin \alpha \sin \theta \sin \phi \\
y=(a+\rho \cos \phi) \sin \theta-\rho \sin \alpha \cos \theta \sin \phi \\
z=a \theta \tan \alpha+\rho \cos \alpha \sin \phi
\end{array}\right.
$$

2.

$$
\left\{\begin{aligned}
h_{1} & =\mathrm{I}, \quad h_{2}=\frac{\mathrm{I}}{\rho} \\
h_{3}^{2} & =\frac{\mathrm{I}}{a^{2} \sec ^{2} \alpha+2 a \rho \cos \phi+\rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \alpha \sin ^{2} \phi\right)}
\end{aligned}\right.
$$

5.50 Surfaces of Revolution.
z-axis $=$ axis of revolution.
$\rho, \theta=$ polar coördinates in any plane perpendicular to z-axis.
I.

$$
\begin{aligned}
d s^{2} & =d z^{2}+d \rho^{2}+\rho^{2} d \theta^{2} \\
& =\frac{d u^{2}}{h_{1}^{2}}+\frac{d v^{2}}{h_{2}^{2}}+\frac{d w^{2}}{h_{3}^{2}} .
\end{aligned}
$$

In any meridian plane, z, ρ, determine u, v, from:
2.

$$
\begin{aligned}
f(z+i \rho) & =u+i v . \\
w & =\theta .
\end{aligned}
$$

Then u, v, θ will form a system of orthogonal curvilinear coördinates.
5.51 Spheroidal Coördinates (Prolate Spheroids):
I.

$$
\begin{aligned}
& z+i \rho=c \cosh (u+i v) \\
&\left\{\begin{array}{l}
z
\end{array}=c \cosh u \cos v\right. \\
& \rho=c \sinh u \sin v
\end{aligned} .
$$

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution, and the planes, θ :
3.

$$
\left\{\begin{array}{l}
\frac{z^{2}}{c^{2} \cosh ^{2} u}+\frac{\rho^{2}}{c^{2} \sinh ^{2} u}=\mathrm{I} \\
\frac{z^{2}}{c^{2} \cos ^{2} v}-\frac{\rho^{2}}{c^{2} \sin ^{2} v}=\mathrm{I}
\end{array}\right.
$$

With $\cos u=\lambda, \cos v=\mu:$
4.

$$
\left\{\begin{array}{l}
z=c \lambda \mu, \\
\rho=c \sqrt{\left(\lambda^{2}-I\right)\left(I-\mu^{2}\right)}
\end{array}\right.
$$

5. $\quad h_{1}{ }^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}{ }^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.
5.52 Spheroidal Coördinates (Oblate Spheroids):
I.

$$
\begin{aligned}
\rho+i z & =c \cosh (u+i v) . \\
z & =c \sinh u \sin v . \\
\rho & =c \cosh u \cos v .
\end{aligned}
$$

2.
3.

$$
\cosh u=\lambda, \quad \cos v=\mu
$$

4. $\quad h_{1}{ }^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}{ }^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.
5.53 Parabolic Coördinates:
I.

$$
\begin{aligned}
& z+i \rho=c(u+i v)^{2} . \\
& \left\{\begin{array}{l}
z=c\left(u^{2}-v^{2}\right), \\
\rho=2 c u v .
\end{array}\right.
\end{aligned}
$$

3.

$$
u^{2}=\lambda, \quad v^{2}=\mu
$$

With curvilinear coördinates, λ, μ, θ :
4.

$$
h_{1}=\frac{\mathrm{I}}{c} \sqrt{\frac{\lambda}{\lambda+\mu}}, \quad h_{2}=\frac{\mathrm{I}}{c} \sqrt{\frac{\mu}{\lambda+\mu}}, \quad h_{3}=\frac{\mathrm{I}}{2 c \sqrt{\lambda \mu}} .
$$

5.54 Toroidal Coördinates:
I.

$$
\begin{aligned}
u+i v & =\log \frac{z+a+i \rho}{z-a+i \rho} \\
\rho & =\frac{a \sinh u}{\cosh u-\cos v}
\end{aligned}
$$

2.

$$
z=\frac{a \sin v}{\cosh u-\cos v} .
$$

3.

$$
h_{1}=h_{2}=\frac{\cosh u-\cos v}{a}, \quad h_{3}=\frac{\cosh u-\cos v}{a \sinh u}
$$

The three orthogonal surfaces are:
(a) Anchor rings, whose axial circles have radii,

$$
a \operatorname{coth} u \text {, }
$$

and whose cross-sections are circles of radii,

$$
a \operatorname{csch} u \text {; }
$$

(b) Spheres, whose centers are on the axis of revolution at distances,

$$
\pm a \cot v
$$

from the origin, whose radii are,

$$
a \csc v,
$$

and which accordingly have a common circle,

$$
\rho=a, z=0 ;
$$

(c) Planes through the axis,

$$
w=\theta .=\text { const. }
$$

VI. INFINITE SERIES

6.00 An infinite series:

$$
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+u_{3}+\ldots
$$

is absolutely convergent if the series formed of the moduli of its terms:
is convergent.

$$
\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{2}\right|+\ldots
$$

A series which is convergent, but whose moduli do not form a convergent series, is conditionally convergent.

TESTS FOR CONVERGENCE

6.011 Comparison test. The series Σu_{n} is absolutely convergent if $\left|u_{n}\right|$ is less than $C\left|v_{n}\right|$ where C is a number independent of n, and v_{n} is the nth term of another series which is known to be absolutely convergent.
6.012 Cauchy's test. If

$$
\operatorname{Limit}_{n \rightarrow \infty}\left|u_{n}\right|^{\frac{1}{n}}<\mathrm{I}
$$

the series Σu_{n} is absolutely convergent.
6.013 D'Alembert's test. If for all values of n greater than some fixed value, r, the ratio $\left|\frac{u_{n+1}}{u_{n}}\right|$ is less than ρ, where ρ is a positive number less than unity and independent of n, the series Σu_{n} is absolutely convergent.
6.014 Cauchy's integral test. Let $f(x)$ be a steadily decreasing positive function such that,

$$
f(n) \geqslant a_{n} .
$$

Then the positive term series Σa_{n} is convergent if,

$$
\int_{m}^{\infty} f(x) d x
$$

is convergent.
6.015 Raabe's test. The positive term series Σa_{n} is convergent if,

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \geqslant l \quad \text { where } l>\mathrm{I} .
$$

It is divergent if,

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \leqslant \mathrm{I}
$$

6.020 Alternating series. A series of real terms, alternately positive and negative, is convergent if $a_{n+1} \leqslant a_{n}$ and

$$
\operatorname{limit}_{n \rightarrow \infty} a_{n}=0 .
$$

In such a series the sum of the first s terms differs from the sum of the series by a quantity less than the numerical value of the $(s+1) s t$ term.
6.025 If ${ }_{n \rightarrow \infty}^{\operatorname{limit}}\left|\frac{u_{n+1}}{u_{n}}\right|=\mathrm{I}$, the series Σu_{n} will be absolutely convergent if there is a positive number c, independent of n, such that,

$$
\operatorname{limit}_{n \rightarrow \infty} n\left\{\left|\frac{u_{n+1}}{u_{n}}\right|-\mathrm{I}\right\}=-\mathrm{I}-c
$$

6.030 The sum of an absolutely convergent series is not affected by changing the order in which the terms occur.
6.031 Two absolutely convergent series,

$$
\begin{aligned}
& S=u_{1}+u_{2}+u_{3}+\ldots . \\
& T=v_{1}+v_{2}+v_{3}+\ldots .
\end{aligned}
$$

may be multiplied together, and the sum of the products of their terms, written in any order, is $S T$,

$$
S T=u_{1} v_{1}+u_{2} v_{1}+u_{1} v_{2}+\ldots .
$$

6.032 An absolutely convergent power series may be differentiated or integrated term by term and the resulting series will be absolutely convergent and equal to the differential or integral of the sum of the given series.
6.040 Uniform Convergence. An infinite series of functions of x,

$$
S(x)=u_{1}(x)+u_{2}(x)+u_{3}(x)+\ldots \ldots
$$

is uniformly convergent within a certain region of the variable x if a finite number, N, can be found such that for all values of $n \geqslant N$ the absolute value of the remainder, $\left|R_{n}\right|$ after n terms is less than an assigned arbitrary small quantity e at all points within the given range.

Example. The series,

$$
\sum_{n=0}^{\infty} \frac{x^{2}}{\left(\mathrm{I}+x^{2}\right)^{n}}
$$

is absolutely convergent for all real values of x. Its sum is $\mathrm{I}+x^{2}$ if x is not zero. If x is zero the sum is zero. The series is non-uniformly convergent in the neighborhood of $x=0$.
6.041 A uniformly convergent series is not necessarily absolutely convergent, nor is an absolutely convergent series necessarily uniformly convergent.
6.042 A sufficient, though not necessary, test for uniform convergence is as follows:

If for all values of x within a certain region the moduli of the terms of the series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

are less than the corresponding terms of a convergent series of positive terms,

$$
T=M_{1}+M_{2}+M_{3}+\ldots
$$

where M_{n} is independent of x, then the series S is uniformly convergent in the given region.
6.043 A power series is uniformly convergent at all points within its circle of convergence.
6.044 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots \ldots
$$

may be integrated term by term, and,

$$
\mathcal{S} S d x=\sum_{n=1}^{\infty} \mathcal{S} u_{n}(x) d x
$$

6.045 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots
$$

may be differentiated term by term, and if the resulting series is uniformly convergent,

$$
\frac{d}{d x} S=\sum_{n=1}^{\infty} \frac{d}{d x} u_{n}(x)
$$

6.100 Taylor's theorem.

$$
f(x+h)=f(x)+\frac{h}{\mathrm{I}!} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+R_{n}
$$

6.101 Lagrange's form for the remainder:

$$
R_{n}=f^{(n+1)}(x+\theta h) \cdot \frac{h^{n+1}}{(n+\mathrm{I})!} ; \circ<\theta<\mathrm{I}
$$

6.102 Cauchy's form for the remainder:

$$
R_{n}=f^{(n+1)}(x+\theta h) \frac{h^{n+1}(\mathrm{I}-\theta)^{n}}{n!} ; 0<\theta<\mathrm{I}
$$

6.103
$f(x)=f(h)+f^{\prime}(h) \cdot \frac{x-h}{1!}+f^{\prime \prime}(h) \cdot \frac{(x-h)^{2}}{2!}+\ldots+f^{(n)}(h) \frac{(x-h)^{n}}{n!}+R_{n}$

$$
R_{n}=f^{(n+\mathrm{I})}\{h+\theta(x-h)\} \frac{(x-h)^{n+1}}{(n+\mathrm{I})!} \quad 0<\theta<\mathrm{I} .
$$

6.104 Maclaurin's theorem:

$$
\begin{aligned}
& f(x)=f(\mathrm{O})+f^{\prime}(\mathrm{\circ}) \frac{x}{\mathrm{I}!}+f^{\prime \prime}(\mathrm{o}) \frac{x^{2}}{2!}+\ldots+f^{(n)}(\mathrm{o}) \frac{x^{n}}{n!}+R_{n} \\
& R_{n}=f^{(n+\mathrm{I})}(\theta x) \frac{x^{n+1}}{(n+\mathrm{I})!}(\mathrm{I}-\theta)^{n} ; 0<\theta<\mathrm{I} .
\end{aligned}
$$

6.105 Lagrange's theorem. Given:

$$
y=z+x \phi(y) .
$$

The expansion of $f(y)$ in powers of x is:

$$
\begin{aligned}
f(y)=f(z)+x \phi(z) f^{\prime}(z)+\frac{x^{2}}{2!} \frac{d}{d z}\left[\{\phi(z)\}^{2} f^{\prime}(z)\right] & \\
& +\ldots+\frac{x^{n}}{n!} \frac{d^{n-1}}{d z^{n-1}}\left[\{\phi(z)\}^{n} f^{\prime}(z)\right]+\ldots .
\end{aligned}
$$

SYMBOLIC REPRESENTATION OF INFINITE SERIES
6.150 The infinite series:

$$
f(x)=\mathrm{I}+a_{1} x+\frac{\mathrm{I}}{2!} a_{2} x^{2}+\frac{\mathrm{I}}{3!} a_{3} x^{3}+\ldots+\frac{\mathrm{I}}{k!} a_{k} x^{k}+\ldots
$$

may be written:

$$
f(x)=e^{a x},
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.151 The infinite series, written without factorials,

$$
f(x)=\mathbf{1}+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{k} x^{k}+\ldots .
$$

may be written:

$$
f(x)=\frac{\mathrm{I}}{\mathrm{I}-a x},
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.152 Symbolic form of Taylor's theorem:

$$
f(x+h)=e^{h \frac{\partial}{\partial x}} f(x) .
$$

6.153 Taylor's theorem for functions of many variables:

$$
\begin{aligned}
& f\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots\right)=e^{h_{1}} \frac{\partial}{\partial x_{1}}+h_{2} \frac{\partial}{\partial x_{2}}+\ldots f\left(x_{1}, x_{2}, \ldots .\right) \\
& =f\left(x_{1}, x_{2}, \ldots\right)+h_{1} \frac{\partial f}{\partial x_{1}}+h_{2} \frac{\partial f}{\partial x_{2}}+\ldots \\
& +\frac{h_{1}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{2}{2!} h_{1} h_{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+\frac{h_{2}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{2}^{2}}+\ldots . \\
& +\ldots
\end{aligned}
$$

TRANSFORMATION OF INFINITE SERIES

Series which converge slowly may often be transformed to more rapidly converging series by the following methods.
6.20 Euler's transformation formula:

$$
\begin{aligned}
S & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \cdot \\
& =\frac{\mathrm{I}}{\mathrm{I}-x} a_{0}+\frac{\mathrm{I}}{\mathrm{I}-x} \sum_{k=1}^{\infty}\left(\frac{x}{\mathrm{I}-x}\right)^{k} \Delta^{k} a_{0},
\end{aligned}
$$

where:

$$
\begin{aligned}
& \Delta a_{0}=a_{1}-a_{0}, \\
& \Delta^{2} a_{0}=\Delta a_{1}-\Delta a_{0}=a_{2}-2 a_{1}+a_{0}, \\
& \Delta^{3} a_{0}=\Delta^{2} a_{1}-\Delta^{2} a_{0}=a_{3}-3 a_{2}+3 a_{1}-a_{0}, \\
& \quad \ldots \cdots \cdots \cdots \\
& \quad \cdots \cdots \cdots \cdots \\
& \\
& \quad \Delta^{k} a_{n}=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} a_{k+n-m} .
\end{aligned}
$$

The second series may converge more rapidly than the first.
Example 1.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{2 k+\mathrm{I}}, \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{2 k+\mathrm{I}}, \\
& S=\frac{\mathrm{I}}{2} \sum_{k=0}^{\infty} \frac{k!}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 k+\mathrm{I})} .
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{k+\mathrm{I}}=\log 2 \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{k+\mathrm{I}} . \\
& S=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k 2^{k}}
\end{aligned}
$$

6.21 Markoff's transformation formula. (Differenzenrechnung, p. 180.)
$\sum_{k=0}^{n} a_{k} x^{k}-\left(\frac{x}{\mathrm{I}-x}\right)^{m} \sum_{k=0}^{n} x^{k} \Delta^{m} a_{k}=\sum_{k=0}^{m} \frac{x^{k}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{0}-\sum_{k=0}^{m} \frac{x^{k+n}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{n}$.
6.22 Kummer's transformation.
$A_{0}, A_{1}, A_{2}, \ldots$ is a sequence of positive numbers such that

$$
\lambda_{m}=A_{m}-A_{m+1} \frac{a_{m+1}}{a_{m}}
$$

and

$$
\operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}
$$

approaches a definite positive value. Usually this limit can be taken as unity. If not, it is only necessary to divide A_{m} by this limit:

$$
\alpha={\underset{m \rightarrow \infty}{\operatorname{Limit}} A_{m} a_{m} .}
$$

Then:

$$
\sum_{m=n}^{\infty} a_{m}=\left(A_{n} a_{n}-\alpha\right)+\sum_{m=n}^{\infty}\left(\mathrm{I}-\lambda_{m}\right) a_{m} .
$$

Example I.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}}, \\
A_{m} & =m, \quad \lambda_{m}=\frac{m}{m+\mathrm{I}}, \quad \begin{array}{l}
\text { Limit } \\
m \rightarrow \infty
\end{array} \lambda_{m}=\mathrm{I} \\
\alpha & =0 \\
\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}} & =\mathrm{I}+\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{(m+\mathrm{I}) m^{2}} .
\end{aligned}
$$

Applying the transformation to the series on the right:

$$
\begin{aligned}
A_{m} & =\frac{m}{2}, \quad \lambda_{m}=\frac{m}{m+2}, \quad \alpha=0, \\
\sum_{m=1}^{\infty} \frac{\mathrm{I}}{m^{2}} & =\mathrm{I}+\frac{\mathrm{I}}{2^{2}}+2 \sum_{m=1}^{\infty} \frac{\mathrm{I}}{m^{2}(m+\mathrm{I})(m+2)} .
\end{aligned}
$$

Applying the transformation n times:

$$
\sum_{m=n+\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}}=n!\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}(m+\mathrm{I})(m+2) \ldots(m+n)}
$$

Example 2.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{2 m-\mathrm{I}}, \\
A_{m} & =\frac{\mathrm{I}}{2}, \quad \lambda_{m}=\frac{2 m}{2 m+\mathrm{I}}, \quad \alpha=0, \\
S & =\frac{\mathrm{I}}{2}+\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{4 m^{2}-\mathrm{I}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
A_{m} & =\frac{\mathrm{I}}{2} \frac{2 m+\mathrm{I}}{2 m-\mathrm{I}}, \quad \lambda_{m}=\frac{4 m^{2}+\mathrm{I}}{4 m^{2}-\mathrm{I}}, \quad \alpha=0, \\
S & =\mathrm{I}-2 \sum_{m=1}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-\mathrm{I}\right)^{2}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
A_{m} & =\frac{\mathrm{I}}{2} \frac{2 m+\mathrm{I}}{2 m-3}, \quad \lambda_{m}=\frac{4 m^{2}+3}{4 m^{2}-9}, \quad \alpha=0 \\
S & =\frac{4}{3}+24 \sum_{n=1}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-1\right)^{2}\left(4 m^{2}-9\right)}
\end{aligned}
$$

Example 3.

$$
\begin{gathered}
S=\sum_{m=\mathrm{r}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})^{2}}, \\
A_{m}=\frac{2 m-\mathrm{I}}{2(2 m-3)}, \quad \lambda_{m}=\frac{4 m^{2}-4 m+\mathrm{I}}{(2 m-3)(2 m+\mathrm{I})}, \quad \alpha=0, \\
S=\frac{5}{6}+4 \sum_{m=\mathrm{r}}^{\infty}(-\mathrm{r})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})(2 m+3)(2 m+\mathrm{I})^{2}} .
\end{gathered}
$$

6.23 Leclert's modification of Kummer's transformation. With the same notation as in 6.22 and,

$$
\operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}=\omega
$$

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+\frac{A_{1} a_{1}}{\lambda_{1}}-\frac{\alpha}{\omega}+\sum_{m=1}^{\infty}\left(\frac{\mathrm{I}}{\lambda_{m+1}}-\frac{\mathrm{I}}{\lambda_{m}}\right) A_{m+1} a_{m+1}
$$

Example I.

$$
\begin{gathered}
S=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{2 n-\mathrm{I}}, \\
a_{0}=0, \quad A_{m}=\mathrm{I}, \quad \omega=2, \quad \alpha=0, \quad \lambda_{m}=\frac{4 m}{2 m+\mathrm{I}}, \\
S=\frac{3}{4}+\frac{\mathrm{I}}{4} \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{1}{m(2 m+\mathrm{I})(m+\mathrm{I})} .
\end{gathered}
$$

Applying the transformation to the series on the right, with:

$$
\begin{gathered}
a_{0}=0, \quad A_{m}=\frac{2 m+\mathrm{I}}{m-\mathrm{I}}, \quad \lambda_{m}=\frac{(2 m+\mathrm{I})^{2}}{(m-\mathrm{I})(m+2)}, \quad \omega=4, \quad \alpha=0, \\
S=\frac{\mathrm{I} 9}{24}+\frac{9}{2} \sum_{m=1}^{\infty}(-\mathrm{I})^{m} \frac{\mathrm{I}}{m(m+2)(2 m+\mathrm{I})^{2}(2 m+3)^{2}}
\end{gathered}
$$

6.26 Reversion of series. The power series:

$$
z=x-b_{1} x^{2}-b_{2} x^{3}-b_{3} x^{4}-\ldots .
$$

may be reversed, yielding:
where:

$$
\begin{aligned}
& c_{1}=b_{1} \text {, } \\
& c_{2}=b_{2}+2 b_{1}{ }^{2} \text {, } \\
& c_{3}=b_{3}+5 b_{1} b_{2}+5 b_{1}{ }^{3}, \\
& c_{4}=b_{4}+6 b_{1} b_{3}+3 b_{2}{ }^{2}+2 \mathrm{I}_{1}{ }^{2} b_{2}+\mathrm{I} 4 b_{1}{ }^{4}, \\
& c_{5}=b_{5}+7\left(b_{1} b_{4}+b_{2} b_{3}\right)+28\left(b_{1}{ }^{2} b_{3}+b_{1} b_{2}{ }^{2}\right)+84 b_{1}{ }^{3} b_{2}+42 b_{1}{ }^{5} \text {, } \\
& c_{6}=b_{6}+4\left(2 b_{1} b_{5}+2 b_{2} b_{4}+b_{3}{ }^{2}\right)+12\left(3 b_{1}{ }^{2} b_{4}+6 b_{1} b_{2} b_{3}+b_{2}{ }^{3}\right) \\
& +60\left(2 b_{1}{ }^{3} b_{3}+3 b_{1}{ }^{2} b_{2}{ }^{2}\right)+330 b_{1}{ }^{4} b_{2}+132 b_{1}{ }^{6} \text {, } \\
& c_{7}=b_{7}+9\left(b_{1} b_{6}+b_{2} b_{5}+b_{3} b_{4}\right)+45\left(b_{1}{ }^{2} b_{5}+b_{1} b_{3}{ }^{2}+b_{2}{ }^{2} b_{3}+2 b_{1} b_{2} b_{4}\right) \\
& +165\left(b_{1}{ }^{3} b_{4}+b_{1} b_{2}{ }^{3}+3 b_{1}{ }^{2} b_{2} b_{3}\right)+495\left(b_{1}{ }^{4} b_{3}+2 b_{1}{ }^{3} b_{2}{ }^{2}\right) \\
& +1287 b_{1}{ }^{5} b_{2}+429 b_{1} .{ }^{7}
\end{aligned}
$$

Van Orstrand (Phil. Mag. 19, 366, 1910) gives the coefficients of the reversed series up to c_{12}.
6.30 Binomial series.

$$
\begin{aligned}
& (\mathrm{I}+x)^{n}=\mathrm{I}+\frac{n}{\mathrm{I}} x+\frac{n(n-\mathrm{I})}{2!} x^{2}+\frac{n(n-\mathrm{I})(n-2)}{3!} x^{3}+\ldots \\
& \quad+\frac{n!}{(n-k)!k!} x^{k}+\ldots=\mathrm{I}+\binom{n}{\mathrm{I}} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots\binom{n}{k} x^{k}+\ldots
\end{aligned}
$$

6.31 Convergence of the binomial series.

The series converges absolutely for $|x|<1$ and diverges for $|x|>1$. When $x=\mathrm{I}$, the series converges for $n>-\mathrm{I}$ and diverges for $n \leqslant-\mathrm{I}$. It is absolutely convergent only for $n>0$.

When $x=-\mathrm{I}$ it is absolutely convergent for $n>0$, and divergent for $n<0$.
6.32 Special cases of the binomial series.

$$
(a+b)^{n}=a^{n}\left(\mathrm{I}+\frac{b}{a}\right)^{n}=b^{n}\left(\mathrm{I}+\frac{a}{b}\right)^{n} .
$$

If $\left|\frac{b}{a}\right|<$ I put $x=\frac{b}{a}$ in 6.30 ; if $\left|\frac{b}{a}\right|>$ I put $x=\frac{a}{b}$ in 6.30.

6.33

I. $(\mathrm{I}+x)^{\frac{n}{m}}=\mathrm{I}+\frac{n}{m} x-\frac{n(m-n)}{2!m^{2}} x^{2}+\frac{n(m-n)(2 m-n)}{3!m^{3}} x^{3}-$ $\ldots+(-1)^{k} \frac{n(m-n)(2 m-n) \ldots[(k-1) m-n]}{k!m^{k}} x^{k}$
2. $(\mathrm{I}+x)^{-1}=\mathrm{I}-x+x^{2}-x^{3}+x^{4}-\ldots$.
3. $(\mathrm{I}+x)^{-2}=\mathrm{I}-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\ldots$
4. $\sqrt{\mathrm{I}+x}=\mathrm{I} \div \frac{\mathrm{I}}{2} x-\frac{\mathrm{I} \cdot \mathrm{I}}{2 \cdot 4} x^{2}+\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}+\ldots$
5. $\frac{I}{\sqrt{I+x}}=I-\frac{I}{2} x+\frac{I \cdot 3}{2 \cdot 4} x^{2}-\frac{I \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\frac{I \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\ldots$
6. $(\mathrm{I}+x)^{\frac{1}{3}}=\mathrm{I}+\frac{\mathrm{I}}{3} x-\frac{\mathrm{I} \cdot 2}{3 \cdot 6} x^{2}+\frac{\mathrm{I} \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9} x^{3}-\frac{\mathrm{I} \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot \mathrm{I} 2} x^{4}+\ldots$.
7. $(\mathrm{I}+x)^{-3}=\mathrm{I}-\frac{\mathrm{I}}{3} x+\frac{\mathrm{I} \cdot 4}{3 \cdot 6} x^{2}-\frac{\mathrm{I} \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+\frac{\mathrm{I} \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot \mathrm{I} 2} x^{4}-\ldots$
8. $(\mathrm{I}+x)^{3}=\mathrm{I}+\frac{3}{2} x+\frac{3 \cdot \mathrm{I}}{2 \cdot 4} x^{2}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I}}{2 \cdot 4 \cdot 6} x^{3}+\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \mathrm{IO}} x^{5}+\ldots$
9. $(\mathrm{I}+x)-^{\frac{3}{2}}=\mathrm{I}-\frac{3}{2} x+\frac{3 \cdot 5}{2 \cdot 4} x^{2}-\frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6} x^{3}+\ldots$.
10. $(\mathrm{I}+x)^{\frac{1}{4}}=\mathrm{I}+\frac{\mathrm{I}}{4} x-\frac{3}{3^{2}} x^{2}+\frac{7}{128} x^{3}-\frac{77}{2048} x^{4}+\ldots$
II. $(\mathrm{I}+x)^{-\frac{1}{4}}=\mathrm{I}-\frac{\mathrm{I}}{4} x+\frac{5}{3^{2}} x^{2}-\frac{\mathrm{I} 5}{\mathrm{I} 28} x^{3}+\frac{\mathrm{I} 95}{2048} x^{4}-\ldots$

I2. $(\mathrm{I}-\mathrm{L} x)^{\frac{1}{3}}=\mathrm{I}+\frac{\mathrm{I}}{5} x-\frac{2}{25} x^{2}+\frac{6}{\mathrm{I} 25} x^{3}-\frac{2 \mathrm{I}}{625} x^{4}+\ldots$.

I3. $(\mathrm{I}+x)^{-\frac{1}{5}}=\mathrm{I}-\frac{\mathrm{I}}{5} x+\frac{3}{25} x^{2}-\frac{11}{125} x^{3}+\frac{44}{625} x^{4}-\ldots$
14. $(\mathrm{I}+x)^{\frac{2}{6}}=\mathrm{I}+\frac{\mathrm{I}}{6} x-\frac{5}{72} x^{2}+\frac{55}{1296} x^{3}-\frac{935}{3 \text { IIO4 }} x^{4}+\ldots$
15. $(\mathrm{I}+x)^{-\frac{1}{6}}=\mathrm{I}-\frac{1}{6} x+\frac{7}{72} x^{2}-\frac{91}{1296} x^{3}+\frac{1729}{31104} x^{4}-\ldots$.
6.350
I. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}+x}+\frac{2 x^{2}}{\mathrm{I}+x^{2}}+\frac{4 x^{4}}{\mathrm{I}+x^{4}}+\frac{8 x^{8}}{\mathrm{I}+x^{8}}+\ldots . \quad\left[x^{2}<\mathrm{I}\right]$.
2. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}-x^{2}}+\frac{x^{2}}{\mathrm{I}-x^{4}}+\frac{x^{4}}{\mathrm{I}-x^{8}}+\ldots$.
$\left[x^{2}<\mathrm{I}\right]$.
3. $\frac{\mathrm{I}}{x-\mathrm{I}}=\frac{\mathrm{I}}{x+\mathrm{I}}+\frac{2}{x^{2}+\mathrm{I}}+\frac{4}{x^{4}+\mathrm{I}}+\ldots .$.

6.351

I. $\{I+\sqrt{I+x}\}^{n}=2^{n}\left\{I+n\left(\frac{x}{4}\right)+\frac{n(n-3)}{2!}\left(\frac{x}{4}\right)^{2}\right.$

$$
\left.+\frac{n(n-4)(n-5)}{3!}\left(\frac{x}{4}\right)^{3}+\ldots . .\right\} \cdot \quad\left[x^{2}<I\right] .
$$

n may be any real number.
2. $\left(x+\sqrt{1+x^{2}}\right)^{n}=\mathrm{I}+\frac{n^{2}}{2!} x^{2}+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} x^{4}+\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} x^{6}+\ldots$

$$
+\frac{n}{\mathrm{I}!} x+\frac{n\left(n^{2}-\mathrm{I}^{2}\right)}{3!} x^{3}+\frac{n\left(n^{2}-\mathrm{r}^{2}\right)\left(n^{2}-3^{2}\right)}{5!} x^{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

6.352 If a is a positive integer:
$\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a(a+\mathrm{I})} x+\frac{\mathrm{I}}{a(a+\mathrm{I})(a+2)} x^{2}+\ldots . .=\frac{(a-\mathrm{I})!}{x^{a}}\left\{e^{x}-\sum_{n=0}^{a-\mathrm{I}} \frac{x^{n}}{n!}\right\}$.
6.353 If a and b are positive integers, and $a<b$:
$\frac{a}{b}+\frac{a(a+1)}{b(b+1)} x+\frac{a(a+1)(a+2)}{b(b+1)(b+2)} x^{2}+\ldots$.

$$
\begin{gathered}
=(b-a)\binom{b-\mathrm{I}}{a-\mathrm{I}}\left\{\frac{(-\mathrm{I})^{b-a} \log (\mathrm{I}-x)}{x^{b}}(\mathrm{I}-x)^{b-a-1}\right. \\
\left.+\frac{\mathrm{I}}{x^{a}} \sum_{k=\mathrm{I}}^{b-a}(-\mathrm{I})^{k}\binom{b-a-\mathrm{I}}{k-\mathrm{I}} \sum_{n=\mathrm{I}}^{a+k-\mathrm{I}} \frac{x^{n-k}}{n}\right\} .
\end{gathered}
$$

(Schwatt, Phil. Mag. 31, 75, 1916)

POLYNOMIAL SERIES

6.360
6.361

$$
\begin{aligned}
\left(a_{0}+a_{1} x\right. & \left.+a_{2} x^{2}+\ldots\right)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots \\
c_{0} & =a_{0}{ }^{n}, \\
a_{0} c_{1} & =n a_{1} c_{0}, \\
2 a_{0} c_{2} & =(n-1) a_{1} c_{1}+2 n a_{2} c_{0}, \\
3 a_{0} c_{3} & =(n-2) a_{1} c_{2}+(2 n-1) a_{2} c_{1}+3 n a_{3} c_{0} .
\end{aligned}
$$

$$
c f .6 .37
$$

6.362

$$
\begin{aligned}
& \quad y=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& b_{1} y+b_{2} y^{2}+b_{3} y^{3}+\ldots=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& c_{1}=a_{1} b_{1}, \\
& c_{2}=a_{2} b_{1}+a_{1}{ }^{2} b_{2}, \\
& c_{3}=a_{3} b_{1}+2 a_{1} a_{2} b_{2}+a_{1}{ }^{3} b_{3}, \\
& c_{4}=a_{4} b_{1}+a_{2} b_{2} b_{2}+2 a_{1} a_{3} b_{2}+3 a_{1}{ }^{2} a_{2} b_{3}+a_{1}{ }^{4} b_{4} .
\end{aligned}
$$

. . . .
6.363

$$
\begin{aligned}
& e^{a_{1} x+a_{2} x^{2}}+a_{3} x^{3}+\cdots=1+c_{1} x+c_{2} x^{2}+\ldots \\
& c_{1}=a_{1} \\
& c_{2}=a_{2}+\frac{1}{2} a_{1}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots}{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots}=\frac{I}{a_{0}}\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots\right), \\
& c_{0}-b_{0}=\circ, \\
& c_{1}+\frac{c_{0} a_{1}}{a_{0}}-b_{1}=0, \\
& c_{2}+\frac{c_{1} a_{1}}{a_{0}}+\frac{c_{0} a_{2}}{a_{0}}-b_{2}=0, \\
& c_{3}+\frac{c_{2} a_{1}}{a_{0}}+\frac{c_{1} a_{2}}{a_{0}}+\frac{c_{0} a_{3}}{a_{0}}-b_{3}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& c_{3}=a_{3}+a_{1} a_{2}+\frac{\mathrm{I}}{6} a_{1}^{3} \\
& c_{4}=a_{4}+a_{1} a_{3}+\frac{\mathrm{I}}{2} a_{2}^{2}+\frac{\mathrm{I}}{2} a_{2} a_{1}^{2}+\frac{\mathrm{I}}{24} a_{1}^{4}
\end{aligned}
$$

6.364

$$
\begin{aligned}
& \log \left(\mathrm{I}+a_{1} x+a_{2} x^{2}\right.\left.+a_{3} x^{3}+\ldots\right)=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& a_{1}=c_{1}, \\
& 2 a_{2}=a_{1} c_{1}+2 c_{2}, \\
& 3 a_{3}=a_{2} c_{1}+2 a_{1} c_{2}+3 c_{3}, \\
& 4 a_{4}=a_{3} c_{1}+2 a_{2} c_{2}+3 a_{3} c_{3}+4 a_{4} . \\
& \cdots \\
& c_{1}=a_{1} \\
& c_{2}=a_{2}-\frac{\mathrm{I}}{2} c_{1} a_{1}, \\
& c_{3}=a_{3}-\frac{\mathrm{I}}{3} c_{1} a_{2}-\frac{2}{3} c_{2} a_{1}, \\
& c_{4}=a_{4}-\frac{\mathrm{I}}{4} c_{1} a_{3}-\frac{2}{4} c_{2} a_{2}-\frac{3}{4} c_{3} a_{1} .
\end{aligned}
$$

6.365

$$
\begin{aligned}
y & =a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
z & =b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots \\
y z & =c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots \\
c_{2} & =a_{1} b_{1} \\
c_{3} & =a_{1} b_{2}+a_{2} b_{1} \\
c_{4} & =a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \\
& \cdots \\
c_{k} & =a_{1} b_{k-1}+a_{2} b_{k-2}+a_{3} b_{k-3}+\ldots a_{k-1} b_{1} .
\end{aligned}
$$

6.37. The Multinomial Theorem.

The general term in the expansion of

$$
\begin{equation*}
\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)^{n} \tag{I}
\end{equation*}
$$

where n is positive or negative, integral or fractional, is,

$$
\begin{equation*}
\frac{n(n-1)(n-2) \ldots(p+1)}{c_{1}!c_{2}!c_{3}!\ldots} a_{0}{ }^{p} a_{1}{ }^{c_{1}} a_{2}{ }^{c_{2}} a_{3}{ }^{c_{3}} \ldots x^{c+2 c_{2}+3 c_{3}+} \ldots \tag{2}
\end{equation*}
$$

where

$$
p+c_{1}+c_{2}+c_{3}+\ldots .=n
$$

$c_{1}, c_{2}, c_{3}, \ldots$ are positive integers.
If n is a positive integer, and hence p also, the general term in the expansion may be written,

$$
\begin{equation*}
\frac{n!}{p!c_{1}!c_{2}!\ldots} a_{0}{ }^{p} a_{1}{ }^{c} a_{2} a_{2}^{c a_{2}} a_{3}^{c_{3}} \ldots x^{c_{1}+2 c_{2}+3 c_{3}+} \ldots \tag{3}
\end{equation*}
$$

The coefficient of x^{k} (k an integer) in the expansion of (I) is found by taking the sum of all the terms (2) or (3) for the different combinations of p, c_{1}, c_{2}, c_{3}, \ldots whic. satisfy

$$
\begin{aligned}
& c_{1}+2 c_{2}+3 c_{3}+\ldots=k \\
& p+c_{1}+c_{2}+c_{3}+\ldots=n
\end{aligned}
$$

cf. 6.361.

In the following series the coefficients B_{n} are Bernoulli's numbers (6.902) and the coefficients E_{n}, Euler's numbers (6.903).

6.400

1. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{(2 n+\mathrm{I})!}$
2. $\cos x=\mathrm{r}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n}}{(2 n)!}$
3. $\tan x=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\ldots$

$$
=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-1\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right] .
$$

4. $\cot x=\frac{1}{x}-\frac{x}{3}-\frac{1}{45} x^{3}-\frac{2}{945} x^{5}-\frac{1}{4725} x^{7}-\ldots$.

$$
=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n-1} \quad\left[x^{2}<\pi^{2}\right] .
$$

5. $\sec x=\mathrm{I}+\frac{\mathrm{I}}{2!} x^{2}+\frac{5}{4!} x^{4}+\frac{6 \mathrm{I}}{6^{1}} x^{6}+. \quad=\sum_{n=0}^{\infty} \frac{E_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]$.
6. $\csc x=\frac{\mathrm{T}}{x}+\frac{\mathrm{T}}{3!} x+\frac{7}{3 \cdot 5!} x^{3}+\frac{3 \mathrm{I}}{3 \cdot 7!} x^{5}+\ldots$

$$
=\frac{\mathrm{I}}{x}+\sum_{n=0}^{\infty} \frac{2\left(2^{2 n+1}-\mathrm{I}\right)}{(2 n+2)!} B_{n+1} x^{2 n+1} \quad\left[x^{2}<\pi^{2}\right] .
$$

6.41

I. $\sin ^{-1} x=x+\frac{\mathrm{I}}{2 \cdot 3} x^{3}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} x^{5}+\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots \quad\left[x^{2} \leqslant \mathrm{I}\right]$.

$$
=\frac{\pi}{2}-\cos ^{-1} x=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{r})} x^{2 n+1} .
$$

2. $\tan ^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots$ (Gregory's Series) $\left[x^{2} \leqslant \mathrm{I}\right]$

$$
=\frac{\pi}{2}-\cot ^{-1} x=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{2 n+\mathrm{I}}
$$

3. $\tan ^{-1} x=\frac{x}{1+x^{2}}\left\{\mathrm{I}+\frac{2}{3} \frac{x^{2}}{\mathrm{I}+x^{2}}+\frac{2 \cdot 4}{3 \cdot 5}\left(\frac{x^{2}}{\mathrm{I}+x^{2}}\right)^{2}+\ldots\right\}$

$$
=\frac{x}{\mathrm{I}+x^{2}} \sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+\mathrm{I})!}\left(\frac{x^{2}}{\mathrm{I}+x^{2}}\right)^{n}
$$

4. $\tan ^{-1} x=\frac{\pi}{2}-\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3 x^{3}}-\frac{\mathrm{I}}{5 x^{5}}+\frac{\mathrm{I}}{7 x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}} \quad\left[x^{2} \geqslant \mathrm{I}\right]
$$

5. $\sec ^{-1} x=\frac{\pi}{2}-\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{2 \cdot 3} \frac{\mathrm{I}}{x^{3}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} \frac{\mathrm{I}}{x^{5}}+\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} \frac{\mathrm{I}}{x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\csc ^{-1} x=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{-2 n-1} \quad\left[x>_{\mathrm{I}}\right]
$$

6.42

I. $\left(\sin ^{-1} x\right)^{2}=x^{2}+\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3 \cdot 5} \frac{x^{6}}{3}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} \frac{x^{8}}{4}+\ldots$.

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!(n+I)} x^{2 n+2} \quad\left[x^{2} \leqslant I\right]
$$

2. $\left(\sin ^{-1} x\right)^{3}=x^{3}+\frac{3!}{5!} 3^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}\right) x^{5}+\frac{3!}{7!} 3^{2} 5^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}+\frac{\mathrm{I}}{5^{2}}\right) x^{7}+\ldots .\left[x^{2} \leqslant \mathrm{I}\right]$.
3. $\left(\tan ^{-1} x\right)^{p}=p!\sum_{k_{0}=1}^{\infty}(-\mathrm{I})^{k_{\mathrm{O}}-\mathrm{I}} \frac{x^{2 k_{\mathrm{o}}+p-2}}{2 k_{0}+p-2} \prod_{a=\mathrm{I}}^{p-\mathrm{I}}\left(\sum_{k_{a}=\mathrm{I}}^{k a-\mathrm{I}} \frac{\mathrm{I}}{2 k_{a}+p-a-2}\right)$.
(Schwatt, Phil. Mag. 31, p. 490, 1916).
4. $\sqrt{I-x^{2}} \sin ^{-1} x=x-\frac{x^{3}}{3}+\frac{2}{3 \cdot 5} x^{5}-\frac{2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n-2}[(n-\mathrm{I})!]^{2}}{(2 n-\mathrm{I})!(2 n+\mathrm{I})} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right] .
$$

5. $\frac{\sin ^{-1} x}{\sqrt{I-x^{2}}}=x+\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

6.43

I. $\log \sin x=\log x-\left\{\frac{1}{6} x^{2}+\frac{I}{I 80} x^{4}+\frac{I}{2835} x^{6}+\ldots\right\}$

$$
=\log x-\sum_{n=1}^{\infty} \frac{2^{2 n-1}}{n(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

2. $\log \cos x=-\frac{1}{2} x^{2}-\frac{\mathrm{I}}{\mathrm{I} 2} x^{4}-\frac{\mathrm{I}}{45} x^{6}-\frac{\mathrm{I} 7}{2520} x^{8}-\ldots$

$$
=-\sum_{n=1}^{\infty} \frac{2^{2 n-1}\left(2^{2 n}-1\right) B_{n}}{n(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

3. $\log \tan x=\log x+\frac{1}{3} x^{2}+\frac{7}{90} x^{4}+\frac{62}{2835} x^{6}+\frac{127}{18900} x^{8}+\ldots$

$$
=\log x+\sum_{n=1}^{\infty} \frac{\left(2^{2 n-1}-\mathrm{I}\right) 2^{2 n}}{n(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right] .
$$

4. $\log \cos x=-\frac{1}{2}\left\{\sin ^{2} x+\frac{1}{2} \sin ^{4} x+\frac{\mathrm{I}}{3} \sin ^{6} x+\ldots\right\}$

$$
=-\frac{I}{2} \sum_{n=1}^{\infty} \frac{I}{n} \sin ^{2 n} x . \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

6.44

I. $\log (\mathrm{I}+x)=x-\frac{\mathrm{I}}{2} x^{2}+\frac{\mathrm{I}}{3} x^{3}-\frac{\mathrm{I}}{4} x^{4}+\ldots$

$$
=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} \quad[-1<x \leqslant 1]
$$

$\{\log (\mathrm{I}+x)\}^{p}$ see 7.369.
2. $\log \left(x+\sqrt{I+x^{2}}\right)=x-\frac{I \cdot I}{2 \cdot 3} x^{3}+\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 5} x^{5}-\frac{I \cdot I \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!x^{2 n+1}}{2^{2 n-1} n!(n-\mathrm{I})!(2 n+\mathrm{I})} \quad[-\mathrm{I} \leqslant x \leqslant \mathrm{I}]
$$

3. $\log \left(I+\sqrt{I+x^{2}}\right)=\log 2+\frac{I \cdot I}{2 \cdot 2} x^{2}-\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 4} x^{4}+\frac{I \cdot I \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6} x^{6}-\ldots$

$$
=\log 2-\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!} \frac{x^{2 n}}{2 n} \quad\left[x^{2} \leqslant \mathrm{I}\right]
$$

4. $\log \left(I+\sqrt{I+x^{2}}\right)=\log x+\frac{I}{x}-\frac{I \cdot I}{2 \cdot 3} \frac{I}{x^{3}}+\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 5} \frac{I}{x^{5}}-\ldots$

$$
=\log x+\frac{\mathrm{I}}{x}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!} \frac{x^{-2 n-1}}{(2 n+\mathrm{I})} \quad\left[x^{2} \geqslant \mathrm{I}\right] .
$$

5. $\log x=(x-\mathrm{I})-\frac{\mathrm{I}}{2}(x-\mathrm{I})^{2}+\frac{\mathrm{I}}{3}(x-\mathrm{I})^{3}-\ldots$

$$
=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n+1} \frac{(x-\mathrm{I})^{n}}{n} \quad[0<x \leqslant 2]
$$

6. $\log x=\frac{x-\mathrm{I}}{x}+\frac{\mathrm{I}}{2}\left(\frac{x-\mathrm{I}}{x}\right)^{2}+\frac{\mathrm{I}}{3}\left(\frac{x-\mathrm{I}}{x}\right)^{3}+\ldots$.

$$
\left[x \geqslant \frac{1}{2}\right]
$$

7. $\log x=2\left\{\frac{x-\mathrm{I}}{x+\mathrm{I}}+\frac{\mathrm{I}}{3}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{5}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{2 n+1} \quad[x>0]
$$

8. $\log \frac{\mathrm{I}+x}{\mathrm{I}-x}=2\left\{x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\ldots.\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} x^{2 n+1}
$$

$$
\left[x^{2}<\mathrm{I}\right]
$$

9. $\log \frac{x+\mathrm{I}}{x-\mathrm{I}}=2\left\{\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3} \frac{\mathrm{I}}{x^{3}}+\frac{\mathrm{I}}{5} \frac{\mathrm{I}}{x^{5}}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}}
$$

$$
\left[x^{2}>\mathrm{I}\right]
$$

Io. $\sqrt{I+x^{2}} \log \left(x+\sqrt{\left.I+x^{2}\right)}=x+\frac{I}{3} x^{3}-\frac{I \cdot 2}{3 \cdot 5} x^{5}+\frac{I \cdot 2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}-\ldots\right.$

$$
=x-\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(n-\mathrm{I})!2^{2 n-1} n!}{(2 n+\mathrm{I})!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

II. $\frac{\log \left(x+\sqrt{I+x^{2}}\right)}{\sqrt{I+x^{2}}}=x-\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}-\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n}(n!)^{2}}{(2 n+I)!} x^{2 n+1} \quad\left[x^{2}<I\right]
$$

I2. $\left\{\log \left(x+\sqrt{I+x^{2}}\right)\right\}^{2}=\frac{x^{2}}{I}-\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3 \cdot 5} \frac{x^{6}}{3}-\ldots$.

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{2^{2 n-2}(n-\mathrm{I})!(n-\mathrm{I})!}{(2 n-\mathrm{I})!} \frac{x^{2 n}}{n} \cdot\left[x^{2}<\mathrm{I}\right]
$$

I3. $\frac{1}{2}\{\log (I+x)\}^{2}=\frac{I}{2} s_{1} x^{2}-\frac{I}{3} s_{2} x^{3}+\frac{I}{4} s_{3} x^{4}-\ldots$
where $s_{n}=\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots \frac{\mathrm{I}}{n}$
(See 1.876).
14. $\frac{\mathrm{I}}{6}\{\log (\mathrm{I}+x)\}^{3}=\frac{\mathrm{I}}{3} \cdot \frac{\mathrm{I}}{2} s_{1} x^{3}-\frac{\mathrm{I}}{4}\left(\frac{\mathrm{I}}{2} s_{1}+\frac{\mathrm{I}}{3} s_{2}\right) x^{4}$

$$
+\frac{\mathrm{I}}{5}\left(\frac{\mathrm{I}}{2} s_{1}+\frac{\mathrm{I}}{3} s_{2}+\frac{\mathrm{I}}{4} s_{3}\right) x^{5}-\ldots\left[x^{2}<\mathrm{I}\right] .
$$

15. $\frac{\log (\mathrm{I}+x)}{(\mathrm{I}+x)^{n}}=x-n(n+\mathrm{I})\left(\frac{\mathrm{I}}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}\right) \frac{x^{2}}{2!}$

$$
+n(n+\mathrm{I})(n+2)\left(\frac{\mathrm{I}}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}+\frac{\mathrm{I}}{n+2}\right) \frac{x^{3}}{3!}-\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

6.445 (See 6.705.)
I. $\frac{3}{4 x}-\frac{\mathrm{I}}{2 x^{2}}+\frac{(\mathrm{I}-x)^{2}}{2 x^{3}} \log \frac{\mathrm{I}}{\mathrm{I}-x}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{x}{2 \cdot 3 \cdot 4}+\frac{x^{2}}{3 \cdot 4 \cdot 5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.
2. $\frac{\mathrm{I}}{4 x}\left\{\frac{\mathrm{I}+x}{\sqrt{x}} \log \frac{\mathrm{I}+\sqrt{x}}{\mathrm{I}-\sqrt{x}}+2 \log (\mathrm{I}-x)-2\right\}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{x}{3 \cdot 4 \cdot 5}$

$$
+\frac{x^{2}}{5 \cdot 6 \cdot 7}+\ldots \quad[0<x<I] .
$$

3. $\frac{\mathrm{I}}{2 x}\left\{\mathrm{I}-\log (\mathrm{I}+x)-\frac{\mathrm{I}-x}{\sqrt{x}} \tan ^{-1} x\right\}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}-\frac{x}{3 \cdot 4 \cdot 5}$
$+\frac{x^{2}}{5 \cdot 6 \cdot 7}-\ldots \quad[0<x \leqslant \mathrm{I}]$.
6.455
I. $-\log (\mathrm{I}+x) \cdot \log (\mathrm{I}-x)=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right) \frac{x^{4}}{2}$

$$
+\left(\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}-\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{5}\right) \frac{x^{6}}{3}+\ldots . \quad\left[x^{2}<\mathrm{I}\right] .
$$

2. $\frac{I}{2} \tan ^{-1} x \cdot \log \frac{\mathrm{I}+x}{\mathrm{I}-x}=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}\right) \frac{x^{6}}{3}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{7}+\frac{\mathrm{I}}{9}\right) \frac{x^{10}}{5}$
3. $\frac{\mathrm{I}}{2} \tan ^{-1} x \cdot \log \left(\mathrm{I}+x^{2}\right)=\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right) \frac{x^{3}}{3}-\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}\right) \frac{x^{5}}{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.

6.456

I. $\cos \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\mathrm{I}-\frac{k^{2}}{2!} x^{2}+\frac{k^{2}\left(k^{2}+2^{2}\right)}{4!} x^{4}$

$$
-\frac{k^{2}\left(k^{2}+2^{2}\right)\left(k^{2}+4^{2}\right)}{6!} x^{6}+\ldots . \quad x^{2}<\mathrm{I} .
$$

k may be any real number.
2. $\sin \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\frac{k}{\mathrm{I}!} x-\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)}{3!} x^{3}$

$$
+\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)\left(k^{2}+3^{2}\right)}{5!} x^{5}-\ldots \quad x^{2}<\mathrm{I}
$$

6.457
$\frac{\mathrm{I}}{\mathrm{I}-2 x \cos \alpha+x^{2}}=\mathrm{I}+\sum_{n=1}^{\infty} A_{n} x^{n}$
where,

$$
\begin{aligned}
A_{2 n} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k}{2 k}\right)(2 \cos \alpha)^{2 k} \\
A_{2 n+1} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k+\mathrm{I}}{2 k+\mathrm{I}}\right)(2 \cos \alpha)^{2 k+1}
\end{aligned}
$$

6.460

1. $e^{x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\left[x^{2}<\infty\right]$.
2. $a^{x}=\mathrm{I}+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots$
$\left[x^{2}<\infty\right]$.
3. $e^{e^{x}}=e\left(\mathrm{I}+x+\frac{2}{2!} x^{2}+\frac{5}{3!} x^{3}+\frac{\mathrm{I} 5}{4!} x^{4}+\ldots\right)$.
4. $e^{\sin x}=1+x+\frac{x^{2}}{2!}-\frac{3 x^{4}}{4!}-\frac{8 x^{5}}{5!}+\frac{3 x^{6}}{6!}+\frac{56 x^{7}}{7!}+\ldots$
5. $e^{\cos x}=e\left(\mathrm{I}-\frac{x^{2}}{2!}+\frac{4 x^{4}}{4!}-\frac{3 \mathrm{I} x^{6}}{6!}+\ldots.\right)$.
6. $e^{\tan x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{3 x^{3}}{3!}+\frac{9 x^{4}}{4!}+\frac{37 x^{5}}{5!}+\ldots$
7. $e^{\sin ^{-1} x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{2 x^{3}}{3!}+\frac{5 x^{4}}{4!}+\ldots$.
8. $e^{t a n^{-1} x}=\mathrm{I}+x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{7 x^{4}}{24}-\ldots$.

6.470

I. $\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad\left[x^{2}<\infty\right]$.
2. $\cosh x=\mathrm{I}+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \quad\left[x^{2}<\infty\right]$.
3. $\tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots$

$$
=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{2^{2 n}\left(2^{2 n}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

4. $x \operatorname{coth} x=\mathrm{I}+\frac{\mathrm{I}}{3} x^{2}-\frac{\mathrm{I}}{45} x^{4}+\frac{2}{945} x^{6}-\ldots$

$$
=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{r})^{n-1} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

5. $\operatorname{sech} x=\mathrm{I}-\frac{\mathrm{I}}{2} x^{2}+\frac{5}{24} x^{4}-\frac{6 \mathrm{I}}{720} x^{6}+\ldots=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{E_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi}{4}\right]$.
6. $x \operatorname{csch} x=\mathrm{I}-\frac{\mathrm{I}}{6} x^{2}+\frac{7}{360} x^{4}-\frac{3 \mathrm{I}}{\mathrm{I}_{5120}} x^{6}+\ldots$

$$
=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2\left(2^{2 n-1}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right] .
$$

6.475

I. $\cosh x \cos x=\mathrm{I}-\frac{2^{2}}{4!} x^{4}+\frac{2^{4}}{8!} x^{8}-\frac{2^{6}}{12!} 1^{12}+\ldots$
2. $\sinh x \sin x=\frac{2^{2}}{2!} x^{2}-\frac{2^{4}}{6!} x^{6}+\frac{2^{6}}{10!} x^{10}-\ldots$.

6.476

I. $e^{x \cos \theta} \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{n} \cos n \theta}{n!} \quad\left[x^{2}<I\right]$.
2. $e^{x \cos \theta} \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{n} \sin n \theta}{n!}$
$\left[x^{2}<1\right]$.
3. $\cosh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n} \cos 2 n \theta}{(2 n)!}$ $\left[x^{2}<\mathrm{I}\right]$.
4. $\sinh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \cos (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<\mathrm{I}\right]$.
5. $\cosh (x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \sin (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<\mathrm{I}\right]$.
6. $\sinh (x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{2 n} \sin 2 n \theta}{(2 n)!}$ $\left[x^{2}<1\right]$.

6.480

I. $\sinh ^{-1} x=x-\frac{\mathrm{I}}{2 \cdot 3} x^{3}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} x^{5}-\ldots$

$$
=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{2 n+1}
$$

2. $\sinh ^{-1} x=\log 2 x+\frac{I}{2} \frac{\mathrm{I}}{2 x^{2}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{4 x^{4}}+\ldots$

$$
=\log 2 x+\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n}
$$

3. $\cosh ^{-1} x=\log 2 x-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{2 x^{2}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{4 x^{4}}-\ldots$

$$
=\log 2 x-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n}
$$

$$
\left[x^{2}>\mathrm{I}\right]
$$

4. $\tanh ^{-1} x=x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\frac{\mathrm{I}}{7} x^{7}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+\mathrm{I}}$
$\left[x^{2}<1\right]$.
5. $\sinh ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{3 x^{3}}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{5 x^{5}}-\ldots$.

$$
=\operatorname{csch}^{-1} x=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{-2 n-1} \quad\left[x^{2}>\mathrm{I}\right]
$$

6. $\cosh ^{-1} \frac{\mathrm{I}}{x}=\log \frac{2}{x}-\frac{\mathrm{I}}{2} \frac{x^{2}}{2}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}-\ldots$

$$
=\operatorname{sech}^{-1} x=\log \frac{2}{x}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<\mathrm{I}\right]
$$

7. $\sinh ^{-1} \frac{\mathrm{I}}{x}=\log \frac{2}{x}+\frac{\mathrm{I}}{2} \frac{x^{2}}{2}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}+\ldots$.

$$
=\operatorname{csch}^{-1} x=\log \frac{2}{x}+\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<\mathrm{I}\right]
$$

8. $\tanh ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3 x^{3}}+\frac{\mathrm{I}}{5 x^{5}}+\ldots$.

$$
=\operatorname{coth}^{-1} x=\sum_{n=0}^{\infty} \frac{x^{-2 n-1}}{2 n+\mathbf{I}}
$$

$\left[x^{2}>\mathrm{I}\right]$.
6.490
I. $\quad \frac{\mathrm{I}}{2 \sinh x}=\sum_{n=0}^{\infty} e^{-x(2 n+1)}$.
2. $\quad \frac{\mathrm{I}}{2 \cosh x}=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} e^{-x(2 n+\mathrm{I})}$.
3. $\frac{\mathrm{I}}{2}(\tanh x-\mathrm{I})=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} e^{-2 n x}$.
4. $-\frac{\mathrm{I}}{2} \log \tanh \frac{x}{2}=\sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} e^{-x(2 n+\mathrm{I})}$.
6.491

$$
\frac{\mathrm{I}}{2}+\sum_{n=1}^{\infty} e^{-(n x)^{2}}=\frac{\sqrt{\pi}}{x}\left\{\frac{\mathrm{I}}{2}+\sum_{n=1}^{\infty} e^{-\left(\frac{n \pi}{x}\right)^{2}}\right\}
$$

By means of this formula a slowly converging series may be transformed into a rapidly converging series.
6.495
I. $\tan x=2 x\left\{\frac{\mathrm{I}}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}+\ldots\right\}$

$$
=\sum_{n=1}^{\infty} \frac{8 x}{(2 n-I)^{2} \pi^{2}-4 x^{2}}
$$

2. $\cot x=\frac{\mathrm{I}}{x}-\frac{2 x}{\pi^{2}-\lambda^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}-\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots=\frac{\mathrm{I}}{x}-\sum_{n=1}^{\infty} \frac{2 x}{n^{2} \pi^{2}-x^{2}}$.
3. $\sec x=\frac{\pi}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}-\frac{3 \pi}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{5 \pi}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}-\ldots$

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{4(2 n-\mathrm{I}) \pi}{(2 n-\mathrm{I})^{2} \pi^{2}-4 x^{2}}
$$

4. $\csc x=\frac{\mathrm{I}}{x}+\frac{2 x}{\pi^{2}-\lambda^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}+\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots$.

$$
=\frac{\mathrm{I}}{x}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{2 x}{n^{2} \pi^{2}-x^{2}}
$$

By replacing x by $i x$ the corresponding series for the hyperbolic functions may be written.
I. $\sin x=x \prod_{n=\mathrm{I}}^{\infty}\left(\mathrm{I}-\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
2. $\sinh x=x \prod_{n=1}^{\infty}\left(\mathrm{I}+\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
3. $\cos x=\prod_{n=0}^{\infty}\left(\mathrm{I}-\frac{4 x^{2}}{(2 n+\mathrm{I})^{2} \pi^{2}}\right)$.
4. $\cosh x=\prod_{n=0}^{\infty}\left(\mathrm{I}+\frac{4 x^{2}}{(2 n+\mathrm{I})^{2} \pi^{2}}\right)$.

6.51

I. $\frac{\sin x}{x}$

$$
=\prod_{n=\mathrm{I}}^{\infty} \cos \frac{x}{2^{n}}
$$

6.52
I. $\frac{\mathrm{I}}{\mathrm{I}-x}=\prod_{n=0}^{\infty}\left(\mathrm{I}+x^{2 n}\right)$.
6.53
I. $\cosh x-\cos y=2\left(I+\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{y}{2} \prod_{n=1}^{\infty}\left(I+\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(I+\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
2. $\cos x-\cos y=2\left(\mathrm{I}-\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{y}{2} \prod_{n=\mathrm{I}}^{\infty}\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
6.55 The convergent infinite series:

$$
\mathrm{I}+u_{1}+u_{2}+\ldots=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} u_{n}
$$

may be transformed into the infinite product

$$
\begin{aligned}
& \left(\mathrm{I}+v_{1}\right)\left(\mathrm{I}+v_{2}\right)\left(\mathrm{I}+v_{3}\right) \ldots \\
& =\prod_{n=\mathrm{I}}^{\infty}\left(\mathrm{I}+v_{n}\right)
\end{aligned}
$$

where

$$
v_{n}=\frac{u_{n}}{\mathrm{I}+u_{1}+u_{2}+\ldots+u_{n-x}}
$$

6.600 The Gamma Function:

$$
\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{z}}{1+\frac{z}{n}}
$$

z may have any real or complex value, except $0,-1,-2,-3, \ldots$
6.601

$$
\frac{\mathrm{I}}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left(\mathrm{I}+\frac{z}{n}\right) e^{-\frac{z}{n} .}
$$

6.602

$$
\begin{aligned}
\gamma & =\operatorname{Limit}_{m \rightarrow \infty}\left\{\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{m}-\log m\right\} \\
& =\int_{0}^{\infty}\left\{\frac{e^{-t}}{\mathrm{I}-e^{-t}}-\frac{e^{-t}}{t}\right\} d t=0.5772157 \cdots
\end{aligned}
$$

6.603

$$
\begin{aligned}
\Gamma(z+1) & =z \Gamma(z) \\
\Gamma(z) \Gamma(1-z) & =\frac{\pi}{\sin \pi z}
\end{aligned}
$$

6.604 For z real and positive $=x$:

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

$\log \Gamma(\mathrm{I}+x)=\left(x+\frac{\mathrm{I}}{2}\right) \log x-x+\frac{\mathrm{I}}{2} \log 2 \pi+\int_{0}^{\infty}\left\{\frac{\mathrm{I}}{e^{t}-\mathrm{I}}-\frac{\mathrm{I}}{t}+\frac{\mathrm{I}}{2}\right\} e^{-x t} \frac{d t}{t}$.
6.605 If $z=n$, a positive integer:

$$
\begin{aligned}
\Gamma(n) & =(n-1)! \\
\Gamma\left(n+\frac{\mathrm{I}}{2}\right) & =\frac{\mathrm{I} \cdot 3 \cdot 5 \cdot \ldots(2 n-\mathrm{I})}{2^{n}} \sqrt{\pi} \\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}
\end{aligned}
$$

6.606 The Beta Function. If x and y are real and positive:

$$
\begin{aligned}
\mathrm{B}(x, y) & =\mathrm{B}(y, x)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}, \\
\mathrm{B}(x, y) & =\int_{0}^{1} t^{x-1}(\mathrm{I}-t)^{y-1} d t \\
\mathrm{~B}(x+\mathrm{r}, y) & =\frac{x}{x+y} \mathrm{~B}(x, y) \\
\mathrm{B}(x, \mathrm{I}-x) & =\frac{\pi}{\sin \pi x}
\end{aligned}
$$

6.610 For x real and positive:

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=-\gamma-\sum_{n=0}^{\infty}\left(\frac{\mathrm{I}}{x+n}-\frac{\mathrm{I}}{n+\mathrm{I}}\right) .
$$

6.611
6.612

$$
\begin{aligned}
& \psi(x+\mathrm{I})=\frac{\mathrm{r}}{x}+\psi(x) \\
& \quad \psi(\mathrm{I}-x)=\psi(x)+\pi \cot \pi x
\end{aligned}
$$

$$
\psi\left(\frac{1}{2}\right)=-\gamma-2 \log 2,
$$

$$
\psi(\mathrm{I})=-\gamma,
$$

$$
\psi(2)=I-\gamma,
$$

$$
\psi(3)=1+\frac{I}{2}-\gamma
$$

$$
\psi(4)=\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}-\gamma .
$$

6.613

$$
\begin{aligned}
\psi(x) & =\int_{0}^{\infty}\left\{\frac{e^{-t}}{t}-\frac{e^{-t x}}{\mathrm{I}-e^{-t}}\right\} d t \\
& =-\gamma+\int_{0}^{1} \frac{\mathrm{I}-t^{x-1}}{\mathrm{I}-t} d t
\end{aligned}
$$

6.620

$$
\begin{aligned}
\beta(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{x+n} \\
& =\frac{I}{2}\left\{\psi\left(\frac{x+\mathrm{I}}{2}\right)-\psi\left(\frac{x}{2}\right)\right\} .
\end{aligned}
$$

6.621

$$
\begin{aligned}
& \beta(x+\mathrm{r})+\beta(x)=\frac{\mathrm{I}}{x} \\
& \beta(x)+\beta(\mathrm{r}-x)=\frac{\pi}{\sin \pi x} .
\end{aligned}
$$

6.622

$$
\begin{aligned}
& \beta(\mathrm{I})=\log 2 \\
& \beta\left(\frac{\mathrm{I}}{2}\right)=\frac{\pi}{2} .
\end{aligned}
$$

6.630 Gauss's Π Function:
I. $\Pi(k, z)=k^{2} \prod_{n=1}^{k} \frac{n}{z+n}$.
2. $\Pi(k, z+1)=\Pi(k, z) \cdot \frac{1+z}{1+\frac{1+z}{k}}$.
3. $\Pi(z)=\underset{k \rightarrow \infty}{\operatorname{Limit}} \Pi(k, z)$.
4. $\Pi(z)=\Gamma(z+1)$.
5. $\Pi(-z) \Pi(z-1)=\pi \csc \pi z$.
6. $\Pi\left(\frac{\mathrm{I}}{2}\right)=\frac{\mathrm{r}}{2} \sqrt{\pi}$.
6.631 If z is an integer, n,

$$
\Pi(n)=n!
$$

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES
6.700

$$
\begin{aligned}
\int_{0}^{x} e^{-x^{2}} d x & =\sum_{k=0}^{\infty} \frac{(-\mathrm{I}) k}{k!(2 k+\mathrm{I})} x^{2 k+1} \\
& =e^{-x^{2}} \sum_{k=0}^{\infty} \frac{2^{k} x^{2 k+1}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 k+\mathrm{I})}
\end{aligned}
$$

Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation to this integral:

$$
\frac{\sqrt{\pi}}{2}-\frac{2}{\sqrt{\pi}} \tan ^{-1}\left\{e^{\sqrt{\pi}}\left(1+x^{2} e^{-\sqrt{\pi}}\right)^{2}\right\}^{-x}
$$

Fresnel's Integrals:
$6.701 \int_{0}^{x} \cos \left(x^{2}\right) d x=\sum_{k=0}^{\infty} \frac{(-\mathrm{I})^{k}}{(2 k)!(4 k+\mathrm{I})} x^{4 k+1}$

$$
\begin{aligned}
& =\cos \left(x^{2}\right) \sum_{k_{j}=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k} x^{4 k+1}}{\mathrm{I} \cdot 3 \cdot 5 \ldots(4 k+\mathrm{I})} \\
& +\sin \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k+1} x^{4 k+3}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+3)}
\end{aligned}
$$

$6.702 \int_{0}^{x} \sin \left(x^{2}\right) d x=\sum_{k=0}^{\infty} \frac{(-\mathrm{I})^{k}}{(2 k+\mathrm{I})!(4 k+3)} x^{4 k+3}$

$$
\begin{aligned}
& =\sin \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+\mathrm{I})} x^{4 k+1} \\
& -\cos \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k+1} x^{4 k+3}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+3)}
\end{aligned}
$$

$6.703 \int_{\circ}^{1} \frac{t^{a-1}}{\mathrm{I}+t^{b}} d t=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{a+n b}$
$6.704 \frac{\mathrm{I}}{(k-\mathrm{I})!} \int_{0}^{1} \frac{t^{a-1}(\mathrm{I}-t)^{k-1}}{\mathrm{I}-x t^{b}} d t$

$$
=\sum_{n=0}^{\infty} \frac{x^{n}}{(a+n b)(a+n b+\mathrm{I})(a+n b+2) \cdots(a+n b+k-1)}
$$

(Special cases, 6.445 and 6.922).
$6.705 \int_{0}^{x} e^{-t} t^{y-1} d t=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{n+y}}{n!(n+y)}=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n+y}}{y(y+\mathrm{I}) \cdots(y+n)}$.
6.706 If the sum of the series,
is known, then

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \quad[0<x<\mathrm{I}]
$$

\dot{E}
$\frac{c_{n} x^{n}}{(a+n b)(a+n b+1)(a+n b+2) \cdots \cdots(a+n b+k-1)}$

$$
\begin{equation*}
=\frac{I}{(k-I)!} \int_{0}^{1} t^{a-1}(I-t)^{k-1} f\left(x t^{b}\right) d t . \tag{b>0}
\end{equation*}
$$

6.707 $\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} \sin n x \cdot d x=\frac{\mathrm{I}}{2} \int_{0}^{2 \pi}(\pi-t) \sum_{n=0}^{\infty} f(t+2 n \pi) \cdot d t$.

Example 1. $\quad f(x)=e^{-k x}$
[$k>0]$.
I. $\frac{\mathrm{I}}{k}+2 k \sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{2}+n^{2}}=\pi \frac{e^{k \pi}+e^{-k \pi}}{e^{k \pi}-e^{-k \pi}}$.

Replacing k by $\frac{k}{2}$, and subtracting,
$2 \quad \frac{\mathrm{I}}{k}+2 k \sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{k^{2}+n^{2}}=\frac{2 \pi}{e^{k \pi}-e^{-k \pi}}$.
Example 2. With $f(x)=e^{-\lambda x} \cos \mu x$ and $e^{-\lambda x} \sin \mu x$.
3. $\frac{\lambda}{\lambda^{2}+\mu^{2}}+\sum_{n=1}^{\infty}\left\{\frac{\lambda}{\lambda^{2}+(n-\mu)^{2}}+\frac{\lambda}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sinh 2 \lambda \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
4. $\frac{\mu}{\lambda^{2}+\mu^{2}}-\sum_{n=1}^{\infty}\left\{\frac{n-\mu}{\lambda^{2}+(n-\mu)^{2}}+\frac{n+\mu}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sin 2 \mu \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
6.709 If the sum of the series,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is known, then

$$
\begin{aligned}
& \text { is known, then } \\
& a_{0}+a_{1} y+a_{2} y(y+\mathrm{I})+a_{3} y(y+\mathrm{I})(y+2)+\ldots=\frac{\int_{0}^{\infty} e^{-t} t^{y-1} f(t) d t}{\Gamma(y)} .
\end{aligned}
$$

6.710 The complete elliptic integral of the first kind:

$$
\begin{aligned}
K & =\int_{0}^{\mathrm{I}} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-k^{2} x^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{\mathrm{I}-k^{2} \sin ^{2} \theta}} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{4}+\ldots\right\} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{2 n}\right\} \quad\left[k^{2}<\mathrm{I}\right] . \\
k^{\prime} & =\frac{\mathrm{I}-\sqrt{\mathrm{I}-k^{2}}}{\mathrm{I}+\sqrt{\mathrm{I}-k^{2}}} \\
K & =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots\right\} \\
& =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\} .
\end{aligned}
$$

If
6.711 The complete elliptic integral of the second kind:

$$
\begin{aligned}
& E=\int^{\frac{\pi}{2}} \sqrt{I-k^{2} \sin ^{2} \theta} d \theta . \\
& E=\frac{\pi}{2}\left\{\mathrm{I}-\left(\frac{\mathrm{I}}{2}\right)^{2} \frac{k^{2}}{\mathrm{I}}-\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} \frac{k^{4}}{3}-\ldots .\right\} . \\
& =\frac{\pi}{2}\left\{\mathrm{I}-\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \frac{k^{2 n}}{2 n-\mathrm{I}} .\right. \\
& \text { If } \quad k^{\prime}=\frac{I-\sqrt{I-k^{2}}}{I+\sqrt{I-k^{2}}} \text {. } \\
& E=\frac{\pi\left(\mathrm{I}-k^{\prime}\right)}{2}\left\{\mathrm{I}+5\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+9\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots\right\} \\
& =\frac{\pi\left(\mathrm{I}-k^{\prime}\right)}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\} \\
& =\frac{\pi}{2\left(\mathrm{I}+k^{\prime}\right)}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+\left(\frac{\mathrm{I}}{2 \cdot 4}\right)^{2} k^{\prime 4}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6}\right)^{2} k^{\prime 6}+\ldots\right\} \\
& =\frac{\pi}{2\left(\mathrm{I}+k^{\prime}\right)}\left\{\mathrm{I}+k^{\prime 2}\left[\frac{\mathrm{I}}{4}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots(2 n+2)}\right)^{2} k^{\prime 2 n}\right]\right\} .
\end{aligned}
$$

FOURIER'S SERIES

6.800 If $f(x)$ is uniformly convergent in the interval:

$$
\begin{gathered}
-c<x<+\mathrm{c} \\
f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{\pi x}{c}+b_{2} \cos \frac{2 \pi x}{c}+b_{3} \cos \frac{3 \pi x}{c}+\ldots \\
+a_{1} \sin \frac{\pi x}{c}+a_{2} \sin \frac{2 \pi x}{c}+a_{3} \sin \frac{3 \pi x}{c}+\ldots \\
\dot{b}_{m}=\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} d x, \\
a_{m}=\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} d x .
\end{gathered}
$$

6.801 If $f(x)$ is uniformly convergent in the interval:

$$
\begin{aligned}
& 0<x<c \\
& f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{2 \pi x}{c}+b_{2} \cos \frac{4 x \pi}{c}+b_{3} \cos \frac{6 \pi x}{c}+\ldots \\
&+a_{1} \sin \frac{2 \pi x}{c}+a_{2} \sin \frac{4 \pi x}{c}+a_{3} \sin \frac{6 \pi x}{c}+\ldots \\
& b_{m}=\frac{2}{c} \int_{0}^{c} f(x) \cos \frac{2 m \pi x}{c} d x \\
& a_{m}=\frac{2}{c} \int_{0}^{c} f(x) \sin \frac{2 m \pi x}{c} d x .
\end{aligned}
$$

6.802 Special Developments in Fourier's Series.

$$
\begin{aligned}
& f(x)=a \text { from } x=k c \text { to } x=\left(k+\frac{\mathbf{I}}{2}\right) c \\
& f(x)=-a \text { from } x=\left(k+\frac{\mathbf{I}}{2}\right) c \text { to } x=(k+\mathbf{I}) c
\end{aligned}
$$

where k is any integer, including 0 .

$$
f(x)=\frac{4 a}{\pi} \sum_{n=1}^{\infty} \frac{\mathrm{I}}{2 n-\mathrm{I}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x
$$

6.803

$$
\begin{aligned}
f(x) & =m x, & & -\frac{c}{4} \leqslant x \leqslant+\frac{c}{4} \\
& =-m\left(x-\frac{c}{2}\right), & & \frac{c}{4} \leqslant x \leqslant \frac{3 c}{4} \\
& =m(x-c), & & \frac{3 c}{4} \leqslant x \leqslant \frac{5 c}{4} \\
& =-m\left(x-\frac{3 c}{2}\right), & & \frac{5 c}{4} \leqslant x \leqslant \frac{7 c}{4}
\end{aligned}
$$

$$
f(x)=\frac{2 m c}{\pi^{2}} \sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(2 n-\mathrm{I})^{2}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x
$$

6.804
6.805

$$
\begin{array}{rlrl}
f(x) & =m x, & -\frac{c}{2}<x<+\frac{c}{2} \\
& =m(x-c), & +\frac{c}{2}<x<\frac{3 c}{2} \\
r(x) & =\frac{c m}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{2 n \pi x}{c} \\
& \begin{array}{rlr}
f(x) & =-a, & -5 b \leqslant x \leqslant-3 b \\
& =\frac{a}{b}(x+2 b), & -3 b \leqslant x \leqslant-b \\
& =a, & -b \leqslant x \leqslant+b \\
& =-\frac{a}{b}(x-2 b), & b \leqslant x \leqslant 3 b \\
& =-a, & 3 b \leqslant x \leqslant 5 b
\end{array}
\end{array}
$$

$$
\begin{array}{rlr}
f(x) & =-a, & -5^{b} \leqslant x \leqslant-3 b, \\
& =\frac{a}{b}(x+2 b), & -3 b \leqslant x \leqslant-b, \\
& =a, & -b \leqslant x \leqslant+b, \\
& =-\frac{a}{b}(x-2 b), & b \leqslant x \leqslant 3 b, \\
& =-a, & 3 b \leqslant x \leqslant \quad 5 b \\
& \cdots \cdots & \\
& \cdots & \\
f(x)=\frac{8 \sqrt{2} a}{\pi^{2}}\left\{\cos \frac{\pi x}{4 b}-\frac{1}{3^{2}} \cos \frac{3 \pi x}{4 b}-\frac{1}{5^{2}} \cos \frac{7 \pi x}{4 b}+\frac{1}{7^{2}} \cos \frac{7 \pi x}{4 b}\right.
\end{array}
$$

6.806

$$
\begin{aligned}
f(x) & =\frac{b}{l} x+b, \quad-l \leqslant x \leqslant 0 \\
& =-\frac{b}{l} x+b, \quad 0 \leqslant x \leqslant l \\
f(x) & =\frac{8 b}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\mathrm{I}}{(2 n+\mathrm{I})^{2}} \cos (2 n+\mathrm{I}) \frac{\pi x}{2 l}
\end{aligned}
$$

6.807

$$
\begin{array}{rlrl}
f(x) & =\frac{a}{b} x, & 0 \leqslant x \leqslant b, \\
& =-\frac{a}{l-b} x+\frac{a l}{l-b^{2}}, \quad b \leqslant x \leqslant l, \\
f(x) & =\frac{2 a l^{2}}{\pi^{2} b(l-b)} \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n^{2}} \sin \frac{n \pi b}{l} \sin \frac{n \pi x}{l} .
\end{array}
$$

$6.810 \quad x=2 \sum_{n=\mathrm{I}}^{\infty} \frac{(-\mathrm{I})^{n-1}}{n} \sin n x$
$6.811 \cos a x=\frac{2}{\pi} \sin a \pi\left\{\frac{\mathrm{I}}{2 a}+a \sum_{n=\mathrm{I}}^{\infty} \frac{(-\mathrm{I})^{n-1}}{n^{2}-a^{2}} \cos n x\right\}$ $[-\pi<x<\pi]$. $6.812 \sin a x=\frac{2}{\pi} \sin a \pi \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}-a^{2}} n \sin n x$ $6.813 \quad \frac{\pi-x}{2}=\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ $[0<x<2 \pi]$.
$6.814 \frac{\mathrm{I}}{2} \log \frac{\mathrm{I}}{2(\mathrm{I}-\cos x)}=\sum_{n=1}^{\infty} \frac{\cos n x}{n}$ $[0<x<2 \pi]$.
$6.815 \frac{\pi^{2}}{6}-\frac{\pi x}{2}+\frac{x^{2}}{4}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$
$[0<x<2 \pi]$.
$6.816 \frac{\pi^{2} x}{6}-\frac{\pi x^{2}}{4}+\frac{x^{3}}{\mathrm{I} 2}=\sum_{n=\mathrm{I}}^{\infty} \frac{\sin n x}{n^{3}}$
$[0<x<2 \pi]$.
$6.817 \frac{\pi^{4}}{90}-\frac{\pi^{2} x^{2}}{\mathrm{I} 2}+\frac{\pi x^{3}}{\mathrm{I} 2}-\frac{x^{4}}{48}=\sum_{n=\mathrm{I}}^{\infty} \frac{\cos n x}{n^{4}}$
$[0<x<2 \pi]$.
$6.818 \frac{\pi^{4} x}{90}-\frac{\pi^{2} x^{3}}{36}+\frac{\pi x^{4}}{48}-\frac{x^{5}}{240}=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{5}}$
$[0<x<2 \pi]$.
$6.820 \quad x^{2}=\frac{c^{2}}{3}-\frac{4 c^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \cos \frac{n \pi x}{c}$
$[-c \leqslant x \leqslant c]$.
$6.821 \frac{e^{x}}{e^{c}-e^{-c}}=\frac{\mathrm{I}}{2 c}-c \sum_{n=\mathrm{r}}^{\infty}(-\mathrm{r})^{n-1} \frac{\mathrm{I}}{(n \pi)^{2}+c^{2}} \cos \frac{n \pi x}{c}$

$$
+\pi \sum_{n=1}^{\infty}(-\mathrm{r})^{n-1} \frac{\mathrm{r}}{(n \pi)^{2}+c^{2}} \sin \frac{n \pi x}{c} \quad[-c<x<c]
$$

$6.822 e^{c x}=\frac{2 c}{\pi}\left(e^{c \pi}-\mathrm{I}\right)\left\{\frac{\mathrm{I}}{2 c^{2}}-\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{c^{2}+n^{2}} \cos n x\right\} \quad[0<x<\pi]$.
$6.823 \cos 2 x-\left(\frac{\pi}{2}-x\right) \sin 2 x+\sin ^{2} x \log \left(4 \sin ^{2} x\right)=\sum_{n=1}^{\infty} \frac{\cos 2(n+\mathrm{I}) x}{n(n+\mathrm{I})}$ $[0 \leqslant x \leqslant \pi]$.
$6.824 \sin 2 x-(\pi-2 x) \sin ^{2} x-\sin x \cos x \log \left(4 \sin ^{2} x\right)$

$$
=\sum_{n=\mathrm{r}}^{\infty} \frac{\sin 2(n+\mathrm{r}) x}{n(n+\mathrm{r})}[0 \leqslant x \leqslant \pi] .
$$

$6.825 \frac{\mathrm{I}}{2}-\frac{\pi}{4} \sin x=\sum_{n=1}^{\infty} \frac{\cos 2 n x}{(2 n-\mathrm{I})(2 n+\mathrm{I})}$

$$
\left[0 \leqslant x \leqslant \frac{\pi}{2}\right]
$$

$6.830 \frac{r \sin x}{1-2 r \cos x+r^{2}}=\sum_{n=1}^{\infty} r^{n} \sin n x$
$\left[r^{2}<1\right]$.
$6.831 \tan ^{-1} \frac{r \sin x}{\mathrm{I}-r \cos x}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} r^{n} \sin n x$
$[r<\mathrm{I}]$.
$6.832 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \sin x}{\mathrm{I}-r^{2}}=\sum_{n=1}^{\infty} \frac{r^{2 n-1}}{2 n-\mathrm{I}} \sin (2 n-\mathrm{I}) x$
$\left[r^{2}<\mathrm{I}\right]$.
$6.833 \frac{r-r \cos x}{\mathrm{r}-2 r \cos x+r^{2}}=\sum_{n=0}^{\infty} r^{n} \cos n x$
$\left[r^{2}<\mathrm{I}\right]$.
$6.834 \quad \log \frac{\mathrm{I}}{\sqrt{\mathrm{I}-2 r \cos x+r^{2}}}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} r^{n} \cos n x$
$\left[r^{2}<\mathrm{I}\right]$
$6.835 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \cos x}{\mathrm{I}-r^{2}}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{r^{2 n-1}}{2 n-\mathrm{I}} \cos (2 n-\mathrm{I}) x \quad\left[r^{2}<\mathrm{I}\right]$.
6.900

numerical series

$$
\begin{array}{ll}
S_{n}=\frac{\mathrm{I}}{\mathrm{I}^{n}}+\frac{\mathrm{I}}{2^{n}}+\frac{\mathrm{I}}{3^{n}}+\frac{\mathrm{I}}{4^{n}}+\ldots=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{n}}, \\
S_{1}=\infty & S_{6}=\frac{\pi^{6}}{945}=\mathrm{I} .0173430620, \\
S_{2}=\frac{\pi^{2}}{6}=1.6449340668 & S_{7}=\frac{\pi^{7}}{2995.286}=\mathrm{I} .0083492774 \\
S_{3}=\frac{\pi^{3}}{25.79436}=\mathrm{I} .2020569032 & S_{8}=\frac{\pi^{8}}{9450}=\mathrm{I} .0040773562, \\
S_{4}=\frac{\pi^{4}}{90}=1.0823232337 & S_{9}=\frac{\pi^{9}}{29749.35}=\mathrm{I} .0020083928, \\
S_{5}=\frac{\pi^{5}}{295.1215}=1.036927755 \mathrm{I} & \begin{array}{l}
S_{10}=\mathrm{I} .000994575 \mathrm{I}, \\
S_{11}=\mathrm{I} .000494 \mathrm{I} 886 .
\end{array}
\end{array}
$$

6.901

$$
\begin{aligned}
& u_{n}=\mathrm{I}-\frac{\mathrm{I}}{3^{n}}+\frac{\mathrm{I}}{5^{n}}-\frac{\mathrm{I}}{7^{n}}+\ldots \ldots=\sum_{k=0}^{\infty}(-\mathrm{I})^{k-1} \frac{\mathrm{I}}{(2 k+\mathrm{I})^{n}}, \\
& u_{1}=\frac{\pi}{4}, \\
& u_{2}=0.9159656 \ldots \\
& u_{4}=0.98894455 \cdots \\
& u_{6}=0.99868522 \ldots
\end{aligned}
$$

A table of u_{n} from $n=\mathrm{I}$ to $n=38$ to 18 decimal places is given by Glaisher, Messenger of Mathematics, 42, p. 49, г9I3.
6.902 Bernoulli's Numbers.
I. $\frac{2^{2 n-1} \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{4^{2 n}}+\ldots .=\sum_{k=1}^{\infty} \frac{\mathrm{I}}{k^{2 n}}$.
2. $\frac{\left(2^{2 n}-\mathrm{I}\right) \pi^{2 n}}{2(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{5^{2 n}}+\frac{\mathrm{I}}{7^{2 n}}+\ldots=\sum_{k=0}^{\infty} \frac{\mathrm{I}}{(2 k+\mathrm{I})^{2 n}}$.
3. $\frac{\left(2^{2 n-1}-\mathrm{I}\right) \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}-\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}-\frac{\mathrm{I}}{4^{2 n}}+\ldots .=\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{k^{2 n}}$.

$$
\begin{array}{ll}
B_{1}=\frac{1}{6}, & B_{3}=\frac{I}{42}, \\
B_{2}=\frac{I}{30}, & B_{4}=\frac{I}{30},
\end{array}
$$

$$
\begin{array}{ll}
B_{5}=\frac{5}{66}, & B_{8}=\frac{3617}{510} \\
B_{6}=\frac{691}{2730} & B_{9}=\frac{43867}{798} \\
B_{7}=\frac{7}{6}, & B_{10}=\frac{174611}{330}
\end{array}
$$

6.903 Euler's Numbers

$$
\begin{array}{rlrl}
\frac{\pi^{2 n+1}}{2^{2 n+2}(2 n)!} E_{n}=\mathrm{I}-\frac{\mathrm{I}}{3^{2 n+1}} & +\frac{\mathrm{I}}{5^{2 n+1}}-\frac{\mathrm{I}}{7^{2 n+1}}+\ldots=\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{k-1} \frac{\mathrm{I}}{(2 k-\mathrm{I})^{2 n+1}} . \\
E_{1} & =\mathrm{I}, & E_{4} & =\mathrm{I} 385, \\
E_{2} & =5, & E_{5} & =5052 \mathrm{I}, \\
E_{3} & =6 \mathrm{I}, & E_{6} & =2702765 .
\end{array}
$$

6.904

$$
\begin{aligned}
& E_{n}-\frac{2 n(2 n-1)}{2!} E_{n-1}+\frac{2 n(2 n-1)(2 n-2)(2 n-3)}{4!} E_{n-2}-\ldots \\
&-\ldots \ldots+(-1)^{n}=0 .
\end{aligned}
$$

6.905

$$
\begin{aligned}
& \frac{2^{2 n}\left(2^{2 n}-1\right)}{2 n} B_{n}=(2 n-1) E_{n-1}-\frac{(2 n-1)(2 n-2)(2 n-3)}{3!} E_{n-2} \\
& +\frac{(2 n-1)(2 n-2)(2 n-3)(2 n-4)(2 n-5)}{5!} E_{n-3}-\ldots++(-1)^{n-1}
\end{aligned}
$$

6.910

$$
\begin{array}{ll}
S_{r}=\sum_{n=1}^{\infty} \frac{n^{r}}{n!} \\
S_{1}=e, & S_{5}=52 e, \\
S_{2}=2 e, & S_{6}=203 e, \\
S_{3}=5 e, & S_{7}=877 e, \\
S_{4}=15 e, & S_{8}=4140 e .
\end{array}
$$

6.911

$$
\begin{array}{ll}
& S_{r}=\sum_{n=1}^{\infty} \frac{1}{\left(4 n^{2}-\mathrm{I}\right)^{r}} . \\
S_{1}=\frac{\mathbf{I}}{2}, & S_{3}=\frac{32-3 \pi^{2}}{64}, \\
S_{2}=\frac{\pi^{2}-8}{\mathrm{I} 6}, & S_{4}=\frac{\pi^{4}+30 \pi^{2}-384}{768} .
\end{array}
$$

6.912
I. $\log 2=\sum_{n=1}^{\infty} \frac{I}{n \cdot 2^{n}}$.
2. $\frac{\pi^{2}}{\mathrm{I} 2}-\frac{\mathrm{I}}{2}(\log 2)^{2}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n^{2} 2^{n}}$.
6.913
I. $2 \log 2-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n\left(4 n^{2}-\mathrm{I}\right)}$.
2. $\frac{3}{2}(\log 3-\mathrm{I})=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(9 n^{2}-\mathrm{I}\right)}$.
3. $-3+\frac{3}{2} \log 3+2 \log 2=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(36 n^{2}-\mathrm{I}\right)}$.
6.914

$$
\begin{gathered}
S_{r}=\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \frac{\mathrm{I}}{2 n+r} \\
u_{2}=0.9159656 \ldots \quad(\text { see } 6.901)
\end{gathered}
$$

$S_{0}=2 \log 2-\frac{4}{\pi} u_{2}$,
$S_{-1}=I-\frac{2}{\pi}$,
$S_{1}=\frac{4}{\pi} u_{2}-\mathrm{I}$,
$S_{-2}=\frac{\mathrm{I}}{2} \log 2+\frac{\mathrm{I}}{4}-\frac{\mathrm{I}}{2 \pi}\left(2 u_{2}+\mathrm{I}\right)$,
$S_{2}=\frac{2}{\pi}-\frac{\mathrm{I}}{2}$,
$S_{-3}=\frac{\mathrm{I}}{3}-\frac{10}{9 \pi}$,
$S_{3}=\frac{\mathrm{I}}{2 \pi}\left(2 u_{2}+\mathrm{I}\right)-\frac{\mathrm{I}}{3}$,
$S_{-4}=\frac{9}{32} \log 2+\frac{\mathrm{II}}{\mathrm{I} 28}-\frac{\mathrm{I}}{32 \pi}\left(\mathrm{I} 8 u_{2}+\mathrm{I} 3\right)$,
$S_{4}=\frac{10}{9 \pi}-\frac{\mathrm{I}}{4}$,
$S_{-5}=\frac{\mathrm{I}}{5}-\frac{\mathrm{I} 78}{225 \pi}$,
$S_{5}=\frac{I}{32 \pi}\left(I 8 u_{2}+I 3\right)-\frac{I}{5}$,
$S_{-6}=\frac{25}{\mathrm{I} 28} \log 2+\frac{7 \mathrm{I}}{\mathrm{I} 536}-\frac{\mathrm{I}}{\mathrm{I} 28 \pi}\left(50 \mathrm{u}_{2}+43\right)$.
$S_{6{ }_{3}}=\frac{178}{225 \pi}-\frac{1}{6}$,
$S_{7}=\frac{\mathrm{I}}{\mathrm{I} 28 \pi}\left(50 u_{2}+43\right)-\frac{I}{7}$,

- When r is a negative even integer the value $n=\frac{r}{2}$ is to be excluded in the summation.

6.915

I. $A_{n}=\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \cdots 2 n}=\frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!}$.
2. $\mathrm{I}-\frac{\pi}{4}=\sum_{n=1}^{\infty} A_{n} \frac{\mathrm{I}}{4 n^{2}-\mathrm{I}}$.
3. $\frac{\pi}{2}-\mathrm{I}=\sum_{n=1}^{\infty} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
4. $\log (\mathrm{I}+\sqrt{2})-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
5. $\frac{I}{2}=\sum_{n=1}^{\infty} A_{n}{ }^{2} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6. $\frac{2}{\pi}-\frac{\mathrm{I}}{2}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n+1} A_{n}{ }^{3} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
7. $\frac{2}{\pi}-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} A_{n}{ }^{3}(4 n+\mathrm{I})$.
8. $\frac{\mathrm{I}}{2}-\frac{4}{\pi^{2}}=\sum_{n=\mathrm{I}}^{\infty} A_{n} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6.916

If m is an integer, and $n=m$ is excluded from the summation:
I. $-\frac{3}{4 m^{2}}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}-n^{2}}$.
2. $\frac{3}{4 m^{2}}=\sum_{n=\mathrm{I}}^{\infty} \frac{(-\mathrm{I})^{n-1}}{m^{2}-n^{2}} \cdot$ (m even $)$

6.917

I. $\mathrm{I}=\sum_{n=2}^{\infty} \frac{n-\mathbf{I}}{n!}$.
2. $\frac{\mathrm{I}}{2}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{4 n^{2}-\mathrm{I}}$.
3. $2 \log 2=\sum_{n=1}^{\infty} \frac{12 n^{2}-\mathrm{I}}{n\left(4 n^{2}-1\right)^{2}}$.
6.918

$$
\frac{2}{\sqrt{3}} \log \frac{\mathrm{I}+\sqrt{3}}{\sqrt{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{2 \cdot 4 \cdot 6 \ldots .2 n}{3 \cdot 5 \cdot 7 \ldots(2 n+\mathrm{I})} \frac{\mathrm{I}}{2^{n}}
$$

6.919

$$
\frac{\mathrm{I}}{2}(\mathrm{I}-\log 2)=\sum_{n=\mathrm{I}}^{\infty}\left\{n \log \left(\frac{2 n+\mathrm{I}}{2 n-\mathrm{I}}\right)-\mathrm{I}\right\}
$$

6.920
I. $e=\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{3!}+\ldots=2.7 \mathrm{I} 828$.
2. $\frac{\mathrm{I}}{e}=\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}-\frac{\mathrm{I}}{3!}-\ldots=0.36788$.
3. $\frac{\mathrm{I}}{2}\left(e+\frac{\mathrm{I}}{e}\right)=\mathrm{I}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{4!}+\ldots .=\mathrm{I} .54308$.
4. $\frac{\mathrm{I}}{2}\left(e-\frac{\mathrm{I}}{e}\right)=\mathrm{I}+\frac{\mathrm{I}}{3!}+\frac{\mathrm{I}}{5!}+\ldots .=\mathrm{I} . \mathrm{I} 7520 \mathrm{I}$.
5. $\cos I=I-\frac{I}{2!}+\frac{I}{4!}-\ldots=0.54030$.
6. $\sin I=I-\frac{I}{3!}+\frac{I}{5!}-\ldots . \quad=0.84147$.

6.921

I. $\frac{4}{5}=\mathrm{I}-\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{2^{4}}-\frac{\mathrm{I}}{2^{6}}+\ldots$.
2. $\frac{9}{10}=I-\frac{I}{3^{2}}+\frac{I}{3^{4}}-\frac{I}{3^{6}}+\ldots$.
3. $\frac{\mathrm{I} 6}{\mathrm{I} 7}=\mathrm{I}-\frac{\mathrm{I}}{4^{2}}+\frac{\mathrm{I}}{4^{4}}-\frac{\mathrm{I}}{4^{6}}+\ldots$.
4. $\frac{25}{26}=\mathrm{I}-\frac{\mathrm{I}}{5^{2}}+\frac{\mathrm{I}}{5^{4}}-\frac{\mathrm{I}}{5^{6}}+\ldots$.
$6.922 \quad \frac{\left(2^{\frac{1}{2}}-\mathrm{I}\right) \Gamma\left(\frac{1}{4}\right)}{2^{\frac{1 \pi}{4} \pi^{3}}}=e^{-\pi}+e^{-9 \pi}+e^{-25 \pi}+\ldots ; \Gamma\left(\frac{1}{4}\right)=3.6256 \ldots$
6.923 (Special cases of 6.705):
I. $\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{\mathrm{I}}{3 \cdot 4 \cdot 5}+\frac{\mathrm{I}}{5 \cdot 6 \cdot 7}+\ldots \quad=\log 2-\frac{\mathrm{I}}{2}$.
2. $\frac{I}{I \cdot 2 \cdot 3}-\frac{I}{3 \cdot 4 \cdot 5}+\frac{I}{5 \cdot 6 \cdot 7}-\ldots \quad=\frac{I}{2}(I-\log 2)$.
3. $\frac{I}{2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}+\ldots \quad=\frac{3}{4}-\log 2$.
4. $\frac{I}{2 \cdot 3 \cdot 4}-\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}-\ldots=\frac{I}{4}(\pi-3)$.
$5 \cdot \frac{I}{I \cdot 2 \cdot 3}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{7 \cdot 8 \cdot 9}+\ldots \quad=\frac{I}{4}\left(\frac{\pi}{\sqrt{3}}-\log 3\right)$.
6. $\frac{\mathrm{I}}{2 \cdot 3 \cdot 4}+\frac{\mathrm{I}}{6 \cdot 7 \cdot 8}+\frac{\mathrm{I}}{\mathrm{IO} \cdot \mathrm{II} \cdot \mathrm{I} 2}+\ldots=\frac{\pi}{8}-\frac{\mathrm{I}}{2} \log 2$.
$7 \cdot \frac{I}{I \cdot 2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6 \cdot 7}+\frac{I}{7 \cdot 8 \cdot 9 \cdot 10}+\ldots=\frac{I}{6}\left(I+\frac{\pi}{2 \sqrt{3}}\right)-\frac{I}{4} \log 3$.

VII. SPECIAL APPLICATIONS OF ANALYSIS.

7.10 Indeterminate Forms.
$7.101 \frac{\circ}{\circ}$. If $\frac{f(x)}{F(x)}$ assumes the indeterminate value $\frac{0}{\circ}$ for $x=a$, the true value of the quotient may be found by replacing $f(x)$ and $F(x)$ by their developments in series, if valid for $x=a$.

Example:

$$
\begin{gathered}
{\left[\frac{\sin ^{2} x}{\mathrm{I}-\cos x}\right]_{x=0} ;} \\
\frac{\sin ^{2} x}{\mathrm{I}-\cos x}=\frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}}{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\ldots}=\frac{\left(\mathrm{I}-\frac{x^{2}}{3!}+\ldots\right)^{2}}{\frac{\mathrm{I}}{2!}-\frac{x^{2}}{4!}+\ldots}
\end{gathered}
$$

Therefore,

$$
\left[\frac{\sin ^{2} x}{r-\cos x}\right]_{x=0}=2 .
$$

7.102 L'Hospital's Rule. If $f(a+h)$ and $F(a+h)$ can be developed by Taylor's Theorem (6.100) then the true value of $\frac{f(x)}{F(x)}$ for $x=a$ is,

$$
\frac{f^{\prime}(a)}{F^{\prime}(a)}
$$

provided that this has a definite value (o, finite, or infinite). If the ratio of the first derivatives is still indeterminate, the true value may be found by taking that of the ratio of the first one of the higher derivatives that is definite.
7.103 The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is the limit, for ${ }^{\circ} h=0$, of

$$
\frac{q!}{p!} h^{p-q} \frac{f^{(p)}(a)}{F^{(q)}(a)}
$$

where $f^{(p)}(a)$ and $F^{(q)}(a)$ are the first of the higher derivatives of $f(x)$ and $F(x)$ that do not vanish for $x=a$. The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is \circ if $p>q, \infty$ if $p<q$, and equal to $\frac{f^{(p)}(a)}{F^{(p)}(a)}$ if $p=q$.

Example:

$$
\begin{aligned}
& {\left[\frac{\sinh x-x \cosh x}{\sin x-x \cos x}\right]_{x=0}=\left[\frac{-x \sinh x}{x \sin x}\right]_{x=0}} \\
& =\left[-\frac{\sinh x}{\sin x}\right]_{x=0}=\left[-\frac{\cosh x}{\cos x}\right]_{x=0}=-\mathrm{I}
\end{aligned}
$$

7.104 Failure of L'Hospital's Rule. In certain cases this rule fails to determine the true value of an expression for the reason that all the higher derivatives vanish at the limit. In such cases the true value may often be found by factoring the given expression, or resolving into partial fractions (1.61).

Example:

$$
\left[\frac{\sqrt{x^{2}-a^{2}}}{\sqrt{x-a}}\right]_{x=a}=[\sqrt{x+a}]_{x=a}=\sqrt{2 a}
$$

7.105 In applying L'Hospital's Rule, if any of the successive quotients contains a factor which can be evaluated at once its determinate value may be substituted.

Example:

$$
\begin{aligned}
{\left[\frac{(\mathrm{I}-x) e^{x}-\mathrm{I}}{\tan ^{2} x}\right]_{x=0} } & =\left[\frac{-x e^{x}}{2 \tan x \sec ^{2} x}\right]_{x=0} \\
{\left[\frac{x}{\tan x}\right]_{x=0} } & =\mathrm{I}
\end{aligned}
$$

Hence the given function is,

$$
\left[-\frac{e^{x}}{2 \sec ^{2} x}\right]_{x=0}=-\frac{\mathrm{I}}{2}
$$

7.106 If the given function can be separated into factors each of which is indeterminate, the factors may be evaluated separately.

Example:

$$
\left[\frac{\left(e^{x}-\mathrm{I}\right) \tan ^{2} x}{x^{3}}\right]_{x=0}=\left[\left(\frac{\tan x}{x}\right)^{2} \frac{e^{x}-\mathrm{I}}{x}\right]_{x=0}=\mathrm{I} .
$$

$7.110 \frac{\infty}{\infty}$. If, for $x=a, \frac{f(x)}{F(x)}$ takes the form $\frac{\infty}{\infty}$, this quotient may be written:

$$
\frac{\frac{\mathrm{I}}{F(x)}}{\frac{\mathrm{I}}{f(x)}}
$$

which takes the form $\frac{\circ}{\circ}$ for $x=a$ and the preceding sections will apply to it.
7.111 L'Hospital's Rule (7.102) may be applied directly to indeterminate forms $\frac{\infty}{\infty}$, if the expansion by Taylor's Theorem is valid.

Example:

$$
\left[\frac{x}{e^{x}}\right]_{x=\infty}=\left[\frac{\mathrm{I}}{e^{x}}\right]_{x=\infty}=0 .
$$

7.112 If $f(x)$ and x approach ∞ together, and if $f(x+1)-f(x)$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \infty}^{\operatorname{Lit}}\left[\frac{f(x)}{x}\right]=\operatorname{Limit}_{x \rightarrow \infty}^{\operatorname{Lit}}[f(x+1)-f(x)]
$$

$7.120 \circ \times \infty$. . If, for $x=a, f(x) \times F(x)$ takes the form $\circ \times \infty$, this product may be written,

$$
\frac{\frac{f(x)}{\mathrm{I}}}{\frac{\mathrm{I}}{F(x)}}
$$

which takes the form $\frac{\circ}{\circ}$ (7.101).
$7.130 \infty-\infty$. If, ${ }_{x \rightarrow a}^{\text {Limit }} f(x)=\infty$ and $\underset{x \rightarrow \infty}{\text { Limit }} F(x)=\infty$,

$$
f(x)-F(x)=f(x)\left\{\mathrm{I}-\frac{F(x)}{f(x)}\right\} .
$$

If ${ }_{x \rightarrow \infty}^{\text {Limit }} \frac{F(x)}{f(x)}$ is different from unity the true value of $f(x)-F(x)$ for $x=a$ is ∞. If $\operatorname{Limit}_{x \rightarrow \infty} \frac{F(x)}{f(x)}=+\mathrm{I}$, the expression has the indeterminate form $\infty \times 0$ which may be treated by 7.120.
$7.140 \mathrm{I} \infty, \circ^{0}, \infty^{0}$. If $\{F(x)\}^{(f x)}$ is indeterminate in any of these forms for $x=a$, its true value may be found by finding the true value of the logarithm of the given expression.

Example:

$$
\begin{gathered}
{\left[\left(\frac{1}{x}\right)^{\tan x}\right]_{x \rightarrow 0}} \\
\left(\frac{\mathrm{I}}{x}\right)^{\tan x}=y ; \quad \log y=-\tan x \cdot \log x
\end{gathered}
$$

$$
[\tan x \cdot \log x]_{x=0}=\left[\frac{\log x}{\cot x}\right]_{x=0}=\left[\frac{\frac{1}{x}}{\csc ^{2} x}\right]_{x=0}=\left[\frac{\sin x}{x} \cdot \sin x\right]_{x=0}=0 .
$$

Hence,

$$
\left[\left(\frac{1}{x}\right)^{\tan x}\right]_{x=0}=\mathrm{I} .
$$

7.141 If $f(x)$ and x approach ∞ together, and $\frac{f(x+\mathrm{r})}{f(x)}$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \infty}\left[\{f(x)\}^{\frac{1}{x}}\right]=\operatorname{Limit}_{x \rightarrow \infty} \frac{f(x+1)}{f(x)} .
$$

7.150 Differential Coefficients of the form $\frac{\circ}{\circ}$. In determining the differential coefficient $\frac{d y}{d x}$ from an equation $f(x, y)=0$, by means of the formula,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \tag{I}
\end{equation*}
$$

it may happen that for a pair of values, $x=a, y=b$, satisfying $f(x, y)=0$, $\frac{d y}{d x}$ takes the form $\frac{\circ}{\circ}$.

Writing $\frac{d y}{d x}=y^{\prime}$, and applying 7.102 to the quotient (I), a quadratic equation is obtained for determining y^{\prime}, giving, in general, two different determinate values. If y^{\prime} is still indeterminate, apply 7.102 again, giving a cubic equation for determining y^{\prime}. This process may be continued until determinate values result.

Example:

$$
\begin{aligned}
f(x, y) & =\left(x^{2}+y^{2}\right)^{2}-c^{2} x y=0, \\
y^{\prime} & =-\frac{4 x\left(x^{2}+y^{2}\right)-c^{2} y}{4 y\left(x^{2}+y^{2}\right)-c^{2} x} .
\end{aligned}
$$

For $x=0, y=0, y^{\prime}$ takes the value $\frac{0}{\circ}$.
Applying 7.102,

$$
-y^{\prime}=\frac{12 x^{2}+4 y^{2}+\left(8 x y-c^{2}\right) y^{\prime}}{4 y^{\prime}\left(x^{2}+3 y^{2}\right)+8 x y-c^{2}} .
$$

Solving this quadratic equation in y^{\prime}, the two determinate values, $y^{\prime}=0, y^{\prime}=\infty$, result for $x=0, y=0$.
7.17 Special Indeterminate Forms and Limiting Values. In the following the notation $[f(x)]_{a}$ means the limit approached by $f(x)$ as x approaches a as a limit.
-7.171
I. $\left[\left(\mathrm{I}+\frac{c}{x}\right)^{x}\right]_{\infty}=e^{c} \quad(c$ a constant $)$.
2. $[\sqrt{x+c}-\sqrt{x}]_{\infty}=0$.
3. $[\sqrt{x(x+c)}-x]_{\infty}=\frac{c}{2}$.
4. $\left[\sqrt{\left(x+c_{1}\right)\left(x+c_{2}\right)}-x\right]_{\infty}=\frac{1}{2}\left(c_{1}+c_{2}\right)$.
5. $\left[\sqrt[n]{\left(x+c_{1}\right)\left(x+c_{2}\right) \ldots\left(x+c_{n}\right)}-x\right]_{\infty}=\frac{1}{n}\left(c_{1}+c_{2}+\ldots c_{n}\right)$.
6. $\left[\frac{\log \left(c_{1}+c_{2} e^{x}\right)}{x}\right]_{\infty}=\mathrm{I}$.
7. $\left[\log \left(c_{1}+c_{2} e^{x}\right) \cdot \log \left(\mathrm{I}+\frac{\mathrm{I}}{x}\right)\right]_{\infty}=\mathrm{I}$.
8. $\left[\left(\frac{\log x}{x}\right)^{\frac{1}{x}}\right]_{\infty}=1$.
9. $\left[\frac{x}{(\log x)^{m}}\right]_{\infty}=\infty$.
10. $\left[\frac{a^{x}}{x^{m}}\right]_{\infty}=\infty \quad(a>\mathrm{I})$.
II. $\left[\frac{a^{x}}{x!}\right]_{\infty}=0 \quad$ (x a positive integer).
12. $\left[x^{\frac{1}{x}}\right]_{\infty}=\mathrm{I}$.

I3. $\left[\frac{\log x}{x}\right]_{\infty}=0$.
14. $\left[\left(a+b c^{x}\right)^{\frac{1}{x}}\right]_{\infty}=c \quad(c>1)$.
15. $\left[\left(\frac{1}{a+b e^{x}}\right)^{\frac{c}{x}}\right]_{\infty}=e^{-c}$.
16. $\left[\frac{x}{\alpha+\beta x^{2}} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=\frac{1}{\beta}$.
17. $\left[\left(a+b x^{m}\right)^{\frac{\mathrm{I}}{\alpha+\beta \log _{x} x}}\right]_{\infty}=e^{\frac{m}{\beta}} \quad(m>0)$.
I. $\left[x \sin \frac{c}{x}\right]_{\infty}=c$.
2. $\left[x\left(1-\cos \frac{c}{x}\right)\right]_{\infty}=0$.
3. $\left[x^{2}\left(\mathrm{I}-\cos \frac{c}{x}\right)\right]_{\infty}=\frac{c^{2}}{2}$.
4. $\left[\left(\cos \frac{c}{x}\right)^{x}\right]_{\infty}=\mathrm{I}$.
5. $\left[\left(\cos \frac{c}{x}\right)^{x^{2}}\right]_{\infty}=e^{-\frac{c^{2}}{2} .}$
6. $\left[\left(\frac{\sin \frac{c}{x}}{\frac{c}{x}}\right)^{x}\right]_{\infty}=\mathrm{I}$.

7.173

I. $\left[\frac{\sin x}{x}\right]_{0}=$ I.
2. $\left[\frac{\tan x}{x}\right]_{0}=\mathrm{I}$.
3. $\left[\left(\frac{\sin n x}{x}\right)^{m}\right]_{0}=n^{m}$.
4. $\left[\sin ^{-1} x \cdot \cot x\right]_{0}=I$.
5. $\left[\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}^{\cot x}\right]_{0}=e$.

7.174

I. $\left[x^{x}\right]_{0}=\mathrm{I}$.
2. $\left[x^{\frac{1}{a+b \log x}}\right]_{0}=e^{\frac{I}{b}}$.
3. $\left[x^{\frac{1}{\log \left(e^{x}-1\right)}}\right]_{0}=e$.
4. $\left[x^{m} \log \frac{1}{x}\right]_{0}=0 \quad(m \geqslant \mathrm{I})$.
7. $\left[\frac{e^{x}-\mathrm{I}}{x}\right]_{0}=\mathrm{I}$.
8. $\left[x^{m} \log x\right]_{0}=0 \quad(m>0)$.
9. $\left[\frac{e^{x}-e^{-x}-2 x}{\left(e^{x}-\mathrm{I}\right)^{3}}\right]_{0}=\frac{\mathrm{I}}{3}$.
10. $\left[x e^{\frac{\mathrm{T}}{\bar{x}}}\right]_{0}=\infty$.
5. $[\log \cos x \cdot \cot x]_{0}=0$.
II. $\left[\frac{e^{x}-e^{-x}}{\log (\mathrm{I}+x)}\right]_{0}=2$.
6. $\left[\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \cot x\right]_{0}=\mathrm{I}$.

I2. $\left[\frac{\log \tan 2 x}{\log \cdot \tan x}\right]_{0}=\mathrm{I}$.
7. $\left[\frac{\cot \frac{c}{x}}{x}\right]_{\infty}=\frac{I}{c}$
8. $\left[\sin \frac{c}{x} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=c$.
9. $\left[\left(\cos \sqrt{\frac{2 c}{x}}\right)^{x}\right]_{\infty}=e^{-c .}$

Io. $\left[\left(\mathrm{I}+a \tan \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.
II. $\left[\left(\cos \frac{c}{x}+a \sin \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.

7.175

I. $\left[x^{\frac{1}{1-x}}\right]_{1}=\frac{\mathrm{I}}{e}$.
2. $[(\pi-2 x) \tan x]_{\frac{\pi}{2}}=2$.
3. $\left[\log \left(2-\frac{x}{c}\right) \cdot \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2}{\pi}$.
4. $\left[\left(e^{c}-e^{x}\right) \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2 c}{\pi} e^{c}$.
5. $\left[\cos ^{-1} \frac{x}{c} \cdot \tan \frac{\pi x}{2 c}\right]_{c}^{\circ}=\infty$
6. $\left[\left(a+b e^{\tan x}\right)^{\pi-2 x}\right]_{\frac{\pi}{2}}=e^{2}$.
7. $\left[\left(2-\frac{2 x}{\pi}\right)^{\tan x}\right]_{\frac{\pi}{2}}=e^{\frac{2}{\pi}}$
8. $\left[(\tan x)^{\tan 2 x}\right] \frac{\pi}{4}=\frac{I}{e}$.

7.18 Limiting Values of Sums.

I. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{\mathrm{I}^{k}+2^{k}+3^{k}+\ldots+n^{k}}{n^{k+1}}\right)=\frac{\mathrm{I}}{k+\mathrm{I}}$ if $k>-\mathrm{I}$.

$$
\infty \text { if } k<-1 \text {. }
$$

2. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{\mathrm{I}}{n a}+\frac{\mathrm{I}}{n a+b}+\frac{\mathrm{I}}{n a+2 b}+\ldots+\frac{\mathrm{I}}{n a+(n-\mathrm{I}) b}\right)$

$$
=\frac{\log (a+b)-\log a}{b}(a, b>0) .
$$

$$
\begin{aligned}
& \operatorname{Limit}_{n \rightarrow \infty}\left(\frac{n-\mathrm{I}^{2}}{\mathrm{I} \cdot 2 \cdot(n+\mathrm{I})}+\frac{n-2^{2}}{2 \cdot 3 \cdot(n+2)}+\frac{n-3^{2}}{3 \cdot 4 \cdot(n+3)}+\ldots\right. \\
& \left.\quad+\frac{\left(n-n^{2}\right.}{n \cdot(n+\mathrm{I}) \cdot(n+n)}\right)=\mathrm{I}-\log 2 .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Limit}_{n \rightarrow \infty} & {\left[\left(a+b \frac{\sqrt{\mathrm{I}}}{n}\right)^{2}+\left(a^{2}+b \frac{\sqrt{2}}{n}\right)^{2}+\left(a^{3}+b \frac{\sqrt{3}}{n}\right)^{2}+\ldots\right.} \\
& \left.+\left(a^{n}+b \frac{\sqrt{n}}{n}\right)^{2}\right]=\frac{a^{2}}{1-a^{2}}+\frac{b^{2}}{2}
\end{aligned}
$$

if a is a positive proper fraction.
5. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{n}}+\sqrt{a^{2}+\frac{b}{n}}+\sqrt{a^{3}+\frac{b}{n}}+\ldots+\sqrt{a^{n}+\frac{b}{n}}\right]=\infty$,
if $b>0$ and a is a positive proper fraction.
6. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{\mathrm{I} \cdot n}}+\sqrt{a^{2}+\frac{b}{2 \cdot n}}+\sqrt{a^{3}+\frac{b}{3 \cdot n}}+\ldots+\sqrt{a^{n}+\frac{b}{n \cdot n}}\right]$

$$
=\frac{\sqrt{a}}{1-\sqrt{a}}+2 \sqrt{b},
$$

if $b>0$ and a is a positive proper fraction.
7. $\operatorname{Limit}_{n \rightarrow \infty}\left[\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{n}-\log n\right]=\gamma=0.5772157 \ldots$
(6.602).
7.19 Limiting Values of Products.
I. $\underset{n \rightarrow \infty}{\operatorname{Limit}}\left[\left(\mathrm{I}+\frac{c}{n}\right)\left(\mathrm{I}+\frac{c}{n+\mathrm{I}}\right)\left(\mathrm{I}+\frac{c}{n+2}\right) \ldots\left(\mathrm{I}+\frac{c}{2 n-\mathrm{I}}\right)\right]=2^{c}$, if $c>0$.
2. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(\mathrm{I}+\frac{c}{n a}\right)\left(\mathrm{I}+\frac{c}{n a+b}\right)\left(\mathrm{I}+\frac{c}{n a+2 b}\right) \ldots\left(\mathrm{I}+\frac{c}{n a+(n-\mathrm{I}) b}\right)\right]$

$$
=\left(1+\frac{b}{a}\right)^{\frac{c}{b}},
$$

if a, b, c are all positive.
$\operatorname{Limit}_{n \rightarrow \infty}\left[\frac{[m(m+1)(m+2) \ldots(m+n-1)\}^{\frac{\mathrm{I}}{n}}}{m+\frac{1}{2}(n-\mathrm{I})}\right]=\frac{2}{e}$, if $m>0$.
4. $\operatorname{Limit}_{n \rightarrow}\left[\left(\mathrm{I}+\frac{2 c}{n^{2}}\right)\left(\mathrm{I}+\frac{4 c}{n^{2}}\right)\left(\mathrm{I}+\frac{6 c}{n^{2}}\right) \ldots\left(\mathrm{I}+\frac{2 n c}{n^{2}}\right)\right]=e^{\boldsymbol{c}}$.
7.20 Maxima and Minima.
7.201 Functions of One Variable. $y=f(x)$ is a maximum or minimum for the values of x satisfying the equation, $f^{\prime}(x)=\frac{\partial f(x)}{\partial x}=0$, provided that $f^{\prime}(x)$ is continuous for these values of x.
7.202 If, for $x=a, f^{\prime}(a)=0$,

$$
\begin{aligned}
& y=f(a) \text { is a maximum if } f^{\prime \prime}(a)<0 \\
& y=f(a) \text { is a minimum if } f^{\prime \prime}(a)>0 .
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{x}{x^{2}+\alpha x+\beta}, \quad \beta>0, \\
f^{\prime}(x) & =\frac{-x^{2}+\beta}{\left(x^{2}+\alpha x+\beta\right)^{2}}, \\
f^{\prime}(x) & =0 \text { when } x= \pm \sqrt{\beta}, \\
f^{\prime \prime}(x) & =\frac{2 x^{3}-6 \beta x-2 \alpha \beta}{\left(x^{2}+\alpha x+\beta\right)^{3}}
\end{aligned}
$$

For $x=+\sqrt{\beta}, f^{\prime \prime}(x)=\frac{-2}{\sqrt{\beta}} \frac{1}{(2 \sqrt{\beta}+\alpha)^{2}} \quad$ Maximum,

$$
\text { For } \begin{aligned}
x=-\sqrt{\beta}, f^{\prime \prime}(x) & =\frac{+2}{\sqrt{\beta}} \frac{1}{(2 \sqrt{\beta}-\alpha)^{2}} \quad \text { Minimum, } \\
y_{\max } & =\frac{\mathrm{I}}{\alpha+2 \sqrt{\beta}}, \\
y_{\min } & =\frac{\mathrm{I}}{\alpha-2 \sqrt{\beta}} .
\end{aligned}
$$

7.203 If for $x=a, f^{\prime}(a)=0$ and $f^{\prime \prime}(a)=0$, in order to determine whether $y=f(a)$ is a maximum or minimum it is necessary to form the higher differential coefficients, until one of even order is found which does not vanish for $x=a$. $y=f(a)$ is a maximum or minimum according as the first of the differential coefficients, $f^{\prime \prime}(a), f^{\text {iv }}(a), f^{\mathrm{vi}}(a), \ldots .$. of even order which does not vanish is negative or positive.
7.210 Functions of Two Variables. $F(x, y)$ is a maximum or minimum for the pair of values of x and y that satisfy the equations,

$$
\frac{\partial F}{\partial x}=0, \frac{\partial F}{\partial y}=0
$$

and for which

$$
\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}<0 .
$$

If both $\frac{\partial^{2} F}{\partial x^{2}}$ and $\frac{\partial^{2} F}{\partial y^{2}}$ are negative for this pair of values of x and $y, F(x, y)$ is a maximum. If they are both positive $F(x, y)$ is a minimum.
7.220 Functions of n Variables. For the maximum or minimum of a function of n variables, $F\left(x_{1}, x_{2} \ldots \ldots, x_{n}\right)$, it is necessary that the first derivatives, $\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, \ldots \ldots, \frac{\partial F}{\partial x_{n}}$ all vanish; and that the lowest order of the higher derivatives which do not all vanish be an even number. If this number be 2 the necessary condition for a minimum is that all of the determinants,
where

$$
f_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}
$$

shall be positive. For a maximum the determinants must be alternately negative and positive, beginning with $D_{1}=\frac{\partial^{2} F}{\partial x_{1}{ }^{2}}$ negative.
7.230 Maxima and Minima with Conditions. If $F\left(x_{1}, x_{2}, \ldots, \ldots, x_{n}\right)$ is to be made a maximum or minimum subject to the conditions,

$$
\text { I. }\left\{\begin{array}{l}
\phi_{1}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\phi_{2}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\cdots \ldots \ldots \\
\ldots \ldots \\
\phi_{k}\left(x_{1}, x_{2}, \ldots . \ldots, x_{n}\right)=0
\end{array}\right.
$$

where $k<n$, the necessary conditions are,
2.

$$
\frac{\partial F}{\partial x_{i}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial \phi_{j}}{\partial x_{i}}=0 \quad i=\mathrm{I}, 2, \ldots n
$$

where the λ 's are k undetermined multipliers. The n equations (2) together with the k equations of condition (I) furnish $k+n$ equations to determine the $k+n$ quantities, $x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$.

Example:

To find the axes of the ellipsoid, referred to its center as origin,

$$
a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{23} y z+2 a_{13} x z=\mathrm{I} .
$$

Denoting the radius vector to the surface by r, and its direction-cosines by l, m, n, so that $x=l r, y=m r, z=n r$, it is necessary to find the maxima and minima of

$$
r^{2}=\frac{\mathrm{I}}{a_{11} l^{2}+a_{22} m^{2}+a_{33} n^{2}+2 a_{12} l m+2 a_{23} m+2 a_{13} l n n},
$$

subject to the condition

$$
\phi(l, m, n)=l^{2}+m^{2}+n^{2}-\mathrm{I}=0 .
$$

This is the same as finding the minima and maxima of

$$
F(l, m, n)=a_{11} l^{2}+a_{22} m^{2}+a_{33} n^{2}+2 a_{12} l m+2 a_{23} m n+2 a_{13} l n .
$$

Equation (2) gives:

$$
\begin{aligned}
& \left(a_{11}+\lambda\right) l+a_{12} m+a_{13} n=0, \\
& a_{12} l+\left(a_{22}+\lambda\right) m+a_{23} n=0, \\
& a_{13} l+a_{23} m+\left(a_{33}+\lambda\right) n=0 .
\end{aligned}
$$

Multiplying these 3 equations by l, m, n respectively and adding,

$$
\lambda=-\frac{I}{r^{2}} .
$$

Then by (I. 1.363) the 3 values of r are given by the 3 roots of

$$
\left|\begin{array}{lll}
a_{11}-\frac{\mathrm{I}}{r^{2}} & a_{12} & a_{13} \\
a_{12} & a_{22}-\frac{\mathrm{I}}{r^{2}} & a_{23} \\
a_{13} & a_{23} & a_{33}-\frac{\mathrm{I}}{r^{2}}
\end{array}\right|=0
$$

7.30 Derivatives.
7.31 First Derivatives.
I. $\frac{d x^{n}}{d x^{n}}=n x^{n-1}$.
2. $\frac{d a^{x}}{d x}=a^{x} \log a$.
3. $\frac{d e^{x}}{d x}=e^{x}$.
4. $\frac{d x^{x}}{d x}=x^{x}(I+\log x)$.
5. $\frac{d \log _{a} x}{d x}=\frac{\mathrm{I}}{x \log a}=\frac{\log _{a} e}{x}$.
6. $\frac{d \log x}{d x}=\frac{\mathrm{I}}{x}$.
7. $\frac{d x^{\log x}}{d x}=2 x^{\log x-1} \log x$.
8. $\frac{d(\log x)^{x}}{d x}=(\log x)^{x-1}\{\mathrm{I}+\log x \cdot \log \log x\}$.
9. $\frac{d\left(\frac{x}{e}\right)^{x}}{d x}=\left(\frac{x}{e}\right)^{x} \log x$.
10. $\frac{d \sin x}{d x}=\cos x$.
II. $\frac{d \cos x}{d x}=-\sin x$.

I2. $\frac{d \tan x}{d x}=\sec ^{2} x$.
I3. $\frac{d \cot x}{d x}=-\csc ^{2} x$.
15. $\frac{d \csc x}{d x}=-\csc ^{2} x \cdot \cos x$.

I6. $\frac{d \sin ^{-1} x}{d x}=-\frac{d \cos ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{I-x^{2}}}$.
I7. $\frac{d \tan ^{-1} x}{d x}=-\frac{d \cot ^{-1} x}{d x}=\frac{\mathrm{I}}{\mathrm{I}+x^{2}}$.
14. $\frac{d \sec x}{d x}=\sec ^{2} x \cdot \sin x$.
20. $\frac{d \cosh x}{d x}=\sinh x$.
21. $\frac{d \tanh x}{d x}=\operatorname{sech}^{2} x$.
22. $\frac{d \operatorname{coth} x}{d x}=-\operatorname{csch}^{2} x$.
23. $\frac{d \operatorname{sech} x}{d x}=-\operatorname{sech} x \cdot \tanh x$.
24. $\frac{d \operatorname{csch} x}{d x}=-\operatorname{csch} x \cdot \operatorname{coth} x$.
25. $\frac{d \sinh ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{x^{2}+\mathrm{I}}}$.
26. $\frac{d \cosh ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{x^{2}-\mathrm{I}}}$.
27. $\frac{d \tanh ^{-1} x}{d x}=\frac{d \operatorname{coth}^{-1}}{d x}-\frac{x}{\mathrm{I}}=\frac{\mathrm{I}}{\mathrm{I}-x^{2}}$.
28. $\frac{d \operatorname{sech}^{-1} x}{d x}=-\frac{\mathrm{I}}{x \sqrt{\mathrm{I}-x^{2}}}$.
29. $\frac{d \operatorname{csch}^{-1} x}{d x}=-\frac{\mathrm{I}}{x \sqrt{\mathrm{I}+x^{2}}}$.
30. $\frac{d g d x}{d x}=\operatorname{sech} x$.
31. $\frac{d g d^{-1} x}{d x}=\sec x$.
7.32
I. $\frac{d\left(y_{1} y_{2} y_{3} \ldots . y_{n}\right)}{d x}=y_{1} y_{2} \ldots y_{n}\left(\frac{\mathrm{I}}{y_{1}} \frac{d y_{1}}{d x}+\frac{\mathrm{I}}{y_{2}} \frac{d y_{2}}{d x}+\ldots+\frac{\mathrm{I}}{y_{n}} \frac{d y_{n}}{d x}\right)$.
2. $\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$.
3. $\frac{d a^{u}}{d x}=a^{u} \frac{d u}{d x} \log a$.
4. $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$.
5. $\frac{d f(u)}{d x}=\frac{d f(u)}{d u} \cdot \frac{d u}{d x}$.
7.33 Derivative of a Definite Integral.
I. $\frac{d}{d a} \int_{\psi(a)}^{\phi(a)} f(x, a) d x=f(\phi(a), a) \frac{d \phi(a)}{d a}-f(\psi(a), a) \frac{d \psi(a)}{d a}+\int_{\psi(a))_{0}}^{\phi(a)} \frac{d}{d a} f(x, a) d x$.
2. $\frac{d}{d a} \int_{b}^{a} f(x) d x=f(a) . \quad$ 3. $\frac{d}{d b} \int_{b}^{a} f(x) d x=-f(b)$.
7.35 Higher Derivatives.
7.351 Leibnitz's Theorem. If u and v are functions of x,

$$
\begin{aligned}
\frac{d^{n}(u v)}{d x^{n}}=u \frac{d^{n} v}{d x^{n}}+\frac{n}{\mathrm{I}!} \frac{d u}{d x} \frac{d^{n-1} v}{d x^{n-1}} & +\frac{n(n-\mathrm{I})}{2!} \frac{d^{2} u}{d x^{2}} \frac{d^{n-2} v}{d x^{n-2}} \\
& +\frac{n(n-\mathrm{I})(n-2)}{3!} \frac{d^{3} u}{d x^{3}} \frac{d^{n-3} v}{d x^{n-3}}+\ldots \ldots+v \frac{d^{n} u}{d x^{n}} .
\end{aligned}
$$

7.352 Symbolically,

$$
\frac{d^{n}(u v)}{d x^{n}}=(u+v)(n),
$$

where

$$
u^{0}=u, \quad v^{0}=v .
$$

7.353

$$
\frac{d^{n} e^{a x} u}{d x^{n}}=e^{a x}\left(a+\frac{d}{d x}\right)^{n} u .
$$

7.354 If $\phi\left(\frac{d}{d x}\right)$ is a polynomial in $\frac{d}{d x}$,

$$
\phi\left(\frac{d}{d x}\right) e^{a x} u=e^{a x} \phi\left(a+\frac{d}{d x}\right) u .
$$

7.355 Euler's Theorem. If u is a homogeneous function of the nth degree of r variables, $x_{1}, x_{2}, \ldots x_{r}$,

$$
\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\ldots+x_{r} \frac{\partial}{\partial x_{r}}\right)^{m} u=n^{m} u
$$

where m may. be any integer, including 0 .
7.36 Derivatives of Functions of Functions.
7.361 If $f(x)=F(y)$, and $y=\phi(x)$,
I. $\frac{d^{n}}{d x^{n}} f(x)=\frac{U_{1}}{1!} F^{\prime}(y)+\frac{U_{2}}{2!} F^{\prime \prime}(y)+\frac{U_{3}}{3!} F^{\prime \prime \prime}(y)+\ldots+\frac{U_{n}}{n!} F^{(n)}(y)$,
where
2. $U_{k}=\frac{\partial^{n}}{\partial x^{n}} y^{k}-\frac{k}{\mathrm{I}!} y \frac{\partial^{n}}{\partial x^{n}} y^{k-1}+\frac{k(k-\mathrm{I})}{2!} y^{2} \frac{\partial^{n}}{\partial x^{n}} y^{k-2}-\ldots$.

7.362

I. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} F\left(\frac{\mathrm{I}}{x}\right)=\frac{\mathrm{I}}{x^{2 n}} F^{(n)}\left(\frac{\mathrm{I}}{x}\right)+\frac{n-\mathrm{I}}{x^{2 n-1}} \frac{n}{\mathrm{r}!} F^{(n-1)}\left(\frac{\mathrm{I}}{x}\right)$

$$
+\frac{(n-1)(n-2)}{x^{2 n-2}} \cdot \frac{n(n-1)}{2!} F^{(n-2)}\left(\frac{1}{x}\right)+\ldots \ldots
$$

2. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} e^{\frac{a}{x}}=\frac{\mathrm{I}}{x^{n}} e^{\frac{a}{x}}\left\{\left(\frac{a}{x}\right)^{n}+(n-1) \frac{n}{\mathrm{I}!}\left(\frac{a}{x}\right)^{n-1}\right.$

$$
+(n-1)(n-2) \frac{n(n-1)}{2!}\left(\frac{a}{x}\right)^{n-2}
$$

$$
\left.+(n-1)(n-2)(n-3) \frac{n(n-1)(n-2)}{3!}\left(\frac{a}{x}\right)^{n-3}+\ldots\right\}
$$

7.363

I. $\frac{d^{n}}{d x^{n}} F\left(x^{2}\right)=(2 x)^{n} F^{(n)}\left(x^{2}\right)+\frac{n(n-\mathrm{I})}{\mathrm{I}!}(2 x)^{n-2} F^{(n-1)}\left(x^{2}\right)$

$$
+\frac{n(n-1)(n-2)(n-3)}{2!}(2 x)^{n-4} F^{(n-2)}\left(x^{2}\right)
$$

$$
+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3!}(2 x)^{n-6} F^{(n-3)}\left(x^{2}\right)+\ldots
$$

2. $\frac{d^{n}}{d x^{n}} e^{a x^{2}}=(2 a x)^{n} e^{a x^{2}}\left\{\mathrm{I}+\frac{n(n-\mathrm{I})}{\mathrm{I}!\left(4 a x^{2}\right)}+\frac{n(n-\mathrm{I})(n-2)(n-3)}{2!\left(4 a x^{2}\right)^{2}}\right.$

$$
\left.+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3!\left(4 a x^{2}\right)^{3}}+\ldots\right\}
$$

3. $\frac{d^{n}}{d x^{n}}\left(\mathrm{I}+a x^{2}\right)^{\mu}$

$$
\begin{gathered}
=\frac{\mu(\mu-\mathrm{I})(\mu-2) \ldots(\mu-n+\mathrm{I})(2 a x)^{n}}{\left(\mathrm{I}+a x^{2}\right)^{n-\mu}}\left\{\mathrm{I}+\frac{n(n-\mathrm{I})}{\mathrm{I} \cdot(\mu-n+\mathrm{I})} \frac{\left(\mathrm{I}+a x^{2}\right)}{4 a x^{2}}\right. \\
\left.+\frac{n(n-\mathrm{I})(n-2)(n-3)}{2!(\mu-n+\mathrm{I})(\mu-n+2)}\left(\frac{\mathrm{I}+a x^{2}}{4 a x^{2}}\right)^{2}+\ldots .\right\}
\end{gathered}
$$

4. $\frac{d^{m-1}}{d x^{m-1}}\left(\mathrm{I}-x^{2}\right)^{m-\frac{1}{2}}=(-\mathrm{I})^{m-1} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 m-\mathrm{I})}{m} \sin \left(m \cos ^{-1} x\right)$.

7.364

I. $\frac{d^{n}}{d x^{n}} F(\sqrt{x})=\frac{F^{(n)}(\sqrt{x})}{(2 \sqrt{x})^{n}}-\frac{n(n-\mathrm{I})}{\mathrm{I}!} \frac{F^{(n-1)}(\sqrt{x})}{(2 \sqrt{x})^{n+1}}$

$$
+\frac{(n+\mathrm{I}) n(n-\mathrm{I})(n-2)}{2!} \frac{F^{(n-2)}(\sqrt{x})}{(2 \sqrt{x})^{n+2}}-\ldots
$$

2. $\frac{d^{n}}{d x^{n}}(\mathrm{I}+a \sqrt{x})^{2 n-1}=\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2^{n}} \frac{a}{\sqrt{x}}\left(a^{2}-\frac{\mathrm{I}}{x}\right)^{n-1}$.

7.365

I. $\frac{d^{n}}{d x^{n}} F\left(e^{x}\right)=\frac{E_{1}}{I!} e^{x} F^{\prime}\left(e^{x}\right)+\frac{E_{2}}{2!} e^{2 x} F^{\prime \prime}\left(e^{x}\right)+\frac{E_{3}}{3!} e^{3 x} F^{\prime \prime \prime}\left(e^{x}\right)+\ldots$ where
2. $\quad E_{k}=k^{n}-\frac{k}{\mathrm{I}!}(k-\mathrm{I})^{n}+\frac{k(k-\mathrm{I})}{2!}(k-2)^{n}-\ldots$
3. $\frac{d^{n}}{d x^{n}} \frac{\mathrm{I}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\sin \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{2 x} \frac{\sin \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\sin \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(1+e^{2 x}\right)^{4}}}+\ldots
$$

4. $\frac{d^{n}}{d x^{n}} \frac{e^{x}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\cos \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{2 x} \frac{\cos \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\cos \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(1+e^{2 x}\right)^{4}}}+\ldots
$$

7.366

I. $\frac{d^{n}}{d x^{n}} F(\log x)=\frac{\mathrm{I}}{x^{n}}\left\{\stackrel{n}{C}_{0} F^{(n)}(\log x)-\stackrel{n}{C}_{1} F^{(n-1)}(\log x)+\stackrel{n}{C_{2}} F^{(n-2)}(\log x)-\ldots.\right\}$. $\stackrel{n}{C}_{0}=1$,
$\stackrel{n}{C}_{1}=1+2+3+\ldots+(n-1) \quad=\frac{n(n-1)}{2}$,
$\stackrel{n}{C}_{2}=1 \cdot 2+1 \cdot 3+1 \cdot 4+\ldots \ldots+\mathrm{I} \cdot(n-\mathrm{I})$

$$
\begin{aligned}
& +2 \cdot 3+2 \cdot 4+\ldots . . .+2 \cdot(n-1) \\
& +3 \cdot 4+\ldots .+3 \cdot(n-1) \\
& \text { +............... } \\
& +(n-2)(n-1)=\frac{n(n-1)(n-2)(3 n-1)}{24} .
\end{aligned}
$$

2. $\stackrel{n+1}{C}_{C_{k}}=\stackrel{n}{C}_{k}+n \stackrel{n}{C}{ }_{k-1}$.
3. $\bar{C}_{k}^{n}=\stackrel{-(n-\mathrm{I})}{C_{k}}+\stackrel{n}{C}_{k-1}$.

$$
\begin{aligned}
& \stackrel{n}{C}_{0}=\mathrm{I} \quad \stackrel{k}{C_{k}}=0 \text {, } \\
& \stackrel{-n}{C}_{0}=\mathrm{I} \quad \bar{C}_{k}^{1}=\mathrm{I}, \\
& \stackrel{2}{C}_{1}=1 \quad \stackrel{3}{C}_{1}=3 \quad \stackrel{4}{C}_{1}=6, \\
& \stackrel{3}{C}_{2}=2 \quad \stackrel{4}{C}_{2}=11, \\
& \stackrel{4}{C}_{3}=6 . \\
& \bar{C}_{1}^{2}=3 \quad \bar{C}_{1}^{3}=6 \quad \bar{C}_{1}^{4}=10, \\
& \bar{C}_{2}^{2}=7 \quad \bar{C}_{2}^{3}=25 \quad \bar{C}_{2}^{4}=65, \\
& \bar{C}_{3}^{2}=15 \quad \bar{C}_{3}^{3}=90 \quad \bar{C}_{3}^{4}=350 .
\end{aligned}
$$

7.367 Table of $\stackrel{n}{C_{k}}$.

7.368

I. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-\mathrm{I})(\log x)^{p-2}\right.$

$$
\left.+\stackrel{n}{C}_{n-3} p(p-1)(p-2)(\log x)^{p-3}-\ldots\right\}
$$

where p is a positive integer. If $n<p$ there are n terms in the series. If $n \geqslant p$,
2. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-\mathrm{I})(\log x)^{p-2}\right.$

$$
\left.+\ldots .+(-\mathrm{I})^{p+1} \stackrel{n}{C}_{n-p} p(p-\mathrm{I})(p-2) \ldots 2 \cdot \mathrm{I}\right\}
$$

7.369

$$
\{\log (\mathrm{I}+x)\}^{p}=\stackrel{p}{C}_{0} x^{p}-\stackrel{p+1}{C}_{1} \frac{x^{p+1}}{p+\mathrm{I}}+\stackrel{p+2}{C}_{2} \frac{x^{p+2}}{(p+\mathrm{I})(p+2)}-\ldots
$$

$$
-\mathrm{I}<x<+\mathrm{I}
$$

7.37 Derivatives of Powers of Functions. If $y=\phi(x)$.
I. $\frac{d^{n}}{d x^{n}} y^{p}=p\binom{n-p}{n}\left\{-\binom{n}{I} \frac{\mathrm{I}}{p-\mathrm{I}} y^{p-1} \frac{d^{n} y}{d x^{n}}+\binom{n}{2} \frac{\mathrm{I}}{p-2} y^{p-2} \frac{d^{n} y^{2}}{d x^{n}}-\ldots.\right\}$.
2. $\frac{d^{n}}{d x^{n}} \log y=\binom{n}{\mathrm{I}} \frac{\mathrm{I}}{\mathrm{I} \cdot y} \frac{d^{n} y}{d x^{n}}-\binom{n}{2} \frac{\mathrm{I}}{2 \cdot y^{2}} \frac{d^{n} y^{2}}{d x^{n}}+\binom{n}{3} \frac{\mathrm{I}}{3 \cdot y^{3}} \frac{d^{n} y^{3}}{d x^{n}}-\ldots$.

7.38

工. $\frac{d^{n}(a+b x)^{m}}{d x^{n}}=m(m-1)(m-2) \ldots(m-[n-$ I $]) b^{n}(a+b x)^{m-n}$.
2. $\frac{d^{n}(a+b x)^{-1}}{d x^{n}}=(-\mathrm{I})^{n} \frac{n!b^{n}}{(a+b x)^{n+1}}$.
3. $\frac{d^{n}(a+b x)^{-\frac{1}{2}}}{d x^{n}}=(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2^{n}(a+b x)^{n+\frac{1}{2}}} b^{n}$.
4. $\frac{d^{n} \log (a+b x)}{d x^{n}}=(-\mathrm{I})^{n-1} \frac{(n-\mathrm{I})!b^{n}}{(a+b x)^{n}}$.
5. $\frac{d^{n} e^{a x}}{d x^{n}}=a^{n} e^{a x}$.
6. $\frac{d^{n} \sin x}{d x^{n}}=\sin \left(\frac{1}{2} n \pi+x\right)$.
7. $\frac{d^{n} \cos x}{d x^{n}}=\cos \left(\frac{1}{2} n \pi+x\right)$.
8. $\frac{d^{n}}{d x^{n}}\left(\frac{\log x}{x}\right)=(-\mathrm{I})^{n} \frac{n!}{x^{n+1}}\left\{\log x-\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{n}\right)\right\}$.
9. $\frac{d^{n+1}}{d x^{n+1}} \sin ^{-1} x=\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2^{n}(\mathrm{I}-x)^{n} \sqrt{\mathrm{I}-x^{2}}}\left\{\mathrm{I}-\frac{\mathrm{I}}{2 n-\mathrm{I}}\binom{n}{\mathrm{I}} \frac{\mathrm{I}-x}{\mathrm{I}+x}\right\}$

$$
\begin{gathered}
+\frac{\mathrm{I} \cdot 3}{(2 n-\mathrm{I})(2 n-3)}\binom{n}{2}\left(\frac{\mathrm{I}-x}{\mathrm{I}+x}\right)^{2}-\frac{\mathrm{I} \cdot 3 \cdot 5}{(2 n-\mathrm{I})(2 n-3)(2 n-5)}\binom{n}{3}\left(\frac{\mathrm{I}-x}{\mathrm{I}+x}\right)^{3} \\
+\ldots \ldots
\end{gathered}
$$

10. $\frac{d^{n}}{d x^{n}}\left(\tan ^{-1} x\right)=(-\mathrm{I})^{n-1} \frac{(n-\mathrm{I})!}{\left(\mathrm{I}+x^{2}\right) \frac{n}{2}} \sin \left(n \tan ^{-1} \frac{\mathrm{I}}{x}\right)$.
7.39 Derivatives of Implicit Functions.
7.391 If y is a function of x, and $f(x, y)=0$.
I. $\frac{d y}{d x}=-\frac{\frac{\partial}{\partial x}}{\frac{\partial f}{\partial y}}$.
11. $\frac{d^{2} y}{d x^{2}}=-\frac{\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial y}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}}{\left(\frac{\partial f}{\partial y}\right)^{3}}$
7.392 If z is a function of x and y, and $f(x, y, z)=0$.
I. $\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} ; \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}$.
12. $\frac{\partial^{2} z}{\partial x^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial x} \frac{d^{2} f}{\partial x \partial z}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
13. $\frac{\partial^{2} z}{\partial y^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}-2 \frac{\partial f}{\partial z} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y \partial z}+\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
14. $\frac{\partial^{2} z}{\partial x \partial y}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial f}{\partial z}\left(\frac{\partial f}{\partial x} \frac{\partial^{2} f}{\partial y \partial z}+\frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial z}\right)+\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.

VIII. DIFFERENTIAL EQUATIONS.

8.000 Ordinary differential equations of the first order. General form:

$$
\frac{d y}{d x}=f(x, y) .
$$

8.001 Variables are separable. $f(x, y)$ is of, or can be reduced to, the form:

$$
f(x, y)=-\frac{X}{\bar{Y}},
$$

where X is a function of x alone and Y is a function of y alone.
The solution is:

$$
\int X d x+\int Y d y=C
$$

8.002 Linear equations of the form:

$$
\frac{d y}{d x}+P(x) y=Q(x) .
$$

Solution:

$$
y=e^{-\int_{P(x) d x}}\left\{\int Q(x) e^{-\int_{P(x)} d x} d x+C\right\} .
$$

8.003 Equations of the form:

$$
\frac{d y}{d x}+P(x) y=y^{n} Q(x) .
$$

Solution:

$$
\frac{\mathrm{I}}{y^{n-1}} e^{-(n-\mathrm{I})} \boldsymbol{S}_{P(x) d x}+(n-\mathrm{I}) \int Q(x) e^{-(n-\mathrm{I})} \boldsymbol{\mathcal { S }}_{P(x)} d x d x=C .
$$

8.010 Homogeneous equations of the form:

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)},
$$

where $P(x, y)$ and $Q(x, y)$ are homogeneous functions of x and y of the same degree. The change of variable:
gives the solution:

$$
y=v x,
$$

$$
\int \frac{d v}{\frac{P(\mathrm{I}, v)}{Q(\mathrm{I}, v)}+v}+\log x=C
$$

8.011 Equations of the form:

$$
\frac{d y}{d x}=\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{a x+b y+c}
$$

If $a b^{\prime}-a^{\prime} b \neq 0$, the substitution
where

$$
x=x^{\prime}+p, \quad y=y^{\prime}+q
$$

$$
\begin{aligned}
a p+b q+c & =0 \\
a^{\prime} p+b^{\prime} q+c^{\prime} & =0
\end{aligned}
$$

renders the equation homogeneous, and it may be solved by 8.010.
If $a b^{\prime}-a^{\prime} b=0$ and $b^{\prime} \neq 0$, the change of variables to either x and z or y and z by means of

$$
z=a x+b y
$$

will make the variables separable (8.001).
8.020 Exact differential equations. The equation,

$$
P(x, y) d x+Q(x, y) d y=0
$$

is exact 1 m ,

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
$$

The solution is:

$$
\int P(x, y) d x+\int\left\{Q(x, y)-\frac{\partial}{\partial y} \int P(x, y) d x\right\} d y=C
$$

or

$$
\int Q(x, y) d y+\int\left\{P(x, y)-\frac{\partial}{\partial x} \int Q(x, y) d y\right\} d x=C
$$

8.030 Integrating factors. $v(x, y)$ is an integrating factor of

$$
P(x, y) d x+Q(x, y) d y=0
$$

if

$$
\frac{\partial}{\partial x}(थ Q)=\frac{\partial}{\partial y}(\tilde{P} P)
$$

8.031 If one only of the functions $P x+Q y$ and $P x-Q y$ is equal to o, the reciprocal of the other is an integrating factor of the differential equation.
8.032 Homogeneous equations. If neither $P x+Q y$ nor $P x-Q y$ is equal to o, $\frac{\mathrm{I}}{P x+Q y}$ is an integrating factor of the equation if it is homogeneous.
8.033 An equation of the form,

$$
P(x, y) y d x+Q(x, y) x d y=0
$$

has an integrating factor:

$$
\frac{1}{x P-y Q}
$$

8.034 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=F(x)
$$

is a function of x only, an integrating factor is

$$
e^{\mathcal{S F (x) d x}}
$$

8.035 If

$$
\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{P}=F(y)
$$

is a function of y only, an integrating factor is

$$
e^{\int F(y) d y}
$$

8.036 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q y-P x}=F(x y)
$$

is a function of the product $x y$ only, an integrating factor is

$$
e^{\int F(x y) d(x y)}
$$

8.037 If

$$
\frac{x^{2}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)}{P x+Q y}=F\left(\frac{y}{x}\right)
$$

is a function of the quotient $\frac{y}{x}$ only, an integrating factor is

$$
e^{\int F}\left(\frac{y}{x}\right) d\left(\frac{y}{x}\right) .
$$

8.040 Ordinary differential equations of the first order and of degree higher than the first.

Write:

$$
\frac{d y}{d x}=p
$$

General form of equation:

$$
f(x, y, p)=0
$$

8.041 The equation can be solved as an algebraic equation in p. It can be written

$$
\left(p-R_{1}\right)\left(p-R_{2}\right) \ldots \ldots\left(p-R_{n}\right)=0 .
$$

The differential equations:

$$
\begin{aligned}
& p=R_{1}(x, y), \\
& p=R_{2}(x, y),
\end{aligned}
$$

may be solved by the previous methods. Write the solutions:

$$
f_{1}(x, y, c)=0 ; \quad f_{2}(x, y, c)=0 ;
$$

where c is the same arbitrary constant in each. The solution of the given differential equation is:

$$
f_{1}(x, y, c) f_{2}(x, y, c) \ldots \ldots f_{n}(x, y, c)=0 .
$$

8.042 The equation can be solved for y :
I.

$$
y=f(x, p)
$$

Differentiate with respect to x :
2.

$$
p=\psi\left(x, p, \frac{d p}{d x}\right) .
$$

It may be possible to integrate (2) regarded as an equation in the two variables x, p, giving a solution
3.

$$
\phi(x, p, c)=0 .
$$

If p is eliminated between (I) and (3) the result will be the solution of the given equation.
8.043 The equation can be solved for x :
I.

$$
x=f(y, p)
$$

Differentiate with respect to y :
2.

$$
\frac{\mathrm{I}}{p}=\psi\left(y, p, \frac{d p}{d y}\right) .
$$

If a solution of (2) can be found:

$$
\begin{equation*}
\phi(y, p, c)=0 . \tag{3.}
\end{equation*}
$$

Eliminate p between (r) and (3) and the result will be the solution of the given equation.
8.044 The equation does not contain x :

It may be solved for p, giving,

$$
f(y, p)=0 .
$$

$$
\frac{d y}{d x}=F(y),
$$

which can be integrated.
8.045 The equation does not contain y :

$$
f(x, p)=0 .
$$

It may be solved for p, giving,

$$
\frac{d y}{d x}=F(x),
$$

which can be integrated.
It may be solved for x, giving,

$$
x=F(p),
$$

which may be solved by 8.043 .
8.050 Equations homogeneous in x and y.

General form:

$$
F\left(p, \frac{y}{x}\right)=0 .
$$

(a) Solve for p and proceed as in 8.001
(b) Solve for $\frac{y}{x}$:

$$
y=x f(p) .
$$

Differentiate with respect to x :

$$
\frac{d x}{x}=\frac{f^{\prime}(p) d p}{p-f(p)},
$$

which may be integrated.
8.060 Clairaut's differential equation:

I.

the solution is:

$$
\begin{aligned}
& y=p x+f(p), \\
& y=c x+f(c) .
\end{aligned}
$$

The singular solution is obtained by eliminating p between (I) and
2.

$$
x+f^{\prime}(p)=0 .
$$

8.061 The equation
I.

$$
y=x f(p)+\phi(p) .
$$

The solution is that of the linear equation of the first order:
2.

$$
\frac{d x}{d p}-\frac{f^{\prime}(p)}{p-f(p)} x=\frac{\phi^{\prime}(p)}{p-f(p)},
$$

which may be solved by 8.002 . Eliminating p between (r) and the solution of (2) gives the solution of the given equation.

The equation:

$$
x \phi(p)+y \psi(p)=\chi(p)
$$

may be reduced to 8.061 by dividing by $\psi(p)$.

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST

8.100 Linear equations with constant coefficients. General form:

$$
\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+a_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+a_{n} y=V(x) .
$$

The complete solution consists of the sum of
(a) The complementary function, obtained by solving the equation with $V(x)=0$, and containing n arbitrary constants, and
(b) The particular integral, with no arbitrary constants.
8.101 The complementary function. Assume $y=e^{\lambda x}$. The equation for determining λ is:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots . .+a_{n}=0 .
$$

8.102 If the roots of 8.101 are all real and distinct the complementary function is:

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}+\ldots+c_{n} e^{\lambda_{n} x} .
$$

8.103 For a pair of complex roots:

$$
\mu \pm i \nu,
$$

the corresponding terms in the complementary function are:

$$
e^{\mu x}(A \cos \nu x+B \cos \nu x)=C e^{\mu x} \cos (\nu x-\theta)=C e^{\mu x} \sin (\nu x+\theta),
$$

where

$$
C=\sqrt{A^{2}+B^{2}}, \quad \tan \theta=\frac{B}{A} .
$$

8.104 If there are r equal real roots the terms in the complementary function corresponding to them are:

$$
e^{\lambda x}\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots+A_{r} x^{r-1}\right),
$$

where λ is the repeated root, and $A_{1}, A_{2}, \ldots ., A_{r}$ are the r arbitrary constants.
8.105 If there are m equal pairs of complex roots the terms in the complementary function corresponding to them are:

$$
\begin{aligned}
& e^{\mu x}\left\{\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots+A_{m} x^{m-1}\right) \cos \nu x\right.
\end{aligned} \quad \begin{array}{r}
\left.\quad\left(B_{1}+B_{2} x+B_{3} x^{2}+\ldots+B_{m} x^{m-1}\right) \sin \nu x\right\} \\
=
\end{array} \begin{array}{r}
e^{\mu x}\left\{C_{1} \cos \left(\nu x-\theta_{1}\right)+C_{2} x \cos \left(\nu x-\theta_{2}\right)+\ldots \ldots+C_{m} x^{m-1} \cos \left(\nu x-\theta_{m}\right)\right\} \\
= \\
e^{\mu x}\left\{C_{1} \sin \left(\nu x+\theta_{1}\right)+C_{2} x \sin \left(\nu x+\theta_{2}\right)+\ldots \ldots+C_{m} x^{m-1} \sin \left(\nu x+\theta_{m}\right)\right\}
\end{array}
$$

where $\lambda \pm i \mu$ is the repeated root and

$$
\begin{aligned}
C_{k} & =\sqrt{A_{k}^{2}+B_{k}{ }^{2}}, \\
\tan \theta_{k} & =\frac{B_{k}}{A_{k}} .
\end{aligned}
$$

The particular integral.
8.110 The operator D stands for $\frac{\partial}{\partial x}, D^{2}$ for $\frac{\partial^{2}}{\partial x^{2}}$,

The differential equation 8.100 may be written:

$$
\begin{gathered}
\left(D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots+a_{n}\right) y=f(D) y=V(x) \\
y=\frac{V(x)}{f(D)}, \\
f(D)=\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right) \ldots \ldots\left(D-\lambda_{n}\right),
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{n}$ are determined as in 8.101. The particular integral is:

$$
y=e^{\lambda_{1} x} \int e^{\left(\lambda_{2}-\lambda_{1}\right) x} d x \int e\left(e^{\left(\lambda_{3}-\lambda_{2}\right) x} d x \ldots \int e^{-\lambda_{n}(x)} V(x) d x\right.
$$

$8.111 \frac{\mathrm{I}}{f(D)}$ may be resolved into partial fractions:

$$
\frac{\mathrm{I}}{f(D)}=\frac{N_{1}}{D-\lambda_{1}}+\frac{N_{2}}{D-\lambda_{2}}+\ldots+\frac{N_{n}}{D-\lambda_{n}} .
$$

The particular integral is:

$$
\begin{aligned}
y=N_{1} e^{\lambda_{1} x} \int e^{-\lambda_{1} x} V(x) d x+N_{2} e^{\lambda_{2} x} \int e^{-\lambda_{2} x} V(x) d x+ & \ldots \\
& +N_{n} e^{\lambda_{n}} \iint e^{-\lambda_{n} x} V(x) d x .
\end{aligned}
$$

THE PARTICULAR INTEGRAL IN SPECIAL CASES
8.120 $V(x)=$ const. $=c$,

$$
y=\frac{c}{a_{n}} .
$$

8.121 $V(x)$ is a rational integral function of x of the m th degree. Expand $\frac{\mathrm{I}}{f(D)}$ in ascending powers of D, ending with D^{m}. Apply the operators D, D^{2},, D^{m} to each term of $V(x)$ separately and the particular integral will be the sum of the results of these operations.
8.122

$$
\begin{aligned}
V(x) & =c e^{k x} \\
y & =\frac{c}{f(k)} e^{k x}
\end{aligned}
$$

unless k is a root of $f(D)=0$. If k is a multiple root of order r of $f(D)=0$

$$
y=\frac{c x^{r} e^{k x}}{r!\psi(k)}
$$

where

$$
f(D)=(D-k)^{r} \psi(D)
$$

8.123

$$
V(x)=c \cos (k x+\alpha)
$$

If $i k$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{c}{f(i k)} e^{i(k x+\alpha)}
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c x^{r} e^{i(k x+\alpha)}}{f^{(r)}(i k)}
$$

where $f^{(r)}(i k)$ is obtained by taking the r th derivative of $f(D)$ with respect to D, and substituting $i k$ for D.

$$
8.124 \quad V(x)=c \sin (k x+\alpha) .
$$

If $i k$ is not a root of $f(D)=\circ$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)}}{f(i k)}
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c x^{r} e^{i(k x+\alpha)}}{f^{(r)}(i k)}
$$

8.125

$$
V(x)=c e^{k x} \cdot X
$$

where X is any function of x.

$$
y=c e^{k x} \frac{\mathrm{I}}{f(D+k)} X
$$

If X is a rational integral function of x this may be evaluated by the method of 8.121 .
8.126

$$
V(x)=c \cos (k x+\alpha) \cdot X
$$

where X is any function of x. The particular integral is the real part of
8.127

$$
c e^{i(k x+\alpha)} \frac{\mathrm{I}}{f(D+i k)} X
$$

The particular integral is the real part of

$$
-i c e^{i(k x+\alpha)} \frac{I}{f(D+i k)} X
$$

$$
V(x)=c e^{\beta x} \cos (k x+\alpha)
$$

If $(\beta+i k)$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
c e^{i(k x+\alpha)} \frac{\mathrm{I}}{f(\beta+i k)} e^{\beta x} .
$$

If $(\beta+i k)$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c e^{i(k x+\alpha)} x^{r} e^{\beta x}}{f^{(r)}(\beta+i k)}
$$

where $f^{(r)}(\beta+i k)$ is formed as in 8.123.
8.129

$$
V=c e^{\beta x} \sin (k x+\alpha) .
$$

If $(\beta+i k)$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)} e^{\beta x}}{f(\beta+i k)} .
$$

If $(\beta+i k)$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)} x^{\tau} e^{\beta x}}{f^{(r)}(\beta+i k)} .
$$

8.130

$$
V(x)=x^{m} X,
$$

where X is any function of x.
$y=x^{m} \frac{\mathrm{I}}{f(D)} X+m x^{m-1}\left\{\frac{d}{d D} \frac{\mathrm{I}}{f(D)}\right\} X+\frac{m(m-\mathrm{I})}{2!} x^{m-2}\left\{\frac{d^{2}}{d D^{2}} \frac{\mathrm{I}}{f(D)}\right\} X+\ldots \ldots$.
The series must be extended to the $(m+1)$ th term.
8.200 Homogeneous linear equations. General form:

$$
x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} x \frac{d y}{d x}+a_{n} y=V(x)
$$

Denote the operator:

$$
\begin{gathered}
x \frac{d}{d x}=\theta \\
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-1)(\theta-2) \ldots(\theta-m+1) .
\end{gathered}
$$

The differential equation may be written:

$$
F(\theta) \cdot y=V(x) .
$$

The complete solution is the sum of the complementary function, obtained by solving the equation with $V(x)=0$, and the particular integral.
8.201 The complementary function.

$$
y=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}}+\ldots+c_{n} x^{\lambda_{n}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the n roots of

$$
F(\lambda)=0
$$

if the roots are all distinct.
If λ_{k} is a multiple root of order r, the corresponding terms in the complementary function are:

$$
x^{\lambda_{k}\left\{b_{1}+b_{2} \log x+b_{3}(\log x)^{2}+\ldots+b_{r}(\log x)^{r-1}\right\}}
$$

If $\lambda=\mu \pm i \nu$ is a pair of complex roots, of order r, the corresponding terms in the complementary function are:

$$
\begin{aligned}
x^{\mu}\left\{\left[A_{1}\right.\right. & \left.+A_{2} \log x+A_{3}(\log x)^{2}+\ldots+A_{r}(\log x)^{r-1}\right] \cos (\nu \log x) \\
& \left.+\left[B_{1}+B_{2} \log x+B_{3}(\log x)^{2}+\ldots+B_{r}(\log x)^{r-1}\right] \sin (\nu \log x)\right\}
\end{aligned}
$$

8.202 The particular integral.

If

$$
\begin{gathered}
F(\theta)=\left(\theta-\lambda_{1}\right)\left(\theta-\lambda_{2}\right) \cdots \cdot\left(\theta-\lambda_{n}\right) \\
y=x^{\lambda_{1}} \int x^{\lambda_{2}-\lambda_{1}-1} d x \int x^{\lambda_{3}-\lambda_{2}-1} d x \cdots x^{\lambda_{n-} \lambda_{n-1}-1} V(x) d x
\end{gathered}
$$

8.203 The operator $\frac{1}{F(\theta)}$ may be resolved into partial fractions:

$$
\begin{aligned}
\frac{\mathbf{I}}{F(\theta)}=\frac{N_{1}}{\theta-\lambda_{1}}+\frac{N_{2}}{\theta-\lambda_{2}}+\ldots+ & \frac{N_{n}}{\theta-\lambda_{n}} \\
y=N_{1} x^{\lambda_{1}} \int x^{-\lambda_{1}-1} V(x) d x & +N_{2} x^{\lambda_{2}} \int x^{-\lambda_{2}-1} V(x) d x \\
& +\ldots .+N_{n} x^{\lambda_{n}} \int x^{-\lambda_{n}-1} V(x) d x
\end{aligned}
$$

The particular integral in special cases.
8.210

$$
\begin{aligned}
V(x) & =c x^{k} \\
y & =\frac{c}{F(k)} x^{k}
\end{aligned}
$$

unless k is a root of $F(\theta)=0$.
If k is a multiple root of order r of $F(\theta)=0$.

$$
y=\frac{c(\log x)^{r}}{F^{(r)}(k)}
$$

where $F^{(r)}(k)$ is obtained by taking the r th derivative of $F(\theta)$ with respect to θ and after differentiation substituting k for θ.
8.211
where X is any function of x.

$$
\begin{aligned}
& V(x)=c x^{k} X, \\
& y=c x^{k} \frac{I}{F(\theta+k)} X
\end{aligned}
$$

8.220 The differential equation:

$$
(a+b x)^{n} \frac{d^{n} y}{d x^{n}}+(a+b x)^{n-1} a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+(a+b x) a_{n-1} \frac{d y}{d x}+a_{n} y=V(x)
$$ may be reduced to the homogeneous linear equation (8.200) by the change of variable

$$
z=a+b x
$$

It may be reduced to a linear equation with constant coefficients by the change of variable:

$$
e^{z}=a+b x
$$

8.230 The general linear equation. General form:

$$
P_{0} \frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{n-1} \frac{d y}{d x}+P_{n}=V
$$

where $P_{0}, P_{1}, \ldots \ldots, P_{n}, V$ are functions of x only.
The complete solution is the sum of:
(a) The complementary function, which is the general solution of the equation with $V=0$, and containing n arbitrary constants, and
(b) The particular integral.
8.231 Complementary Function. If $y_{1}, y_{2}, \ldots, y_{n}$ are n independent solutions of 8.230 with $V=0$, the complementary function is

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots \cdots+c_{n} y_{n}
$$

The conditions that $y_{1}, y_{2}, \ldots \ldots, y_{n}$ be n independent solutions is that the determinant $\Delta \neq 0$.

When $\Delta \neq 0$:

$$
\Delta=C e^{-\int \frac{P_{1}}{P_{0}} d x}
$$

8.232 The particular integral. If Δ_{k} is the minor of $\frac{d^{n-1} y_{k}}{d x^{n-1}}$ in Δ, the particular integral is:

$$
y=y_{1} \int \frac{V \Delta_{1}}{P_{0} \Delta} d x+y_{2} \int \frac{V \Delta_{2}}{P_{0} \Delta} d x+\ldots+y_{n} \int \frac{V \Delta_{n}}{P_{0} \Delta} d x
$$

8.233 If y_{1} is one integral of the equation 8.230 with $v=0$, the substitution

$$
y=u y_{1}, \quad v=\frac{d u}{d x},
$$

will result in a linear equation of order $n-\mathrm{I}$.
8.234 If $y_{1}, y_{2}, \ldots, y_{n-1}$ are $n-\mathrm{I}$ independent integrals of 8.230 with $V=0$ the complete solution is:

$$
y=\sum_{k=\mathrm{r}}^{n-\mathrm{r}} y c_{k k}+c_{n} \sum_{k=\mathrm{r}}^{n-\mathrm{r}} y_{k} \int \frac{\Delta_{k}}{\Delta^{2}} e^{-\int_{P_{0}}^{P_{1}} d x} d x
$$

where Δ is the determinant:

$$
\begin{aligned}
& \Delta=\left|\begin{array}{llll}
\frac{d^{n-2} y_{1}}{} & \frac{d^{n-2} y_{2}}{d x^{n-2}} & \ldots . & \frac{d^{n-2} y_{n-1}}{d x^{n-2}} \\
\frac{d^{n-3} y_{1}}{d x^{n-2}} \\
d x^{n-3} & \frac{d^{n-3} y_{2}}{d x^{n-3}} & \ldots . & \frac{d^{n-3} y_{n-1}}{d x^{n-3}}
\end{array}\right| \\
& \frac{d y_{1}}{d x} \quad \frac{d y_{2}}{d x} \ldots \ldots \cdot \frac{d y_{n-1}}{d x}
\end{aligned}
$$

and Δ_{k} is the minor of $\frac{d^{n-2} y_{k}}{d x^{n-2}}$ in Δ.

SYMBOLIC METHODS
8.240 Denote the operators:

$$
\begin{gathered}
\frac{d}{d x}=D \\
x \frac{d}{d x}=\theta .
\end{gathered}
$$

8.241 If X is a function of x :
I.

$$
\begin{aligned}
& (D-m)^{-1} X=\epsilon^{m x} \int e^{-m x} X d x . \\
& (D-m)^{-1} \circ=c e^{m x} . \\
& (\theta-m)^{-1} X=x^{m} \int x^{-m-1} X d x . \\
& (\theta-m)^{-1} \circ=c x^{m} .
\end{aligned}
$$

2.
3.
4.

8.242 If $F(D)$ is a polynomial in D,
I.

$$
\begin{aligned}
F(D) e^{m x} & =e^{m x} F(m) \\
F(D) e^{m x} X & =e^{m x} F(D+m) X \\
e^{m x} F(D) X & =F(D-m) e^{m x} X
\end{aligned}
$$

$$
\text { 2. } \quad F(D) e^{m x} X=e^{m x} F(D+m) X .
$$

$$
3
$$

8.243 If $F(\theta)$ is a polynomial in θ,
I.

$$
\begin{aligned}
F(\theta) x^{m} & =x^{m} F(m) \\
F(\theta) x^{m} X & =x^{m} F(\theta+m) X \\
x^{m} F(\theta) X & =F(\theta-m) x^{m} X .
\end{aligned}
$$

2.
3.

8.244

$$
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-\mathrm{I})(\theta-2) \ldots(\theta-m+\mathrm{I})
$$

INTEGRATION IN SERIES

8.250 If a linear differential equation can be expressed in the symbolic form:

$$
\left[x^{m} F(\theta)+f(\theta)\right] y=0
$$

where $F(\theta)$ and $f(\theta)$ are polynomials in θ, the substitution,

$$
y=\sum_{n=0}^{\infty} a_{n} x^{\rho+n m}
$$

leads to the equations,

$$
\begin{aligned}
a_{0} f(\rho) & =0, \\
a_{0} F(\rho)+a_{1} f(\rho+m) & =0, \\
a_{1} F(\rho+m)+a_{2} f(\rho+2 m) & =0, \\
a_{2} F(\rho+2 m)+a_{3} f(\rho+3 m) & =0 .
\end{aligned}
$$

8.251 The equation

$$
f(\rho)=0
$$

is the "indicial equation." If it is satisfied a_{0} may be chosen arbitrarily, and the other coefficients are then determined.
8.252 An equation:

$$
\left[F(\theta)+\phi(\theta) \frac{d^{m}}{d x^{m}}\right] y=0
$$

may be reduced to the form 8.250 , where,

$$
f(\theta)=\phi(\theta-m) \theta(\theta-\mathrm{I})(\theta-2) \ldots(\theta-m+\mathrm{I})
$$

If the degree of the polynomial f is greater than that of F the series always converges; if the degree of f is less than that of F the series always diverges.

ORDINARY DIFFERENTIAL EQUATIONS OF SPECIAL TYPES

8.300

$$
\frac{d^{n} y}{d x^{n}}=X,
$$

where X is a function of x only.

$$
y=\frac{\mathbf{I}}{(n-\mathrm{I})!} \int_{0}^{x}(x-t)^{n-1} T d t+c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n-1} x+c_{n}
$$

where T is the same function of t that X is of x.

8.301

$$
\frac{d^{2} y}{d x^{2}}=Y
$$

where Y is a function of y only.
If

$$
\psi(y)=2 \int Y d y
$$

the solution is:

$$
\int \frac{d y}{\left\{\psi(y)+c_{1}\right\}^{\frac{1}{2}}}=x+c_{2}
$$

8.302

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-1} y}{d x^{n-1}}\right)
$$

Put

$$
\begin{aligned}
\frac{d^{n-1} y}{d x^{n-1}} & =Y ; \quad \frac{d Y}{d x}=F(Y) \\
x+c_{1} & =\int \frac{d Y}{F(Y)}=\psi(Y) \\
Y & =\phi\left(x+c_{1}\right) \\
\frac{d^{n-1} y}{d x^{n-1}} & =\phi\left(x+c_{1}\right)
\end{aligned}
$$

and this equation may be solved by 8.300 .
Or the equation can be solved:

$$
y=\int \frac{d Y}{F(Y)} \int \frac{d Y}{F(Y)} \cdots \cdots \int \frac{Y d Y}{F(Y)}
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. Eliminating Y between this result and gives the solution.

$$
Y=\phi\left(x+c_{1}\right)
$$

8.303

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-2} y}{d x^{n-2}}\right)
$$

Put

$$
\begin{aligned}
\frac{d^{n-2} y}{d x^{n-2}} & =Y, \\
\frac{d^{2} Y}{d x^{2}} & =F(Y),
\end{aligned}
$$

which may be solved by 8.301 . If the solution can be expressed:

$$
Y=\phi(x),
$$

$n-2$ integrations will solve the given differential equation.
Or putting

$$
\begin{gathered}
\psi(y)=2 \int Y d y, \\
y=\int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{2}{2}}} \int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}} \cdots \cdots \iint \frac{Y d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}},
\end{gathered}
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. The solution of the given differential equation is obtained by elimination between this result and

$$
Y=\phi(x) .
$$

8.304 Differential equations of the second order in which the independent variable does not appear. General type:

$$
F\left(y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=0 .
$$

Put

$$
p=\frac{d y}{d x}, \quad p \frac{d p}{d y}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(y, p, p \frac{d p}{d y}\right)=0 .
$$

If the solution of this equation is:

$$
p=f(y),
$$

the solution of the given equation is,

$$
x+c_{2}=\int \frac{d y}{f(y)}
$$

8.305 Differential equations of the second order in which the dependent variable does not appear. General type:

$$
F\left(x, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=0 .
$$

Put

$$
p=\frac{d y}{d x}, \quad \frac{d p}{d x}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(x, p, \frac{d p}{d x}\right)=0 .
$$

If the solution of this equation is:

$$
p=f(x),
$$

the solution of the given equation is:

$$
y=c_{2}+\int f(x) d x
$$

8.306 Equations of an order higher than the second in which either the independent or the dependent variable does not appear. The substitution:

$$
\frac{d y}{d x}=p
$$

as in 8.304 and 8.305 will result in an equation of an order less by unity than the given equation.
8.307 Homogeneous differential equations. If y is assumed to be of dimensions n, x of dimensions $\mathrm{I}, \frac{d y}{d x}$ of dimensions $(n-1), \frac{d^{2} y}{d x^{2}}$ of dimensions $(n-2)$, then if every term has the same dimensions the equation is homogeneous. If the independent variable is changed to θ and the dependent variable changed to z by the relations,

$$
x=e^{\theta}, \quad y=z e^{n \theta},
$$

the resulting equation will be one in which the independent variable does not appear and its order can be lowered by unity by 8.306.

If $y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots$ are assumed all to be of the same dimensions, and the equation is homogeneous, the substitution:

$$
y=e^{\int u d x}
$$

will result in an equation in u and x of an order less by unity than the given equation.
8.310 Exact differential equations. A linear differential equation:

$$
P_{n} \frac{d^{n} y}{d x^{n}}+P_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{1} \frac{d y}{d x}+P_{0}=P
$$

where $P, P_{0}, P_{1}, \ldots . P_{n}$ are functions of x is exact if:

$$
P_{0}-\frac{d P_{1}}{d x}+\frac{d^{2} P_{2}}{d x^{2}}-\ldots \ldots+(-1)^{n} \frac{d^{n} P_{n}}{d x^{n}}=0
$$

The first integral is:

$$
Q_{n} \frac{d^{n-1}}{d x^{n-1}}+Q_{n-1} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+Q_{1} y=\int P d x+c_{1}
$$

where,

$$
\left.\begin{array}{rl}
Q_{n} & =P_{n}, \\
Q_{n-1} & =P_{n-1}-\frac{d P_{n}}{d x}, \\
Q_{n-2} & =P_{n-2}-\frac{d P_{n-1}}{d x}+\frac{d^{2} P_{n}}{d x^{2}}, \\
\cdots & \cdots \\
\cdots & Q_{1}
\end{array}\right) P_{1}-\frac{d P_{2}}{d x}+\frac{d^{2} P_{3}}{d x^{2}}-\cdots+(-1)^{n-1} \frac{d^{n-1} P_{n}}{d x^{n-1}} . ~ l
$$

If the first integral is an exact differential equation the process may be continued as long as the coefficients of each successive integral satisfy the condition of integrability.
8.311 Non-linear differential equations. A non-linear differential equation of the nth order:

$$
V\left(\frac{d^{n} y}{d x^{n}}, \frac{d^{n-1} y}{d x^{n-1}}, \ldots ., \frac{d y}{d x}, y, x\right)=0
$$

to be exact must contain $\frac{d^{n} y}{d x^{n}}$ in the first degree only. Put

$$
\frac{d^{n-1} y}{d x^{n-1}}=p, \quad \frac{d^{n} y}{d x^{n}}=\frac{d p}{d x}
$$

Integrate the equation on the assumption that p is the only variable and $\frac{d p}{d x}$ its differential coefficient. Let the result be V_{1}. In $V d x-d V_{1}, \frac{d^{n-1} y}{d x^{n-1}}$ is the highest differential coefficient and it occurs in the first degree only. Repeat this process as often as may be necessary and the first integral of the exact differential equation will be

$$
V_{1}+V_{2}+\ldots \ldots .
$$

If this process breaks down owing to the appearance of the highest differential coefficient in a higher degree than the first the given differential equation was not exact.
8.312 General condition for an exact differential equation. Write:

$$
\frac{d y}{d x}=y^{\prime} \quad \frac{d^{2} y}{d x^{2}}=y^{\prime \prime} \ldots \ldots \frac{d^{n} y}{d x^{n}}=y^{(n)}
$$

In order that the differential equation:

$$
V\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0
$$

be exact it is necessary and sufficient that

$$
\frac{\partial V}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial V}{\partial y^{\prime}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial V}{\partial y^{\prime \prime}}\right)-\ldots .+(-\mathrm{I})^{n} \frac{\partial^{n}}{\partial x^{n}}\left(\frac{\partial V}{\partial y^{(n)}}\right)=0
$$

8.400 Linear differential equations of the second order.

General form:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

where P, Q, R are, in general, functions of x.
8.401 If a solution of the equation with $R=0$:

$$
y=w
$$

can be found, the complete solution of the given differential equation is:

$$
y=c_{2} w+c_{1} w \int e^{-\int P d x} \frac{d x}{w^{2}}+w \int e^{-\int P d x} \frac{d x}{w^{2}} \int w R e^{\mathcal{S} P d x} d x
$$

8.402 The general linear differential equation of the second order may be reduced to the form:
where:

$$
\begin{aligned}
\frac{d^{2} v}{d x^{2}}+I v & =R e^{\frac{1}{2} \int P d x} \\
y & =v e^{-\frac{1}{2} \int P d x} \\
I & =Q-\frac{I}{2} \frac{d P}{d x}-\frac{I}{4} P^{2}
\end{aligned}
$$

8.403 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0
$$

by the change of independent variable to

$$
\begin{gathered}
z=\int e^{-\int P d x} d x \\
\frac{d^{2} y}{d z^{2}}+Q e^{2 \int P d x} y=0
\end{gathered}
$$

becomes:

By the change of independent variable.

$$
\begin{gathered}
d z=Q e^{\int P d x} d x \\
Q e^{2} \quad P d x=\frac{I}{U(z)}
\end{gathered}
$$

it becomes:

$$
\frac{d}{d z}\left\{\frac{\mathrm{I}}{U} \frac{d y}{d z}\right\}+y^{\prime}=0
$$

8.404 Resolution of the operator. The differential equation:

$$
u \frac{d^{2} y}{d x^{2}}+v \frac{d y}{d x}+w y=0
$$

may sometimes be solved by resolving the operator,

$$
u \frac{d^{2}}{d x^{2}}+v \frac{d}{d x}+w
$$

into the product,

$$
\left(p \frac{d}{d x}+q\right)\left(r \frac{d}{d x}+s\right)
$$

The solution of the differential equation reduces to the solution of

$$
r \frac{d y}{d x}+s y=c_{1} e^{-\int \frac{q}{p} d x}
$$

The equations for determining p, r, q, s are:

$$
\begin{aligned}
p r & =u \\
q r+p s+p \frac{d r}{d x} & =v \\
q s+p \frac{d s}{d x} & =w
\end{aligned}
$$

8.410 Variation of parameters. The complete solution of the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

is

$$
y=c_{1} f_{2}(x)+c_{2} f_{1}(x)+\frac{\mathrm{I}}{C} \int^{x} R(\xi) e^{\int^{\xi} P d x}\left\{f_{2}(x) f_{1}(\xi)-f_{1}(x) f_{2}(\xi)\right\} d \xi
$$

where $f_{1}(x)$ and $f_{2}(x)$ are two particular solutions of the differential equation with $R=0$, and are therefore connected by the relation

$$
f_{1} \frac{d f_{2}}{d x}-f_{2} \frac{d f_{1}}{d x}=C e^{-P d x}
$$

C is an absolute constant depending upon the forms of f_{1} and f_{2} and may be taken as unity.
8.500 The differential equation:

$$
\left(a_{2}+b_{2} x\right) \frac{d^{2} y}{d x^{2}}+\left(a_{1}+b_{1} x\right) \frac{d y}{d x}+\left(a_{0}+b_{0} x\right) y=0
$$

8.501 Let

$$
D=\left(a_{0} b_{1}-a_{1} b_{0}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)-\left(a_{0} b_{2}-a_{2} b_{0}\right)^{2}
$$

Special cases.
$8.502 b_{2}=b_{1}=b_{0}=0$.
The solution is:

$$
y_{1}=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}
$$

where:

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2 a_{2}}
$$

$8.503 D=0, b_{2}=0$,

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(k+2 \lambda) x-m x^{2}} d x\right\}
$$

where:

$$
k=\frac{a_{1}}{a_{2}} \quad m=\frac{b_{1}}{2 a_{2}} \quad \lambda=-\frac{b_{0}}{b_{1}} .
$$

$8.504 D=0, b_{2} \neq 0$:

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(k+2 \lambda) x}\left(a_{2}+b_{2} x\right)^{m} d x\right\}
$$

where

$$
k=\frac{b_{1}}{b_{2}} \quad m=\frac{a_{2} b_{1}-a_{1} b_{2}}{b_{2}{ }^{3}},
$$

and λ is the common root of:

$$
\begin{aligned}
& a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0, \\
& b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0 .
\end{aligned}
$$

8.505 $D \neq 0, b_{2}=b_{1}=0$. If $\eta=f(\xi)$ is the complete solution of:

$$
\begin{aligned}
\frac{d^{2} \eta}{d \xi^{2}}+\xi \eta & =0 \\
y & =e^{\lambda x f}\left(\frac{\alpha+\beta x}{\beta^{3}}\right),
\end{aligned}
$$

where

$$
\alpha=\frac{4 a_{0} a_{2}-a_{1}{ }^{2}}{4 a_{2}^{2}} \quad \beta=\frac{b_{0}}{a_{2}} \quad \lambda=-\frac{a_{1}}{2 a_{2}} .
$$

8.510 The differential equation 8.500 under the condition $D \neq 0$ can always be reduced to the form:

$$
\xi \frac{d^{2} \phi}{d \xi^{2}}+(p+q+\xi) \frac{d \phi}{d \xi}+p \phi=0
$$

8.511 Denote the complete solution of 8.510 :

$$
\phi=F\{\xi\} .
$$

$8.512 b_{2}=b_{1}=0:$

$$
y=e^{\lambda x+(\mu+\nu x) \frac{1}{2}} F\left\{2(\mu+\nu x)^{\frac{3}{2}}\right\},
$$

where:

$$
\begin{gathered}
\lambda=-\frac{a_{1}}{2 a_{2}} \quad \mu=\frac{a_{1}^{2}-4 a_{0} a_{2}}{4 a_{2}^{2}}\left(\frac{4 a_{2}^{2}}{9 b_{0}^{2}}\right)^{\frac{3}{3}}, \\
\nu=-\left(\frac{4 b_{0}}{9 a_{2}}\right)^{\frac{3}{2}}, \\
p=q=\frac{1}{6} .
\end{gathered}
$$

$8.513 b_{2}=0, b_{1} \neq 0:$
where:

$$
y=e^{\lambda x} F\left\{\frac{\left(\alpha_{1}+\beta_{1} x\right)^{2}}{2 \beta_{1}}\right\}
$$

$$
\begin{aligned}
& \lambda=-\frac{b_{0}}{b_{1}} \quad \alpha_{1}=\frac{a_{1} b_{1}-2 a_{2} b_{0}}{a_{2} b_{1}}, \quad \beta_{1}=\frac{b_{1}}{a_{2}} \\
& p=\frac{a_{2} b_{0}^{2}-a_{1} b_{0} b_{1}+a_{0} b_{1}^{2}}{2 b_{1}^{3}} \\
& q=\frac{\mathrm{I}}{2}-p
\end{aligned}
$$

$8.514 \quad b_{2} \neq 0, b_{0}=\frac{b_{1}^{2}}{4 b_{2}}:$
where:

$$
y=e^{\lambda x+\sqrt{\mu+\nu x}} F\{2 \sqrt{\mu+\nu x}\}
$$

$$
\begin{aligned}
& \lambda=-\frac{b_{1}}{2 b_{2}}, \mu=-a_{2} \frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}{ }^{4}}, \\
& \nu=-\frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}{ }^{3}}, \\
& p=q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}^{2}}-\frac{I}{2}
\end{aligned}
$$

$8.515 \quad b_{2} \neq \circ, b_{0} \neq \frac{b_{1}{ }^{2}}{4 b_{2}}:$

$$
y=e^{\lambda_{x}} F\left\{\frac{\beta_{1}\left(\alpha_{2}+\beta_{2} x\right)}{\beta_{2}^{2}}\right\}
$$

where $\alpha_{2}=a_{2}, \beta_{2}=b_{2}, \beta_{1}=2 b_{2} \lambda+b_{1}$ and λ is one of the roots of

$$
\begin{gathered}
b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0 \\
p=\frac{a_{2} \lambda^{2}+a_{1} \lambda+a_{0}}{2 b_{2} \lambda+b_{1}}, \quad q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}{ }^{2}}-p
\end{gathered}
$$

8.520 The solution of 8.510 will be denoted:

$$
\phi=F(p, q, \xi)
$$

I.

$$
F(p, q, \xi)=e^{-\xi} F(q, p,-\xi)
$$

2.

$$
F(p, q,-\xi)=e^{\xi} F(q, p, \xi)
$$

3.

$$
F(q, p, \xi)=e^{-\xi} F(p, q,-\xi)
$$

$$
F(p, q, \xi)=\xi^{1-p-q} F(\mathrm{I}-q, \mathrm{I}-p, \xi)
$$

$$
F(-p,-q, \xi)=\xi^{1+p+q} F(\mathrm{I}+q, \mathrm{I}+p, \xi)
$$

6.

$$
F(p+m, q, \xi)=\frac{d^{m}}{d \xi^{m}} F(p, q, \xi)
$$

7.

$$
F(p, q+n, \xi)=(-\mathrm{I})^{n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(p, q, \xi)\right\}
$$

8.521 The function $F(p, q, \xi)$ can always be found if it is known for positive proper fractional values of p and q.
$8.522 \quad p$ and q positive improper fractions:

$$
p=m+r, \quad q=n+s
$$

where m and n are positive integers and r and s positive proper fractions.

$$
F(m+r, n+s, \xi)=(-1)^{n} \frac{d^{m}}{d \xi^{m}}\left[e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(r, s, \xi)\right\}\right] .
$$

$8.523 p$ and q both negative:

$$
p=-(m-\mathrm{I}+r) \quad q=-(n-\mathrm{I}+s),
$$

$F(-m+\mathrm{I}-r,-n+\mathrm{I}-s, \xi)=(-\mathrm{I})^{m} \xi^{m+n+r+s-1} \frac{d^{n}}{d \xi^{n}}\left[e^{-\xi} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(s, r, \xi)\right\}\right]$.
$8.524 \quad p$ positive, q negative:

$$
\begin{gathered}
p=m+r, \quad q=-n+s, \\
F(m+r,-n+s, \xi)=\frac{d^{m}}{d \xi^{m}}\left[\xi^{n+1-r-s} \frac{d^{n}}{d \xi^{n}} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right] .
\end{gathered}
$$

$8.525 \quad p$ negative, q positive:

$$
\begin{gathered}
p=-m+r, \quad q=n+s, \\
F(-m+r, n+s, \xi)=(-\mathrm{I})^{m+n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left[\xi^{m+1-r-s} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right\}\right] .
\end{gathered}
$$

8.530 If either p or q is zero the relation $D=0$ is satisfied and the complete solution of the differential equation is given in $8.502,3$.
8.531 If $p=m$, a positive integer:
$\phi=F(m, q, \xi)=c_{1} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi} \int \xi^{q-1} e^{\xi} d \xi\right]+c_{2} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi}\right]$.
8.532 If $p=m$, a positive integer and both q and ξ are positive: $\phi=F(m, q, \xi)=c_{1} \int_{0}^{\mathrm{r}} u^{m-1}(\mathrm{r}-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int^{\infty}(\mathrm{r}+u)^{m-1} u^{q-1} e^{-\xi u} d u$.
8.533 If $q=n$, a positive integer:
$\phi=F(p, n, \xi)=c_{1} e^{-\xi} \frac{d^{n-1}}{d \xi^{n-1}}\left[\xi^{-p} e^{\xi} \int \xi^{p-1} e^{-\xi} d \xi\right]+c_{2} e^{-\xi} \frac{d^{n-1}}{d \xi^{n-1}}\left[\xi^{-p} e^{\xi}\right]$.
8.534 If $q=n$, a positive integer and both p and ξ are positive: $\phi=F(p, n, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{I}-u)^{n-1} e^{-\xi} u d u+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{n-1} e^{-\xi u} d u$.
8.540 The general solution of equation 8.510 may be written:

$$
\begin{aligned}
& \phi=F(p, q, \xi)=c_{1} M+c_{2} N, \\
& M=\int_{0}^{1} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u \\
& p>0 \\
& N=\int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{q-1} e^{-\xi(1+u)} d u \quad l>0 \\
& M=\frac{\Gamma(p) \Gamma(q)}{\Gamma(s)}\left\{\mathrm{I}-\frac{p}{s} \frac{\xi}{\mathrm{I}!}+\frac{p(p+\mathrm{I})}{s(s+\mathrm{I})} \frac{\xi^{2}}{2!}-\frac{p(p+\mathrm{I})(p+2)}{s(s+\mathrm{I})(s+2)} \frac{\xi^{3}}{3!}+\ldots\right\} \\
& s=p+q, \\
& N=\frac{\Gamma(q) e^{-\xi}}{\xi^{q}}\left\{\mathrm{I}+\frac{(p-\mathrm{I}) q}{\mathrm{I}!\xi}+\frac{(p-\mathrm{I})(p-2) q(q+\mathrm{I})}{2!\xi}+\ldots .\right. \\
& +\frac{(p-1)(p-2) \cdots(p-\overline{n-1})(q)(q+1) \ldots(q+n-2)}{(n-1)!\xi^{n-1}} \\
& \left.+\frac{\rho(p-1)(p-2) \ldots(p-n) q(q+1)(q+2) \ldots(q+n-1)}{n!\xi^{n}}\right\},
\end{aligned}
$$

where $\circ<\rho<\mathrm{I}$ and the real part of ξ is positive.

THE COMPLETE SOLUTION OF EQUATION 8.510 IN SPECIAL CASES
$8.550 p>0, q>0$, real part of $\xi>0$:

$$
F(p, q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{q-1} e^{-\xi u} d u .
$$

$8.551 p>0, q>0, \xi<0$:

$$
F(p, q, \xi)=c_{1} \int_{0}^{\mathrm{x}} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} \int^{\infty} u^{p-1}(\mathrm{I}+u)^{q-1} e^{\xi u} d u
$$

$8.552 p<0, q<0, \xi>0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{I}}(\mathrm{I}-u)^{-p} u^{-q} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty} u^{-p}(\mathrm{I}+u)^{-q} e^{-\xi u} d u\right\}
$$

$8.553 p<0, q<0, \xi<0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{r}}(\mathrm{I}-u)^{\sharp+p} u^{-q} e^{-\xi u} d u+c_{2} \int_{0}^{\infty}(\mathrm{I}+u)^{-p} u^{-q} e^{+\xi u} d u\right\}
$$

$8.554 p>0, q<0$

$p=m+r$, where m is a positive integer and r a proper fraction.

$$
F(m+r, q, \xi)=\frac{d^{m}}{d \xi^{m}}\left\{\xi^{1-r-q} F(\mathrm{I}-r, \mathrm{x}-q, \xi)\right\}
$$

$\xi>0: \quad F(\mathrm{I}-r, \mathrm{I}-q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-\tau}(\mathrm{I}-u)^{-q} e^{-\xi u} d u$

$$
+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{\rightarrow} u^{-q} e^{-\xi u} d u
$$

$\xi<0: \quad F(\mathrm{I}-r, \mathrm{I}-q, \xi)=c_{1} \int_{0}^{\mathrm{r}} u^{-r}(\mathrm{I}-u)^{-q} e^{-\xi u} d u$

$$
+c_{2} \int_{0}^{\infty} u^{-r}(\mathrm{I}+u)^{-q} e^{\xi u} d u
$$

$8.555 p<0, q>0$,
$q=n+s$, where n is a positive integer and s a proper fraction.

$$
F(p, n+s, \xi)=e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} \xi^{1-p-s} F(\mathrm{I}-s, \mathrm{I}-p, \xi)\right\}
$$

$\xi>0: \quad F(\mathrm{I}-s, \mathrm{I}-p, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-s}(\mathrm{I}-u)^{-p} e^{-\xi u} d u$ $+c_{2} e^{-\xi} \int_{0}^{\infty}(I+u)^{-s} u^{-p} e^{-\xi u} d u$,
$\xi<0: \quad F(\mathrm{I}-s, \mathrm{I}-p, \xi)=c_{1} \int_{0}^{\mathrm{r}} u^{-s}(\mathrm{I}-u)^{-p} e^{-\xi} d u$

$$
+c_{2} \int_{0}^{\infty} u^{-s}(\mathrm{I}+u)^{-p_{\epsilon} \xi u} d u
$$

8.556ξ pure imaginary:
$p=r, q=s$, where r and s are positive proper fractions.
$r+s \neq \mathrm{I}$:

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
&+c_{2} \xi^{1-r-s} \int_{0}^{\mathrm{I}} u^{-s}(\mathrm{I}-u)^{\rightarrow} e^{-\xi u} d u
\end{aligned}
$$

$r+s=1:$

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
& \quad+c_{2} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} \log \{\xi u(\mathrm{I}-u)\} d u
\end{aligned}
$$

8.600 The differential equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\gamma-x) \frac{d y}{d x}-\alpha y=0
$$

is satisfied by the confluent hypergeometric function. The complete solution is:

$$
y=c_{1} M(\alpha, \gamma, x)+c_{2} x^{1-\gamma} M(\alpha-\gamma+\mathbf{1}, 2-\gamma, x)=\bar{M}(\alpha, \gamma, x)
$$

where

$$
M(\alpha, \gamma, x)=\mathrm{I}+\frac{\alpha}{\gamma} \frac{x}{\mathrm{I}}+\frac{\alpha(\alpha+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} \frac{x^{2}}{2!}+\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} \frac{x^{3}}{3!}+\ldots .
$$

The series is absolutely and uniformly convergent for all real and complex values of α, γ, x, except when γ is a negative integer or zero.

When γ is a positive integer the complete solution of the differential equation is:

$$
\begin{aligned}
y & =\left\{c_{1}+c_{2} \log x\right\} M(\alpha, \gamma, x)+c_{2}\left\{\frac{a x}{\gamma}\left(\frac{I}{\alpha}-\frac{I}{\gamma}-\mathrm{I}\right)\right. \\
& +\frac{\alpha(\alpha+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} \frac{x^{2}}{2!}\left(\frac{\mathrm{I}}{\alpha}+\frac{\mathrm{I}}{\alpha+\mathrm{I}}-\frac{\mathrm{I}}{\gamma}-\frac{\mathrm{I}}{\gamma+\mathrm{I}}-\mathrm{I}-\frac{\mathrm{I}}{2}\right) \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} \frac{x^{3}}{3!}\left(\frac{\mathrm{I}}{\alpha}+\frac{\mathrm{I}}{\alpha+\mathrm{I}}+\frac{\mathrm{I}}{\alpha+2}-\frac{\mathrm{I}}{\gamma}-\frac{\mathrm{I}}{\gamma+\mathrm{I}}-\frac{\mathrm{I}}{\gamma+2}-\mathrm{I}-\frac{\mathrm{I}}{2}-\frac{\mathrm{I}}{3}\right) \\
& +\ldots .\}
\end{aligned}
$$

8.601 For large values of x the following asymptotic expansion may be used: $M(\alpha, \gamma, x)$

$$
\begin{aligned}
& =\frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)}(-x)^{-\alpha}\left\{\mathrm{I}-\frac{\alpha(\alpha-\gamma+\mathrm{I})}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{\alpha(\alpha+\mathrm{I})(\alpha-\gamma+\mathrm{I})(\alpha-\gamma+2)}{2!} \frac{\mathrm{I}}{x^{2}} \cdots\right\} \\
& +\frac{\Gamma(\gamma)}{\Gamma(\alpha)} e^{x} x^{\alpha-\gamma}\left\{\mathrm{I}+\frac{(\mathrm{I}-\alpha)(\gamma-\alpha)}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{(\mathrm{I}-\alpha)(2-\alpha)(\gamma-\alpha)(\gamma-\alpha+\mathrm{I})}{2!} \frac{\mathrm{I}}{x^{2}}+\cdots\right\}
\end{aligned}
$$

8.61

I. $M(\alpha, \gamma, x)=e^{x} M(\gamma-\alpha, \gamma,-x)$.
2. $x^{1-\gamma} M(\alpha-\gamma+\mathrm{I}, 2-\gamma, x)=e^{x} x^{1-\gamma} M(\mathrm{I}-\alpha, 2-\gamma,-x)$.
3. $\frac{x}{\gamma} M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=M(\alpha+\mathrm{I}, \gamma, x)-M(\alpha, \gamma, x)$.
4. $\alpha M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha, \gamma, x)$.
5. $(\alpha+x) M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha+\mathrm{I}, \gamma, x)$.
6. $\alpha \gamma M(\alpha+\mathrm{I}, \gamma, x)=\gamma(\alpha+x) M(\alpha, \gamma, x)-x(\gamma-\alpha) M(\alpha, \gamma+\mathrm{I}, x)$.
7. $\alpha M(\alpha+\mathrm{I}, \gamma, x)=(x+2 \alpha-\gamma) M(\alpha, \gamma, x)+(\gamma-\alpha) M(\alpha-\mathrm{r}, \gamma, x)$.
8. $\frac{\gamma-\alpha}{\gamma} x M(\alpha, \gamma+\mathrm{I}, x)=(x+\gamma-\mathrm{I}) M(\alpha, \gamma, x)+(\mathrm{I}-\gamma) M(\alpha, \gamma-\mathrm{I}, x)$.

8.62

I. $\frac{d}{d x} M(\alpha, \gamma, x)=\frac{\alpha}{\gamma} M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)$.
2. $(\mathrm{I}-\alpha) \int_{0}^{x} M(\alpha, \gamma, x) d x=(\mathrm{I}-\gamma) M(\alpha-\mathrm{I}, \gamma-\mathrm{I}, x)+(\gamma-\mathrm{I})$.

Special differential equations and their solutions in terms of $\bar{M}(\alpha, \gamma, x)$ 8.630

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{4 \alpha q+p^{2}-q^{2} m^{2}+2 q x(p+q m)\right\} y=0 \\
y=e^{-(p+q m) x} \bar{M}\left(\alpha, \frac{I}{2},-q(x-m)^{2}\right)
\end{gathered}
$$

8.631

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{\gamma}{x}\right) \frac{d y}{d x}+\left\{p^{2}-t^{2}+\frac{\mathrm{I}}{x}(\gamma p+\gamma t-2 \alpha t)\right\} y=0, \\
y=e^{-(p+t) x} \bar{M}(\alpha, \gamma, 2 t x) .
\end{gathered}
$$

8.632

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{q+c(\mathrm{I}-4 \alpha)+(p+q x)^{2}-c^{2}(x-m)^{2}\right\} y=0, \\
y=e^{-p x-\frac{1}{2} q x^{2}-\frac{1}{-} c(x-m)^{2}} \bar{M}\left(\alpha, \frac{\mathrm{I}}{2}, c(x-m)^{2}\right) .
\end{gathered}
$$

8.633

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{q}{x}\right) \frac{d y}{d x}+\left\{p^{2}-\imath^{2}+\frac{I}{x}(p q+\gamma t-2 \alpha t)+\frac{\mathrm{I}}{4 x^{2}}(\gamma-q)(2-q-\gamma)\right\} y=0, \\
y=e^{-(p+t) x} x^{\frac{\gamma-q}{2}} \bar{M}(\alpha, \gamma, 2 t x) .
\end{gathered}
$$

8.634

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left\{\frac{2 \gamma-1}{x}+2 \alpha+2(b-c) x\right\} \frac{d y}{d x} \\
+\left\{\frac{\alpha(2 \gamma-1)}{x}+\left(a^{2}+2 b \gamma-4 \alpha c\right)+2 a(b-c) x+b(b-2 c) x^{2}\right\} y=0, \\
y=e^{-a x-\frac{3}{2} b x^{2}} \bar{M}\left(\alpha, \gamma, c x^{2}\right) .
\end{gathered}
$$

8.635

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x}\left(2 p x^{r}+q r-r+\mathrm{I}\right) \frac{d y}{d x} \\
+\frac{\mathrm{I}}{x^{2}}\left\{\left(p^{2}-t^{2}\right) x^{2 r}+r(p q+\gamma t-2 \alpha t) x^{r}+\frac{\mathrm{I}}{4} r^{2}(\gamma-q)(2-q-\gamma)\right\} y=0 \\
y=e^{-\frac{(p+t)}{r} x^{r}} x^{\frac{r}{2}(\gamma-q)} \bar{M}\left(\alpha, \gamma, \frac{2 t x^{r}}{r}\right)
\end{gathered}
$$

8.640 Tables and graphs of the function $M(\alpha, \gamma, x)$ are given by Webb and Airey (Phil. Mag. 36, p. 129, 1918) for getting approximate numerical solu-
tions of any of these differential equations. The range in x is I to Io ; in $\alpha,+0.5$ to +4.0 and -0.5 to -3.0 ; in γ, I to 7 . For negative values of x the equations of 8.61 may be used.

SPECIAL DIFFERENTIAL EQUATIONS

8.700

$$
\frac{d^{2} y}{d x^{2}}+n^{2} y=X(x)
$$

where $X(x)$ is any function of x. The complete solution is:

$$
y=c_{1} e^{n x}+c_{2} e^{-n x}+\frac{1}{n} \int^{x} X(\xi) \sinh n(x-\xi) d \xi .
$$

8.701

$$
\frac{d^{2} y}{d x^{2}}+\kappa \frac{d y}{d x}+n^{2} y=X(x)
$$

The complete solution, satisfying the conditions:

$$
\begin{array}{ll}
x=0 & y=y_{0} \\
x=0 & \frac{d y}{d x}=y_{0}^{\prime},
\end{array}
$$

$y=e^{-\frac{1}{2} \kappa x}\left\{y_{0}^{\prime} \frac{\sin n^{\prime} x}{n^{\prime}}+y_{0}\left(\cos n^{\prime} x+\frac{\kappa}{2 n^{\prime}} \sin n^{\prime} x\right)\right\}$

$$
+\frac{\mathrm{I}}{n^{\prime}} \int_{0}^{x} e^{-\frac{1}{2} \kappa(x-\xi)} \sin n^{\prime}(x-\xi) X(\xi) d \xi
$$

where

$$
n^{\prime}=\sqrt{n^{2}-\frac{\kappa^{2}}{4}}
$$

8.702

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(x)\left(\frac{d y}{d x}\right)^{2}=0, \\
y=\int \frac{e^{-\int f(x) d x} d x}{\int e^{-\int f(x) d x} g(x) d x+c_{1}}+c_{2} .
\end{gathered}
$$

8.703

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y)\left(\frac{d y}{d x}\right)^{2}+g(y)=0, \\
x= \pm \int \frac{e^{\int f(y) d y} d y}{\left\{c_{1}-2 \int e^{2 \int f(x) d y} g(y) d y\right\}^{\frac{1}{2}}}+c_{2} .
\end{gathered}
$$

8.704

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0, \\
x=\int \frac{e^{\int g(y) d y} d y}{c_{1}-\int e^{\int g(y) d y} f(y) d y}+c_{2} .
\end{gathered}
$$

8.705

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0, \\
\int e^{f(y) d y} d y=c_{1} \int e^{-\iint(x) d x} d x+c_{2} .
\end{gathered}
$$

8.706

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b x y=0 . \\
& y=e^{-a x}\left\{c_{1}+c_{2} \int e^{a x-\frac{1}{b} b x^{2}} d x\right\} .
\end{aligned}
$$

8.707

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b y=0, \\
& y=e^{-b x}\left\{c_{1}+c \int x^{-a} e^{b x} d x\right\}
\end{aligned}
$$

8.708

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+\frac{b}{x^{2}} y=0 .
$$

I. $(a-\mathrm{I})^{2}>4 b ; \quad \lambda=\frac{\mathrm{I}}{2} \sqrt{(a-\mathrm{I})^{2}-4 b}$

$$
y=x^{-\frac{a-\mathrm{r}}{2}\left\{c_{1} x+c_{2} x^{-\lambda}\right\} . ~}
$$

2. $(a-\mathrm{I})^{2}<4 b ; \quad \lambda=\frac{\mathrm{I}}{2} \sqrt{4 b-(a-\mathrm{I})^{2}}$

$$
y=x^{-\frac{a-\mathrm{F}}{2}\left\{c_{1} \cos (\lambda \log x)+c_{2} \sin (\lambda \log x)\right\} .}
$$

3. $(a-\mathrm{r})^{2}=4 b$

$$
y=x^{-\frac{a-\mathrm{r}}{2}}\left(c_{1}+c_{2} \log x\right) .
$$

8.709

$$
\frac{d^{2} y}{d x^{2}}+2 b x \frac{d y}{d x}+\left(a+b^{2} x^{2} y=0\right.
$$

I. $a<b, \quad \lambda=\sqrt{b-a}$,

$$
y=e^{-\frac{b x^{2}}{2}}\left(c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}\right) .
$$

2. $a>b$,

$$
\begin{aligned}
& \lambda=\sqrt{a-b}, \\
& \quad y=e^{-\frac{b x^{2}}{2}}\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right) .
\end{aligned}
$$

8.710

$$
\begin{gathered}
f(x) \frac{d^{2} y}{d x^{2}}-(a+b x) \frac{d y}{d x}+b y=0, \\
\int \frac{a+b x}{f(x)} d x=X, \\
y=c_{1}(a+b x)+c_{2}\left\{e^{X}-(a+b x) \int \frac{1}{f(x)} e^{X} d x\right\}
\end{gathered}
$$

8.711

$$
\begin{gathered}
\left(a^{2}-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(\mu-\mathrm{I}) x \frac{d y}{d x}-\mu(\mu-\mathrm{I}) y=0 \\
y=(a+x)_{\mu}\left\{\left(_{1}+c_{2} \int \frac{(a-x)^{\mu-1}}{(a+x)^{\mu+1}} d x\right\} .\right.
\end{gathered}
$$

8.712

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\mu^{2} y=\frac{a}{x} \\
y=\frac{I}{x}\left\{{ }_{1} \cos \mu x+c_{2} \sin \mu x+\frac{a}{\mu^{2}}\right\} .
\end{gathered}
$$

8.713

$$
\begin{aligned}
\frac{d^{4} y}{d x^{4}}+ & 2 d \frac{d^{3} y}{d x^{3}}+c \frac{d^{2} y}{d x^{2}}+2 b \frac{d y}{d x}+a y=0 \\
y=c_{1} e^{-\rho_{1} x}\left\{\rho_{1} \sin \left(\omega_{1} x+\alpha_{1}\right)\right. & \left.+\omega_{1} \cos \left(\omega_{1} x+\alpha_{1}\right)\right\} \\
& +c_{2} e^{-\rho_{2} x}\left\{\rho_{2} \sin \left(\omega_{2} x+\alpha_{2}\right)+\omega_{2} \cos \left(\omega_{2} x+\alpha_{2}\right)\right\}
\end{aligned}
$$

where:

$$
\begin{aligned}
4 \omega_{1}^{2} & =z+c-2 d^{2}+2 \sqrt{z^{2}-4 a}-2 d \sqrt{z-c+d^{2}}, \\
4 \omega_{2}^{2} & =z+c-2 d^{2}-2 \sqrt{z^{2}-4 a}+2 d \sqrt{z-c+d^{2}}, \\
2 \rho_{1} & =d+\sqrt{z-c+d^{2}}, \\
2 \rho_{2} & =d-\sqrt{z-c+d^{2}},
\end{aligned}
$$

and z is a root of

$$
\begin{aligned}
& z^{3}-c z^{2}-4(a-b d) z+4\left(a c-a d^{2}-b^{2}\right)=0 \\
& \quad \text { (Kiebitz, Ann. d. Physik, 40, p. I38, I9I3) }
\end{aligned}
$$

IX. DIFFERENTIAL EQUATIONS (continued)

9.00 Legendre's Equation:

$$
\left(\mathrm{I}-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+\mathrm{I}) y=0 .
$$

9.001 If n is a positive integer one solution is the Legendre polynomial, or Zonal Harmonic, $P_{n}(x)$:

$$
P_{n}(x)=\frac{(2 n)!}{2^{n}(n!)^{2}}\left\{x^{n}-\frac{n(n-\mathrm{I})}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot(2 n-1)(2 n-3)} x^{n-4}-\ldots\right\} .
$$

9.002 If n is even the last term in the finite series in the brackets is:

$$
(-I)^{\frac{n}{2}} \frac{(n!)^{3}}{\left(\frac{n}{2}!\right)^{2}(2 n)!}
$$

9.003 If n is odd the last term in the brackets is:

$$
(-\mathrm{I})^{\frac{n-1}{2}} \frac{(n!)^{2}(n-\mathrm{I})!}{\left(\left[\frac{1}{2}(n-\mathrm{I})\right]!\right)^{2}(2 n-\mathrm{I})!} x .
$$

9.010 If n is a positive integer a second solution of Legendre's Equation is the infinite series:

$$
\begin{aligned}
Q_{n}(x)=\frac{2^{n}(n!)^{2}}{(2 n+1)!}\left\{x^{-(n+1)}\right. & +\frac{(n+1)(n+2)}{2(2 n+3)} x^{-(n+3)} \\
& \left.+\frac{(n+1)(n+2)(n+3)(n+4)}{2 \cdot 4 \cdot(2 n+3)(2 n+5)} x^{-(n+5)}+\ldots\right\} .
\end{aligned}
$$

9.011

$$
P_{2 n}(\cos \theta)=(-I)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}\left\{\sin ^{2 n} \theta-\frac{(2 n)^{2}}{2!} \sin ^{2 n-2} \theta \cos ^{2} \theta\right.
$$

$$
\left.+\ldots+(-\mathrm{I})^{n} \frac{(2 n)^{2}(2 n-2)^{2} \ldots 4^{2} 2^{2}}{(2 n)!} \cos ^{2 n} \theta\right\} .
$$

9.012
$P_{2 n+1}(\cos \theta)=(-\mathrm{I})^{n} \frac{(2 n+\mathrm{I})!}{2^{2 n}(n!)^{2}}\left\{\sin ^{2 n} \theta \cos \theta-\frac{(2 n)^{2}}{3!} \sin ^{2 n-2} \theta \cos ^{3} \theta\right.$

$$
\left.+\ldots+(-\mathrm{I})^{n} \frac{(2 n)^{2}(2 n-2)^{2} \ldots 4^{2} 2^{2}}{(2 n+1)!} \cos ^{2 n+1} \theta\right\} .
$$

(Brodetsky: Mess. of Math. 42, p. 65, 1912)
9.02 Recurrence formulae for $P_{n}(x)$:
I.

$$
(n+\mathrm{I}) P_{n+1}+n P_{n-1}=(2 n+\mathrm{I}) x P_{n}
$$

2.

$$
(2 n+\text { I }) P_{n}=\frac{d P_{n+1}}{d x}-\frac{d P_{n-1}}{d x}
$$

3.
4.

$$
n P_{n}=x \frac{d P_{n}}{d x}-\frac{d P_{n-1}}{d x}
$$

5.

$$
(n+1) P_{n}=\frac{d P_{n+1}}{d x}-x \frac{d P_{n}}{d x}
$$

$$
\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=(n+\mathrm{I})\left(x P_{n}-P_{n+1}\right)
$$

6.

$$
\begin{aligned}
& \left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=n\left(P_{n-1}-x P_{n}\right) \\
& (2 n+\mathrm{I})\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=n(n+\mathrm{I})\left(P_{n-1}-P_{n+1}\right)
\end{aligned}
$$

9.028 Recurrence formulae for $Q_{n}(x)$. These are the same as those for $P_{n}(x)$.
9.030 Special Values.

$$
\begin{aligned}
& P_{0}(x)=\mathrm{I} \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-\mathrm{I}\right), \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right), \\
& P_{6}(x)=\frac{1}{16}\left(23 \mathrm{I} x^{6}-315 x^{4}+105 x^{2}-5\right), \\
& P_{7}(x)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right), \\
& P_{8}(x)=\frac{1}{128}\left(6435 x^{8}-12012 x^{6}+6930 x^{4}-1260 x^{2}+35\right) .
\end{aligned}
$$

9.031

$$
\begin{aligned}
& Q_{0}(x)=\frac{\mathrm{I}}{2} \log \frac{x+\mathrm{I}}{x-\mathrm{I}} \\
& Q_{1}(x)=\frac{\mathrm{I}}{2} x \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\mathrm{I}, \\
& Q_{2}(x)=\frac{\mathrm{I}}{2} P_{2}(x) \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\frac{3}{2} x, \\
& Q_{3}(x)=\frac{\mathrm{I}}{2} P_{3}(x) \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\frac{5}{2} x^{2}+\frac{2}{3} .
\end{aligned}
$$

9.032

$$
\begin{aligned}
P_{2 n}(\mathrm{o}) & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n} \\
P_{2 n+1}(\mathrm{o}) & =\mathrm{o} \\
P_{n}(\mathrm{I}) & =\mathrm{I} \\
P_{n}(-x) & =(-\mathrm{I})^{n} P_{n}(x)
\end{aligned}
$$

9.033 If $z=r \cos \theta$:

$$
\begin{aligned}
\frac{\partial P_{n}(\cos \theta)}{\partial z}=\frac{n+\mathrm{I}}{r}\left\{P_{1}(\cos \theta) P_{n}(\right. & \left.\cos \theta)-P_{n+1}(\cos \theta)\right\} \\
& =\frac{n(n+\mathrm{I})}{(2 n+\mathrm{I}) r}\left\{P_{n-1}(\cos \theta)-P_{n+1}(\cos \theta)\right\}
\end{aligned}
$$

9.034 Rodrigues' Formula:

$$
P_{n}(x)=\frac{\mathrm{I}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-\mathrm{I}\right)^{n}
$$

9.035 If $z=r \cos \theta$:

$$
P_{n}(\cos \theta)=\frac{(-\mathrm{I})^{n}}{n!} r^{n+1} \frac{\partial^{n}}{\partial z^{n}}\left(\frac{\mathrm{I}}{r}\right)
$$

9.036 If $m \leqslant n:$

$$
P_{m}(x) P_{n}(x)=\sum_{k=0}^{m} \frac{A_{m-k} A_{k} A_{n-k}}{A_{n+m-k}}\left(\frac{2 n+2 m-4 k+\mathrm{I}}{2 n+2 m-2 k+\mathrm{I}}\right) P_{n+m-2 k}(x)
$$

where:

$$
A_{r}=\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 r-\mathrm{I})}{r!}
$$

MEHLER'S INTEGRALS

9.040 For all values of n :

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int_{0}^{\theta} \frac{\cos \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \phi-\cos \theta)}}
$$

9.041 If n is a positive integer:

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \theta-\cos \phi)}}
$$

LAPLACE'S INTEGRALS, FOR ALL VALUES OF n
9.042

$$
P_{n}(x)=\frac{I}{\pi} \int_{0}^{\pi}\left\{x+\sqrt{x^{2}-\mathrm{I}} \cos \phi\right\}^{n} d \phi
$$

9.043

$$
Q_{n}(x)=\int^{\infty} \frac{d \phi}{\left\{x+\sqrt{x^{2}-I} \cosh \phi\right\}^{n+1}}
$$

INTEGRAL PROPERTIES

9.044

$$
\begin{aligned}
\int_{-1}^{+1} P_{m}(x) P_{n}(x) d x & =0 \text { if } m \neq n \\
& =\frac{2}{2 n+\mathrm{I}} \text { if } m=n .
\end{aligned}
$$

9.045

$$
\begin{aligned}
(m-n)(m+n+\mathrm{I}) & \int_{x}^{\mathrm{I}} P_{m}(x) P_{n}(x) d x \\
& =\frac{1}{2}\left\{P_{m}\left[(n+\mathrm{r}) P_{n+1}-n P_{n-1}\right]-P_{n}\left[(m+\mathrm{r}) P_{m+1}-m P_{m-1}\right]\right\}
\end{aligned}
$$

9.046

$$
\begin{aligned}
(2 n+\mathrm{I}) \int^{\mathrm{I}} P_{n}{ }^{2}(x) d x=\mathrm{I}-x P_{n}{ }^{2}-2 x\left(P_{1}^{2}\right. & \left.+P_{2}^{2}+\ldots+P_{n-1}{ }^{2}\right) \\
& +2\left(P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}\right)
\end{aligned}
$$

EXPANSIONS IN LEGENDRE FUNCTIONS

9.050 Neumann's expansion:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} P_{n}(x), \\
a_{n} & =\left(n+\frac{1}{2}\right) \int_{-\mathrm{I}}^{+\mathrm{I}} f(x) P_{n}(x) d x, \\
& =\frac{n+\frac{1}{2}}{2^{n} n!} \int_{-\mathrm{I}}^{+\mathrm{I}} f^{(n)}(x) \cdot\left(\mathrm{I}-x^{2}\right)^{n} d x .
\end{aligned}
$$

9.051 Any polynomial in x may be expressed as a series of Legendre's polynomials. If $f_{n}(x)$ is a polynomial of degree n :

$$
\begin{aligned}
f_{n}(x) & =\sum_{k=0}^{n} a_{k} P_{k}(x), \\
a_{k} & =\frac{2 k+\mathrm{I}}{2} \int_{-\mathrm{I}}^{+\mathrm{I}} f_{n}(x) P_{k}(x) d x .
\end{aligned}
$$

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS

9.060 For all positive real values of n :
I. $\cos n \theta=-\frac{\mathrm{I}+\cos n \pi}{2\left(n^{2}-\mathrm{I}\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}-\frac{\mathrm{I}-\cos n \pi}{2\left(n^{2}-2^{2}\right)}\left\{3 P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-\mathrm{I}^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{\mathrm{II}\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\} .
\end{aligned}
$$

2. $\sin n \theta=-\frac{\mathrm{I}}{2} \frac{\sin n \pi}{\left(n^{2}-\mathrm{I}\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}+\frac{\mathrm{I}}{2} \frac{\sin n \pi}{\left(n^{2}-2^{2}\right)}\left\{3 P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-\mathrm{I}^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{1 \mathrm{I}\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\}
\end{aligned}
$$

9.061 If n is a positive integer:
I. $\cos n \theta=\frac{\mathrm{I}}{2} \frac{2 \cdot 4 \cdot 6 \ldots 2 n}{3 \cdot 5 \cdot 7 \cdots(2 n+\mathrm{I})}\left\{(2 n+\mathrm{I}) P_{n}(\cos \theta)\right.$

$$
+(2 n-3) \frac{\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]} P_{n-2}(\cos \theta)
$$

$$
\left.+(2 n-7) \frac{\left[n^{2}-(n+1)^{2}\right]\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]\left[n^{2}-(n-4)^{2}\right]} P_{n-4}(\cos \theta)+\ldots\right\}
$$

2. $\sin n \theta=\frac{\pi}{4} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-3)}{2 \cdot 4 \cdot 6 \ldots(2 n-2)}\left\{(2 n-\mathrm{I}) P_{n-1}(\cos \theta)\right.$

$$
+(2 n+3) \frac{\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]} P_{n+1}(\cos \theta)
$$

$$
\left.+(2 n+7) \frac{\left[n^{2}-(n-1)^{2}\right]\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]\left[n^{2}-(n+4)^{2}\right]} P_{n+3}(\cos \theta)+\ldots\right\}
$$

9.062
I. $\quad \theta=\frac{\pi}{2}-\frac{\pi}{2} \sum_{n=\mathrm{I}}^{\infty} \frac{(4 n-\mathrm{I})}{(2 n-\mathrm{I})^{2}}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
2. $\sin \theta=\frac{\pi}{4}-\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{(4 n+\mathrm{I})}{(2 n-\mathrm{I})(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n}(\cos \theta)$.
3. $\cot \theta=\frac{\pi}{2} \sum_{n=\mathrm{I}}^{\infty} \frac{2 n(4 n-\mathrm{I})}{(2 n-\mathrm{I})}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
4. $\csc \theta=\frac{\pi}{2}+\frac{\pi}{2} \sum_{n=1}^{\infty}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots .2 n}\right)^{2} P_{2 n}(\cos \theta)$.
9.063
I. $\log \frac{\mathrm{I}+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n+\mathrm{I}} P_{n}(\cos \theta)$.
2. $\log \frac{\tan \frac{1}{4}(\pi-\theta)}{\frac{1}{2} \sin \theta}=-\log \sin \frac{\theta}{2}-\log \left(I+\sin \frac{\theta}{2}\right)=\sum_{n=1}^{\infty} \frac{1}{n} P_{n}(\cos \theta)$.
9.064 $K(k)$ and $E(k)$ denote the complete elliptic integrals of the first and second kinds, and $k=\sin \theta$:
I. $K(k)=\frac{\pi^{2}}{4}+\frac{\pi^{2}}{4} \sum_{n=1}^{\infty}(-\mathrm{I})^{n}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$.
2. $E(k)=\frac{\pi^{2}}{8}+\frac{\pi^{2}}{4} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(4 n+\mathrm{I})}{(2 n-\mathrm{I})(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$. (Hargreaves, Mess. of Math. 26, p. 89, 1897)
9.070 The differential equation:

$$
\left(\mathrm{I}-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left\{n(n+\mathrm{I})-\frac{m^{2}}{\mathrm{I}-x^{2}}\right\} y=0 .
$$

If m is a positive integer, and $-\mathrm{r}>x>+\mathrm{r}$, two solutions of this differential equation are the associated Legendre functions

$$
\begin{aligned}
& P_{n}^{m}(x)=\left(\mathrm{I}-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}, \\
& Q_{n}^{m}(x)=\left(\mathrm{I}-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}} .
\end{aligned}
$$

9.071 If n, m, r are positive integers, and $n>m, r>m$:

$$
\begin{aligned}
\int_{-\mathrm{I}}^{+\mathrm{I}} P_{n}^{m}(x) P_{r}^{m}(x) d x & =0 \text { if } r \neq n \\
& =\frac{2}{2 n+\mathrm{I}} \frac{(n+m)!}{(n-m)!} \text { if } r=n
\end{aligned}
$$

9.100 Bessel's Differential Equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{r}}{x} \frac{d y}{d x}+\left(\mathrm{r}-\frac{\nu^{2}}{x^{2}}\right) y=0 .
$$

9.101 One solution is:

$$
y=J_{\nu}(x)=\sum_{k=0}^{\infty}(-\mathrm{r})^{k} \frac{x^{\nu+2 k}}{2^{\nu+2 k} k!\Gamma(\nu+k+\mathrm{r})} .
$$

9.102 A second independent solution when ν is not an integer is:
9.103 If $\nu=n$, an integer:

$$
y=J_{-\nu}(x) .
$$

$$
J_{-n}(x)=(-1)^{n} J_{n}(x) .
$$

9.104 A second independent solution when $\nu=n$, an integer, is:

$$
\left.\begin{array}{rl}
\pi Y_{n}(x)= & { }_{2} J_{n}(x)
\end{array}\right) \log \frac{x}{2}-\sum_{k=0}^{n-\mathrm{I}} \frac{(n-k-\mathrm{I})!}{k!}\left(\frac{x}{2}\right)^{2 k-n} .
$$

9.105 For all values of ν, whether integral or not:

$$
\begin{aligned}
Y_{\nu}(x) & =\frac{\mathrm{I}}{\sin \nu \pi}\left(\cos \nu \pi J_{\nu}(x)-J_{-\nu}(x)\right), \\
J_{-\nu}(x) & =\cos \nu \pi J_{\nu}(x)-\sin \nu \pi Y_{\nu}(x), \\
Y_{-\nu}(x) & =\sin \nu \pi J_{\nu}(x)+\cos \nu \pi Y_{\nu}(x) .
\end{aligned}
$$

9.106 For $\varphi=n$, an integer:

$$
Y_{-n}(x)=(-1)^{n} Y_{n}(x)
$$

9.107 Cylinder Functions of the third kind, solutions of Bessel's differential equation:
I.

$$
\begin{aligned}
H_{\nu}^{\mathrm{I}}(x) & =J_{\nu}(x)+i Y_{\nu}(x) . \\
H_{\nu}^{\mathrm{II}}(x) & =J_{\nu}(x)-i Y_{\nu}(x) . \\
H_{-\nu}^{\mathrm{I}}(x) & =e^{\nu \pi i} H_{\nu}^{\mathrm{I}}(x) . \\
H_{-\nu}^{\mathrm{II}}(x) & =e^{-\nu \pi i} H_{\nu}^{\mathrm{II}}(x) .
\end{aligned}
$$

3.
4.

9.110 Recurrence formulae satisfied by the functions $J_{\nu}, Y_{\nu}, H_{\nu}^{\mathrm{I}}, H_{\nu}^{\mathrm{II}}, C_{\nu}$ represents any one of these functions.
I.

$$
C_{\nu-1}(x)-C_{\nu+1}(x)=2 \frac{d}{d x} C_{\nu}(x) .
$$

2.

$$
C_{-1}(x)+C_{\nu+1}(x)=\frac{2 \nu}{x} C_{\nu}(x) .
$$

3.

$$
\frac{d}{d x} C_{\nu}(x)=C_{\nu-1}(x)-\frac{\nu}{x} C_{\nu}(x) .
$$

4.

$$
\frac{d}{d x} C(x)=\frac{\nu}{x} C_{\nu}(x)-C_{\nu+1}(x) .
$$

5.

$$
\frac{d}{d x}\left\{x^{\nu} C_{\nu(x)}\right\}=x^{\nu} C_{\nu-1}(x)
$$

6.

$$
\frac{d^{2} C_{\nu}(x)}{d x^{2}}=\frac{1}{4}\left\{C_{\nu+2}(x)+C_{\nu-2}(x)-{ }_{2} C_{\nu}(x)\right\} .
$$

9.111
I. $J_{\nu}(x) \frac{d Y_{\nu}(x)}{d x}-Y_{\nu}(x) \frac{d J_{\nu}(x)}{d x}=\frac{2}{\pi x} . \quad$ 2. $J_{\nu+1}(x) Y_{\nu}(x)-J_{\nu}(x) Y_{\nu+1}(x)=\frac{2}{\pi x}$.

9.120

I. $J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P(x) \cos \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)-Q_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)\right\}$,
2. $Y_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)+Q_{\nu}(x) \cos \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)\right\}$,
3. $H_{\nu}^{\mathrm{I}}(x)=e^{i\left(x-\frac{2 \nu+\mathrm{r}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)+i Q_{\nu}(x)\right\}$,
4. $H_{\nu}^{\mathrm{II}}(x)=e^{-i\left(x-\frac{2 \nu+\mathrm{r}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)-i Q_{\nu}(x)\right\}$,
where
$P_{\nu}(x)=\mathrm{I}+\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{k} \frac{\left(4 \nu^{2}-\mathrm{I}^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots \ldots\left(4 \nu^{2}-\overline{4 k}-\mathrm{I}^{2}\right)}{(2 k)!2^{6 k} x^{2 k}}$,
$Q_{\nu}(x)=\sum_{k=1}^{\infty}(-\mathrm{I})^{k+1} \frac{\left(4 \nu^{2}-\mathrm{I}^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots \ldots\left(4 \nu^{2}-\overline{4 k-3}{ }^{2}\right)}{(2 k-\mathrm{I})!2^{6 k-3} x^{2 k-1}}$.

SPECIAL VALUES

9.130

I. $J_{0}(x)=\mathrm{I}-\frac{\mathrm{I}}{(\mathrm{I}!)^{2}}\left(\frac{x}{2}\right)^{2}+\frac{\mathrm{I}}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}-\frac{\mathrm{I}}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\ldots$.
2. $J_{1}(x)=-\frac{d J_{0}(x)}{d x}=\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!2!}\left(\frac{x}{2}\right)^{2}+\frac{\mathrm{I}}{2!3!}\left(\frac{x}{2}\right)^{4}-\frac{1}{3!4!}\left(\frac{x}{2}\right)^{6}+\ldots\right\}$.
3. $\frac{\pi}{2} Y_{0}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4}$

$$
+\frac{\mathrm{I}}{(3!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right)\left(\frac{x}{2}\right)^{6}-\ldots
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+4\left\{\frac{\mathrm{I}}{2} J_{2}(x)-\frac{\mathrm{I}}{4} J_{4}(x)+\frac{\mathrm{I}}{6} J_{6}(x)-\ldots\right\} .
$$

4. $\frac{\pi}{2} Y_{1}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{\mathrm{I}}{x} J_{0}(x)-\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!2!}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{2}\right.$

$$
\left.+\frac{1}{2!3!}\left(1+\frac{1}{2}+\frac{1}{3}\right)\left(\frac{x}{2}\right)^{4}-\ldots\right\}
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{1}{x} J_{0}(x)+\frac{3}{\mathrm{I} \cdot 2} J_{3}(x)-\frac{5}{2 \cdot 3} J_{5}(x)
$$

$$
\gamma=0.5772157
$$

$$
+\frac{7}{3 \cdot 4} J_{7}(x)-\ldots
$$

9.131 Limiting values for $x=0$:

$$
\begin{aligned}
J_{0}(x) & =\mathrm{I} \\
J_{1}(x) & =0 \\
Y_{0}(x) & =\frac{2}{\pi}\left(\log \frac{x}{2}+\gamma\right), \\
Y_{1}(x) & =-\frac{2}{\pi x} .
\end{aligned}
$$

9.132 Limiting values for $x=\infty$:

$$
\begin{array}{ll}
J_{0}(x)=\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{0}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, \\
J_{1}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{1}(x)=-\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}} .
\end{array}
$$

9.140 Bessel's Addition Formula:

$$
J_{\nu}(x+h)=\left(\frac{x+h}{x}\right)^{\nu} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{h^{k}}{k!}\left(\frac{2 x+h}{2 x}\right)^{k} J_{\nu+k}(x)
$$

9.141 Multiplication formula:

$$
J_{\nu}(\alpha x)=\alpha^{\nu} \sum_{k=0}^{\infty} \frac{\left(\mathrm{I}-\alpha^{2}\right)^{k}}{k!}\left(\frac{x}{2}\right)^{k} J_{\nu+k}(x)
$$

9.142

$$
J_{\nu}(\alpha x) J_{\mu}(\beta x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} A_{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

where

$$
A_{k}=\sum_{s=0}^{k} \frac{\alpha^{2 k-2 s} \beta^{2 s}}{s!(k-s)!\Gamma(\nu+k-s+\mathrm{I}) \Gamma(\mu+s+\mathrm{I})}
$$

9.143

$$
J_{\nu}(x) J_{\mu}(x)=\sum_{k=0}^{\infty} \frac{(-\mathrm{I})^{k}}{\Gamma(\nu+k+\mathrm{I}) \Gamma(\mu+k+\mathrm{I})}\binom{\mu+\nu+2 k}{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL'S FUNCTIONS

9.150

$$
J_{\nu}(x)=\frac{2\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int^{\frac{\pi}{2}} \cos (x \sin \phi) \cos ^{2 \nu} \phi \cdot d \phi
$$

9.151

$$
J_{\nu}(x)=\frac{2\left(\frac{x}{2}\right)}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int_{0}^{\pi} \cos (x \cos \phi) \sin ^{2 \nu} \phi \cdot d \phi
$$

9.152

$$
J_{\nu}(x)=\frac{\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{\mathrm{I}}{2}\right)} \int_{0}^{\pi} e^{i x \cos \phi} \sin ^{2 \nu} \phi \cdot d \phi .
$$

If n is an integer:

9.153

9.154

$$
J_{2 n}(x)=\frac{I}{\pi} \int_{0}^{\pi} \cos (x \sin \phi) \cos (2 n \phi) d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}
$$

$$
J_{2 n}(x)=\frac{(-1)^{n}}{\pi} \int_{0}^{\pi} \cos (x \cos \phi) \cos (2 n \phi) d \phi=\frac{2(-1)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}}
$$

9.155

$$
J_{2 n+1}(x)=\frac{\mathrm{I}}{\pi} \int_{0}^{\pi} \sin (x \sin \phi) \sin (2 n+\mathrm{I}) \phi d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.156
9.157

$$
J_{2 n+1}(x)=\frac{(-I)^{n}}{\pi} \int_{0}^{\pi} \sin (x \cos \phi) \cos (2 n+I) \phi d \phi=\frac{2(-I)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}}
$$

$$
J_{n}(x)=\frac{\mathrm{I}}{2 \pi} \int_{-\pi}^{+\pi} e^{-i n \phi+i x \sin \phi} d \phi=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} e^{-i n \phi+i x \sin \phi} d \phi
$$

INTEGRAL PROPERTIES

9.160 If $C_{\nu}(\mu x)$ is any one of the particular integrals:

$$
J_{\nu}(\mu x), Y_{\nu}(\mu x), H_{\nu}^{\mathrm{I}}(\mu x), H_{\nu}^{\mathrm{II}}(\mu x)
$$

of the differential equation:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{\nu^{2}}{x^{2}}\right) y=0 \\
\int_{a}^{b} C_{\nu}\left(\mu_{l} x\right) C_{\nu}\left(\mu_{l} x\right) x d x \\
\frac{\mathrm{I}}{\mu_{k}^{2}-\mu_{l}^{2}}\left[x\left\{\mu_{l} C_{\nu}\left(\mu_{k} x\right) C_{\nu}{ }^{\prime}\left(\mu_{l} x\right)-\mu_{k} C_{\nu}\left(\mu_{l} x\right) C_{\nu}{ }^{\prime}\left(\mu_{k} x\right)\right\}\right]_{a}^{b} ; \mu_{k} \neq \mu_{l}
\end{gathered}
$$

9.161 If μ_{k} and μ_{l} are two different roots of

$$
C_{\nu}(\mu b)=0,
$$

$\int_{a}^{b} C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{l} x\right) x d x=\frac{a}{\mu_{k}{ }^{2}-\mu_{l}{ }^{2}}\left\{\mu_{k} C_{v}\left(\mu_{l} a\right) C_{v}{ }^{\prime}\left(\mu_{k} a\right)-\mu_{l} C_{\nu}\left(\mu_{k} a\right) C_{v}{ }^{\prime}\left(\mu_{l} a\right)\right\}$.
9.162 If μ_{k} and μ_{l} are two different roots of

$$
a \frac{C_{\nu}^{\prime}(\mu a)}{C_{v}(\mu a)}=p \mu+q \frac{\mathrm{I}}{\mu}
$$

and

$$
C_{\nu}(\mu b)=0,
$$

$$
\int^{b} C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{l} x\right) x d x=p C_{v}\left(\mu_{k} a\right) C_{\nu}\left(\mu_{l} a\right)
$$

If $\mu_{k}=\mu_{l}$:
$\int^{b} C_{\nu}\left(\mu_{k} x\right) C_{\nu}\left(\mu_{l} x\right) x d x=\frac{\mathrm{I}}{2}\left\{b^{2} C_{\nu}^{\prime 2}\left(\mu_{k} b\right)-a^{2} C_{\nu}^{\prime 2}\left(\mu_{k} a\right)-\left(a^{2}-\frac{\nu^{2}}{\mu_{k}^{2}}\right) C_{\nu}{ }^{2}\left(\mu_{k} a\right)\right\}$.

EXPANSIONS IN BESSEL'S FUNCTIONS

9.170 Schlömilch's Expansion. Any function $f(x)$ which has a continuous differential coefficient for all values of x in the closed range ($0, \pi$) may be expanded in the series:

$$
f(x)=a_{0}+\sum_{k=1} a_{k} J_{0}(k x),
$$

where

$$
\begin{aligned}
& a_{0}=f(0)+\frac{\mathrm{I}}{\pi} \int_{0}^{\pi} u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u, \\
& a_{k}=\frac{2}{\pi} \int_{0}^{\pi} u \cos k u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u .
\end{aligned}
$$

9.171

$$
f(x)=a_{0} x^{n}+\sum_{k=1}^{\infty} a_{k} J_{n}\left(\alpha_{k} x\right) \quad 0<x<\mathrm{I}
$$

where

$$
\begin{aligned}
J_{n+1}\left(\alpha_{k}\right) & =0, \\
a_{0} & =2(n+1) \int^{1} f(x) x^{n+1} d x, \\
a_{k} & =\frac{2}{\left[J_{n}\left(\alpha_{k}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{n}\left(\alpha_{k} x\right) d x .
\end{aligned}
$$

(Bridgman, Phil. Mag. 16, p. 947, 1908)
9.172

$$
f(x)=\sum_{k=1}^{\infty} A_{k} J_{0}\left(\mu_{k} x\right) \quad a<x<b,
$$

where:

$$
\begin{gathered}
a \frac{J_{0}{ }^{\prime}\left(\mu_{k} a\right)}{J_{0}\left(\mu_{k} a\right)}=p \mu_{k}+\frac{q}{\mu_{k}}, \\
J_{0}\left(\mu_{k} b\right)=0, \\
A_{k}=2 \frac{\int_{a}^{b} x f(x) J_{0}\left(\mu_{k} x\right) d x-p f(a) J_{0}\left(\mu_{k} a\right)}{b^{2} J_{0}{ }^{2}\left(\mu_{k} b\right)-a^{2} J_{0}{ }^{2}\left(\mu_{k} a\right)-\left(a^{2}+2 p\right) J_{0}{ }^{2}\left(\mu_{k} a\right)} .
\end{gathered}
$$

and
(Stephenson, Phil. Mag. 14, p. 547, 1907)

SPECIAL EXPANSIONS in bessel'S functions
9.180
I. $\sin x=2 \sum_{k=0}^{\infty}(-\mathrm{I})^{k} J_{2 k+1}(x)$,
2. $\cos x=J_{0}(x)+2 \sum_{k=1}^{\infty}(-\mathrm{I})^{k} J_{2 k}(x)$.

9.181

I. $\cos (x \sin \theta)=J_{0}(x)+2 \sum_{k=1}^{\infty} J_{2 k}(x) \cos 2 k \theta$,
2. $\sin (x \sin \theta)=2 \sum_{k=0}^{\infty} J_{2 k+1}(x) \sin (2 k+1) \theta$.
9.182
I. $\left(\frac{x}{2}\right)^{n}=\sum_{k=0}^{\infty} \frac{(n+2 k)(n+k-\mathrm{I})!}{k!} J_{n+2 k}(x)$,
2. $\sqrt{\frac{2 x}{\pi}}=\sum_{k=0}^{\infty} \frac{(4 k+1)(2 k)!}{2^{2 k}(k!)^{2}} J_{2 k+\frac{1}{2}}(x)$.
9.183

$$
\begin{align*}
\frac{d J_{\nu}(x)}{d \nu} & =\left\{\log \frac{x}{2}-\psi(\nu+\mathrm{I})\right\} J(x)+\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{k-1} \frac{\nu+2 k}{k(\nu+k)} J_{\nu+2 k}(x) \\
& =J_{\nu}(x) \log \frac{x}{2}-\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\psi(\nu+k+\mathrm{I})}{k!\Gamma(\nu+k+\mathrm{I})}\left(\frac{x}{2}\right)^{\nu+2 k} . \tag{see6.61}
\end{align*}
$$

9.200 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{n(n+\mathrm{r})}{x^{2}}\right) y=0
$$

with the substitution:
becomes:

$$
z=y \sqrt{x}, \quad \mu x=\rho
$$

$$
\frac{d^{2} z}{d \rho^{2}}+\frac{\mathrm{I}}{\rho} \frac{d z}{d \rho}+\left(\mathrm{I}-\frac{\left(n+\frac{1}{2}\right)^{2}}{\rho^{2}}\right) z=0
$$

which is Bessel's equation of order $n+\frac{1}{2}$.
9.201 Two independent solutions are:

$$
\begin{aligned}
& z=J_{n+\frac{1}{2}}(\rho) \\
& z=J_{-n-\frac{1}{2}}(\rho)
\end{aligned}
$$

The former remains finite for $\rho=0$; the latter becomes infinite for $\rho=0$.
9.202

Special values.

$$
\begin{aligned}
& J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right), \\
& J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{3}{x^{2}}-1\right) \sin x-\frac{3}{x} \cos x\right\}, \\
& J_{\frac{3}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{15}{x^{3}}-\frac{6}{x}\right) \sin x-\left(\frac{15}{x^{2}}-1\right) \cos x\right\}, \\
& J_{\frac{2}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{105}{x^{4}}-\frac{45}{x^{2}}+1\right) \sin x-\left(\frac{105}{x^{3}}-\frac{10}{x}\right) \cos x\right\}
\end{aligned}
$$

9.203

$$
\begin{aligned}
& J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x, \\
& J_{-\frac{3}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left(\sin x+\frac{\cos x}{x}\right), \\
& J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\frac{3}{x} \sin x+\left(\frac{3}{x^{2}}-\mathrm{I}\right) \cos x\right\}, \\
& J_{-\frac{1}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{15}{x^{2}}-\mathrm{I}\right) \sin x+\left(\frac{15}{x^{3}}-\frac{6}{x}\right) \cos x\right\}, \\
& J_{-\frac{9}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{105}{x^{3}}-\frac{10}{x}\right) \sin x+\left(\frac{105}{x^{4}}-\frac{45}{x^{2}}+\mathrm{I}\right) \cos x\right\} .
\end{aligned}
$$

9.204

$$
\begin{aligned}
& H_{\frac{1}{2}}^{\mathrm{I}}(x)=-i \sqrt{\frac{2}{\pi x}} e^{i x} \\
& H_{\frac{1}{2}}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{i x}\left(\mathrm{I}+\frac{i}{x}\right) \\
& H_{\frac{1}{1}}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{i x}\left\{\frac{3}{x}+i\left(\frac{3}{x^{2}}-\mathrm{I}\right)\right\}
\end{aligned}
$$

9.205

$$
\begin{aligned}
H_{\frac{1}{2}}^{\mathrm{II}}(x) & =i \sqrt{\frac{2}{\pi x}} e^{-i x} \\
H_{\frac{2}{2}}^{\mathrm{II}}(x) & =-\sqrt{\frac{2}{\pi x}} e^{-i x}\left(\mathrm{I}-\frac{i}{x}\right) \\
H_{\frac{1}{2}}^{\mathrm{II}}(x) & =-\sqrt{\frac{2}{\pi x}} e^{-i x}\left\{\frac{3}{x}-i\left(\frac{3}{x^{2}}-\mathrm{I}\right)\right\}
\end{aligned}
$$

9.210 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}-\left(\mathrm{r}+\frac{\nu^{2}}{x^{2}}\right) y=0
$$

with the substitution,

$$
x=i z,
$$

becomes Bessel's equation.
9.211 Two independent solutions of 9.210 are:

$$
\begin{aligned}
& I_{\nu}(x)=i^{-\nu} J_{\nu}(i x) \\
& K^{\nu}(x)=e^{\frac{\nu+\mathrm{I}}{2} \pi i} \frac{\pi}{2} H_{\nu}^{\mathrm{I}}(i x)
\end{aligned}
$$

9.212 If $\nu=n$, an integer:

$$
\begin{aligned}
I_{n}(x) & =\sum_{k=0}^{\infty} \frac{\mathrm{I}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k} \\
K_{n}(x) & =i^{n+1} \frac{\pi}{2} H_{n}^{I}(x)
\end{aligned}
$$

9.213

$$
\begin{aligned}
& I_{\nu}(x)=\frac{1}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{0}^{\pi} \cosh (x \cos \phi) \sin ^{2 \nu} \phi d \phi \\
& K_{\nu}(x)=\frac{\sqrt{\pi}}{\Gamma\left(\nu+\frac{1}{2}\right)} \cdot\left(\frac{x}{2}\right)^{\nu} \int^{\infty} \sinh ^{2 \nu} \phi e^{-x \cosh \phi} d \phi .
\end{aligned}
$$

9.214 If x is large, to a first approximation:

$$
\begin{aligned}
I_{n}(x) & =(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{x(\cosh \beta-\beta \sinh \beta)} \\
K_{n}(x) & =\pi(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{-x(\cosh \beta-\beta \sinh \beta)} \\
n & =x \sinh \beta
\end{aligned}
$$

9.215 Ber and Bei Functions.

$$
\begin{aligned}
& \text { ber } x+i \text { bei } x=I(x \sqrt{i}) \\
& \text { ber } x-i \text { bei } x=I_{0}(i x \sqrt{i})
\end{aligned}
$$

$$
\begin{aligned}
& \text { ber } x=\mathrm{I}-\frac{\mathrm{I}}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}+\frac{\mathrm{I}}{(4!)^{2}}\left(\frac{x}{2}\right)^{8}-\ldots \\
& \text { bei } x=\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\frac{\mathrm{I}}{(5!)^{2}}\left(\frac{x}{2}\right)^{10}-\ldots
\end{aligned}
$$

9.216 Ker and Kei Functions:

$$
\begin{aligned}
& \operatorname{ker} x+i \text { kei } x=K_{0}(x \sqrt{i}) \\
& \operatorname{ker} x-i \text { kei } x=K_{0}(i x \sqrt{i})
\end{aligned}
$$

ker $x=\left(\log \frac{2}{x}-\gamma\right)$ ber $x+\frac{\pi}{4}$ bei $x-\frac{\mathrm{I}}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4}$

$$
+\frac{I}{(4!)^{2}}\left(I+\frac{I}{2}+\frac{I}{3}+\frac{I}{4}\right)\left(\frac{x}{2}\right)^{8}-\ldots
$$

kei $x=\left(\log \frac{2}{x}-\gamma\right)$ bei $x-\frac{\pi}{4}$ ber $x+\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(3!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right)\left(\frac{x}{2}\right)^{6}+\ldots$.
9.220 The Bessel-Clifford Differential Equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\nu+1) \frac{d y}{d x}+y=0
$$

With the substitution:

$$
z=x^{\nu / 2} y \quad u=2 \sqrt{x}
$$

the differential equation reduces to Bessel's equation.
9.221 Two independent solutions of 9.220 are:

$$
\begin{aligned}
& C_{\nu}(x)=x^{-\frac{\nu}{2}} J_{\nu}(2 \sqrt{x})=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{k}}{k!\Gamma(\nu+k+\mathrm{I})} \\
& D_{\nu}(x)=x^{-\frac{\nu}{2}} Y_{\nu}(2 \sqrt{x})
\end{aligned}
$$

9.222

$$
\begin{aligned}
C_{\nu+1}(x) & =-\frac{d}{d x} C_{\nu}(x) \\
x C_{\nu+2}(x) & =(\nu+\mathrm{I}) C_{\nu+1}(x)-C_{\nu}(x)
\end{aligned}
$$

9.223 If $\nu=n$, an integer:

$$
\begin{aligned}
& C_{n}(x)=(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} C_{0}(x) \\
& C_{0}(x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{k}}{(k!)^{2}}
\end{aligned}
$$

9.224 Changing the sign of ν, the corresponding solution of:

$$
\begin{gathered}
x \frac{d^{2} y}{d x^{2}}-(\nu-1) \frac{d y}{d x}+y=0 \\
y=x^{\nu} C_{\nu}(x)
\end{gathered}
$$

9.225 If ν is half an odd integer:

$$
\begin{aligned}
& C_{\frac{1}{2}}(x)=\frac{\sin (2 \sqrt{x}+\epsilon)}{2 \sqrt{x}} \\
& C_{\frac{3}{2}}(x)=-\frac{d}{d x} C_{\frac{1}{2}}(x)=\frac{\sin (2 \sqrt{x}+\epsilon)}{4 x^{\frac{3}{2}}}-\frac{\cos (2 \sqrt{x}+\epsilon)}{2 x} \\
& C_{\frac{5}{2}}(x)=-\frac{d}{d x} C_{\frac{3}{2}}(x)=\frac{3-4 x}{8 x^{\frac{5}{2}}} \sin (2 \sqrt{x}+\epsilon)-\frac{3 \cos (2 \sqrt{x}+\epsilon)}{4 x^{2}}
\end{aligned}
$$

.
-••••
$C_{-\frac{1}{2}}(x)=-\cos (2 \sqrt{x}+\epsilon)$,
$C_{-\frac{3}{2}}(x)=x^{\frac{3}{2}} C_{\frac{3}{2}}(x)$,
$C_{-\frac{5}{2}}(x)=x^{\frac{5}{2}} C_{\frac{5}{2}}(x)$.
-••
...
ϵ is arbitrary so as to give a second arbitrary constant.
9.226 For x negative, the solution of the equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\pm \nu+\mathrm{I}) \frac{d y}{d x}-y=0
$$

when ν is half an odd integer, is obtained from the values in 9.225 by changing \sin and \cos to \sinh and cosh respectively.
9.227
$(m+n+1) \int C_{m+1}(x) C_{n+1}(x) d x=-x C_{m+1}(x) C_{n+1}(x)-C_{m}(x) C_{n}(x)$,
$(m+n+1) \int x^{m+n} C_{m}(x) C_{n}(x) d x=x^{m+n+1}\left\{x C_{m+1}(x) C_{n+1}(x)+C_{m}(x) C_{n}(x)\right\}$.

9.228

I.

$$
\int_{0}^{\pi} C_{-\frac{1}{2}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{0}(x)
$$

2.

$$
\int_{0}^{\pi} C_{\frac{1}{2}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{1}(x) .
$$

$$
\begin{equation*}
\int_{0}^{\pi} C_{0}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=C_{\frac{1}{2}}(x) \tag{3.}
\end{equation*}
$$

4.

$$
\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin ^{3} \phi d \phi=C_{\frac{2}{2}}(x) .
$$

5.

$$
\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=\frac{\mathrm{I}-\cos 2 \sqrt{x}}{x} \frac{1}{x} .
$$

9.229 Many differential equations can be solved in a simpler form by the use of the C_{n} functions than by the use of Bessel's functions.
(Greenhill, Phil. Mag. 38, p. 50I, 1919)
9.240 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+\mathrm{r})}{x} \frac{d y}{d x}+y=0,
$$

with the change of variable:

$$
y=z x^{-n-\frac{1}{2}},
$$

becomes Bessel's equation 9.200.
9.241 Solutions of 9.240 are:
I.

$$
\begin{aligned}
& y=x^{-n-\frac{1}{2}} \quad J_{n+\frac{1}{2}}(x) . \\
& y=x^{-n-\frac{1}{2}} Y_{n+\frac{1}{2}}(x) . \\
& y=x^{-n-\frac{1}{2}} H_{n}^{\mathrm{I}}(x) . \\
& y=x^{-n-\frac{1}{2}} H_{n^{\frac{1}{2}}(1)}^{\mathrm{I}}(x) .
\end{aligned}
$$

9.242 The change of variable:

$$
x=2 \sqrt{z},
$$

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220. This leads to a general solution of 9.240:

$$
y=C_{n+\frac{1}{2}}\left(\frac{x^{2}}{4}\right) .
$$

When n is an integer the equations of 9.225 may be employed.

$$
\begin{aligned}
& C_{1}\left(\frac{x^{2}}{4}\right)=\frac{\sin (x+\epsilon)}{x}, \\
& C_{1}\left(\frac{x^{2}}{4}\right)=\frac{2 \sin (x+\epsilon)}{x^{3}}-\frac{\cos (x+\epsilon)}{x} .
\end{aligned}
$$

9.243 The solution of

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+\mathrm{r})}{x} \frac{d y}{d x}-y=0,
$$

may be obtained from 9.242 by writing \sinh and \cosh for \sin and \cos respectively.
9.244 The differential equation 9.240 is also satisfied by the two independent functions (when n is an integer):
$\psi_{n}(x)=\left(-\frac{1}{x} \frac{d}{d x}\right)^{n} \frac{\sin x}{x}$

$$
=\frac{\mathrm{I}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n+\mathrm{I})} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(2 n+3) \ldots(2 n+2 k+\mathrm{I})},
$$

$$
\begin{aligned}
\Psi_{n}(x) & =\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\cos x}{x} \\
& =\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots \cdot(2 n-\mathrm{I})}{x^{2 n+1}} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(\mathrm{I}-2 n)(3-2 n) \ldots(2 k-2 n-\mathrm{I})} .
\end{aligned}
$$

9.245 The general solution of 9.240 may be written:

$$
y=\left(\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{A e^{i x}+B e^{-i x}}{x}
$$

9.246 Another particular solution of 9.240 is:

$$
\begin{gathered}
y=f_{n}(x)=\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{e^{-i x}}{x}=\Psi_{n}(x)-i \psi_{n}(x), \\
f_{n}(x)=\frac{i^{n} e^{-i x}}{x^{n+1}}\left\{\mathrm{I}+\frac{n(n+\mathrm{I})}{2 i x}+\frac{(n-\mathrm{I}) n(n+\mathrm{I})(n+2)}{2 \cdot 4^{\cdot(i x)^{2}}}+\begin{array}{l}
\left.+\frac{\mathrm{I} \cdot 2 \cdot 3 \ldots \cdot 2 n}{2 \cdot 4 \cdot 6 \ldots 2 n(i x)^{n}}\right\}
\end{array}\right.
\end{gathered}
$$

9.247 The functions $\psi_{n}(x), \Psi_{n}(x), f_{n}(x)$ satisfy the same recurrence formulae:

$$
\begin{gathered}
\frac{d \psi_{n}(x)}{d x}=-x \psi_{n+1}(x) \\
x \frac{d \psi_{n}(x)}{d x}+\left(2 n+\text { I) } \psi_{n}(x)=\psi_{n-1}(x)\right.
\end{gathered}
$$

9.260 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}-\frac{n(n+1)}{x^{2}} y+y=0
$$

with the change of variable:

$$
y=u \sqrt{x}
$$

is transformed into Bessel's equation of order $n+\frac{\mathbf{I}}{2}$.
9.261 Solutions of 9.260 are:
I.

$$
\begin{aligned}
& S_{n}(x)=\sqrt{\frac{\pi x}{2}} J_{n+\frac{3}{2}}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\sin x}{x} \\
& C_{n}(x)=(-\mathrm{I})^{n} \sqrt{\frac{\pi x}{2}} J_{-n-\frac{1}{2}}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\cos x}{x} \\
& E_{n}(x)=C_{n}(x)-i S_{n}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{e^{-i x}}{x} .
\end{aligned}
$$

9.262 The functions $S_{n}(x), C_{n}(x), E_{n}(x)$ satisfy the same recurrence formulae:

$$
\text { I. } \frac{d S_{n}(x)}{d x}=\frac{n+\mathrm{I}}{x} S_{n}(x)-S_{n+1}(x)
$$

2. $\frac{d S_{n}(x)}{d x}=S_{n-1}(x)-\frac{n}{x} S_{n}(x)$.
3. $S_{n+1}(x)=\frac{2 n+\mathrm{I}}{x} S_{n}(x)-S_{n-1}(x)$.
9.30 The hypergeometric differential equation:

$$
x(\mathrm{I}-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(\alpha+\beta+\mathrm{I}) x\} \frac{d y}{d x}-\alpha \beta y=0 .
$$

9.31 The equation 9.30 is satisfied by the hypergeometric series:

$$
\begin{aligned}
F(\alpha, \beta, \gamma, x)=\mathrm{I}+\frac{\alpha}{\mathrm{I}} \frac{\beta}{\gamma} x & +\frac{\alpha(\alpha+\mathrm{I})}{\mathrm{I} \cdot 2} \frac{\beta(\beta+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} x^{2} \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\mathrm{I} \cdot 2 \cdot 3} \frac{\beta(\beta+\mathrm{I})(\beta+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} x^{3}+\ldots
\end{aligned}
$$

The series converges absolutely when $x<\mathrm{I}$ and diverges when $x>\mathrm{I}$. When $x=+\mathrm{I}$ it converges only when $\alpha+\beta-\gamma<0$, and then absolutely. When $x=-\mathrm{I}$ it converges only when $\alpha+\beta-\gamma-\mathrm{I}<0$, and absolutely if $\alpha+\beta-\gamma<0$.
9.32

$$
\begin{aligned}
\frac{d}{d x} F(\alpha, \beta, \gamma, x) & =\frac{\alpha \beta}{\gamma} F(\alpha+\mathrm{I}, \beta+\mathrm{I}, \gamma+\mathrm{I}, x) \\
F(\alpha, \beta, \gamma, \mathrm{I}) & =\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)}
\end{aligned}
$$

9.33 Representation of various functions by hypergeometric series.

$$
\begin{aligned}
(\mathrm{I}+x)^{n} & =F(-n, \beta, \beta,-x) \\
\log (\mathrm{I}+x) & =x F(\mathrm{I}, \mathrm{I}, 2,-x) \\
e^{x} & =\operatorname{Limit}_{\beta=\infty} F\left(\mathrm{I}, \beta, \mathrm{I}, \frac{x}{\beta}\right),
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{I}+x)^{n}+(\mathrm{I}-x)^{n} & =2 F\left(-\frac{n}{2},-\frac{n}{2}+\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, x^{2}\right), \\
\log \frac{\mathrm{I}+x}{\mathrm{I}-x} & =2 x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2}, x^{2}\right), \\
\cos n x & =F\left(\frac{n}{2},-\frac{n}{2}, \frac{\mathrm{I}}{2}, \sin ^{2} x\right), \\
\sin n x & =n \sin x F\left(\frac{n+\mathrm{I}}{2}, \frac{\mathrm{I}-n}{2}, \frac{3}{2}, \sin ^{2} x\right), \\
\cosh x & =\dot{\alpha}=\beta=\infty F\left(\alpha, \beta, \frac{\mathrm{I}}{2}, \frac{x^{2}}{4 \alpha \beta}\right), \\
\sin ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, \frac{3}{2}, x^{2}\right), \\
\tan ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2},-x^{2}\right), \\
P_{n}(x) & =F\left(-n, n+\mathrm{I}, \mathrm{I}, \frac{\mathrm{I}-x}{2}\right), \\
Q_{n}(x) & =\frac{\sqrt{\pi} \Gamma(n+\mathrm{I})}{2^{n+1} \Gamma\left(n+\frac{\mathrm{I}}{2}\right)} F\left(\frac{n+\mathrm{I}}{x^{n+1}}, \frac{n+2}{2}, n+\frac{3}{2}, \frac{\mathrm{I}}{x^{2}}\right) .
\end{aligned}
$$

9.4 Heaviside's Operational Methods of Solving Partial Differential Equations.

9.41 The partial differential equation,

$$
a \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

where a is a constant, may be solved by Heaviside's operational method.
Writing $\frac{\partial}{\partial t}=p$, and $\frac{p}{a}=q^{2}$, the equation becomes,

$$
\frac{\partial^{2} u}{\partial x^{2}}=q^{2} u
$$

whose complete solution is $u=e^{q x} A+e^{-q x} B$, where A and B are integration constants to be determined by the boundary conditions. In many applications the solution $u=e^{-q x} B$, only, is required: and the boundary conditions will lead to $u=e^{-q x} f(q) u_{0}$, where u_{0} is a constant. If $e^{-q x} f(q)$ be expanded in an infinite power series in q, and the integral and fractional, positive and negative powers of p be interpreted as in 9.42 , the resulting series will be a solution of the differential equation, satisfying the boundary conditions, and reducing to $u=0$ at $t=0$. The expansion of $e^{-q x} f(q)$ may be carried out in two or more ways, leading to series suitable for numerical calculation under different conditions.
9.42 Fractional Differentiation and Integration.

In the following expressions, I stands for a function of t which is zero up to $t=0$, and equal to I for $t>0$.

9.421

$$
\begin{array}{ll}
p^{\frac{1}{2}} \mathrm{I} & =\frac{\mathrm{I}}{\sqrt{\pi t}} \\
p^{\frac{3}{3}} \mathrm{I} & =\frac{\mathrm{I}}{2 t \sqrt{\pi t}} \\
p^{\frac{5}{2}} \mathrm{I} & =\frac{3}{2^{2} t^{2} \sqrt{\pi t}}
\end{array} \quad p^{\frac{2 n+1}{2}} \mathrm{I}=(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2^{n} t^{n} \sqrt{\pi t}}
$$

9.422

$$
\begin{array}{lc}
p \mathrm{I}=0 & p^{n} \mathrm{I}=0 \\
p^{2} \mathrm{I}=0 & \\
p^{3} \mathrm{I}=0 &
\end{array}
$$

9.423

$$
\begin{aligned}
& p^{-\frac{2}{2}}=2 \sqrt{\frac{t}{\pi}} \\
& p^{-\frac{3}{2}}=\frac{2^{2} t}{3} \sqrt{\frac{t}{\pi}} \\
& p^{-\frac{5}{2}}=\frac{2^{3} t^{2}}{3 \cdot 5} \sqrt{\frac{t}{\pi}}
\end{aligned}
$$

$$
p^{-\frac{2 n+1}{2}} \mathrm{I}=\frac{2^{2 n-1} t^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} \sqrt{\frac{t}{\pi}}
$$

9.424

$$
\frac{\mathrm{I}}{p^{\nu}}=\frac{t^{\nu}}{\Gamma(\mathrm{I}+\nu)}
$$

where ν may have any real value, except a negative integer. (Conjectural.) 9.425

$$
\begin{aligned}
& \frac{p}{p-a} \mathrm{I}=e^{a t} \\
& \frac{\mathrm{I}}{p-a} \mathrm{I}=\frac{\mathrm{I}}{a}\left(e^{a t}-\mathrm{I}\right)
\end{aligned}
$$

9.426 With $p=a q^{2}$,

$$
\begin{aligned}
q^{2 n+1} \mathrm{I} & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{(2 a t)^{n} \sqrt{\pi a t}} \\
q^{-2 n} \mathrm{I} & =\frac{(a t)^{n}}{n!}
\end{aligned}
$$

9.427

$$
q e^{-q x} \mathrm{I}=\frac{\mathrm{I}}{\sqrt{\pi a t}} e^{-\frac{x^{2}}{4 a t}}
$$

9.428 If $z=\frac{x}{2 \sqrt{a t}}$,

$$
\begin{aligned}
e^{-q x} & =\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v 2} d v \\
\frac{I}{q} e^{-q x} & =\frac{x}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v^{2}} \frac{d v}{v^{2}} .
\end{aligned}
$$

9.43 Many examples of the use of this method are given by Heaviside: Electromagnetic Theory, Vol. II. Bromwich, Proceedings Cambridge Philosophical Society, XX, p. 4II, I92I, has justified its application by the method of contour integration and applied it to the solution of a problem in the conduction of heat.
9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, 1919, has shown that the same methods may be applied to the more general partial differential equations of the type,

$$
\sum_{\alpha, \beta} A_{\alpha, \beta}(x) \frac{\partial^{\alpha+\beta}(u)}{\partial x^{\alpha} \partial t^{\beta}}=0,
$$

and the relations of 9.42 are valid.
9.44 Heaviside's Expansion Theorem.

The operational solution of the differential equation of 9.41 , or the more general equation, 9.431 , satisfying the given boundary conditions, may be written in the form,

$$
u=\frac{F(p)}{\Delta(p)} u_{0}
$$

where $F(p)$ and $\Delta(p)$ are known functions of $p=\frac{\partial}{\partial t}$. Then Heaviside's Expansion Theorem is:

$$
u=u_{0}\left\{\frac{F(0)}{\Delta(0)}+\sum \frac{F(\alpha)}{\alpha \Delta^{\prime}(\alpha)} e^{\alpha t}\right\}
$$

where α is any root, except o , of $\Delta(p)=0, \Delta^{\prime}(p)$ denotes the first derivative of $\Delta(p)$ with respect to p, and the summation is to be taken over all the roots of $\Delta(p)=0$. This solution reduces to $u=0$ at $t=0$.

Many applications of this expansion theorem are given by Heaviside, Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431, has also applied this expansion theorem to the solution of the problem of the distribution of magnetic induction in cylinders and plates.
9.45 Bromwich's Expansion Theorem. Bromwich has extended Heaviside's Expansion Theorem as follows. If the operational solution of the partial differential equation of 9.41 , obtained to satisfy the boundary conditions, is

$$
u=\frac{F(p)}{\Delta(p)}(G t)
$$

where G is a constant, then the solution of the differential equation is

$$
u=G\left\{N_{0} t+N_{1}+\sum \frac{F(\alpha)}{\alpha^{2} \Delta^{\prime}(\alpha)} e^{\alpha \ell}\right\}
$$

where N_{0} and N_{1} are defined by the expansion,

$$
\frac{F(p)}{\Delta(p)}=N_{0}+N_{1} p+N_{2} p^{2}+\ldots
$$

α is any root of $\Delta(p)=0, \Delta^{\prime}(p)$ is the first derivative of $\Delta(p)$ with respect to p, and the summation is over all the roots, α. This solution reduces to $u=0$ at $t=0$. Phil. Mag. 37, p. 407, I919; Proceedings London Mathematical Society, I5, p. 40I, 1916.

9.9 References to Bessel Functions.

Nielsen: Handbuch der Theorie der Cylinder Funktionen.
Leipzig, 1904.
The notation and definitions given by Nielsen have been adopted in the present collection of formulae. The only difference is that Nielsen uses an upper index, $J^{n}(x)$, to denote the order, where the more usual custom of writing $J_{n}(x)$ is here employed. In place of $H_{1}{ }^{n}$ and $H_{2}{ }^{n}$ used by Nielsen for the cylinder functions of the third kind, $H_{n}{ }^{\mathrm{I}}$ and $H_{n}{ }^{\mathrm{II}}$ are employed in this collection.

> Gray and Mathews: Treatise on Bessel Functions.
> London, $1895 .^{1}$

The Bessel Function of the second kind, $Y_{n}(x)$, employed by Gray and Mathews is the function

$$
\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x)
$$

of Nielsen.
Schafheitlin: Die Theorie der Besselschen Funktionen.
Leipzig, 1908.
Schafheitlin defines the function of the second kind, $Y_{n}(x)$, in the same way as Nielsen, except that its sign is changed.

Now A Treatise on the Theory of Bessel Functions, by G. N. Watson, Cambridge University Press, 1922, has been brought out while this volume is in press. This Treatise gives by far the most complete account of the theory and properties of Bessel Functions that exists, and should become the standard work on the subject with respect to notation. A particularly valuable feature is the Collection of Tables of Bessel Functions at the end of the volume and the Bibliography, giving references to all the important works on the subject.
9.91 Tables of Legendre, Bessel and allied functions.
$P_{n}(x) \quad$ (9.001).

[^0]B. A. Report, 1879 , pp. 54-57. Integral values of n from I to 7 ; from $x=0.01$ to $x=1.00$, interval 0.0 I , I6 decimal places.

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places.
$P_{n}(\cos \theta)$
Phil. Trans. Roy. Soc. London, 203, p. 100, 1904. Integral values of n from I to 20 , from $\theta=0$ to $\theta=90$, interval 5,7 decimal places.

Phil. Mag. 32, p. 512, 1891. Integral values of n from 1 to $7, \theta=0$ to $\theta=90$, interval I; 4 decimal places. Reproduced in Jahnke and Emde, p. 85.

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. 1-8. Integral values of n from I to $8 ; \theta=0$ to $\theta=90$, interval I , , 0 decimal places.

Airey, Proc. Roy. Soc. London, 96, p. I, 1919. Tables by means of which zonal harmonics of high order may be calculated.

Lodge, Phil. Trans. Roy. Soc. London, 203, 1904, p. 87. Integral values of n from I to 20; $\theta=0$ to $\theta=90$, interval 5,7 decimal places. Reprinted in Rayleigh, Collected Works, Volume V, p. 162.
$\frac{\partial P_{n}(\cos \theta)}{\partial \theta}$.
Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of n from 1 to 7; $\theta=\circ$ to $\theta=90$, interval $\mathrm{I}, 4$ decimal places. Reproduced in Jahnke and Emde, p. 88.
$J_{0}(x), J_{1}(x) \quad$ (9.101).
Meissel's tables, $x=0.01$ to $x=15 \cdot 50$, interval o.or, to 12 decimal places, are given in Table I of Gray and Mathews' Treatise on Bessel's Functions.

Aldis, Proc. Roy. Soc. London 66, 40, r900. $x=0.1$ to $x=6.0$, interval O.I, 2I decimal places.

Jahnke and Emde, Funktionentafeln, Table III. $x=0.01$ to $x=15.50$, interval 0.OI, 4 decimal places.
$J_{n}(x) \quad$ (9.101).
Gray and Mathews, Table II. Integral values of n from $n=0$ to $n=60$; integral values of x from $x=\mathrm{I}$ to $x=24$, 18 decimal places.

Jahnke and Emde, Table XXIII, same, to 4 significant figures.
B. A. Report, I915, p. 29; $n=0$ to $n=13$.

$$
\begin{array}{llr}
x=0.2 \text { to } x=6.0 & \text { interval } 0.2 & 6 \text { decimal places, } \\
x=6.0 \text { to } x=16.0 & \text { interval } 0.5 & \text { ro decimal places. }
\end{array}
$$

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of $J_{n}(x)$ for integral values of n from ○ to 12 , and $n=18, x$ ranging from \circ to 17 .
$-\frac{\pi}{2} Y_{0}(x)=G_{0}(x) ; \quad-\frac{\pi}{2} Y_{1}(x)=G_{1}(x)$.
B. A. Report, I913, pp. i16-130. $x=0.01$ to $x=16.0$, interval $0.01,7$ decimal places.
B. A. Report, $1915, x=6.5$ to $x=15.5$, interval 0.5 , 10 decimal places.

Aldis, Proc. Roy. Soc. London, 66, 40, 1900: $x=0.1$ to $x=6.0$. Interval O.I, 21 decimal places.

Jahnke and Emde, Tables VII and VIII, functions denoted $\mathrm{K}_{0}(x)$ and $\mathrm{K}_{1}(x)$, $x=0.1$ to $x=6.0$, interval 0.1 ; $x=0.01$ to $x=0.99$, interval $0.01 ; x=1.0$ to $x=10.3$, interval 0.1; 4 decimal places.
$-\frac{\pi}{2} Y_{n}(x)=G_{n}(x)$.
B. A. Report, I914, p. 83. Integral values of n from ○ to I3. $x=0.01$ to $x=6.0$, interval О.І; $x=6.0$ to $x=16.0$, interval $0.5 ; 5$ decimal places.
$\frac{\pi}{2} Y_{0}(x)+(\log 2-\gamma) J_{0}(x), \quad$ Denoted $Y_{0}(x)$ and $Y_{1}(x)$
$\frac{\pi}{2} Y_{1}(x)+(\log 2-\gamma) J_{1}(x) . \quad$ respectively in the tables.
B. A. Report, 1914, p. $76, x=0.02$ to $x=15.50$, interval $0.02,6$ decimal places.
B. A. Report, i915, p. $33, x=0.1$ to $x=6.0$, interval 0.1 ; $x=6.0$ to $x=\mathrm{I}_{5.5}$, interval 0.5 , 10 decimal places.

Jahnke and Emde, Table VI, $x=0.01$ to $x=1.00$, interval $0.01 ; x=1.0$ to $x=10.2$, interval O.1, 4 decimal places.
$Y_{0}(x), Y_{1}(x)$ Denoted $N_{0}(x)$ and $N_{1}(x)$ respectively.
Jahnke and Emde, Table IX, $x=0.1$ to $x=10.2$, interval 0.1, 4 decimal places.
$\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x) . \quad$ Denoted $Y_{n}(x)$ in tables.
B. A. Report, 1915. Integral values of n from I to $13 . \quad x=0.2$ to $x=6.0$, interval $0.2 ; x=6.0$ to $x=15.5$, interval $0.5,6$ decimal places.
$J_{n+\frac{1}{2}}(x)$.
Jahnke and Emde, Table II. Integral values of n from $n=0$ to $n=6$, and $n=-\mathrm{I}$ to $n=-7 ; x=0$ to $x=50$, interval I.O, 4 figures.
$J_{\frac{3}{3}}(x), J_{-\frac{1}{3}}(x)$.
Watson, Proc. Roy. Soc. London, 94, 204, 1918.

$$
\begin{aligned}
& x=0.05 \text { to } x=2.00 \text { interval } 0.05 \\
& x=2.0 \text { to } x=8.0 \text { interval } 0.2
\end{aligned}
$$

4 decimal places.
$J_{\alpha}(\alpha), J_{\alpha-1}(\alpha)$
$-\frac{\pi}{2} Y_{\alpha}(\alpha),-\frac{\pi}{2} Y_{\alpha-1}(\alpha)$.
Denoted $G_{\alpha}(\alpha)$ and $G_{\alpha-1}(\alpha)$ respectively.
$\frac{\pi}{2} Y_{\alpha}(\alpha)+(\log 2-\gamma) J_{\alpha}(\alpha)$,
$\frac{\pi}{2} Y_{\alpha-1}(\alpha)+(\log 2-\gamma) J_{\alpha-1}(\alpha) . \quad$ Denoted $-Y_{\alpha}(\alpha)$ and $-Y_{\alpha-1}(\alpha)$.
Tables of these six functions are given in the B. A. Report, 1916, as follows:

From α	to α	Interval
I	50	I
50	100	5
100	200	10
200	400	20
400	1000	50
1000	2000	100
2000	5000	500
5000	20000	1000
20000	30000	10000
100,000		
500,000		

$I_{0}(x), I_{1}(x) \quad$ (9.211).
Aldis, Proc. Roy. Soc. London, 64, pp. 218-223, $1899 ; x=0.1$ to $x=6.0$, interval ○.I; $x=6.0$ to $x=$ II.o, interval I.O, 21 decimal places.

Jahnke and Emde, Tables XI and XII, 4 places:

$$
\begin{array}{ll}
x=0.01 \text { to } x=5.10 & \text { interval 0.OI, } \\
x=5.10 \text { to } x=6.0 & \text { interval O.I, } \\
x=6.0 \text { to } x=1 \mathrm{II.O} & \text { interval I.O. }
\end{array}
$$

$I_{0}(x) \quad$ (9.211).
B. A. Report, $1896 ; x=0.001$ to $x=5.100$, interval $0.001,9$ decimal places.

$\mathrm{I}_{1}(x)$ (9.211).

B. A. Report, $1893 ; x=0.00 \mathrm{I}$ to $x=5.100$, interval $0.00 \mathrm{I}, 9$ decimal places.

Gray and Mathews, Table V, $x=0.01$ to $x=5.10$, interval 0.01, 9 decimal places.
$\mathrm{I}_{n}(x) \quad$ (9.211).
B. A. Report, 1889 , pp. ${ }^{28-32}$; integral values of n from \circ to $1 \mathrm{I}, x=0.2$ to $x=6.0$, interval $0>2$, 12 decimal places. These tables are reproduced in Gray and Mathews, Table VI.

Jahnke and Emde, Table XXIV; same ranges, to 4 places.

$$
\begin{array}{ll}
J_{0}(x \sqrt{i}) & =X-i Y \\
\sqrt{2} J_{1}(x \sqrt{i}) & =X_{1}+i Y_{1}
\end{array}
$$

Aldis, Proc. Roy. Soc. London, 66, 142, 1900; $x=0.1$ to $x=6.0$, interval O.1, 2I decimal places.

Jahnke and Emde, Tables XV and XVI, same range, to 4 places.
$J_{0}(x \sqrt{i})$.
Gray and Mathews, Table IV; $x=0.2$ to $x=6.0$, interval c.2, 9 decimal places.
$Y_{0}(x \sqrt{i}) \quad(9.104) \quad$ Denoted $N_{0}(x \sqrt{i})$ in table. $H_{0}^{\mathrm{I}}(x \sqrt{i}), H_{1}^{\mathrm{I}}(x \sqrt{\bar{i}})$.

Jahnke and Emde, Tables XVII and XVIII; $x=0.2$ to $x=6.0$, interval $0.2,4^{-7}$ figures.

$$
\frac{i \pi}{2} H_{0}^{\mathrm{I}}(i x)=K_{0}(x)
$$

(9.212).
$-\frac{\pi}{2} H_{0}^{\mathrm{I}}(i x)=K_{1}(x)$,
Aldis, Proc. Roy. Soc. London, 64, 219-223, $1899 ; x=0.1$ to $x=12.0$, interval O.1, 2I decimal places.

Jahnke and Emde, Table XIV; same, to 4 places.
$i H_{0}^{\mathrm{I}}(i x),-H_{0}^{\mathrm{I}}(i x) \quad$ (9.107).
Jahnke and Emde, Table XIII; $x=0.12$ to $x=6.0$, interval $0.2,4$ figures. ber x, ber ${ }^{\prime} x$, bei x, bei' x, (9.215).
B. A. Report, I912; $x=0.1$ to $x=10.0$, interval 0.1, 9 decimal places.

Jahnke and Emde, Table XX; $x=0.5$ to $x=6.0$, interval 0.5 , and $x=8$, 10, 15, 20, 4 decimal places.
ker $x, \operatorname{ker}^{\prime} x$, kei x, $\operatorname{kei}^{\prime} x$,
B. A. Report, 1915; $x=0.1$ to $x=10.0$, interval O.I, 7 -10 decimal places. $\operatorname{ber}^{2} x+$ bei $^{2} x$, $\operatorname{ber}^{\prime 2} x+$ bei $^{\prime 2} x$,
ber x bei' x - bei x ber' $^{\prime} x$, and the corresponding ker and kei ber x ber $^{\prime} x+$ bei x bei $^{\prime} x$, functions.
B. A. Report, I916; $x=0.2$ to $x=10.0$, interval 0.2 , decimal places.
$S_{n}(x), S^{\prime}{ }_{n}(x), \log S_{n}(x), \log S^{\prime}{ }_{n}(x)$, $C_{n}(x), C^{\prime}{ }_{n}(x), \log C_{n}(x), \log C^{\prime}{ }_{n}(x), \quad$ (9.261). $E_{n}(x), E_{n}^{\prime}(x), \log E_{n}(x), \log E_{n}^{\prime}(x)$,
B. A. Report, 1916; integral values of n from \circ to 10, $x=1$.I to $x=1.9$, interval 0.1, 7 decimal places.

$$
\begin{aligned}
& G(x)=-\sqrt{2} \Pi\left(\frac{1}{4}\right) x^{-\frac{1}{2}} J_{\frac{1}{2}}\left(\frac{x}{2}\right)=-\frac{\mathrm{I}}{0.78012} x^{-\frac{1}{2} J_{\frac{1}{2}}\left(\frac{x}{2}\right)} \\
& D(x)=\frac{\mathrm{I}}{\sqrt{2}} \Pi\left(-\frac{1}{4}\right) x^{\frac{1}{2} J_{-\frac{1}{2}}\left(\frac{x}{2}\right)=\frac{1}{1.15407} x^{\frac{1}{2}} J_{-\frac{1}{2}}\left(\frac{x}{2}\right)}
\end{aligned}
$$

Table I of Jahnke and Emde gives these two functions to 3 decimal places for $x=0.2$ to $x=8.0$, interval 0.2 , and $x=8.0$ to $x=12.0$, interval 1.0.

Roots of $J_{0}(x)=0$.
Airey, Phil. Mag. 36, p. 24I, 1918: First 40 roots (ρ) with corresponding values of $J_{1}(\rho), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{1}(x)=0$.
Gray and Mathews, Table III, first 50 roots, with corresponding values of $J_{0}(x)$, 16 decimal places.

Airey, Phil. Mag. 36, p. 24I: First 40 roots (r) with corresponding values of $J_{0}(r), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{n}(x)=0$.
B. A. Report, 1917, first io roots, to 6 figures, for the following integral values of n : ○-IO, I5, 20, 30, 40, 50, 75, 100, 200, $300,400,500,750$, 1000 .

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral values of $n \circ-9$.

Roots of:
$(\log 2-\gamma) J_{n}(x)+\frac{\pi}{2} Y_{n}(x)=0$.
Denoted $Y_{n}(x)=0$ in table.
Airey: Proc. London Phys. Soc. 23, p. 219, igio-il. First 40 roots for $n=0,1,2,5$ decimal places.
Jahnke and Emde, Table X, first 4 roots for $n=0$, i. E decimal places.
Roots of:
$Y_{0}(x)=0$,
$Y_{1}(x)=0$.
Denoted $N_{0}(x)$ and $N_{1}(x)$ in tables.
Airey: l. c. First io roots, 5 decimal places.
Roots of:

$$
\begin{array}{rrr}
J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x) \pm Y_{0}(x)=0 \\
J_{1}(x)+(\log 2-\gamma) J_{1}(x)+\frac{\pi}{2} Y_{1}(x)=0 . & \text { Denoted } & J_{1}(x)+Y_{1}(x)=0 \\
J_{0}(x)-2(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x)-2 V_{0}(x)=0 \\
\operatorname{I\circ } J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } \operatorname{10} J_{0}(x) \pm Y_{0}(x)=0 .
\end{array}
$$

Airey, 1. c. First to roots, 5 decimal places. Roots of \cdot

$$
\frac{J_{n+1}(x)}{J_{n}(x)}+\frac{I_{n+1}(x)}{I_{n}(x)}=0 .
$$

Airey, 1. c. First io roots: $n=0,4$ decimal places; $n=1,2,3,3$ decimal places.

Jahnke and Emde, Table XXV, first 5 roots for $n=0,3$ for $n=1,2$ for $n=2: 4$ figures.

Airey, l. c. gives roots of some other equations involving Bessel's functions connected with the vibration of circular plates.

Roots of:

$$
J_{\nu}(x) Y_{\nu}(x)=J_{\nu}(k x) Y_{\nu}(k x)
$$

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for $\nu=0, \mathrm{I} / 2, \mathrm{I}, 3 / 2,2,5 / 2: k=\mathrm{I} .2, \mathrm{I} .5$, 2.0.

Table XXVIII, first root, multiplied by $(k-\mathrm{I})$ for $k=\mathrm{I}$, I.2, I.5, 2-II, $19,39, \infty: \nu$ same as above.

Table XXIX, first 4 roots, multiplied by $(k-1)$ for certain irrational values of k, and $\nu=0$, I .

X. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

By F. R. Moulton, Ph.D., Professor of Astronomy, University of Chicago; Research Associate of the Carnegie Institution of Washington.

INTRODUCTION

Differential equations are usually first encountered in the final chapter of a book on integral calculus. The methods which are there given for solving them are essentially the same as those employed in the calculus. Similar methods are used in the first special work on the subject. That is, numerous types of differential equations are given in which the variables can be separated by suitable devices; little or nothing is said about the existence of solutions of other types, or about methods of finding the solutions. The false impression is often left that only exceptionally can differential equations be solved. Whatever satisfaction there may be in learning that some problems in geometry and physics lead to standard forms of differential equations is more than counterbalanced by the discovery that most practical problems do not lead to such forms.
10.01 The point of view adopted here and the methods which are developed can be best understood by considering first some simpler and better known mathematical theories. Suppose
1.

$$
F(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0
$$

is a polynomial equation in x having real coefficients $a_{1}, a_{2}, \ldots, a_{n}$. If n is $\mathrm{I}, 2,3$, or 4 the values of x which satisfy the equation can be expressed as explicit functions of the coefficients. If n is greater than 4 , formulas for the solution can not in general be written down. Nevertheless, it is possible to prove that n solutions exist and that at least one of them is real if n is odd. If the coefficients are given numbers, there are straightforward, though somewhat laborious, methods of finding the solutions. That is, even though general formulas for the solutions are not known, yet it is possible both to prove the existence of the solutions and also to find them in any special numerical case.
10.02 Consider as another illustration the definite integral
I.

$$
I=\int_{a}^{b} f(x) d x
$$

where $f(x)$ is continuous for $a \leqslant x \leqslant b$. If $F(x)$ is such a function that
2.

$$
\frac{d F}{d x}=f(x),
$$

then $I=F(b)-F(a)$. But suppose no $F(x)$ can be found satisfying (2). It is nevertheless possible to prove that the integral I exists, and if the value of (x) is given for every value of x in the interval $a \leqslant x \leqslant b$, it is possible to find the numerical value of I with any desired degree of approximation. That is, it is not necessary that the primitive of the integrand of a definite integral be known in order to prove the existence of the integral, or even to find its value in any particular example.
10.03 The facts are analogous in the case of differential equations. Those having numerical coefficients and prescribed initial conditions can be solved regardless of whether or not their variables can be separated. They need to satisfy only mild conditions which are always fulfilled in physical problems. It is with a sense of relief that one finds he can solve, numerically, any particular problem which can be expressed in terms of differential equations.
10.04 This chapter will contain an account of a method of solving ordinary differential equations which is applicable to a broad class including all those which arise in physical problems. A large amount of experience has shown that the method is very convenient in practice. It must be understood that there is for it an underlying logical basis, involving refinements of modern analysis, which fully justifies the procedure. In other words, it can be proved that the process is capable of furnishing the solution with any desired degree of accuracy. The proofs of these facts belong to the domain of pure analysis and will not be given here.
10.10 Simpson's Method of Computing Definite Integrals. The method of solving differential equations which will be given later involves the computation of definite integrals by a special process which will be developed in this and the following sections.

Let t be the variable of integration, and consider the definite integral

$$
\text { I. } \quad F=\int_{a}^{b} f(t) d t
$$

This integral can be interpreted as the area between the t-axis and the curve $y=f(t)$ and bounded by the ordinates $t=a$ and $t=b$, figure 1.

Let $t_{0}=a, t_{n}=b, y_{i}=f\left(t_{i}\right)$, and divide the interval $a \leqslant t \leqslant b$ up into n equal parts, each of length $h=$

Fig. I $(b-a) / n$. Then an approximate value of F is
2.

$$
F_{0}=h\left(y_{1}+y_{2}+\ldots+y_{n}\right) .
$$

This is the sum of rectangles whose ordinates, figure I , are $y_{1}, y_{2}, \ldots, y_{n}$.
10.11 A more nearly exact value can be obtained for the first two intervals, for example, by putting a curve of the second degree through the three points
y_{0}, y_{1}, y_{2}, and finding the area between the t-axis and this curve and bounded by the ordinates t_{0} and t_{2}. The equation of the curve is
1.

$$
y=a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}
$$

where the coefficients a_{0}, a_{1}, and a_{2} are determined by the conditions that y shall equal y_{0}, y_{1}, and y_{2} at t equal to t_{0}, t_{1} and t_{2} respectively; or
2.

$$
\left\{\begin{array}{l}
y_{0}=a_{0} \\
y_{1}=a_{0}+a_{1}\left(t_{1}-t_{0}\right)+a_{2}\left(t_{1}-t_{0}\right)^{2} \\
y_{2}=a_{0}+a_{1}\left(t_{2}-t_{0}\right)+a_{2}\left(t_{2}-t_{0}\right)^{2}
\end{array}\right.
$$

It follows from these equations and $t_{2}-t_{1}=t_{1}-t_{0}=h$ that
3.

$$
\left\{\begin{array}{l}
a_{0}=y_{0} \\
a_{1}=-\frac{\mathrm{I}}{2 h}\left(3 y_{0}-4 y_{1}+y_{2}\right) \\
a_{2}=\frac{\mathrm{I}}{2 h^{2}}\left(y_{0}-2 y_{1}+y_{2}\right)
\end{array}\right.
$$

The definite integral $\int_{t_{0}}^{t_{2}} y d t$ is approximately

$$
I=\int_{t_{0}}^{t_{2}}\left[a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}\right] d t=2 h\left[a_{0}+a_{1} h+\frac{4}{3} a_{2} h^{2}\right]
$$

which becomes as a consequence of (3)
4.

$$
I=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

10.12 The value of the integral over the next two intervals, or from t_{2} to t_{4}, can be computed in the same way. If n is even, the approximate value of the integral from t_{0} to t_{n} is therefore

$$
F_{1}=\frac{h}{3}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots \ldots+4 y_{n-1}+y_{n}\right]
$$

This formula, which is due to Simpson, gives results which are usually remarkably accurate considering the simplicity of the arithmetical operations.
10.13 If a curve of the third degree had been passed through the four points y_{0}, y_{1}, y_{2}, and y_{3}, the integral corresponding to (4), but over the first three intervals, would have been found to be

$$
I=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right] .
$$

10.20 Digression on Difference Functions. For later work it will be necessary to have some properties of the successive differences of the values of a function for equally spaced values of its argument.

As before, let y_{i} be the value of $f(t)$ for $t=t_{i}$. Then let

$$
\begin{aligned}
& \Delta_{1} y_{1}=y_{1}-y_{0} \\
& \Delta_{1} y_{2}=y_{2}-y_{1} \\
& \cdots \cdots \cdots \\
& \Delta_{1} y_{n}=y_{n}-y_{n-1}
\end{aligned}
$$

These are the first differences of the values of the function y for successive values of t. All the successive intervals for t are supposed to be equal.
10.21 In a similar way the second differences are defined by

$$
\begin{aligned}
& \Delta_{2} y_{2}=\Delta_{1} y_{2}-\Delta_{1} y_{1} \\
& \Delta_{2} y_{3}=\Delta_{1} y_{3}-\Delta_{1} y_{2} \\
& \cdots \cdots \\
& \Delta_{2} y_{n}=\Delta_{1} y_{n}-\Delta_{1} y_{n-1}
\end{aligned}
$$

10.22 In a similar way third differences are defined by

$$
\begin{aligned}
& \Delta_{3} y_{3}=\Delta_{2} y_{3}-\Delta_{2} y_{2} \\
& \Delta_{3} y_{4}=\Delta_{2} y_{4}-\Delta_{2} y_{3} \\
& \cdots \cdots \\
& \Delta_{3} y_{n}=\Delta_{2} y_{n}-\Delta_{2} y_{n-1}
\end{aligned}
$$

and obviously the process can be repeated as many times as may be desired. 10.23 The table of successive differences can be formed conveniently from the tabular values of the function and can be arranged in a table as follows:

Table I

y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
y_{0}			
y_{1}	$\Delta_{1} y_{1}$		
y_{2}	$\Delta_{1} y_{2}$	$\Delta_{2} y_{2}$	
y_{3}	$\Delta_{1} y_{3}$	$\Delta_{2} y_{3}$	
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots \ldots$	$\Delta_{3} y_{3}$	

In this table the numbers in each column are subtracted from those immediately below them and the remainders are placed in the next column to the right on the same line as the minuends. Variations from this precise arrangement could be, and indeed often have been, adopted.
10.24 A very important advantage of a table of differences is that it is almost sure to reveal any errors that may have been committed in computing the y_{i}. If a single y_{i} has an error ϵ, it follows from 10.20 that the first difference $\Delta_{1} y_{i}$ will contain the error $+\epsilon$ and $\Delta_{1} y_{i+1}$ will contain the error $-\epsilon$. But the second differences $\Delta_{2} y_{i}, \Delta_{2} y_{i+1}$, and $\Delta_{2} y_{i+2}$ will contain the respective errors $+\epsilon,-2 \epsilon$, $+\epsilon$. Similarly, the third differences $\Delta_{3} y_{i}, \Delta_{3} y_{i+1}, \Delta_{3} y_{i+2}$, and $\Delta_{3} y_{i+3}$ will contain the respective errors $+\boldsymbol{\epsilon},-3 \epsilon,+3 \epsilon,-\epsilon$. An error in a single y_{i} affects $j+\mathrm{r}$ differences of order j, and the coefficients of the error are the binomial coefficients with alternating signs. The algebraic sums of the errors in the affected
numbers in the various difference columns are zero. Now in such functions as ordinarily occur in practice the numerical values of the differences, if the intervals are not too great, decrease with rapidity and run smoothly. If an error is present, however, the differences of higher order become very irregular. 10.25 As an illustration, consider the function $y=\sin t$ for t equal to 10°, $15^{\circ}, \ldots$. . . The following table gives the function and its successive differences, expressed in terms of units of the fourth decimal: ${ }^{1}$

Table II

t	$\sin t$	$\Delta_{1} \sin t$	$\Delta_{2} \sin t$	$\Delta_{3} \sin t$
10°	1736			
15	2588	852		
20	3420	832	-20	
25	4226	806	-26	-6
30	5000	774	-32	-6
35	5736	736	-38	-6
40	6428	692	-44	-6
45	7071	643	-49	-5
50	7660	589	-54	-5
55	8191	531	-58	-4
60	8660	469	-62	-4
65	9063	403	-66	-4
70	9397	334	-69	-3

Suppose, however, that an error of two units had been made in determining the sine of 45° and that 7073 had been taken• in place of 7071. Then the part of the table adjacent to this number would have been the following:

Table III

t	$\sin t$	$\Delta_{1} \sin$	$\Delta_{2} \sin t$	$\Delta_{3} \sin t$
25° 30	4226			
35	5736	736	-38	
40	6428	692	-44	- 6
45	7073	645	-47	- 3
50	7660	587	-58	-II
55	8191	531	-56	+ 2
60	8660	469	-62	- 6
65	9063	403	-66	- 4

The irregularity in the numbers of the last column shows the existence of an error, and, in fact, indicates its location. In the third differences four numbers
${ }^{1}$ Often it is not necessary to carry along the decimal and zeros to the left of the first significant figure.
will be affected by an error in the value of the function. The erroneous numbers in the last column are clearly the second, third, fourth, and fifth. .The algebraic sum of these four numbers equals the sum of the four correct numbers, or -18 . Their average is $-4 \cdot 5$. Hence the central numbers are probably -5 and -4 . Since the errors in these numbers are -3ϵ and $+3 \epsilon$, it follows that ϵ is probably +2 . The errors in the second and fifth numbers are $+\epsilon$ and $-\epsilon$ respectively. On making these corrections and working back to the first column, it is found that 7073 should be replaced by 707 I .
10.30 Computation of Definite Integrals by Use of Difference Functions.

Suppose the values of $f(t)$ are known for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}. Suppose it is desired to find the integral
I.

$$
I_{n}=\int_{t_{n}}^{t_{n+\mathrm{r}}} f(t) d t
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} of the polynomial can be determined, as above, so that the function
2.

$$
y=b_{0}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}
$$

shall take the same values as $f(t)$ for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}.
With this approximation to the function $f(t)$, the integral becomes (since $\left.t_{n+1}-t_{n}=h\right)$
3. $\left.\quad I_{n}=\int_{t_{n}}^{t_{n+1}\left[b_{0}\right.}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}\right] d t$

$$
=h\left[b_{0}+\frac{\mathrm{I}}{2} b_{1} h+\frac{\mathrm{I}}{3} b_{2} h^{2}+\frac{\mathrm{I}}{4} b_{3} h^{3}\right] .
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} will now be expressed in terms of $y_{n+1}, \Delta_{1} y_{n+1}$, $\Delta_{2} y_{n+1}$, and $\Delta_{3} y_{n+1}$. It follows from (2) that
4.

$$
\left\{\begin{array}{l}
y_{n-2}=b_{0}-2 b_{1} h+4 b_{2} h^{2}-8 b_{3} h^{3}, \\
y_{n-1}=b_{0}-b_{1} h+b_{2} h^{2}-b_{3} h^{3}, \\
y_{n}=b_{0}, \\
y_{n+1}=b_{0}+b_{1} h+b_{2} h^{2}+b_{3} h^{3} .
\end{array}\right.
$$

Then it follows from the rules for determining the difference functions that
5.
6.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta_{1} y_{n-1}=b_{1} h-3 b_{2} h^{2}+7 b_{3} h^{3}, \\
\Delta_{1} y_{n}=b_{1} h-b_{2} h^{2}+b_{3} h^{3}, \\
\Delta_{1} y_{n+1}=b_{1} h+b_{2} h^{2}+b_{3} h^{3}
\end{array}\right. \\
& \begin{cases}\Delta_{2} y_{n} & =2 b_{2} h^{2}-6 b_{3} h^{3} \\
\Delta_{2} y_{n+1} & =2 b_{2} h^{2}\end{cases} \\
& \Delta_{3} y_{n+1}=6 b_{3} h^{3} .
\end{aligned}
$$

7.

It follows from the last equations of these four sets of equations that
8.

$$
\left\{\begin{array}{l}
b_{0}=y_{n+1}-\Delta_{1} y_{n+1}, \\
b_{1} h=\Delta_{1} y_{n+1}-\frac{I}{2} \Delta_{2} y_{n+1}-\frac{\overline{6}}{6} \Delta_{3} y_{n+1}, \\
b_{2} h^{2}=\frac{I}{2} \Delta_{2} y_{n+1}, \\
b_{3} h^{3}=\frac{I}{6} \Delta_{3} y_{n+1} .
\end{array}\right.
$$

Therefore the integral (3) becomes
9. $\quad I_{n}=h\left[y_{n+1}-\frac{\mathrm{I}}{2} \Delta_{1} y_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} y_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} y_{n+1}-\ldots\right]$.

The coefficients of the higher order terms $\Delta_{4} y_{n+1}$ and $\Delta_{5} y_{n+1}$ are $-\frac{19}{720}$ and $\frac{1}{48}$ respectively.
10.31 Obviously, if it were desired, the integral from t_{n-2} to t_{n-1}, or over any other part of this interval, could be computed by the same methods. For example, the integral from t_{n-1} to t_{n} is

$$
\begin{aligned}
I_{n-1} & =\int_{t_{n-1}}^{t_{n}} f(t) d t \\
& =h\left[y_{n+1}-\frac{3}{2} \Delta_{1} y_{n+1}+\frac{5}{\mathrm{I} 2} \Delta_{2} y_{n+1}+\frac{\mathrm{I}}{24} \Delta_{3} y_{n+1}+\ldots\right] .
\end{aligned}
$$

NUMERICAL ILLUSTRATIONS

10.32 Consider first the application of Simpson's method. Suppose it is required to find

$$
I=\int_{25^{\circ}}^{555^{\circ}} \sin t d t=-[\cos t]_{25^{\circ}}^{55^{\circ}}=0.3327
$$

On applying 10.12 with the numbers taken from Table I, it is found that

$$
I_{1}=\frac{5^{\circ}}{3}\left[.4226+2.0000+\mathrm{I} .147^{2}+2.57 \mathrm{I} 2+\mathrm{I} .4 \mathrm{I} 42+3.0640+.8 \mathrm{I} 9 \mathrm{I}\right]
$$

which becomes, on reducing 5° to radians,

$$
I_{1}=0.3327
$$

agreeing to four places with the correct result.
10.33 On applying 10.11 (4) and omitting alternate entries in Table II, it is found that

$$
I=\int_{25^{\circ}}^{45^{\circ}} \sin t d t=\frac{10^{\circ}}{3}[.4226+2.2944+.707 \mathrm{I}]=0.199^{2}
$$

which is also correct to four places. These formulas could hardly be surpassed in ease and convenience of application.
10.34 Now consider the application of 10.30 (9). As it stands it furnishes the integral over the single interval t_{n} to t_{n+1}. If it is desired to find the integral from t_{n} to t_{n+m}, the formula for doing so is obviously the sum of m formulas such as (9), the value of the subscript going from $n+\mathrm{I}$ to $n+m+\mathrm{I}$, or

$$
\begin{aligned}
& I_{n, m}=h\left[\left(y_{n+1}+\ldots \ldots+y_{n+m+1}\right)-\frac{\mathrm{I}}{2}\left(\Delta_{1} y_{n+1}+\ldots .+\Delta_{1} y_{n+m+1}\right)\right. \\
& \left.-\frac{\mathrm{I}}{\mathrm{I} 2}\left(\Delta_{2} y_{n+1}+\ldots+\Delta_{2} y_{n+m+1}\right)-\frac{\mathrm{I}}{24}\left(\Delta_{3} y_{n+1}+\ldots+\Delta_{3} y_{n+m+1}\right)+\ldots\right] .
\end{aligned}
$$

On applying this formula to the numbers of Table I, it is found that

$$
\begin{aligned}
I=\int_{25^{\circ}}^{.55^{\circ}} \sin t d t=5^{\circ}[(.5000 & +.5736+.6428+.707 \mathrm{I}+.7660+.8 \mathrm{I} 9 \mathrm{I}) \\
& -\frac{\mathrm{I}}{2}(.0774+.0736+.0692+.0643+.0589+.053 \mathrm{I}) \\
& +\frac{\mathrm{I}}{\mathrm{I} 2}(.0032+.0038+.0044+.0049+.0054+.0058) \\
& \left.+\frac{\mathrm{I}}{24}(.0006+.0006+.0006+.0005+.0005+.0004)\right] \\
& =0.3327,
\end{aligned}
$$

agreeing to four places with the exact value. When a table of differences is at hand covering the desired range this method involves the simplest numerical operations. It must be noted, however, that some of the required differences necessitate a knowledge of the value of the function for earlier values of the argument than the lower limit of the integral.
10.40 Reduced Form of the Differential Equations. Differential equations which arise from physical problems usually involve second derivatives. For example, the differential equation satisfied by the motion of a vibrating tuning fork has the form

$$
\frac{d^{2} x}{d t^{2}}=-k x
$$

where k is a constant depending on the tuning fork.
10.41 The differential equations for the motion of a body subject to gravity and a retardation which is proportional to its velocity are

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-c \frac{d x}{d t} \\
\frac{d^{2} y}{d t^{2}}=-c \frac{d y}{d t}-g
\end{array}\right.
$$

where c is a constant depending on the resisting medium and the mass and shape of the body, while g is the acceleration of gravity.
10.42 The differential equations for the motion of a body moving subject to the law of gravitation are

$$
\left\{\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =-k^{2} \frac{x}{r^{3}} \\
\frac{d^{2} y}{d t^{2}} & =-k^{2} \frac{y}{r^{3}} \\
\frac{d^{2} z}{d t^{2}} & =-k^{2} \frac{z}{r^{3}} \\
r^{2} & =x^{2}+y^{2}+z^{2}
\end{aligned}\right.
$$

10.43 These examples illustrate sufficiently the types of differential equations which arise in practical problems. The number of the equations depends on the problem and may be small or great. In the problem of three bodies there are nine equations. The equations are usually not independent as is illustrated in 10.42 , where each equation involves all three variables x, y, and z through r. On the other hand, equations 10.41 are mutually independent for the first does not involve y or its derivatives and the second does not involve x or its derivatives. The right members may involve x, y, and z as is the case in 10.42, or they may involve the first derivatives, as is the case in 10.41 , or they may involve both the coördinates and their first derivatives. In some problems they also involve the independent variable t.
10.44 Hence physical problems usually lead to differential equations which are included in the form

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=f\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right) \\
\frac{d^{2} y}{d t^{2}}=g\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right),
\end{array}\right.
$$

where f and g are functions of the indicated arguments. Of course, the number of equations may be greater than two.
10.45 If we let

$$
x^{\prime}=\frac{d x}{d t}, \quad y^{\prime}=\frac{d y}{d t}
$$

equations 10.44 can be written in the form

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =x^{\prime} \\
\frac{d x^{\prime}}{d t} & =f\left(x, y, x^{\prime}, y^{\prime}, t\right) \\
\frac{d y}{d t} & =y^{\prime} \\
d y^{\prime} & =g\left(x, y, x^{\prime}, y^{\prime}, t\right) \\
d t &
\end{aligned}\right.
$$

10.46 If we let $x=x_{1}, x^{\prime}=x_{2}, y=x_{3}, y^{\prime}=x_{4}, \ldots$. equations 10.45 are included in the form

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \\
\frac{d x_{n}}{d t}=f_{n}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, t\right)
\end{array}\right.
$$

This is the final standard form to which it will be supposed the differential equations are reduced.
10.50 Definition of a Solution of Differential Equations. For simplicity in writing, suppose the differential equations are two in number and write them in the form
I.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

where f and g are known functions of their arguments. Suppose $x=a, y=b$ at $t=0$. Then 2.

$$
\left\{\begin{array}{l}
x=\phi(t) \\
y=\psi(t)
\end{array}\right.
$$

is the solution of (I) satisfying these initial conditions if ϕ and ψ are such functions that
3.

$$
\begin{aligned}
\phi(0) & =a \\
\psi(0) & =b, \\
\frac{d \phi}{d t} & =f(\phi, \psi, t), \\
\frac{d \psi}{d t} & =g(\phi, \psi, t),
\end{aligned}
$$

the last two equations being satisfied for all $0 \leqslant t \leqslant T$, where T is a positive constant, the largest value of t for which the solution is determined. It is not necessary that ϕ and ψ be given by any formulas - it is sufficient that they have the properties defined by (3). Solutions always exist, though it will not be proved here, if f and g are continuous functions of t and have derivatives with respect to both x and y.
10.51 Geometrical Interpretation of a Solution of Differential Equations. Geometrical interpretations of definite integrals have been of great value not only in leading to an understanding of their real meaning but also in suggesting
practical means of obtaining their numerical values. The same things are true in the case of differential equations.

For simplicity in the geometrical representation, consider a single equation
I.

$$
\frac{d x}{d t}=f(x, t),
$$

where $x=a$ at $t=0$. Suppose the solution is
2.

$$
x=\phi(t),
$$

Equation (2) defines a curve whose coördinates are x and t. Suppose it is represented by figure 2. The value of the tangent to the curve at every point on it

Fig. 2 is given by equation (I), for there is, corresponding to each point, a pair of values of x and t which gives $\frac{d x}{d t}$, the value of the tangent, when substituted in the right member of equation (I).

Consider the initial point on the curve, viz. $x=a, t=0$. The tangent at this point is $f(a, o)$. The curve lies close to the tangent for a short distance from the initial point. Hence an approximate value of x at $t=t_{1}, t_{1}$ being small, is the ordinate of the point where the tangent at a intersects the line $t=t_{1}$, or

$$
x_{1}=f(a, o) t_{1} .
$$

The tangent at x_{1}, t_{1} is defined by (I), and a new step in the solution can be made in the same way. Obviously the process can be continued as long as x and t have values for which the right member of (I) is defined. And the same process can be applied when there are any number of equations. While the steps of this process can be taken so short that it will give the solution with any desired degree of accuracy, it is not the most convenient process that may be employed. It is the one, however, which makes clearest to the intuitions the nature of the solution.
10.6 Outline of the Method of Solution. Consider equations 10.50 (г) and their solution (2). The problem is to find functions ϕ and ψ having the properties (2). If we integrate the last two equations of $\mathbf{1 0 . 5 0}$ (3) we shall have
I.

$$
\left\{\begin{array}{l}
\phi=a+\int_{0}^{t} f(\phi, \psi, t) d t \\
\psi=b+\int_{0}^{t} g(\phi, \psi, t) d t
\end{array}\right.
$$

The difficulty arises from the fact that ϕ and ψ are not known in advance and the integrals on the right can not be formed. Since ϕ and ψ are fhe solution values of x and y, we may replace them by the latter in order to preserve the original notation, and we have
2.

$$
\left\{\begin{array}{l}
x=a+\int_{0}^{t} f(x, y, t) d t \\
y=b+\int_{0}^{t} g(x, y, t) d t
\end{array}\right.
$$

If x and y do not change rapidly in numerical value, then $f(x, y, t)$ and $g(x, y, t)$ will not in general change rapidly, and a first approximation to the values of x and y satisfying equations (2) is
3.

$$
\left\{\begin{array}{l}
x_{1}=a+\int_{0}^{t} f(a, b, t) d t \\
y_{1}=b+\int_{0}^{t} g(a, b, t) d t
\end{array}\right.
$$

at least for values of t near zero. Since a and b are constants, the integrands in (3) are known and the integrals can be computed. If the primitives can not be found the integrals can be computed by the methods of 10.1 or 10.3 .

After a first approximation has been found a second approximation is given by
4.

$$
\left\{\begin{array}{l}
x_{2}=a+\int_{0}^{t} f\left(x_{1}, y_{1}, t\right) d t \\
y_{2}=b+\int_{0}^{t} g\left(x_{1}, y_{1}, t\right) d t
\end{array}\right.
$$

The integrands are again known functions of t because x_{1} and y_{1} were determined as functions of t by equations (3). Consequently x_{2} and y_{2} can be computed. The process can evidently be repeated as many times as is desired. The nth approximation is
5.

$$
\left\{\begin{array}{l}
x_{n}=a+\int_{0}^{t} f\left(x_{n-1}, y_{n-1}, t\right) d t \\
y_{n}=b+\int_{0}^{t} g\left(x_{n-1}, y_{n-1}, t\right) d t
\end{array}\right.
$$

There is no difficulty in carrying out the process, but the question arises whether it converges to the solution. The answer, first established by Picard, is that, as n increases, x_{n} and y_{n} tend toward the solution for all values of t for which all the approximations belong to those values of x, y, and t for which f and g have the properties of continuity with respect to t and differentiability with respect to x and y. If, for example, $f=\frac{\sin x}{x^{2}}$ and the value of x_{n} tends towards zero for $t=T$, then the solution can not be extended beyond $t=T$.

It is found in practice that the longer the interval over which the integration is extended in the successive approximations, the greater the number of approximations which must be made in order to obtain a given degree of accuracy. In fact, it is preferable to take first a relatively short interval and to find the solution over this interval with the required accuracy, and then to continue from the end values of this interval over a new interval. This is what is done in actual work. The details of the most convenient methods of doing it will be explained in the succeeding sections.
10.7 The Step-by-Step Construction of the Solution. Suppose the differential equations are

I

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$. It is more difficult to start a solution than it is to continue one after the first few steps have been made. Therefore, it will be supposed in this section that the solution is well under way, and it will be shown how to continue it. Then the method of starting a solution will be explained in the next section, and the whole process will be illustrated numerically in the following one.

Suppose the values of x and y have been found for $t=t_{1}, t_{2}, \ldots, t_{n}$. Let them be respectively $x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots ; x_{n}, y_{n}$, care being taken not to confuse the subscripts with those used in section 10.6 in a different sense. Suppose the intervals $t_{2}-t_{1}, t_{3}-t_{2}, \ldots, t_{n}-t_{n-1}$ are all equal to h and that it is desired to find the values of x and y at t_{n+1}, where $t_{n+1}-t_{n}=h$.

It follows from this notation and equations (2) of 10.6 that the desired quantities are
2.

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n}+\mathrm{r}} f(x, y, t) d t \\
y_{n+1}=y_{n}+\int_{t_{n}}^{t_{n}+\mathrm{x}} g(x, y, t) d t
\end{array}\right.
$$

The values of x and y in the integrands are of course unknown. They can be found by successive approximations, and if the interval is short, as is supposed, the necessary approximations will be few in number.

A fortunate circumstance makes it possible to reduce the number of approximations. The values of x and y are known at $t=t_{n}, t_{n-1}, t_{n-2}, \ldots$ From these values it is possible to determine in advance, by extrapolation, very close approximations to x and y for $t=t_{n+1}$. The corresponding values of f and g can be computed because these functions are given in terms of x, y, and t. They are also given for $t=t_{n}, t_{n-1}, \ldots$ Consequently, curves for f and g agreeing with their values at $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ can be constructed and the integrals (2) can be computed by the methods of 10.1 and 10.3 .

The method of extrapolating values of x_{n+1} and y_{n+1} must be given. Since the method is the same for both, consider only the former. Since, by hypothesis, x is known for $t=t_{n}, t_{n-1}, t_{n-2}, \ldots$ the values of $x_{n}, \Delta_{1} x_{n}, \Delta_{2} x_{n}$, and $\Delta_{3} x_{n}$ are known. If the interval h is not too large the value of $\Delta_{3} x_{n+1}$ is very nearly equal to $\Delta_{3} x_{n}$. As an approximation $\Delta_{3} x_{n+1}$ may be taken equal to $\Delta_{3} x_{n}$, or perhaps a closer value may be determined from the way the third differences
$\Delta_{3} x_{n-3}, \Delta_{3} x_{n-2}, \Delta_{3} x_{n-1}$, and $\Delta_{3} x_{n}$ vary. For example, in Table II it is easy to see that $\Delta_{3} \sin 75^{\circ}$ is almost certainly -3. It follows from $10.20,1,2$ that
3.

$$
\left\{\begin{array}{l}
\Delta_{2} x_{n+1}=\Delta_{3} x_{n+1}+\Delta_{2} x_{n}, \\
\Delta_{1} x_{n+1}=\Delta_{2} x_{n+1}+\Delta_{1} x_{n}, \\
x_{n+1}=\Delta_{1} x_{n+1}+x_{n} .
\end{array}\right.
$$

After the adopted value of $\Delta_{3} x_{n+1}$ has been written in its column the successive entries to the left can be written down by simple additions to the respective numbers on the line of t_{n}. For example, it is found from Table II that $\Delta_{2} \sin 75^{\circ}=-72, \Delta_{1} \sin 75^{\circ}=262, \sin 75^{\circ}=9659$. This is, indeed, the correct value of $\sin 75^{\circ}$ to four places.

Now having extrapolated approximate values of x_{n+1} and y_{n+1} it remains to compute f and g for $x=x_{n+1}, y=y_{n+1}, t=t_{n+1}$. The next step is to pass curves through the values of f and g for $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ and to compute the integrals (2). This is the precise problem that was solved in 10.30 , the only difference being that in that section the integrand was designated by y. On applying equation 10.30 (9) to the computation of the integrals (2), the latter give
4.

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h\left[f_{n+1}-\frac{\mathrm{I}}{2} \Delta_{1} f_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} f_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} f_{n+1} \ldots\right], \\
y_{n+1}=y_{n}+h\left[g_{n+1}-\frac{\mathrm{I}}{2} \Delta_{1} g_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} g_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} g_{n+1} \ldots\right],
\end{array}\right.
$$

where
5.

$$
\left\{\begin{array}{l}
f_{n+1}=f\left(x_{n+1}, y_{n+1}, t_{n+1}\right), \\
g_{n+1}=g\left(x_{n+1}, y_{n+1}, t_{n+1}\right) .
\end{array}\right.
$$

The right members of (4) are known and therefore x_{n+1} and y_{n+1} are determined.

It will be recalled that f_{n+1} and g_{n+1} were computed from extrapolated values of x_{n+1} and y_{n+1}, and hence are subject to some error. They should now be recomputed with the values of x_{n+1} and y_{n+1} furnished by (4). Then more nearly correct values of the entire right members of (4) are at hand and the values of x_{n+1} and y_{n+1} should be corrected if necessary. If the interval h is small it will not generally be necessary to correct x_{n+1} and y_{n+1}. But if they require corrections, then new values of f_{n+1} and g_{n+1} should be computed. In practice it is advisable to take the interval h so small that one correction to f_{n+1} and g_{n+1} is sufficient.

After x_{n+1} and y_{n+1} have been obtained, values of x and y at t_{n+2} can be found in precisely the same manner, and the process can be continued to $t=t_{n+3}, t_{n+4}$, If the higher differences become large and irregular it is advisable to interpolate values at the mid-intervals of the last two steps and to continue with an interval half as great. On the other hand, if the higher differences become very small it is advisable to proceed with an interval twice as great as that used in the earlier part of the computation.

The foregoing, expressed in words, seems rather complicated. As a matter of fact, it goes very simply in practice, as will be shown in section 10.9.
10.8 The Start of the Construction of the Solution. Suppose the differential equations are again

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$. Only the initial values of x and y are known. But it follows from (I) that the rates of change of x and y at $t=0$ are $f(a, b, \circ)$ and $g(a, b, \circ)$ respectively. Consequently, first approximations to values of x and y at $t=t_{1}=h$ are
2.

$$
\left\{\begin{array}{l}
x_{1}^{(1)}=a+h f(a, b, \circ), \\
y_{1}{ }^{(1)}=b+\operatorname{hg}(a, b, \circ) .
\end{array}\right.
$$

Now it follows from (I) that the rates of change of x and y at $x=x_{1}, y=y_{1}$, $t=t_{1}$ are approximately $f\left(x_{1}{ }^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$ and $g\left(x_{1}{ }^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$. These rates will be different from those at the beginning, and the average rates of change for the first interval will be nearly the average of the rates at the beginning and at the end of the interval. Therefore closer approximations than those given in (2) to the values of x and y at $t=t_{1}$ are
3.

$$
\left\{\begin{array}{l}
x_{1}^{(2)}=a+\frac{1}{2} h\left[f(a, b, \circ)+f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)\right] \\
y_{1}{ }^{(2)}=b+\frac{1}{2} h\left[g(a, b, \circ)+g\left(x_{1}{ }^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)\right] .
\end{array}\right.
$$

The process could be repeated on the first interval, but it is not advisable when the interval is taken as short as it should be:

The rates of change at the beginning of the second interval are approximately $f\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ and $g\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ respectively. Consequently, first approximations to the values of x and y at $t=t_{2}$, where $t_{2}-t_{1}=h$, are
4.

$$
\left\{\begin{array}{l}
x_{2}^{(1)}=x_{1}^{(2)}+h f\left(x_{1}{ }^{(2)}, y_{1}{ }^{(2)}, t_{1}\right), \\
y_{2}^{2}{ }^{(1)}=y_{1}^{(2)}+h g\left(x_{1}{ }^{(2)}, y_{1}{ }^{(2)}, t_{1}\right) .
\end{array}\right.
$$

With these values of x and y approximate values of f_{2} and g_{2} are computed. Since $f_{0}, g_{0} ; f_{1}, g_{1}$ are known, it follows that $\Delta_{1} f_{2}, \Delta_{1} g_{2} ; \Delta_{2} f_{2}$, and $\Delta_{2} g_{2}$ are also known. Hence equations (4) of 10.7 , for $n+\mathrm{I}=2$, can be used, with the exception of the last terms in the right members, for the computation of x_{2} and y_{2}.

At this stage of work $x_{0}=a, y_{0}=b ; x_{1}, y_{1} ; x_{2}, y_{2}$ are known, the first pair exactly and the last two pairs with considerable approximation. After f_{2} and g_{2} have been computed, x_{1} and y_{1} can be corrected by 10.31 for $n=1$. Then approximate values of x_{3} and y_{3} can be extrapolated by the method explained in the preceding section, after which approximate values of f_{3} and g_{3} can be computed. With these values and the corresponding difference functions, x_{2} and y_{2} can be corrected by using 10.31 . Then after correcting all the corresponding differences of all the functions, the solution is fully started and proceeds by the method given in the preceding section.
10.9 Numerical Illustration. In this section a numerical problem will be treated which will illustrate both the steps which must be taken and also the method of
arranging the work. A convenient arrangement of the computation which preserves a complete record of all the numerical work is very important.

Suppose the differential equation is
I.

$$
\left\{\begin{array}{c}
\frac{d^{2} x}{d t^{2}}=-\left(\mathrm{I}+\kappa^{2}\right) x+2 \kappa^{2} x^{3} \\
x=0, \frac{d x}{d t}=\mathrm{I} \text { at } t=0
\end{array}\right.
$$

The problem of the motion of a simple pendulum takes this form when expressed in suitable variables. This problem is chosen here because it has an actual physical interpretation, because it can be integrated otherwise so as to express t in terms of x, and because it will illustrate sufficiently the processes which have been explained.

Equation (I) will first be integrated so as to express t in terms of x. On multiplying both sides of (I) by $2 \frac{d x}{d t}$ and integrating, it is found that the integral which satisfies the initial conditions is
2.

$$
\left(\frac{d x}{d t}\right)^{2}=\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)
$$

On separating the variables this equation gives
3.

$$
t=\int_{0}^{x} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)}}
$$

Suppose $\kappa^{2}<\mathrm{I}$ and that the upper limit x does not exceed unity. Then
4.

$$
\frac{I}{\sqrt{I-\kappa^{2} x^{2}}}=I+\frac{I}{2} \kappa^{2} x^{2}+\frac{3}{8} \kappa^{4} x^{4}+\frac{5}{16} \kappa^{6} x^{6}+\ldots
$$

where the right member is a converging series. On substituting (4) into (3) and integrating, it is found that

$$
\text { 5. } \begin{aligned}
t=\sin ^{-1} x+\frac{1}{4}\left[-x \sqrt{1-x^{2}}+\sin ^{-1} x\right] & \kappa^{2}+\frac{3}{8}\left[-x^{3} \sqrt{1-x^{2}}-\frac{3}{4} x\left(1-x^{2}\right)^{\frac{3}{2}}\right. \\
& \left.\left.+\frac{3}{8} x \sqrt{1-x^{2}}+\frac{3}{8} \sin ^{-1} x\right] \kappa^{4}+\ldots \ldots\right] .
\end{aligned}
$$

When $x=\mathrm{I}$ this integral becomes
6.

$$
T=\frac{\pi}{2}\left[\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} \kappa^{2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} \kappa^{4}+\left(\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \kappa^{6}+\ldots\right] .
$$

Equation (5) gives t for any value of x between -r and +I . But the problem is to determine x in terms of t. Of course, if a table is constructed giving t for many values of x, it may be used inversely to obtain the value of x corresponding to any value of t. The labor involved is very great. When κ^{2} is given numerically it is simpler to compute the integral (3) by the method of 10.1 or $\mathbf{1 0 . 3}$.

In mathematical terms, t is an elliptical integral of x of the first kind, and the inverse function, that is, x as a function of t, is the sine-amplitude function, which has the real period $4 T$.

Suppose $\kappa^{2}=\frac{\mathrm{I}}{2}$ and let $y=\frac{d x}{d t}$. Then equation (I) is equivalent to the two equations
7.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\frac{3}{2} x+x^{3}
\end{array}\right.
$$

which are of the form 10.50 (1), where
8.

$$
\left\{\begin{array}{l}
f=y \\
g=-\frac{3}{2} x+x^{3}
\end{array}\right.
$$

and $x=0, y=\mathrm{I}$ at $t=0$.
The first step is to determine the interval which is to be used in the start of the solution. No general rule can be given. The larger f_{0} and g_{0} the smaller must the interval be taken. A fairly good rule is in general to take h so small that $h f_{0}$ and $h g_{0}$ shall not be greater than 1000 times the permissible error in the results. In the present instance we may take $h=0.1$.

First approximations to x and y at $t=0$.I are found from the initial conditions and equations 10.8 (2) to be
9.

$$
\left\{\begin{array}{l}
x_{1}^{(1)}=0+\frac{I}{10} I=0.1000 \\
y_{1}^{(1)}=I+\frac{I}{10} O=1.0000
\end{array}\right.
$$

It follows from (8) and these values of x_{1} and y_{1} that

Iо.

$$
\left\{\begin{array}{l}
f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=\mathrm{I} .0000 \\
g\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=-0.1490 .
\end{array}\right.
$$

Hence the more nearly correct values of x_{1} and y_{1}, which are given by 10.8 (3), are
II.

$$
\left\{\begin{array}{l}
x_{1}^{(2)}=0+\frac{0 \cdot I}{2}[\mathrm{I} .0000+\mathrm{I} .0000]=0.1000 \\
y_{1}^{(2)}=\mathrm{I}+\frac{0 \cdot \mathrm{I}}{2}[0.0000-0.1490]=0.9925
\end{array}\right.
$$

Since in this particular problem $x=\int y d t$, it is not necessary to compute both f and g by the exact process explained in section 10.8, for after y has been determined x is given by the integral. It follows from (7), (8), (IO), and (II) that a first approximation to the value of y at $t=t_{2}=0.2$ is
12.

$$
y_{2}{ }^{(1)}=.0025-\frac{\mathrm{I}}{10} .1490=.9776
$$

With the values of y at $0, .1, .2$ given by the initial conditions and in equations (9) and (I2), the first trial y-table is constructed as follows:

First Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$
0	1.0000		
. I	.9925	-.0075	
.2	.9776	-.0149	-.0074

Since $y=f$ it now follows from the first equations of (ir) and 10.7 (4) for $n=\mathrm{I}$ that an approximate value of x_{2} is
I3. $\quad x_{2}{ }^{(1)}=0.1000+\frac{\mathrm{I}}{\mathrm{IO}}\left[.9776+\frac{\mathrm{I}}{2} .0149+\frac{\mathrm{I}}{\mathrm{I} 2} .0074\right]=.1986$.
With this value of x_{2} it is found from the second of (8) that $g_{2}=.2901$. Then the first trial g-table constructed from the values of g at $t=0,0.1,0.2$, is:

First Trial g-Table

t	g	$\Delta_{1} g$	$\Delta_{2} g$
0	.0000		
. I	-.1490	-.1490	
.2	-.2901	-.14 II	+.0079

Then the second equation of $\mathbf{1 0 . 7}$ (4) gives for $n=\mathrm{I}$ the more nearly correct value of y_{2},
14. $y_{2}=.9925+\frac{\mathrm{I}}{10}\left[-.2901+\frac{\mathrm{I}}{\mathrm{I} 2} \cdot 14 \mathrm{II}-\frac{\mathrm{I}}{\mathrm{I} 2} .0079\right]=.9705$.

This value of y_{2} should replace the last entry in the first trial y-table. When this is done it is found that $\Delta_{1} y_{2}=-.0220, \Delta_{2} y_{2}=-.0145$. Then the first equation of 10.7 (4) gives
15. $\quad x_{2}=.1000+\frac{\mathrm{I}}{\mathrm{IO}}\left[.9705+\frac{\mathrm{I}}{2} .0220+\frac{\mathrm{I}}{\mathrm{I} 2} .0145\right]=.1983$.

The computation is now well started although x_{1}, y_{1}, x_{2}, and y_{2} are still subject to slight errors. The values of x_{1} and y_{1} can be corrected by applying 10.31 for $n=\mathrm{I}$. It is necessary first to compute a more nearly correct value of g_{2} by using the value of x_{2} given in (15). The result is $g_{2}=-.2896, \Delta_{1} g_{2}=-.1406$, $\Delta_{2} g_{2}=+.0084$. Then the second equation of 10.7 (4) gives
16. $y_{2}=.9925+\frac{\mathrm{I}}{10}\left[-.2896+\frac{\mathrm{I}}{2} \cdot \mathrm{I} 406-\frac{\mathrm{I}}{\mathrm{I} 2} .0084\right]=.9705$,
agreeing with (I4). This value of y_{2} is therefore essentially correct. An application of 10.31 then gives .
17. $\quad x_{1}=.0000+\frac{1}{10}\left[.9705+\frac{3}{2} .0220-\frac{5}{12} .0145\right]=.0997$,
after which it is found that $g_{1}=-.1486, \Delta_{1} g_{1}=-. I 486$. Now the first trial y-table can be corrected by using the value of y_{2} given in (14). The result is:

Second Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2 y}$
0	1.0000		
. I	.9925	-.0075	
.2	.9705	-.0220	-.0145

In order to correct x_{2} and y_{2} by the same method, which is the most convenient one to follow, it is necessary first to obtain approximate values of g_{3} and y_{3}. The trial g-table can be corrected by computing g with the values of x given by (I 7) and (15). Then the line for g_{3} can be extrapolated. The results are:

Second Trial g-Table

t	g	$\Delta_{1 g}$	$\Delta_{2 g}$
0	.0000		
.1	-.1486	-.1486	
.2	-.2896	-.1410	+.0076
.3	-.4230	-.1334	+.0076

Then the second equation of 10.7 (4) gives for $n=2$,
I8.

$$
y_{3}=.9705+\frac{I}{I 0}\left[-.4230+\frac{I}{2} \cdot I 334-\frac{I}{12} \cdot 0076\right]=.9348 .
$$

When this is added to the second trial y-table, it is found that
19.

$$
y_{3}=.9348, \Delta_{1} y_{3}=-.0357, \Delta_{2} y_{3}=-.0137, \Delta_{3} y_{3}=+.0008
$$

Now x_{2} and y_{2} can be corrected by applying 10.31 to these numbers and those in the last line of the second trial g-table. The results are
20.

$$
\left\{\begin{array}{l}
x_{2}=.0997+\frac{1}{10}\left[.9348+\frac{3}{2} \cdot 0357-\frac{5}{12} \cdot 0137+\frac{1}{24} \cdot 0008\right]=.1980 \\
y_{2}=.9925+\frac{1}{10}\left[-.4230+\frac{3}{2} \cdot 1334+\frac{5}{12} .0076\right]=.9705 .
\end{array}\right.
$$

The preliminary work is finished and x and y have been determined for $t=0$, .1, and . 2 with an error of probably not more than one unit in the last place. As the process is read over it may seem somewhat complicated, but this is largely because on the printed page preliminary values of the unknown quantities can not be erased and replaced by more nearly correct ones. As a matter of fact, the
first steps are very simple and can be carried out in practice in a few minutes if the chosen time-interval is not too great.

The problem now reduces to simple routine. There are an x-table, a y-table (which in this problem serves also as an f-table), a g-table, and a schedule for computing g. It is advisable to use large sheets so that all the computations except the schedule for computing g can be kept side by side on the same sheet. The process consists of six steps: (i) Extrapolate a value of g_{n+1} and its differences in the g-table; (2) compute y_{n+1} by the second equation of 10.7 (4); (3) enter the result in the y-table and write down the differences; (4) use these results to compute x_{n+1} by the first equation of 10.7 (4); (5) with this value of x_{n+1} compute g_{n+1} by the g-computation schedule; and (6) correct the extrapolated value of g_{n+1} in the g-table.

Usually the correction to g_{n+1} will not be great enough to require a sensible correction to y_{n+1}. But if a correction is required, it should, of course, be made. It follows from the integration formulas 10.7 (4) and the way that the difference functions are formed that an error ϵ in g_{n+1} produces the error $\frac{3}{8} h \epsilon$ in y_{n+1}, and the corresponding error in x_{n+1} is $\frac{9}{64} h^{2} \epsilon$. It is never advisable to use so large a value of h that the error in x_{n+1} is appreciable. On the other hand, if the differences in the g-table and the y-table become so small that the second differences are insensible the interval may be doubled.

The following tables show the results of the computations in this problem reduced from five to four places.

Final x-Table

t	x	$\Delta_{1} x$	Δ_{2} x	$\Delta_{3} x$
\bigcirc	. 0000			
. I	. 0997	. 0997		
. 2	. 1980	. 0983	-. 0014	
. 3	. 2934	. 0954	-. 0029	-. 0015
. 4	. 3847	. 0913	-.0041	-. 0012
. 5	. 4708	. 0861	-. 00052	-. 0011
. 6	. 5508	. 0800	-. 00061	-. 0009
. 7	. 6243	. 0735	$-.0065$	-. 0004
. 8	. 6909	. 0666	$-.0069$	-. 0004
. 9	. 7505	. 0596	-. 0070	-. 0001
I. 0	. 8030	. 0525	$-.0071$	-. 0001
I. I	. 8486	. 0456	-. 0069	$+.0002$
I. 2	. 8877	. 0391	$-.0065$	$+.0004$
1.3	. 9205	. 0328	-. 0063	$+.0002$
I. 4	. 9472	. 0267	-.0061	+.0002
I. 5	. 9682	. 0210	-. 00057	$+.0004$
1.6	. 9837	. 0155	$-.0055$	+.0002
1.7	. 9940	. 0103	$-.0052$	$+.0003$
1.8	. 9993	. 0053	-.0050	+.0002
1.9	. 9995	. 0002	-.0051	-.0001

Final y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
\bigcirc	1. 0000			
. 1	. 9925	$-.0075$		*
. 2	. 9705	-. 0220	-. 0145	
. 3	. 9352	-. 0353	-. 0133	$+.0012$
. 4	. 8882	-. 0470	-. 0117	+.0016
. 5	. 8320	-. 0562	$-.0092$	$+.0025$
. 6	. 7687	-. 0633	-. 0071	+.0019
. 7	. 7009	-. 0678	$-.0045$	+.0016
. 8	. 6308	-. 0701	$-.0023$	$+.0022$
. 9	. 5602	-. 0706	$-.0005$	$+.0008$
1.0	. 4906	-. 0696	+.0010	$+.0015$
I. I	. 4231	$-.0675$	$+.0021$	+.0011
I. 2	. 3584	$-.0647$	$+.0028$	$+.0007$
1.3	. 2968	-. 0616	$+.0031$	$+.0003$
1.4	. 2382	-. 0586	$+.0030$	$-.0001$
I. 5	. 1824	-. 0558	$+.0028$	$-.0002$
I. 6	. 1290	-. 0534	$+.0024$	$-.0004$
1.7	. 0775	-. 0515	+.0019	$-.0005$
1.8	. 0271	-. 0504	+.0011	$-.0008$
I. 9	$-.0230$	-. 0501	$+.0003$	$-.0008$

Final g-Schedule

t	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$\log x$	8.9989	9.2967	9.4675	9.5851	9.6728	9.7410	9.7954	9.8394	9.8753
$\log x^{3}$	6.9967	7.8901	8.4025	8.7553	9.0184	9.2230	9.3862	9.5182	9.6259
$3 x$. 2992	.5941	. 8802	1.1541	I. 4124	1. 6524	1. 8729	2.0727	2.2515
$-\frac{3}{2} x$	-.1496	-. 2970	-.4401	-. 5770	-. 7062	$-.8262$	-. 9365	-1.0364	-I.1257
x^{3}	. 0010	. 0077	. 0252	. 0569	. 1044	.r671	. 2434	. 3298	.4227
g	-. 1486	-. 2893	-. 4149	-. 5201	-.6018	-.6591	-.6931	-. 7066	- .7030

Final g-Table

t	g	$\Delta_{1} g$	$\Delta_{2} g$	$\Delta_{3} g$
\bigcirc	. 0000			
. 1	-. 1486	$-.1486$		
. 2	-. 2893	-. 1407	$+.0079$	
. 3	-. 4149	-. 1256	+.015I	$+.0072$
. 4	-. 5201	-. 1052	+. 0204	$+.0053$
. 5	-. 6018	-.0817	$+.0235$	$+.0031$
. 6	-. 6591	-. 0573	+. 0244	+.0009
. 7	-. 693 I	-. 0340	$+.0233$	-. 0011
. 8	-. 7066	-. 0135	+. 0205	-. 0028
. 9	-. 7030	+.0036	+.0171	$-.0034$
1. 0	-. 6867	+.0163	+.0127	-. 0044
I. I	-.6618	+. 0249	+.0086	-. 004 I
I. 2	-. 6320	$+.0298$	+.0049	-. 0037
I. 3	-. 6008	+.0312	+.0014	-. 0035
I. 4	-. 5710	+.0298	-.0014	-. 0028
I. 5	-. 5447	$+.0263$	-. 0035	-. 002 I
1. 6	-. 5236	+. 0211	$-.005^{2}$	-. 0017
1.7	-. 5088	+.0148	$-.0063$	-. 0011
1.8	-. 5011	+.0077	$-.0071$	-. 00008
I. 9	$-.5008$	$+.0003$	$-.0074$	$-.0003$

Final g-Schedule - Continued

1.0	1.1	I. 2	1.3	1.4	1.5	ェ. 6	1.7	1. 8	1. 9
9.9047	9.9287	9.9483	9.9640	9.9764	9.9860	9.9929	9.9974	9.9997	9.9998
9.7141	9.7861	9.8449	9.8920	9.9292	9.9580	9.9787	9.9922	9.9991	9.9994
2.4090	2.5458	2.6631	2.7615	2.8416	2.9046	2.95 II	2.9820	2.9979	2.9985
-1.2045	-1.2729	-1.3316	-1.3807	-1. 4208	$-\mathrm{I} .4523$	-1.4756	-1.4910	-1.4989	-1.4992
. 5178	.6111	. 6996	. 7799	. 8498	. 9076	. 9520	.9822	.9978	.9984
-. 6867	$-.6618$	-. 6320	-. 6008	-. 5710	-. 5447	-. 5236	$-.5088$	-. 5011	$-.5008$

As has been remarked, large sheets should be used so that the x, y, and g-tables can be put side by side on one sheet. Then the t-column need be written but once for these three tables. The g-schedule, which is of a different type, should be on a separate sheet.

The differential equation (I) has an integral which becomes for $\kappa^{2}=\frac{I}{2}$ and $\frac{d x}{d t}=y$.
21.

$$
y^{2}+\frac{3}{2} x^{2}-\frac{1}{4} x^{4}=\mathrm{I}
$$

and which may be used to check the computation because it must be satisfied at every step. It is found on trial that (2I) is satisfied to within one unit in the fourth place by the results given in the foregoing tables for every value of t.

The value of t for which $x=\mathrm{I}$ and $y=0$ is given by (6). When $\kappa^{2}=\frac{1}{2}$ it is found that $T=1.854 \mathrm{I}$. It is found from the final x-table by interpolation based on first and second differences that x rises to its maximum unity for almost exactly this value of t; and, similarly, that y vanishes for this value of t.

XI ELLIPTIC FUNCTIONS

By Sir George Greenhill, F.R.S.

INTRODUCTION TO THE TABLES OF ELLIPTIC FUNCTIONS

By Sir George Greenhill

In the integral calculus, $\int \frac{d x}{\sqrt{X}}$, and more generally, $\int \frac{M+N \sqrt{X}}{P+Q \sqrt{X}} d x$, where M, N, P, Q are rational algebraical functions of x, can always be expressed by the elementary functions of analysis, the algebraical, circular, logarithmic or hyperbolic, so long as the degree of X does not exceed the second. But when X is of the third or fourth degree, new functions are required, called elliptic functions, because encountered first in the attempt at the rectification of an ellipse by means of an integral.

To express an elliptic integral numerically, when required in an actual question of geometry, mechanics, or physics and electricity, the integral must be normalised to a standard form invented by Legendre before the Tables can be employed; and these Tables of the Elliptic Functions have been calculated as an extension of the usual tables of the logarithmic and circular functions of trigonometry. The reduction to a standard form of any assigned elliptic integral that arises is carried out in the procedure described in detail in a treatise on the elliptic functions.
11.1. Legendre's Standard Elliptic Integral of the First Kind (E. I. I) is

$$
F \phi=\int_{0}^{\phi} \frac{d \phi}{\sqrt{\mathrm{I}-\kappa^{2} \sin ^{2} \phi}}=\int_{0}^{x} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)}}=u
$$

defining ϕ as the amplitude of u, to the modulus κ, with the notation,

$$
\begin{aligned}
\phi & =\operatorname{am} u \\
x & =\sin \phi=\sin \mathrm{am} u
\end{aligned}
$$

abbreviated by Gudermann to,

$$
\begin{aligned}
x & =\operatorname{sn} u \\
\cos \phi & =\operatorname{cn} u \\
\Delta \phi & =\sqrt{ }\left(\mathrm{r}-\kappa^{2} \sin ^{2} \phi\right)=\Delta \mathrm{am} u=\operatorname{dn} u,
\end{aligned}
$$

and $\mathrm{sn} u, \mathrm{cn} u, \mathrm{dn} u$ are the three elliptic functions. Their differentiations are,

$$
\begin{aligned}
\frac{d \phi}{d u} & =\Delta \phi & & \text { or } \frac{d \operatorname{am} u}{d u}=\operatorname{dn} u \\
\frac{d \sin \phi}{d u} & =\cos \phi \cdot \Delta \phi & & \text { or } \frac{d \operatorname{sn} u}{d u}=\operatorname{cn} u \operatorname{dn} u
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \cos \phi}{d u} & =-\sin \phi \Delta \phi \quad \text { or } \frac{d \operatorname{cn} u}{d u}=-\operatorname{sn} u \operatorname{dn} u \\
\frac{d \Delta \phi}{d u} & =-\kappa^{2} \sin \phi \cos \phi \text { or } \frac{d \operatorname{dn} u}{d u}=-\kappa^{2} \operatorname{sn} u \mathrm{cn} u
\end{aligned}
$$

11.11. The complete integral over the quadrant, $\circ<\phi<\frac{\pi}{2}, \circ<x<$ r, defines the (quarter) period, K,

$$
K=F \frac{\pi}{2}=\int_{0}^{\frac{1}{2} \pi} \frac{d \phi}{\Delta \phi},
$$

making

$$
\begin{aligned}
& \operatorname{sn} K=\mathbf{1} \\
& \operatorname{cn} K=0 \\
& \operatorname{dn} K=\kappa^{\prime} .
\end{aligned}
$$

κ^{\prime} is the comodulus to $\kappa, \kappa^{2}+\kappa^{\prime 2}=\mathrm{I}$, and the coperiod, K^{\prime}, is,

$$
K^{\prime}=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\left.\sqrt{(I}-\kappa^{\prime 2} \sin ^{2} \phi\right)}
$$

11.12.

$$
\begin{gathered}
\operatorname{sn}^{2} u+\mathrm{cn}^{2} u=\mathrm{I} \\
\mathrm{cn}^{2} u+\kappa^{2} \mathrm{sn}^{2} u=\mathrm{I} \\
\mathrm{dn}^{2} u-\kappa^{2} \mathrm{cn}^{2} u=\kappa^{\prime 2} . \\
\text { sn } \circ=\circ, \quad \text { cn } \circ=\mathrm{dn}, \quad \circ=\mathrm{I} . \\
\text { sn } K=\mathrm{I}, \quad \text { cn } K=0, \quad \operatorname{dn} K=\kappa^{\prime} .
\end{gathered}
$$

11.13. Legendre has calculated for every degree of θ, the modular angle, $\kappa=\sin \theta$, the value of $F \phi$ for every degree in the quadrant of the amplitude ϕ, and tabulated them in his Table IX, Fonctions elliptiques, t. II, $90 \times 90=8 \mathrm{r} 00$ entries.

But in this new arrangement of the Table, we take $u=F \phi$ as the independent variable of equal steps, and divide it into 90 degrees of a quadrant K, putting

$$
u=e K=\frac{r^{\circ}}{90^{\circ}} K, \quad r^{\circ}=90^{\circ} e .
$$

As in the ordinary trigonometrical tables, the degrees of r run down the left of the page from 0° to 45°, and rise up again on the right from 45° to 90°. Then columns II, III, X, XI are the equivalent of Legendre's Table of $F \phi$ and ϕ, but rearranged so that $F \phi$ proceeds by equal increments I° in r°, and the increments in ϕ are unequal, whereas Legendre took equal increments of ϕ giving unequal increments in $u=F \phi$.

The reason of this rearrangement was the great advance made in elliptic function theory when Abel pointed out that $F \phi$ was of the nature of an inverse function, as it would be in a degenerate circular integral with zero modular angle. On Abel's recommendation, the notation is reversed, and ϕ is to be
considered a function of u, denoted already by $\phi=$ am u, instead of looking at u, in Legendre's manner, as a function, $F \phi$, of ϕ. Jacobi adopted the idea in his Fundamenta nova, and employs the elliptic functions

$$
\sin \phi=\sin \operatorname{am} u, \quad \cos \phi=\cos a m u, \quad \Delta \phi=\Delta \text { am } u
$$

single-valued, uniform, periodic functions of the argument u, with (quarter) period K, as ϕ grows from o to $\frac{1}{2} \pi$. Gudermann abbreviated this notation to the one employed usually today.
11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc, but in the expression of the time in the pendulum motion of finite oscillation, unrestricted to the small invisible motion of elementary treatment.

The compound pendulum, as of a clock, is replaced by its two equivalent particles, one at O in the centre of suspension, and the other at the centre of oscillation, P; the particles are adjusted so as to have the same total weight as the pendulum, the same centre of gravity at G, and the same moment of inertia about G or O; the two particles, if rigidly connected, are then the kinetic equivalent of the compound pendulum and move in the same way in the same field of force (Maxwell, Matter and Motion, CXXI).

Putting $O P=l$, called the simple equivalent pendulum length, and P starting from rest at B, in Figure m , the particle P will move in the circular arc $B A B^{\prime}$ as if sliding down a smooth curve; and P will acquire the same velocity as if it fell vertically $K P=N D$; this is all the dynamical theory required.
$\quad(\text { velocity of } P)^{2}=2 g \cdot K P$,

$\quad(\text { velocity of } N)^{2}=2 g \cdot N D \cdot \sin ^{2} A O P$
$=$
$2 g \cdot N D \cdot \frac{N P^{2}}{O P^{2}}=\frac{g^{2}}{l^{2}} \cdot N D \cdot N A \cdot N E$,
and with $A D=h, A N=y, N D$
$=$
$h-y, A E=2 l, N E=2 l-y$,
$\left(\frac{d y}{d t}\right)^{2}=\frac{2 g}{l^{2}}\left(h y-y^{2}\right)(2 l-y)=\frac{2 g}{l^{2}} Y$,
where Y is a cubic in y. Then t is given by an elliptic integral of the form

Fig. I
$\int \frac{d y}{\sqrt{Y}}$. This integral is normalised to Legendre's standard form of his E. I. I by putting $y=h \sin ^{2} \phi$, making $A O Q=\phi, h-y=h \cos ^{2} \phi$, $2 l-y=2 l\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)$,

$$
\kappa^{2}=\frac{h}{2 l}=\frac{A D}{A E}=\sin ^{2} A E B
$$

κ is called the modulus, $A E B$ the modular angle which Legendre denoted by $\theta ; \sqrt{\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)}$ he denoted by $\Delta \phi$.

With $g=l^{2}$, and reckoning the time t from A, this makes

$$
n t=\int_{0}^{\phi} \frac{d \phi}{\Delta \phi}=F \phi
$$

in Legendre's notation. Then the angle ϕ is called the amplitude of $n t$, to be denoted am $n t$, the particle P starting up from A at time $t=0$; and with $u=n t$,

$$
\begin{array}{ll}
\operatorname{sn} u=\frac{A P}{A B}=\frac{A Q}{A D} & \operatorname{sn}^{2} u=\frac{A N}{A D} \\
\text { cn } u=\frac{D Q}{A D} & \mathrm{cn}^{2} u=\frac{P K}{A D} \\
\text { dn } u=\frac{E P}{E A} & \operatorname{dn}^{2} u=\frac{N E}{A E}
\end{array}
$$

Velocity of $P=n \cdot A B \cdot \mathrm{cn} u=\sqrt{B P \cdot P B^{\prime}}$, with an oscillation beat of T seconds in $u=e K, e=2 t / T$.
11.21. The numerical values of $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}, \mathrm{tn}(u, \kappa)$ are taken from a table to modulus $\kappa=\sin$ (modular angle, θ) by means of the functions $\mathrm{Dr}, \mathrm{Ar}, \mathrm{Br}$, Cr , in columns V, VI, VII, VIII, by the quotients,

$$
\begin{aligned}
\sqrt{\kappa^{\prime}} \operatorname{sn} e K & =\frac{A}{D} \\
\operatorname{cn} e K & =\frac{B}{D} \\
\frac{\operatorname{dn} e K}{\sqrt{\kappa^{\prime}}} & =\frac{C}{D} \\
\sqrt{\kappa^{\prime}} \operatorname{tn} e K & =\frac{A}{B} \\
r^{\circ} & =90^{\circ} e \\
u & =e K
\end{aligned}
$$

These D, A, B, C are the Theta Functions of Jacobi, normalised, defined by

$$
\begin{array}{ll}
D(r)=\frac{\theta u}{\Theta o}, & A(r)=\frac{H u}{H K}, \\
B(r)=A\left(90^{\circ}-r\right) & C(r)=D\left(90^{\circ}-r\right) .
\end{array}
$$

They were calculated from the Fourier series of angles proceeding by multiples of r°, and powers of q as coefficients, defined by

$$
\begin{gathered}
q=e^{-\pi \pi \frac{k^{\prime}}{k}} \\
\Theta u=\mathrm{I}-2 q \cos 2 r+2 q^{4} \cos 4 r-2 q^{9} \cos 6 r+\ldots \\
H u=2 q^{\frac{1}{4} \sin r-2 q^{9} \sin 3 r+2 q^{2+5} \sin 5 r-: \ldots}
\end{gathered}
$$

11.3. The Elliptic Integral of the Second Kind (E. I. II) arose first historically in the rectification of the ellipse, hence the name. With $B O P=\phi$ in Figure 2, the minor eccentric angle of P, and s the $\operatorname{arc} B P$ from B to P at $x=a \sin \phi$, $y=b \cos \phi$,

$$
\frac{d s}{d \phi}=\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}=a \Delta(\phi, \kappa)
$$

to the modulus κ, the eccentricity of the ellipse. Then $s=a E \phi$, where $\int_{0}^{\phi} \Delta \phi \cdot d \phi$ is denoted by $E \phi$ in Legendre's notation of his standard E. I. II; it is tabulated in his Table IX alongside of $F \phi$ for every degree of the modular angle θ, and to every degree in the quadrant of the amplitude ϕ.

But it is not possible to make the inversion and express ϕ as a single-valued function of $E \phi$.

Fig. 2
11.31. The E. I. II, $E \boldsymbol{\phi}$, arises also in the expression of the time, t, in the oscillation of a particle, P, on the arc of a parabola, as $F \phi$ was required on the arc
 of a circle. Starting from B along the parabola $B A B^{\prime}$, Figure 3, and with $A O=h, O B=b$, $B O Q=\phi, A N=y=h \cos ^{2} \phi, N P=x=b \cos$ ϕ and with $O S=2 h=b \tan \alpha, O A^{\prime}=S B$ $=b \sec \alpha$, the parabola cutting the horizontal at B at an angle α, the modular angle, $B R A^{\prime} B^{\prime}$ is a semi-ellipse, with focus at S, and eccentricity $\kappa=\sin \alpha$.

$$
\begin{aligned}
& (\text { Velocity of } P)^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} \\
& =\left(b^{2} \cos ^{2} \phi+4 h^{2} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\frac{d \phi}{d t}\right)^{2}
\end{aligned}
$$

Fig. 3

$$
\begin{aligned}
& =a^{2}\left(\mathrm{I}-\sin ^{2} \alpha \sin ^{2} \phi\right) \cos ^{2} \phi\left(\frac{d \phi}{d t}\right)^{2}=2 g y=2 g h \cos ^{2} \phi \\
& =V^{2} \cos ^{2} \phi
\end{aligned}
$$

if V denotes the velocity of P at A, and $O A^{\prime}=a$. Then with s the elliptic $\operatorname{arc} B R$,

$$
V \frac{d t}{d \phi}=a \Delta \phi=a \frac{d s}{d \phi}, V t=s
$$

and so the point R moves round the ellipse with constant velocity V, and accompanies the point P on the same vertical, oscillating on the parabola from B to B^{\prime}.

In the analogous case of the circular pendulum, the time t would be given by the arc of an Elastica, in Kirchhoff's Kinetic Analogue, and this can be placed as a bow on Figure 1 , with the cord along $A E$ and vertex at B.

Legendre has shown also how in the oscillation of R on the semi-ellipse $B R B^{\prime}$ in a gravity field the time t is expressible by elliptic integrals, two of the first and two of the second kind, to complementary modulus (Fonctions elliptiques, I, p. 183).
11.32. In these tables, $E \phi$ is replaced by the columns IV, IX, of $E(r)$ and $G(r)=E(9 \circ-r)$, defined, in Jacobi's notation, by

$$
\begin{aligned}
& E(r)=\mathrm{zn} e K=E \phi-e E \\
& G(r)=\mathrm{zn}(\mathrm{I}-e) K, \quad r=90 e .
\end{aligned}
$$

This is the periodic part of $E \phi$ after the secular term $e E=\frac{E}{K} u$ has been set aside, E denoting the complete E. I. II,

$$
E=E \frac{1}{2} \pi=\int^{\frac{1}{2} \pi} \Delta \phi \cdot d \phi
$$

The function zn u, or $Z u$ in Jacobi's notation, or $E(r)$ in our notation, is calculated from the series,

$$
E r=Z u=\frac{\pi}{K} \sum_{m=1}^{\infty} \frac{\sin 2 m r}{\sinh m \pi \frac{K^{\prime}}{\bar{K}}}=\frac{2 \pi}{K} \sum_{m=1}^{\infty}\left(q^{m}+q^{3 m}+q^{5 m}+\ldots .\right) \sin 2 m r .
$$

This completes the explanation of the twelve columns of the tables.
11.4. The Double Periodicity of the Elliptic Functions.

This can be visualised in pendulum motion if gravity is supposed reversed suddenly at B (Figure) the end of a swing; as if by the addition of a weight to bring the centre of gravity above O, or by the movement of a weight, as in the metronome. The point P then oscillates on the arc $B E B^{\prime}$, and beats the elliptic function to the complementary modulus κ^{\prime}, as if in imaginary time, to imaginary argument $n t i=f K^{\prime} i$: and it reaches P^{\prime} on $A X$ produced, where $\tan A E P^{\prime}$ $=\tan A E B \cdot \mathrm{cn}\left(n t^{\prime} i, \kappa\right)$, or $\tan E A P^{\prime}=\tan E A B \cdot \mathrm{cn}\left(n t^{\prime}, \kappa^{\prime}\right)$; or with $n t^{\prime}=v$, $D R^{\prime}=D B \cdot \mathrm{cn}\left(i v, \kappa^{\prime}\right), D R=D B \cdot \mathrm{cn}\left(v, \kappa^{\prime}\right)$, with $D R \cdot D R^{\prime}=D B^{2}, E P^{\prime}$ crossing $D B$ in R^{\prime}.

$$
\begin{aligned}
& \operatorname{cn}(i v, \kappa)=\frac{\mathrm{I}}{\operatorname{cn}\left(v, \kappa^{\prime}\right)} \\
& \operatorname{sn}(i v, \kappa)=\frac{i \operatorname{sn}\left(v, \kappa^{\prime}\right)}{\operatorname{cn}\left(v, \kappa^{\prime}\right)}=i \operatorname{tn}\left(v, \kappa^{\prime}\right) \\
& \operatorname{dn}(i v, \kappa)=\frac{\operatorname{dn}\left(v, \kappa^{\prime}\right)}{\operatorname{cn}\left(v, \kappa^{\prime}\right)}=\frac{I}{\operatorname{sn}\left(K^{\prime}-v, \kappa^{\prime}\right)}
\end{aligned}
$$

where K^{\prime} denotes the complementary (quarter) period to comodulus κ^{\prime}.
If m, m^{\prime} are any integers, positive or negative, including o ,

$$
\begin{array}{ll}
\operatorname{sn}\left(u+4 m K+2 m^{\prime} i K^{\prime}\right) & =\operatorname{sn} u \\
\operatorname{cn}\left[u+4 m K+2 m^{\prime}\left(K+i K^{\prime}\right)\right] & =\operatorname{cn} u \\
\operatorname{dn}\left(u+2 m K+4 m^{\prime} i K^{\prime}\right) & =\operatorname{dn} u
\end{array}
$$

11.41. The Addition Theorem of the Elliptic Functions.

$$
\begin{aligned}
& \operatorname{sn}(u \pm v)=\frac{\operatorname{sn} u \operatorname{cn} v \operatorname{dn} v \pm \operatorname{sn} v \operatorname{cn} u \operatorname{dn} u}{1-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{cn}(v \pm u)=\frac{\operatorname{cn} u \mathrm{cn} v \mp \operatorname{sn} u \operatorname{dn} u \operatorname{sn} v \operatorname{dn} v}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{dn}(v \pm u)=\frac{\mathrm{dn} u \operatorname{dn} v \mp \kappa^{2} \operatorname{sn} u \mathrm{cn} u \operatorname{sn} v \operatorname{cn} v}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}
\end{aligned}
$$

11.42. Coamplitude Formulas, with $v= \pm K$,

$$
\begin{array}{ll}
\operatorname{sn}(K-u)=\frac{\operatorname{cn} u}{\operatorname{dn} u}=\operatorname{sn}(K+u) & \\
\operatorname{cn}(K-u)=\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} & \operatorname{cn}(K+u)=-\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} \\
\operatorname{dn}(K-u)=\frac{\kappa^{\prime}}{\operatorname{dn} u}=\operatorname{dn}(K+u) & \\
\operatorname{tn}(K-u)=\frac{1}{\kappa^{\prime} \operatorname{tn} u} & \operatorname{tn}(K+u)=-\frac{\overline{\kappa^{\prime} \operatorname{tn} u}}{}
\end{array}
$$

11.43. Legendre's Addition Formula for his E. I. II,

$$
\begin{gathered}
E \phi=\mathcal{S} \Delta \phi \cdot d \phi=\int \operatorname{dn}^{2} u \cdot d u, \quad \phi=\mathcal{J} \operatorname{dn} u \cdot d u=\operatorname{am} u \\
E \phi+E \psi-E \sigma=\kappa^{2} \sin \phi \sin \psi \sin \sigma, \psi=\operatorname{am} v, \sigma=\operatorname{am}(v+u)
\end{gathered}
$$

or, in Jacobi's notation,

$$
\operatorname{zn} u+\operatorname{zn} v-\operatorname{zn}(u+v)=\kappa^{2} \operatorname{sn} u \operatorname{sn} v \operatorname{sn}(v+u)
$$

the secular part cancelling.
Another form of the Addition Theorem for Legendre's E. I. II,

$$
E \sigma-E \theta-{ }_{2} E \psi=\frac{-2 \kappa^{2} \sin \psi \cos \psi \Delta \psi \sin ^{2} \phi}{I-\kappa^{2} \sin ^{2} \phi \sin ^{2} \psi}, \theta=a m(v-u)
$$

or, in Jacobi's notation,

$$
\mathrm{zn}(v+u)+\mathrm{zn}(v-u)-2 \mathrm{zn} v=\frac{-2 \kappa^{2} \mathrm{sn} v \mathrm{cn} v \mathrm{dn} v \operatorname{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v} .
$$

11.5. The Elliptic Integral of the Third Kind (E. I. III) is given by the next integration with respect to u, and introduces Jacobi's Theta Function, Θu, defined by,

$$
\begin{gathered}
\frac{d \log \Theta u}{d u}=Z u=\operatorname{zn} u \\
\frac{\Theta u}{\Theta o}=\exp \cdot \int_{0} \mathrm{zn} u \cdot d u .
\end{gathered}
$$

Integrating then with respect to u,

$$
\log \theta(v+u)-\log \theta(v-u)-2 u \operatorname{zn} v=\int_{0}^{-2 \kappa^{2} \operatorname{sn} v \operatorname{cn} v \operatorname{dn} v \operatorname{sn}^{2} u} \frac{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}{d}
$$

and this integral is Jacobi's standard form of the E. I. III, and is denoted by $-{ }_{2} \Pi(u, v)$; thus,

$$
\Pi(u, v)=\int \frac{\kappa^{2} \operatorname{sn} v \operatorname{cn} v \operatorname{dn} v \operatorname{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v} d u=u \operatorname{zn} v+\frac{1}{2} \log \frac{\theta(v-u)}{\theta(v+u)}
$$

Jacobi's Eta Function, $H v$, is defined by

$$
\frac{\mathrm{H} v}{\Theta v}=\sqrt{\kappa} \operatorname{sn} v
$$

and then

$$
\frac{d \log \mathrm{H} v}{d v}=\frac{\mathrm{cn} v \operatorname{dn} v}{\operatorname{sn} v}+\mathrm{zn} v, \text { denoted by zs } v ;
$$

so that

$$
\begin{aligned}
\int_{0} \frac{\frac{\mathrm{cn} v \operatorname{dn} v}{\mathrm{sn} v} d u}{\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} & =u \frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v}+\Pi(u, v) \\
& =u \mathrm{zS} v+\frac{\mathrm{I}}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} \\
& =\frac{\mathrm{I}}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} e^{2 u \cdot \mathrm{zs} v}
\end{aligned}
$$

This gives Legendre's standard E. I. III,

$$
\int \frac{M}{\mathrm{I}+n \sin ^{2} \phi} \frac{d \phi}{\Delta \phi}
$$

where we put $n=-\kappa^{2} \operatorname{sn}^{2} v=-\kappa^{2} \sin ^{2} \psi$,

$$
M^{2}=-\left(\mathrm{I}+\frac{\kappa^{2}}{n}\right)(\mathrm{I}+n)=\frac{\cos ^{2} \psi \Delta^{2} \psi}{\sin ^{2} \psi}=\frac{\mathrm{cn}^{2} v \mathrm{dn}^{2} v}{\mathrm{sn}^{2} v}
$$

the normalising multiplier, M.
The E. I. III arises in the dynamics of the gyroscope, top, spherical pendulum, and in Poinsot's herpolhode. It can be visualized in the solid angle of a slant cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the magnetic potential of the circular base.
11.51. We arrive here at the definitions of the functions in the tables. Jacobi's Θu and $\mathrm{H} u$ are normalised by the divisors Θo and $\mathrm{H} K$, and with $r=90 e$,

$$
D(r) \text { denotes } \frac{\Theta e K}{\Theta K}, \quad A(r) \text { denotes } \frac{\mathrm{H} e K}{\mathrm{H} K}
$$

while $B(r)=A(9 \circ-r), C(r)=D(90-r)$, and $B(\circ)=A(90)=D(\circ)=C(90)$
$=\mathrm{I}, \mathrm{C}(0)=D(90)=\frac{\mathrm{I}}{\sqrt{\kappa}}$.
Then in the former definitions,

$$
\begin{aligned}
& \frac{A(r)}{D(r)}=\frac{A(90)}{D(90)} \text { sn } u=\sqrt{\kappa^{\prime}} \operatorname{sn} e K \\
& \frac{B(r)}{D(r)}=\frac{B(\mathrm{o})}{D(\circ)} \text { cn } u=\mathrm{cn} e K \\
& \frac{C(r)}{D(r)}=\frac{C(\circ)}{D(\circ)} \text { dn } u=\frac{\operatorname{dn} e K}{\sqrt{\kappa^{\prime}}} .
\end{aligned}
$$

Then, with $u=e K, v=f K, r=90 e, s=9 \circ f$,

$$
\begin{aligned}
(u, v) & =e K \text { zn } f K+\frac{\mathrm{I}}{2} \log \frac{\Theta(f-e) K}{\Theta(f+e) K} \\
& =e K E(s)+\frac{\mathrm{I}}{2} \log \frac{D(s-r)}{D(s+r)} \\
\text { zn } f K & =E(s), \quad \text { zn }(\mathrm{r}-f) K=E(9 \circ-s)=G(s) .
\end{aligned}
$$

The Jacobian multiplication relations of his theta functions can then be rewritten

$$
\begin{aligned}
& D(r+s) D(r-s)=D^{2} r D^{2} s-\tan ^{2} \theta A^{2} r A^{2} s \\
& A(r+s) A(r-s)=A^{2} r D^{2} s-D^{2} r A^{2} s \\
& B(r+s) B(r-s)=B^{2} r B^{2} s-A^{2} r A^{2} s
\end{aligned}
$$

But unfortunately for the physical applications the number s proves usually to be imaginary or complex, and Jacobi's expression is useless; Legendre calls this the circular form of the E. I. III, the logarithmic or hyperbolic form corresponding to real s. However, the complete E. I. III between the limits $0<\phi<\frac{1}{2} \pi$, or $\mathrm{o}<u<K$, o $<e<\mathrm{I}$, can always be expressed by the E. I. I and II, as Legendre pointed out.
11.6. The standard forms are given above to which an elliptic integral must be reduced when the result is required in a numerical form taken from the Tables. But in a practical problem the integral arises in a general algebraical form, and theory shows that the result can always be made, by a suitable substitution, to depend on three differential elements, of the I, II, III kind,

$$
\begin{aligned}
& \text { I } \frac{d s}{\sqrt{S}} \\
& \text { II }(s-a) \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{\mathrm{I}}{(s-\sigma)} \frac{d s}{\sqrt{S}}
\end{aligned}
$$

where S is a cubic in the variable s which may be written, when resolved into three factors.

$$
S=4 \cdot s-s_{1} \cdot s-s_{2} \cdot s-s_{3}
$$

in the sequence $\alpha>s_{1}>s_{2}>s_{3}>-\propto$, and normalised to a standard form of zero degree these differential elements are

$$
\begin{aligned}
& \text { I } \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}} \\
& \text { II } \frac{s-a}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{1}{2 \sqrt{\Sigma}} \frac{d s}{s-\sigma} \frac{\sqrt{S}}{1}
\end{aligned}
$$

Σ denoting the value of S when $s=\sigma$.
The relative positions of s and σ in the intervals of the sequence require preliminary consideration before introducing the Elliptic Functions and their notation.
11.7. For the E. I. I and its representation in a tabular form with

$$
\begin{array}{cc}
\kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}} & \kappa^{\prime 2}=\frac{s_{1}-s_{2}}{s_{1}-s_{3}} \\
K=\int_{s_{1}, s_{3}}^{\infty, s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}, & K^{\prime}=\int_{s_{2},-\infty}^{s_{1}, s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}},
\end{array}
$$

and utilizing the inverse notation, then in the first interval of the sequence,

$$
\begin{gathered}
\propto>s>s_{1} \\
e K=\int_{s}^{\infty} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{3}}}=\mathrm{dn}^{-1} \sqrt{\frac{s-s_{2}}{s-s_{3}}} \\
(\mathrm{I}-e) K=\int_{s_{1}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{1}-s_{3} \cdot s-s_{2}}}
\end{gathered}
$$

indicating the substitutions,

$$
\frac{s_{1}-s_{3}}{s-s_{3}}=\sin ^{2} \dot{\phi}=\operatorname{sn}^{2} e K, \quad \frac{s-s_{1}}{s-s_{2}}=\sin ^{2} \psi=\operatorname{sn}^{2}(\mathrm{I}-e) K
$$

In the next interval S is negative, and the comodulus κ^{\prime} is required.

$$
\begin{gathered}
s_{1}>s>s_{2} \\
f K^{\prime}=\int^{s_{1}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s}{s_{1}-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{2}}{s_{1}-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{s-s_{3}}{s_{1}-s_{3}}} \\
(\mathrm{I}-f) K^{\prime}=\int_{s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s-s_{2}}{s_{1}-s_{2} \cdot s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{2} \cdot s-s_{1}}} \\
\ldots
\end{gathered}
$$

S is positive again in the next interval, and the modulus is κ.

$$
\begin{gathered}
(\mathrm{I}-e) K=\int_{s}^{s_{2}>s>s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s_{2}-s}{s_{2}-s_{3} \cdot s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{2}-s_{3} \cdot s_{1}-s}} \\
e K=\int_{s_{3}}^{s^{s} \sqrt{s_{1}-s_{3}} d s} \sqrt{\bar{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{3}}{s_{2}-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s_{1}-s}}
\end{gathered}
$$

indicating the substitutions,

$$
\begin{gathered}
\frac{s_{1}-s_{2}}{s_{1}-s}=\Delta^{2} \psi=\operatorname{dn}^{2}(\mathrm{I}-e) K, \quad \frac{s-s_{3}}{s_{2}-s_{3}}=\sin ^{2} \phi=\operatorname{sn}^{2} e K \\
. s=s_{2} \sin ^{2} \phi+s_{3} \cos ^{2} \phi
\end{gathered}
$$

S is negative again in the last interval, and the modulus κ^{\prime}.

$$
\begin{gathered}
s_{3}>s>-\infty \\
(\mathrm{I}-f) K^{\prime}=\int_{s}^{s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{3}-s}{s_{2}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3}}{s_{2}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{3} \cdot s_{2}-s}} \\
f K^{\prime}=\int_{-\infty}^{s} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{3}-s}{s_{1}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s}{s_{1}-s}}
\end{gathered}
$$

11.8. For the notation of the E. I. II and the various reductions, take the treatment given in the Trans. Am. Math. Soc., 1907, vol. 8, p. 450. The Jacobian Zeta Function and the Er, Gr of the Tables, are defined by the standard integral
$\int_{s_{3}}^{s} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{0}^{\phi} \Delta \phi \cdot d \phi=E \phi=\int_{0}^{e} \operatorname{dn}^{2}(e K) \cdot d(e K)=E$ am $e K=e H+2 \mathrm{n} e K$, or,

$$
\int_{s_{2}}^{\sigma} \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{0}^{f} \operatorname{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right)=E \operatorname{am} f K^{\prime}=f H^{\prime}+z \mathrm{n} f K^{\prime}
$$

where zn is Jacobi's Zeta Function, and H, H^{\prime} the complete E. I. II to modulus κ, κ^{\prime}, defined by,

$$
\begin{aligned}
H & =\int_{0}^{\frac{\pi}{2}} \Delta(\phi, \kappa) d \phi=\int_{0}^{\mathrm{I}} \mathrm{dn}^{2}(e K) \cdot d(e K) \\
H^{\prime} & =\int_{0}^{\frac{\pi}{2}} \Delta\left(\phi, \kappa^{\prime}\right) d \phi=\int_{0}^{\mathrm{I}} \operatorname{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right)
\end{aligned}
$$

The function zn u is derived by logarithmic differentiation of Θu, zn $u=\frac{d \log \Theta u}{d u}$, or concisely,

$$
\Theta u=\exp \cdot \int \mathrm{zn} u \cdot d u
$$

and a function zs u is derived similarly from

$$
\begin{aligned}
\operatorname{zs} u & =\frac{d \log H u}{d u} \\
& =\frac{d \log \Theta u}{d u}+\frac{d \log \operatorname{sn} u}{d u} \\
& =\mathrm{zn} u+\frac{\operatorname{cn} u \operatorname{dn} u}{\operatorname{sn} u}
\end{aligned}
$$

For the incomplete E. I. II in the regions,

$$
\infty>s>s_{1}>s_{2}>s>s_{3}
$$

and

$$
\mathrm{sn}^{2} e K=\frac{s_{1}-s_{3}}{s-s_{3}} \text { or } \frac{s-s_{3}}{s_{2}-s_{3}}
$$

$$
\begin{aligned}
& \int_{s}^{s_{1}} \frac{s-s_{1}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{s}^{s_{2}} \frac{s_{2}-s}{s-s_{3}} \frac{\sqrt{s-s_{3}}}{\sqrt{S}} d s=-(\mathrm{I}-e) H+\mathrm{zs} e K \\
& \int \frac{s-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\kappa^{2} \int \frac{s_{1}-s}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=-(\mathrm{I}-e)\left(H-\kappa^{\prime 2} K\right)+\mathrm{zs} e K \\
& \int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{\bar{S}}} d s=(\mathrm{I}-e)(K-H)+\mathrm{zs} e K
\end{aligned}
$$

the integrals being ∞ at the upper limit, $s=\infty$, or at the lower limit, $s=s_{3}$ where $e=0$ and zs $e K=\infty$.

So also,

$$
\begin{aligned}
& \int_{s, s_{1}}^{\infty, s} \frac{s-s_{2}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int_{s_{3}, s}^{s, s_{2}} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e H+\mathrm{zn} \mathrm{eK} \\
(\mathrm{I}-e) H-\mathrm{zn} e K
\end{array} \\
& \int \frac{s-s_{1}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int \frac{s_{2}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e\left(H-\kappa^{\prime 2} K\right)+\mathrm{zn} e K \\
(\mathrm{I}-e)\left(H-\kappa^{\prime 2} K\right)-\mathrm{zn} e K
\end{array} \\
& \int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{\bar{S}}} d s=\int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e(K-H)-\mathrm{zn} e K \\
\left(\mathrm{I}-e^{\prime}(K-H)+\mathrm{zn} e K\right.
\end{array}
\end{aligned}
$$

Similarly, for the variable σ in the regions
Σ negative, and

$$
s_{1}>\sigma>s_{2}>s_{3}>\sigma>-\infty
$$

$$
\begin{aligned}
& \mathrm{sn}^{2} f K^{\prime}=\frac{s_{1}-\sigma}{s_{1}-s_{2}} \text { or } \frac{s_{1}-s_{3}}{s_{1}-\sigma} \\
& \int_{\sigma, s_{2}}^{s_{1}, \sigma} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{-\infty, \sigma}^{\sigma, s_{3}} \frac{s_{1}-s_{2}}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f\left(K^{\prime}-H^{\prime}\right)-\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\mathrm{zn} f K^{\prime}
\end{array} \\
& \int \frac{\sigma-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)+\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f)\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)-\mathrm{zn} f K^{\prime}
\end{array} \\
& \int \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{c}
f H^{\prime}+\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f) H^{\prime}-\mathrm{zn} f K^{\prime}
\end{array} \\
& \int_{s_{2}}^{\sigma} \frac{s_{1}-s_{2}}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int_{\sigma}^{s_{3}} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\mathrm{zs} f K^{\prime} \\
& \kappa^{\prime 2} \int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{2}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f)\left(H^{\prime}-\kappa^{2} K^{\prime}\right)+\mathrm{zs} f K^{\prime} \\
& \int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{3}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f) H^{\prime}+\mathrm{zs} f K^{\prime}
\end{aligned}
$$

these last three integrals being infinite at the upper limit, $\sigma=s_{1}$, or lower limit $\sigma=-\infty$, where $f=0$, zs $f K^{\prime}=\infty$.

Putting $e=\mathrm{I}$ or $f=\mathrm{I}$ any of these forms will give the complete E. I. II, noticing that zn K^{\prime} and zs K^{\prime} are zero.
11.9. In dealing practically with an E. I. III it is advisable to study it first in the algebraical form of Weierstrass,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma} d s}{(s-\sigma) \sqrt{S}}
$$

where $S=4 \cdot s-s_{1} \cdot s-s_{2} \cdot s-s_{3}, \Sigma$ the same function of σ, and begin by examining the sequence of the quantities $s, \sigma, s_{1}, s_{2}, s_{3}$

Then in the region

$$
s>s_{1}>s_{2}>\sigma>s_{3}
$$

put

$$
\begin{aligned}
& s-s_{3}=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} u}, \sigma-s_{3}=\left(s_{2}-s_{3}\right) \operatorname{sn}^{2} v, \kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}}, \\
& s-\sigma=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} u}\left(\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v\right), \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=d u, \\
& \sqrt{\Sigma}=\sqrt{s_{1}-s_{3}}\left(s_{2}-s_{3}\right) \operatorname{sn} v \mathrm{cn} v \operatorname{dn} v, \text { making } \\
& \int \frac{\frac{1}{2} \sqrt{\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=\int \frac{\kappa^{2} \operatorname{sn} v \mathrm{cn} v \operatorname{dn} v \mathrm{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v} d u=\Pi(u, v) .
\end{aligned}
$$

But in the region,

$$
\begin{gathered}
\sigma>s_{1}>s_{2}>s>s_{3} \\
s-s_{3}=\left(s_{2}-s_{3}\right) \mathrm{sn}^{2} u, \sigma-s_{3}=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} v}, \frac{\mathrm{I}}{2} \sqrt{\Sigma}=\left(s_{1}-s_{3}\right)^{\frac{3}{2}} \frac{\mathrm{cn} v \mathrm{dn} v}{\mathrm{sn}^{3} v} \\
\sigma-s=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} v}\left(\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v\right)
\end{gathered}
$$

making,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma}}{\sigma-s} \frac{d s}{\sqrt{S}}=\int \frac{\frac{\mathrm{cn} v \mathrm{dn} v}{\mathrm{sn} v} d u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v}=\Pi_{1}=\Pi(u, v)+u \frac{\mathrm{cn} v \mathrm{dn} v}{\operatorname{sn} v} .
$$

In a dynamical application the sequence is usually

$$
s>s_{1}>\sigma>s_{2}>s>s_{3}
$$

or

$$
s>s_{1}>s_{2}>s>s_{3}>\sigma
$$

making Σ negative, and the E. I. III is then called circular; the parameter v is then imaginary, and the expression by the Theta function is illusory.

The complete E. I. III, however, was shown by Legendre to be tractable and falls into four classes, lettered $\left(l^{\prime}\right)\left(m^{\prime}\right)$, p. 138, $\left(i^{\prime}\right),\left(k^{\prime}\right)$, pp. I33, I34 (Fonctions elliptiques, I).

$$
s_{1}>\sigma>s_{2}
$$

$$
\begin{aligned}
\mathrm{sn}^{2} f K^{\prime} & =\frac{s_{1}-\sigma}{s_{1}-s_{2}} \\
\mathrm{cn}^{2} f K^{\prime} & =\frac{\sigma-s_{2}}{s_{1}-s_{2}} \\
\mathrm{dn}^{2} f K^{\prime} & =\frac{\sigma-s_{3}}{s_{1}-s_{3}}
\end{aligned}
$$

A.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=A\left(f K^{\prime}\right)=\frac{1}{2} \pi(\mathrm{I}-f)-K \mathrm{zn} f K^{\prime}
$$

B.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2} \frac{1}{2} \sqrt{-\Sigma}} \frac{d s}{\sigma-s} \frac{d}{\sqrt{S}}=B\left(f K^{\prime}\right)=\frac{1}{2} \pi f+K \mathrm{zn} f K^{\prime} \\
A+B=\frac{1}{2} \pi .
\end{gathered}
$$

$s_{3}>\sigma>-\infty$

$$
\begin{aligned}
\mathrm{sn}^{2} f K^{\prime} & =\frac{s_{1}-s_{3}}{s_{1}-\sigma} \\
\mathrm{cn}^{2} f K^{\prime} & =\frac{s_{3}-\sigma}{s_{1}-\sigma} \\
\mathrm{dn}^{2} f K^{\prime} & =\frac{s_{2}-\sigma}{s_{1}-\sigma}
\end{aligned}
$$

C.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=C\left(f K^{\prime}\right)=K \mathrm{zs} f K^{\prime}-\frac{1}{2} \pi(\mathrm{I}-f)
$$

D.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2} \frac{1}{2} \sqrt{-\Sigma}} \frac{d s}{s-\sigma}=D\left(f K^{\prime}\right)=K \mathrm{zs} f K^{\prime}+\frac{1}{2} \pi f \\
D-C=\frac{1}{2} \pi
\end{gathered}
$$

TABLES OF ELLIPTIC FUNCTIONS

By Col. R. L. Hippisley

$\mathrm{K}=1.5737921309, \mathrm{~K}^{\prime}=3.831742000, \mathrm{E}=1.5678090740, \mathrm{E}^{\prime}=1.012663506$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$0^{\circ} \mathrm{o}^{\prime \prime}$	0.0000000000	1. 0000000000	0.0000000000
1	0.01748 65792	0	0.0000664649	I. 0000005812	0.01745 23906
2	0.0349731585	20	0.00013 28485	1.00000 23240	0.0348994650
3	0.05245 97377	30	0.0001990699	1.00000 52264	0.0523359088
4	0.0699463169	40	0.0002650480	1.00000 92847	0.0697564107
5	0.0874328962	5 I	0.0003307023	I. OOOOI 44942	0.0871556642
6	o.IO491 94754	6	0.0003959525	1.00002 08483	o. 1045283693
7	0.12240 60546	7	0.00046 07190	1. 0000283393	0. 12I86 92343
8	0.13989 26338	8	0.0005249226	I.00003 69582	o.13917 29770
9	0.15737 92I3I	9 I	0.0005884849	I. 0000466945	o. 1564343264
10	0.17486 57923	10	0.00065 13283	1.00005 75362	0. 1736480247
II	0.19235 23716	1 I	0.0007133760	1. 0000694702	o.19080 88283
12	0.2098389508	12	0.0007745523	1.00008 24819	0.20791 15IOI
13	0.2273255300	13	0.00083 47824	1.00009 65555	0.2249508603
14	0.2448121092	142	0.00089 39929	I.OOOII 16738	0.24192 16887
15	0. 2622986885	$15 \quad 2$	0.00095 2III4	1. OOOI2 78184	0.25881 88257
16	0.2797852677	162	0.0010090670	I . OOOI 4 '49696	0.2756371244
17	0.29727 18469	17	o.00106 47903	1.00016 31066	0.29237 14618
18	0.31475 84262	182	0.0011192132	I. O0018 22072	0.3090167404
19	0.3322450054	192	0.00117 22694	I. 0002022482	0.32556 78900
20	0.34973 15846	$20 \quad 2$	0.00122389 .41	1.0002232051	0.34201 98690
21	0.3672181639	212	0.0012740244	1.00024 50525	0.35836 76658
22	0.38470 47431	22	0.00132 25992	1.00026 77636	0.37460 63009
23	0.4021913223	$23 \quad 2$	0.00136 95594	1.00029 13109	0. 3907308277
24	$0.41967 \cdot 79016$	$24 \cdot 2$	0.00141 48476	1.0003I 56657	0.40673 63347
25	0.4371644808	253	0.00145 84087	1.00034 07982	0.4226179464
26	0.4546510600	263	0.00150 OI897	1.00036 66779	0.4383708251
27	0.4721376393	$27 \quad 3$	0.00154 OI398	1. 0003332731	0.45399 OI723
28	0.4896242185	28 3	0.0015782103	1.00042 05516	0.4694712303
29	0.5071107977	293	0.00161 43549	I. 0004484801	0.48480 92833
30	0.52459 73770	303	0.0016485297	1.00047 70246	0.4999996593
31	0.54208 39562	3 I 3	0.00168 0693I	1.00050 61502	0.51503 773II
32	0.55957 05354	323	0.00171 08062	I. 0005358215	0.5299189180
33	0.5770571147	33 3	0.0017388322	I.00056 60024	0.5446386870
34	0.5945436939	343	0.00176 47373	I. 0005966561	0.55919 25543
35	0.6120302731	353	0.0017884901	1.00062 77451	0. 5735760867
36	0.6295168524	363	0.0018100617	1.00065 92318	0.5877849028
37	0.6470034316	$37 \quad 3$	0.0018294261	1.0006910776	0.60181 46744
38	0.66449 00108	383	0.0018465599	1.00072 32438	0.6I566 I1280
39	0.6819765900	393	0.0018614423	1.00075 56912	0.6293200458
40	0.6994631693	403	0.0018740556	1.0007883803	0.6427872670
4 I	0.7169497485	4 I	0.0018843845	1.00082 12712	0.6560586895
42	0.7344363278	424	0.0018924166	1.00085 43239	0.6691302706
43	0.7519229070	$43 \quad 4$	0.0018981424	1.0008874981	0.6819980287
44	0.76940 94862	$44 \quad 4$	0.0019015552	1.0009207533	0.6946580439
45	7868960655	$45 \quad 4$	0.0019026510	I. 0009540492	0.7071064600
$90^{\circ} \mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathbf{C}(\mathrm{r})$	B(r)

$\boldsymbol{q}=0.000476569916867, Ө 0=0.9990468602, \mathrm{H}(\mathrm{K})=0.2955029021$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ		F ψ	$90^{\circ} \mathrm{r}$
1.0000000000	1.00190 80984	0.0000000000	90°	o^{\prime}	I. 5737921309	90
0.9998476949	1.00190 75172	0.0000663384	89	0	1. 5563055517	89
0.9993908259	1.OOI90 57743	0.0001325961	88	0	I. 5388189724	88
0.9986295323	I. OOI90 28720	0.00019 86928	87	0	I. 5213323932	87
0.9975640458	1.00189 88136	0.0002645481	86	0	I. 5038458140	86
0.9961946912	I. 0018936042	0.0003300820	85	I	I. 4863592347	85
0.99452 I8855	I. OOI 8872501	0.0003952149	84	I	I. 4688726555	84
0.99254 61382	I. OOI87 97590	0.0004598676	83	I	1.45138 60763	83
0.9902680513	1.00187 II 401	0.00052 39616	82	1	I. 43389 9497 I	82
0.9876883186	1.00186 14039	0.0005874190	8I	I	I.4164129178	8 I
0.9848077260	1. 001850562 I	0.0006501626	80	I	I. 3989263386	80
0.9816271510	I. 0018386282	0.0007121163	79	I	I.38143 97593	79
0.9781475623	1.00182 56165	0.0007732046	78	1	I. 36395 31801	78
0.9743700200	I. 00181515429	0.0008333534	77	1	I. 3464666009	77
0.9702956747	1.00179 64246	0.00089 .24894	76	2	I. 3289800217	76
0.9659257675	I. 0017802800	0.0009505409	75	2	1.3II49 34424	75
0.9612616296	1.00176 31288	0.0010074371	74	2	I. 2940068632	74
0.9563046817	I. OOI 7449918	0.0010631089	73	2	1. 2765202840	73
0.9510564338	1.00172 58912	0.00111 74885	72	2	I. 2590337047	72
0.9455184846	I. OOI70 58502	0.0011705097	71	2	I.24I54 71255	71
0.9396925209	I. 0016848932	0.00122 21081	70	2	I. 2240605463	70
0.9335803176	I. 0016630459	0.0012722208	69	2	I. 2065739670	69
0.9271837364	I. 0016403347	0.0013207868	68	2	I. I 890873878	68
0.9205047258	I.00161 67874	0.0013677470	67	2	1.17160 08086	67
0.9135453203	1.00159 24327	0.0014130440	66	3	I. I54II 42293	66
0.9063076400	1.0015673002	0.0014566228	65	3	I. I3662 76501	65
0.8987938894	1.00154 14205	0.0014984301	64	3	I. I1914 10709	64
0.89100 63574	I. 0015148252	0.001538415 I	63	3	I. IOI65 44916	63
0.8829474161	I.OOI48 75467	o.0015765289	62	3	I. 0841679124	62
0.87461 95204	I.0014596182	0.0016127250	6 I	3	1.06668 13332	61
0.8660252071	1.00143 10738	0.00164 69592	60	3	I.04919 47539	60
0.8571670941	1.00140 19481	0.0016791897	59	3	1.03170 81747	59
0.84804 78798	1.00137 22768	0.0017093771	58	3	I.OI422 I 5955	58
0.8386703419	I. OOI34 20959	0.0017374846	57	3	0.9967350162	57
0.8290373370	1. OOI3I 14423	0.0017634776	56	3	0.9792484370	56
0.8191517995	1.00128 03532	0.0017873244	55	3	0.9617618578	55
0.8090167404	I . OOI24 88666	0.00180 89958	54	3	0.94427 52785	54
0.7986352473	1.0012170208	0.00182 84651	53	3	0.9267886993	53
0.7880104823	I. OOII8 48546	0.00184 57085	52	3	0.9093021201	52
0.77714 56818	I. OOII5 24072	0.0018607047	5 I	3	0.8918155409	5 I
0.7660441556	I.OOIII 9718I	0.0018734353		3	0.8743289616	50
0.75470 92851	I.00108 68272	0.0018838846	49	3	0.8568423824	49
0.7431445232	I. 0010537745	0.00189 20395	48	3	0.839355803 I	48
0.7313533926	I. 0010206003	0.0018978900	47	3	0.8218692239	47
0.7193394850	1. 0009873450	0.0019014287	46	4	0.8043826447	46
0.7071064600	1. 0009540492	-0.00190 26510	45	4	0.7868960655	45
A(\mathbf{r})	$\mathrm{D}(\mathrm{r})$	$\mathbf{E}(\mathbf{r})$	ϕ		F ϕ	r

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1. 0000000000	0.0000000000
1	0.OI758 71423	10	0.00026 61187	1.0000023404	0.01745 21509
2	0.0351742845	2	0.0005319095	I. 0000093587	0.0348989861
3	0.0527614268	3 I	0.0007970448	1.00002 10463	0.05233 51918
4	0.0703485691	42	0.0010611979	1.0000373890	0.0697554570
5	0.0879357113	52	0.0013240433	1. 0000583670	0.0871544758
6	0.10552 28536	63	0.00158 52573	I. 0000839546	0.10452 69489
7	0.12310 99959	3	0.00184 45182	1.0001141206	0.1218675849
8	0.14069 71382	84	0.0021015066	I. 0001488284	0.13917 11019
9	O.I5828 42804	94	0.0023559064	I.00018 80356	0. 1564322298
10	0.17587 14227	105	0.0026074044	1.0002316945	0.17364 57109
II	0.19345 85650	II 5	0.0028556913	1.0002797518	0.19080 63023
12	0.2110457072	125	0.0031004619	1.0003321491	0.2079087771
13	0.22863 28495	136	0.0033414153	1.00038 88224	0.22494 7926I
14	0.24621 99918	146	0.0035782555	1. 0004497028	0.24191 85595
15	0.2638071340	157	0.0038106920	1.00051 47160	0.2588155080
16	0.2813942763	167	0.00403 84394	1.00058 37829	0.2756336252
17	0.29898 14186	177	0.0042612186	I. 00065 68193	0. 2923677883
18	0.3165685609	188	0.00447 87567	1.00073 37362	0.3090129003
19	0.3341557031	198	0.0046907873	I. 0008144399	0.32556 38912
20	0.3517428454	208	0.0048970511	I. 0008988322	0.3420157197
21	0.3693299877	219	0.0050972961	1.00098 68100	0.3583633745
22	0.3869171299	229	0.0052912778	1.00107 82664	0.37460 18764
23	0.4045042722	$23 \quad 9$	0.00547 87596	I. OOII7 30898	0.39072 62791
24	0.4220914145	2410	0.0056595131	1.00127 11647	0.4067316711
25	0.4396785568	2510	0.0058333185	1.0013723717	0.4226131771
26	0.4572656990	26 10	0.0059999643	I. 0014765874	0.4383659597
27	0.4748528413	27 II	0.006I5 92485	1.00158 36848	0.4539852206
28	0.4924399836	28 II	0.0063109780	1.00169 35336	0.4694662019
29	0.5100271258	29 II	0.0064549693	1.OOI80 59998	0.48480 4188I
30	0.5276I 42681	30 II	0.0065910484	I. 0019209464	0.4999945073
31	0.5452014104	3112	0.0067190513	I. 0020382334	0.5150325321
32	0.5627885526	3212	0.0068388242	1.00215 77178	0.5299136820
33	0.58037 56949	3312	0.0069502232	1. 0022792542	0.5446334239
34	0. 5979628372	3412	0.0070531150	I. 0024026944	0.5591872740
35	0.6I554 99795	$35 \quad 12$	0.0071473769	1.0025278880	0.5735707990
36	0.6331371217	3613	0.0072328968	1.00265 46826	0.5877796173
37	0.6507242640	37 I3	0.0073095735	1. 0027829236	0.6018094008
38	0.6683114063	38 I3	0.0073773166	1.00291 24548	0.6156558756
39	0.6858985485	39 I3	0.0074360469	1.00304 31183	0.6293148239
40	0.7034856908	40 I3	0.0074856962	1.003I7 47551	0.6427820847
41	0.72107 28331	4113	0.0075262073	I. 0033072046	0.6560535555
42	0. 7386599754	42 I3	0.0075575345	I. 0034403056	0.6691251936
43	0.75624 71176	43 13	0.0075796433	I. 0035738959	0.6819930169
44	0.7738342599	44 13	0.0075925102	1. 0037078127	0.6946531055
45	0.7914214022	$45 \quad 13$	0.0075961235	1.00384 18928	0.7071016026
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$q=0.00191359459017, \theta 0=0.9961728108, \mathrm{HK}=0.418305976553$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.00000 00000	I. 0076837857	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	I. 5828428043	90
0.9998476907	I. 0076814453	0.0002640908	89 o	I. 565255662 I	89
0.9993908092	I. 0076744270	0.0005278635	88	I. 5476685198	88
0.9986294947	1.00766 27394	0.0007910004	87	I. 5300813775	87
0.9975639792	1.00764 63966	0.0010531846	862	I. 5124942353	86
0.996r9 45873	I. 00076254187	0.001314 IOOI	852	I. 4949070930	85
0.99452 I7362	I. 007599831 I	0.00157 34327	843	I.47731 99507	84
0.9925459357	1.00756 96650	0.OOI83 08697	833	I. 4597328084	83
0.9902677878	1.00753 49572	0.00208 61008	824	I. 4421456662	82
0.9876879866	1. 0074957500	0.0023388183	8 I 4	I. 4244585239	8 I
0.9848073181	1. 0074520912	0.0025887173	$80 \quad 4$	I. 40697 I38I6	80
0.9816266600	I. 0074040338	0.00283 54962	795	1.38938 42394	79
0.9781469814	1.00735 16366	0.0030788572	785	1.37179 70971	78
0.9743693426	I. 0072949632	0.0033I 85063	776	I. 3542099548	77
0.9702948945	I. 0072340828	0.00355 41538	766	I. 3366228125	76
0.9659248785	1.00716 90696	0.0037855150	757	1.31903 56703	75
0.9612606262	1.00710 00027	0.00401 23098	747	I. 3014485280	74
0.9563035586	1. 0070269663	0.0042342636	737	I. 28386 I 3857	73
0.95105 51861	I. 0069500494	0.00445 11077	728	I. 2662742435	72
0.9455171076	I. 0068693457	0.0046625790	7 I 8	I. 2486871012	7 I
0.9396910107	1. 0067849535	0.0048684209	708	I. 2310999589	70
0.9335786703	1.00669 69756	0.00506 83836	699	I. 2135128167	69
0.9271819488	1. 0066055192	0.0052622237	689	I. 19592 56744	68
0.9205027950	I. 0065106958	0.00544 97055	679	I . 178338532 I	67
0.9135432440	I. 0064126209	0.0056306006	66 10	I. 16075 I3898	66
0.9063054160	1.0063I 14139	0.00580 46884	65 10	I. I43I6 42476	65
0.89879 I5164	I. 0062071982	0.0059717561	$64 \quad 10$	I. 1255771053	64
0.8910038343	1.00610 01007	0.00613 15997	63 II	I. 1079899630	63
0.88294 47424	1.00599 02520	0.0062840232	62 II	I. 0904028208	62
0.87461 66961	1.00587 77858	0.0064288398	6 I I I	I. 0728 I 56785	6 I
0.8660222325	1. 0057628392	0.0065658716	$60 \quad 12$	1. 0552285362	60
0.8571639703	1. 0056455522	0.00669 49498	59 I2	1. 0376413940	59
0.8480446080	I. 0055260678	0.00681 59154	58 I2	I. 0200542517	58
0.83866 69240	I. 0054045314	0.0069286187	$57 \quad 12$	I. 0024671094	57
0.8290337754	1.00528 10912	0.0070329201	$56 \quad 12$	0.9848799671	56
0.8191480969	1.00515 58975	0.0071286900	$55 \quad 12$	0.9672928249	55
0.8090129003	1.00502 91030	0.0072158089	$54 \quad 13$	0.94970 56826	54
0.7986312733	I. 0049008620	0.0072941679	53 I 3	0.932II 85403	53
0.78800 63786	I. 0047713308	0.0073636683	5213	0.91453 I398I	52
0.77714 14532	I. 0046406672	0.007424222	5 I I3	0.89694 42558	51
0.76603 98071	1.00450 90305	0.007475753 I	5013	0.87935 71135	50
0.75470 48222	I. 0043765809	0.0075181941	49 I3	0.86176 99712	49
0.74313 99518	I. 0042434799	0.0075514902	48 I 3	0.84418 28290	48
0.73I34 87I9I	1.00410 98897	0.00757 55973	47 I 3	0.82659 56867	47
0.7193347160	I. 0039759729	0.0075904823	46 I 3	0.80900 85444	46
0.7071016026	1. 0038418928	0.0075961235	$45 \quad 13$	0.79142 14022	45
A(\mathbf{r})	D (r)	E(r)	ϕ	F ϕ	r

$\mathrm{K}=1.5981420021, \quad \mathrm{~K}^{\prime}=\mathrm{K} \sqrt{3}=2.7680631454, \quad \mathrm{E}=1.5441504939, \quad \mathrm{E}^{\prime}=1.076405113$,

r	F ${ }^{\prime}$	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1. 0000000000	0.0000000000
1	0.0177571334		0.00059 97806	I . 0000053258	0.01745 10959
2	0.0355 42667		0.00119 88113	1.00002 12966	0.0348968785
3	0.0532714001		.0.00179 63433	1.00004 78929	0.0523320359
4	0.0710285334	44	0.0023916296	1.00008 50825	0.0697512596
5	0.0887856668		0. 0029839265	I. OOOI3 28199	0.0871492460
6	o. 1065428002		0.0035724940	1.00019 10470	0. 1045206976
7	0.12429 99335	7	0.00415 65975	1.00025 96929	0.12186 03254
8	0. 1420570669		0.00493 55081	I. 00003386738	o. 1391628498
9	0.15981 42002	99	0.00530 85039	I. 00004278937	0.15642 30024
10	0.17757 13336	10 IO	0.0058748710	1.00052 72438	0. 1736355278
II	o. 1953284669	II II	0.0064339044	1.0006366031	0. 1907951850
12	0.2130856003	$12 \quad 12$	0.00698 49088	I. 0007558383	0.2078967491
13	0.2308427336	1313	0.0075271998	I. 000884804 I	0.2249350127
14	0.2485998670	$14 \quad 14$	0.0080601044	I. 0010233434	0.2419047877
15	0.2663570004	1515	0.00858 29622	I. 0011712875	0.2588009068
16	0.2841141337	$16 \quad 16$	0.0090951263	1.00132 84561	0.27561 82249
17	0.30187 12671	$17 \quad 17$	0.0095959638	I. ool49 46577	0.2923516211
18	0.3196284004	18 I8	0.01008 48569	I. 0016696898	0.3089959997
19	0.3373855338	$19 \quad 18$	0.01056 12037	1.00185 33392	0.3255462922
20	0.35514 26672	2019	0.0110244188	1.0020453820	0.3419974584
21	0.37289 98005	2120	0.01147 39339	1. 0022455845	0.3583444886
22	0.3906569339	22 21	0.01190 91990	1. 0024537025	0. 3745824043
23	0.4084140672	23 21	0.01232 96827	1. 0026694826	0.3907062603
24	0.4261712006	$24 \quad 22$	0.01273 48729	I. 0028926619	0.4067111462
25	0. 4439283339		0.01312 42775	1.00312 29684	0. 4225921874
26	0.4616854673	$26 \quad 24$	0.0134974251	I. 0033601217	0. 4383445471
27	0. 4794426006	$27 \quad 25$	0.01385 38651	I. 0036038326	0.4539634276
28	0.4971997340	$28 \quad 25$	0.0141931688	I. 0038538044	0.4694440717
29	0.51495 68674	$29 \quad 25$	0.01451 49297	I.00410 97324	0.4847817640
30	0.5327140007	$30 \quad 26$	0.01481 87635	I. 0043713049	0.4999718327
31	0. 55047 II34I	3126	0.01510 43095	1. 0046382031	0.51500 96510
32	0. 5682282674	$\begin{array}{ll}32 & 27\end{array}$	-. 0153712298	1.00491 O1019	0. 5298906380
33	0. 5859854008	$33 \quad 27$	0.01561 92109	1.00518 66701	0.5446102607
34	0.6037425341		0.01584 79628	I. 0054675706	0.5591640350
35	0.6214996675	$\begin{array}{ll}35 & 28\end{array}$	0.0160572204	I. 0057524612	0.5735475273
36	0.6392568009	$36 \quad 28$	0.0162467429	1. 0060409949	0. 5877563556
37	0.65701 39342	$37 \quad 29$	0.0164163146	I . 0063328201	0.60178 61912
38	0.6747710676	$38 \quad 29$	0.0165657446	1. 0066275813	0.61563 27596
39	0.6925282009	$39 \quad 29$	0.01669 48676	1.00692 49193	0.6292918421
40	0.7102853343	$40 \quad 29$	0.0168035433	1.0072244718	0.6427592769
41	0.7280424676	4130	0.01689 16569	1. 0075258740	0.6560309607
42	0.7457996010	4230	0.01695 91191	1.0078287587	0.66910 28494
43	0.7635567344	4330	$\bigcirc .0170058662$	I. 00813 27567	0.6819709600
44	0.7813138677	4430	0.0170318597	1. 0084374977	0.6946313711
45	0.7990710011	$45 \quad 30$	0.0170370869	1.0087426104	0.7070802248
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0.004333420509983, \quad Ө 0=0.9913331597, \quad \mathrm{HK}=0.5131518035$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	I. O1748 52237 .	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	I. 59814 2002I	90
0.9998476723	I. OI747 98979	0.00058 9480I	89 I	I. 5803848688	89
0.9993907356	I. OI746 3927I	0.00117 82606	882	I. 5626277354	88
0.9986293293	I. O1743 73307	0.00176 56424	873	I. 5448706021	87
0.9975636857	I. OI740 OI412	0.002350928 I	864	I. 527 II 34687	86.
0.9961941297	I. OI735 24037	0.0029334228	855	I. 5093563353	85
0.9945210792	I.OI729 41766	0.00351 24342	846	I.49159 92020	84
0.9925450444	1.OI722 55307	0.0040872741	837	I. 4738420686	83
0.9902666280	I.OI714 65496	0.0046572589	828	I. 4560849353	82
0.9876865251	I. O1705 73297	0.0052217102	8 I 9	I. 4383278019	8 I
0.9848055225	I. O1695 79795	0.0057799557	80 Io	I. 4205706685	80
0.9816244990	I.OI684 86202	0.00633 13300	79 I I	I. 4028 I 35352	79
0.9781444248	I. O1672 93849	0.0068751750	78 12	1. 3850564019	78
0.9743663613	I. 0166004190	0.0074108412	$77 \quad 13$	I. 3672992685	77
0.9702914608	I.OI646 18796	0.0079376880	$76 \quad 14$	1. 3495421352	76
0.9659209661	1.01631 39354	$0.00845 \quad 50845$	$75 \quad 15$	I. 3317850018	75
0.9612562102	I.OI6I5 67668	0.0089624102	74 I6	I. 3140278684	74
0.9562986158	I. OI599 0565I	0.0094590560	7317	I. 2962707351	73
0.9510496947	I.OI581 55329	0.00994 44245	$72 \quad 18$	I. 2785136017	72
0.9455 I 10478	I. OI563 18834	0.0104179308	7 I I8	I. 2607564684	7 I
0.9396843642	I. OI543 98405	0.0108790033	$70 \quad 19$	I. 2429993350	70
0.9335714207	I. OI523 96380	0.OII32 70844	6920	1. 2252422016	69
0.9271740815	1. O1503 15198	0.0117616310	68 20	I. 2074850683	68
0.9204942975	I.OI48157396	0.0121821151	67 2I	I. 18972 79349	67
0.9135341057	I. OI459 25602	0.0125880246	6622	I. 1719708016	66
0.9062956284	I. OI436 22536	0.0129788640	$65 \quad 23$	I. I542I 36682	65
0.8987810728	1.01412 51003	0.01335 41547	$64 \quad 23$	I. I3645 65348	64
0.89099 27303	I. OI388 13892	0.01371 34359	$63 \quad 24$	I. II869 940I5	63
0.88293 29756	I. O1363 14174	0.01405 62649	6225	I. 1009422681	62
0.8746042661	I. OI337 54893	0.0143822180	$6 \mathrm{I} \quad 25$	I.083I8 51348	61
0.8660091414	1.OI3II 39167	0.01469 08906	$60 \quad 26$	1. 0654280014	60
0.85715 02219	I.O1284 70184	0.01498 18982	5926	I. 047670868 I	59
0.8480302085	I. O1257 51195	0.OI525 48767	$58 \quad 27$	1. 0299137347	58
0.83865 18817	I. O1229 85512	0.01550 94825	$57 \quad 27$	I. 0121566014	57
0.8290181005	I. O1201 76507	O.OI574 53939	$56 \quad 28$	0.99439 94680	56
0.8191318020	I.OII73 27599	0.0159623105	$55 \quad 28$	0.9766423346	55
0.80899 59997	I.OII44 42262	0.01615 99545	$54 \quad 28$	0.9588852013	54
0.7986137836	I. OIII5 24009	0.0163380704	$53 \quad 29$	0.9411280679	53
0.7879883184	I. O1085 76397	0.01649 64258	$52 \quad 29$	0.9233709346	52
0.77712 28430	1.01056 03017	0.01663 48119	5129	0.90561 38012	5 I
0.7660206691	I. 0102607491	0.0167530432	$50 \quad 29$	0.88785 66678	50
0.75468 51808	I. 0099593468	0.01685 09584	4929	0.87009 95345	49
0.743II 98330	I. 0096564622	0.0169284205	4830	0.85234 2401 I	48
0.7313281506	I. 0093524642	0.0169853170	$47 \quad 30$	0.83458 52678	47
0.7193137274	1.00904 77232	0.0170215600	$46 \quad 30$	0.81682 81344	46
0.7070802248	1.00874 26104	0.0170370869	4530	0.79907 1001 I	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=1.6200258991, \quad \mathrm{~K}^{\prime}=2.5045500790, \quad \mathrm{E}=1.5237992053, \quad \mathrm{E}^{\prime}=1.118377738$

r	F ϕ	ϕ	E (r)	$\mathrm{D}(\mathrm{r})$	A(\mathbf{r})
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	- 1.00000 00000	0.0000000000
I	0.OI800 02878	12	0.00106 89581	I. 00000962 I 8	0.01744 81883
2	0.03600 05755	24	0.002I3 65522	I. 0000384757	0.0348910694
3	0.05400 08633	36	0.0032014202	1.00008 65263	0.0523233377
4	0.07200 II5II	47	0.0042622042	I. OOOI5 37152	0.0697396909
5	0.0900014388	59	0.0053 I 75519	I. 0002399605	0.0871348313
6	0.10800 17266	6 II	0.00636 61189	I. 0003451572	0. 1045034678
7	0.12600 20144	713	0.0074065708	I. 0004691770	O.I2I84 03169
8	0.14400 2302 I	815	0.00843 75848	I. 0006118689	0.13914 OIO5I
9	0.16200 25899	$9 \quad 17$	0.0094578515	1.00077 30591	O. I5639 75697
10	0.18000 28777	$10 \quad 19$	0.0104660772	1.0009525510	0.17360 74610
II	o.19800 31655	II 20	0.01146 09855	I.OOII5 01262	0.19076 45434
12	0.2160034532	1222	0.01244 13188	I. 0013655438	0. 2078635973
13	0.2340037410	1324	0.01340 58406	I. OOI59 85414	0.2248994205
14	0.2520040288	$14 \quad 25$	0.01435 33370	I. oor 848835 I	0.2418668298
15	0.2700043165	I5 27	0.01528 26180	I. 0021161200	0.2587606626
16	0.28800 46043	1628	0.01619 25197	I. 0024000704	0.2755757786
17	0. 306004892 I	1730	0.01708 19057	I. 0027003405	0.2923070609
18	0.3240051799	$18 \quad 32$	0.OI794 96683	I. O0301 65642	0.3089494182
19	0.34200 54676	1933	0.01879 47304	I. 0033483565	0.3254977855
20	0.36000 57554	2035	0.0196I 60466	1. 0036953131	0.3419471266
21	0.37800 6043I	2136	0.0204I 26046	1.0040570112	0.35829 24349
22	0.39600 63309	2237	0.02II8 34268	I . 00443 30101	0.37452 87349
23	0.4140066187	$23 \quad 39$	0.02192 757II	I. 0048228518	0.39065 10844
24	0.4320069064	2440	0.02264 4132I	I. 0052260614	0.40665 45753
25	0.4500071942	254 I	0.02333 22426	I. 0056421475	0.4225343354
26	0.4680074820	$26 \quad 42$	0.0239910740	I. 0060706033	0.43828 55296
27	0.48600 77697	$27 \quad 44$	0.02461 98378	I. 0065 I 09067	0.45390 33618
28	0.50400 80575	2845	0.0252177862	1.00696 25213	0.4693830761
29	0. 5220083453	2946	0.0257842130	I. 0074248968	0.48471 99582
30	0. 5400086330	$30 \quad 46$	0.0263I 84541	1. 0078974700	0.4999093370
31	0.55800 89208	3147	0.02681 98888	1.00837 96651	0.51494 65858
32	0.57600 92086	3248	0.0272879396	1.0088708946	0.5298271240
33	0. 5940094963	3349	0.0277220732	I. 0093705600	0.54454 64181
34	0.61200 9784I	3450	0.0281218009	I. 0098780525	0. 5590999835
35	0.6300100719	$35 \quad 50$	0.0284866791	I.OIO39 27539	0. 5734833858
36	0.64801 03597	36 5I	0.0288163091	I. OIO91 40371	0.5876922416
37	0.66601 06474	37 51	0.0291103382	I. OII44 12669	0.60172 22208
38	0.68401 09352	3852	0.0293684591	I. OII97 3801I	0.6I556 90470
39	0.7020112230	$39 \quad 52$	0.0295904103	I. O125I 09908	0.6292284994
40	0.7200115107	4053	0.0297759763	I. O1305 21815	0.6426964140
41	0.7380117985	4 I 53	0.0299249874	I.OI359 67138	0.6559686845
42	0.75601 20863	4253	0.0300373198	I. OI4I4 39245	0.6690412642
43	0.7740123740	4353	0.03011 28953	I. O1469 31466	0.68191 01665
44	0.79201 26618	4453	0.03015 168II	I.OI524 37II2	0.69457 I4668
45	0.8100I 29496	$45 \quad 53$	0.0301536896	1.OI579 49474	0.7070213033
90-r	$\mathrm{F} \psi$	ψ	G(r)	C(r)	B(r)

Smithsonian Tables
$q=0.007774680416442, \quad \Theta 0=0.9844506465, \quad \mathrm{HK}=0.5939185400$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	I.03I58 99246	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	I. 6200258991	90
0.9998476215	I.03I58 03027	0.00103 62474	$89 \quad 2$	I. 6020256113	89
0.9993905327	I.03I55 14488	0.0020712902	884	I. 5840253236	88
0.9986288734	I.03150 33980	0.0031039250	876	I. 5660250358	87
0.9975628767	I.03I43 62088	0.0041329509	867	I. 5480247480	86
0.9961928686	1.03134 99632	0.0051571704	859	1. 5300244603	85
0.9945192682	1.03124 47661	0.0061753910	84 II	1.51202 41725	84
0.9925425876	I.0311207458	0.00718 64259	83 I3	I. 4940238847	83
0.9902634315	I. 0309780534	0.00818 90957	82 I5	I. 4760235970	82
0.9876824970	I.0308I 68627	0.0091822293	8I 16	I. 4580233092	8 I
0.9848005736	1.0306373701	0.01016 46651	$80 \quad 18$	1.4400230214	80
0.98161 85429	I. 0304397942	0.OIII3 52523	79 20	I. 4220227337	79
0.97813 73781	I. 0302243759	0.0120928519	$78 \quad 22$	I. 4040224459	78
0.97435 81442	1. 0299913775	0.01303 6338I	$77 \quad 23$	1.3860221581	77
0.9702819968	1.0297410829	0.0139645994	$76 \quad 25$	I.36802 18704	76
0.96591 or827	I. 0294737972	0.0148765396	$\begin{array}{ll}75 & 27\end{array}$	I. 35002 I5826	75
0.9612440390	I.02918 98458	0.0157710793	$74 \quad 28$	1.33202 12948	74
0.9562849924	I. 0288895748	0.OI664 71568	$73 \quad 30$	1.31402 10070	73
0.9510345595	I. 0285733501	0.OI750 37292	7231	I. 2960207193	72
0.9454943456	1.02824 15568	0.01833 97739	7133	1.27802 04315	7 I
0.9396660449	1. 0278945992	0.01915 42895	$70 \quad 34$	I. 26002 O1437	70
0.9335514391	I. 0275328994	0.01994 62967	6936	I. 2420198560	69
0.9271523977	I.02715 69001	0.02071 48399	$68 \quad 37$	I. 2240195682	68
0.9204708768	I. 0267670574	0.021458988 I	$67 \quad 38$	I. 2060192804	67
0.9135089187	I. 0263638468	0.0221778360	6640	I. I8801 89927	66
0.9062686515	1. 0259477596	0.0228705049	65 41	I. 17001 87049	65
0.89875 22880	1.02551 93029	0.0235361442	6442	I. I5201 8417I	64
0.8909621252	I. 0250789985	0.0241739320	6343	I. I3401 81294	63
0.8829005436	1. 0246273829	0.0247830767	6244	1.11601 78416	62
0.8745700067	I.02416 50064	0.0253628172	6145	I.09801 75538	61
0.86597 30595	1. 0236924323	0.02591 24248	$60 \quad 46$	I. 0800172661	60
0.8571I 23285	I. 0232102363	0.0264312037	5947	1.06201 69783	59
0.8479905205	I. 0227190060	0.02691 84920	5848	I.04401 66905	58
0.83861 04218	I. O2221 93398	0.0273736626	5749	I.02601 64028	57
0.8289748973	I. 0217118465	0.02779 61243	5649	I. 00801 6II50	56
0.8190868896	1. 0211971444	0.0281853227	$55 \quad 50$	0.9900158272	55
0.8089494182	1. 0206758606	0.0285407409	54 5I	0.97201 55395	54
0.79856 55784	1.02014 86302	0.0288619001	53 51	0.95401 52517	53
0.7879385407	I.OI96I 60955	0.0291483611	5252	0.93601 49639	52
0.77707 15491	I. 0190789054	0.0293997245	$5 \mathrm{I} \quad 52$	0.91801 4676I	5 I
0.7659679209	1.01853 77143	0.02961 56313	$50 \quad 53$	0.9000143884	50
0.7546310450	I. O1799 31816	0.0297957642	4953	0.88201 41006	49
0.7430643814	I.OI744 59707	0.0299398477	4853	0.86401 38129	48
0.7312714598	I.OI689 67484	0.0300476489	$47 \quad 53$	0.84601 3525I	47
0.7192558784	I.OI634 6I837	0.0301189783	$46 \quad 53$	0.82801 32373	46
0.7070213033	I.OI579 49474	0.0301536896	$45 \quad 53$	0.8IOOI 29496	45
A(\mathbf{r})	$\mathrm{D}(\mathbf{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=1.6489952185, \quad \mathrm{~K}^{\prime}=2.3087867982, \quad \mathrm{E}=1.4981149284, \quad \mathrm{E}^{\prime}=1.1638279645$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.01832 21691	13	0.00167 60815	I . OOOOI 53565	o.oI744 18591
2	0.0366443382	26	0.0033499667	1.00006 14074	0.0348784245
3	0.0549665073	39	0.00501 94629	I. 0001380964	0.052304404 I
4	0.0732886764	$4 \quad 12$	0.0066823842	I. 0002453303	0.0697I 45088
5	0.0916I 08455	$5 \quad 15$	0.00833 65551	I. 0003829783	0.0871034544
6	0.10993 30145	$6 \quad 18$	0.00997 98139	I. 0005508728	0. 1044659627
7	0.12825 51836	$7 \quad 21$	0.01161 00163	I. 0007488092	0.I2I79 67635
8	0.14657 73527	$8 \quad 24$	0.01322 50382	1. 0009765463	0.13909 05958
9	0.16489 95218	$9 \quad 26$	0.01482 27797	1.00123 38067	0. 1563422095
10	0.18322 16909	1029	0.0164011677	I.OOI5202770	O. 1735463669
II	0.20154 38600	II 32	0.01795 81596	1.0018356081	o. 19069 78446
12	0.2198660291	1235	0.01949 I7458	I.0021794159	0.2077914345
13	0.23818 81982	$13 \quad 37$	0.02099 99533	1.00255 12815	0.2248219454
14	0.25651 03673	1440	0.02248 08485	1.00295 07519	0.2417842052
15	0.2748325364	1543	0.0239325396	I. 0033773404	$0.25867 \quad 30615$
16	0.29315 47055	1645	0.02535 31798	1.00383 05272	0.2754833838
17	0.31147 68746	1788	0.0267409700	I. 0043097603	0.2922100649
18	0.32979 90437	$18 \quad 50$	0.0280941609	I . 0048144557	0.3088480221
19	0.34812 12128	1953	0.0294110555	I. 0053439986	0.32539 2199I
20	0. 36644 33819	2056	0.0306900118	I. 0058977438	0.34I83 75673
21	0.38476 55510	2157	0.0319294445	I. 0064750167	0.35817 91274
22	0.4030877201	2259	0.0331278272	1.0070751140	0.3744I 19107
23	0.4214098892	24 I	0.0342836945	1.00769 73046	0.3905309808
24	0.43973 28582	253	0.03539 56434	I. 0083408304	0.40653 14352
25	0.45805 42273	$26 \quad 5$	0.0364623352	I. 0090049074	0. 4224084064
26	0.4763763964	$27 \quad 7$	0.0374824970	I. 0096887266	0.43815 70635
27	0. 4946985655	289	0.0384549232	I. OIO39 14548	0.45377 26140
28	0.51302 07346	29 II	0.0393784764	I. OIIII 22358	0.4692503045
29	0.53134 29037	$30 \quad 12$	0.0402520886	I.OII85 01916	0.4845854231
30	0.5496650728	315	0.0410747627	1.01260 4423I	0. 4997732999
3 I	0.5679872419	$32 \quad 15$	0.0418455726	I. OI33740113	0.51480 93092
32	0.5863094110	3316	0.0425636643	I.or4I5 80186	0.5296888703
33	0.60463 I5801	3418	0.0432282564	I. OI495 54899	0.54440 74492
34	0.6229537492	$35 \quad 19$	0.04383 86406	1.OI576 54535	0.55896 05600
35	0.6412759183	$36 \quad 20$	0.04439 4182I	1.01658 69227	0. 5733437662
36	0.6595980874	37 21	0.0448943196	I.OI74I 88967	0.58755 26819
37	0.6779202565	$38 \quad 22$	0.0453385655	I. 0182603617	0.6015829737
38	0.6962424256	$39 \quad 23$	0.0457265058	1.OI91I 02927	0.6I543 036II
39	0.7145645947	$40 \quad 23$	0.0460578000	I.OI996 76540	0.6290906189
40	0.7328867638	4123	0.0463321809	1.0208314013	0.6425595777
4 I	0.7512089328	$42 \quad 24$	0.0465494543	1.0217004820	0.65583 31255
42	0.76953 IIOI9	$43 \quad 24$	0.0467094981	1. 0225738374	0.66890 72089
43	0.7878532710	4424	0.0468122622	1.0234504035	0.68ı77 78347
44	0.80617 54401	$45 \quad 24$	0.0468577678	1.02432 91122	0.6944410704
45	0.8244976092	$46 \quad 24$	0.0468461065	1. 0252088930	0.7068930463
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$B(r)$

$q=0.012294560527181, \quad \Theta 0=0.975410924642, \quad \mathrm{HK}=0.666076159327$

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	$90-\mathrm{r}$
1. 0000000000	1.0504I 79735	0.0000000000	$90^{\circ} \quad o^{\prime}$	I. 6489952185	90
0.99984 75III	I. 0504026167	0.0015957045	893	I. 6306730494	89
0.99939 00912	1.05035 65652	0.0031896046	886	1.61235 08803	88
0.99862 78812	I. 0502798750	0.0047798977	879	1.59402 87112	87
0.9975611158	1.05017 26395	0.00636 47840	8612	I. 575706542 I	86
0.9961901235	I. 0500349895	0.0079424686	85 I5	I. 5573843730	85
0.99451 53263	I. 0498670926	0.0095111627	$84 \quad 17$	I. 5390622039	84
0.99253.72400	I. 04966 91533	0.OIIO6 90855	8320	I. 5207400348	83
0.9902564734	I. 0494414129	0.0126I 44653	8223	I. 5024 I 78657	82
0.9876737287	I.04918 41489	0.0141455416	8 I 26	I. 4840956966	81
0.9847898010	I. 0488976746	0.0156605663	$80 \quad 29$	I. 46577352 275	80
0.9816055779	I. 0485823391	0.01715 78054	79 31	I. 4474513584	79
0.9781220395	1. 0482385265	0.01863 55407	$78 \quad 34$	1.42912 91893	78
0.9743402576	I. 0478666559	0.0200920712	$77 \quad 37$	I. 4108070202	77
0.9702613962	1. 0474671802	0.0215257149	7639	I. 39248485 II	76
0.9658867101	I. 0470405862	0.0229348102	7542	I. 374162682 I	75
0.9612175452	I. 0465873936	0.0243177177	$74 \quad 44$	I. 3558405130	74
0.9562553377	1.04610 81546	0.0256728218	7347	I.33751 83439	73
0.95100 16139	1. 0456034530	0.02699 85322	7249	I.31919 61748	72
0.9454579893	I. 0450739038	0.02829 32857	7 I 52	I. 3008740057	71
0.9396261686	I. 0445201522	0.02955 55477	$70 \quad 54$	I. 2825518366	70
0.9335079444	1.04394 28728	0.0307838140	6956	I. 2642296675	69
0.9271051976	I. 0433427690	0.0319766123	6858	I. 2459074984	68
0.9204198958	I. 0427205719	0.03313 25038	68 o	I. 2275853293	67
0.9134540932	I. 0420770396	0.0342500853	$67 \quad 2$	1. 2092631602	66
0.9062099299	I.04141 2956I	0.0353279902	$66 \quad 4$	I. 19094099 II	65
0.89868 96309	I. 0407291305	0.0363648907	656	1. 1726188220	64
0.89089 55058	I. 0400263960	0.03735 94992	648	I. I 542966529	63
0.88282 99477	1.03930 56088	0.0383105700	63 Io	I. I359744838	62
0.8744954326	I. 0385676470	0.0392169009	62 II	I . II 76523147	6 I
0.86589 45184	1.03781 34098	0.0400773349	6113	1. 09933 O1456	60
0.85702 98444	I. 037043816 I	0.0408907619	60 I4	1.08100 79765	59
0.84790 41300	I. 0362598035	0.0416561200	5916	I. 0626858075	58
0.83852 OI744	I. 0354623272	0.0423723976	$58 \quad 17$	I. 0443636384	57
0.8288808549	I. 0346523588	0.04303 86345	57 I8	1.0260414693	56
0.8189891269	1. 0338308852	0.0436539236	$56 \quad 19$	1.00771 93002	55
0.8088480221	1.03299 89073	0.0442174127	$55 \quad 20$	0.98939 7131I	54
0.79846 06482	1.03215 74386	0.0447283056	54 21	0.9710749620	53
0.7878301874	I. O3I30 75044	0.0451858637	$53 \quad 22$	0.9527527929	52
0.7769598956	I. 03045 O1401	0.0455894076	5222	0.9344306238	51
0.76585 31015	1. 0295863905	0.04593 83183	5123	0.91610 84547	50
0.7545I 32053	1. 0287173077	0.0462320386	$50 \quad 24$	0.89778 62856	49
0.7429436775	I. 0278439507	0.0464700744	4924	0.87946 41165	48
0.7311480583	I. 0269673835	0.0466519961	$48 \quad 24$	0.86114 19474	47
0.71912 99561	I. 0260886741	0.0467774393	$47 \quad 24$	0.84281 97783	46
0.7068930463	1. 0252088930	0.0468461065	$46 \quad 24$	0.82449 76092	45
A(r)	D (\mathbf{r})	E(r)	ϕ	F ϕ	r

$\mathrm{K}=1.6857503548, \quad \mathrm{~K}^{\prime}=2.1565156475, \quad \mathrm{E}=1.4674622093 \quad \mathrm{E}^{\prime}=1.211056028$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.01873 05595	14	0.0024248763	I. 0000227125	0.0174298716
2	0.03746 11190	29	0.0048464683	1.00009 08222	0.0348544751
3	0.05619 16785	313	0.0072614977	I . 0002042462	0.0522685438
4	0.0749222380	418	0.00966 66975	1.0003628463	0.0696668140
5	0.0936527975	$5 \quad 22$	0.0120588178	I. 0005664294	0.0870440267
6	0.11238 33570	$6 \quad 26$	0.01443 46319	I. 0008147472	o. 1043949285
7	o.I3III 39165	$7 \quad 30$	0.0167909412	I.OOIIO 74975	0.I2I7142736
8	0.14984 44760	835	0.0191245813	I. OOI44 43235	0.13899 68254
9	0.1685750355	$9 \quad 39$	0.0214324269	1.00182 48148	-.15623 73574
10	0:18730 55950	1043	0.02371 13976	1. 0022485079	0.17343 06551
II	0.2060361545	II 47	0.0259584626	I. 0027148868	0.19057 I5I75
12	0.2247667140	1251	0.028I7 06459	1.00322 33830	0.2076547584
13	0. 2434972734	I3 55	0.0303450312	1.00377 33773	0. 2246752081
14	0.2622278329	$14 \quad 59$	0.0324787664	1.00436 41996	0.2416277146
15	0.2809583924	163	0.0345690685	I. 00499 51300	0.2585071454
16	0.29968 89519	176	0.03661 32272	I. 0056654000	0.2753083886
17	0.3184I 95II4	18 IO	0.0386086097	I. 0063741929	0.2920263549
18	0.3371500709	19 I4	0.04055 26642	I.00712 06453	0.30865 59785
19	0.35588 06304	$20 \quad 17$	0.0424429236	1. 0079038477	0.32519 22190
20	0.3746111899	2120	0.0442770092	1.00872 28461	0.3416300625
21	0.3933417494	$22 \quad 23$	0.0460526335	I . 0095766426	0.35796 45236
22	0.4120723089	$23 \quad 27$	0.0477676034	I. 0104641971	0.37419 0646I
23	0.4308028684	2430	0.04941 98229	I. OII38 44282	0.3903035051
24	0.4495334279	$25 \quad 33$	0.0510072958	1.01233 62150	0.40629 82084
25	0.4682639874	2636	0.0525281275	I.OI33I 83978	0.422 I6 98975
26	0.4869945469	$27 \quad 38$	0.0539805273	I.OI432 97800	0.43791 37495
27	0.5057251064	28 4I	0.0553628100	I. OI536 91295	0.4535249782
28	0.52445 56659	2943	0.0566733976	I.OI643 51800	0.4689988358
29	0.543I8 62254	3046	0.0579108204	I.OI75266329	0.48433 06142
30	0.56191 67849	3148	0.0590737181	1. OI864 21583	0.4995I 56464
3 I	0.58064 73444	3250	0.0601608407	1.01978 03972	0.51454 93080
32	0.5993779039	$33 \quad 52$	0.06II7 10486	I. 0209399629	0.52942 70185
33	0.6ı8ı0 84634	3454	0.0621033138	I.O22II 94428	0.5441442428
34	0.6368390229	3555	0.0629567191	I.0233I 73997	0.5586964925
35	0.6555695824	$36 \quad 56$	0.0637304587	I. 0245323743	0.5730793274
36	0.67430 O1419	$37 \quad 58$	0.06442 38375	1. 0257628863	0.5872883566
37	0.69303 07014	3859	0.0650362710	1.02700 74365	0.6013192403
38	0.7117612609	40 0	0.0655672843	I. 0282645087	0.6I5I6 76907
39	0.7304918204	4 I I	0.06601 65II2	I. 0295325714	0.6288294738
40	0.7492223799	422	0.0663836938	I.03081 00797	0.6423004103
41	0.7679529394	433	0.0666686806	I. 0320954771	0.6555763772
42	0.7866834989	443	0.0668714255	1.0333871976	0.6686533089
43	0.8054I 40584	453	0.0669919865	I. 0346836674	0.6815271988
44	0.824I4 46179	$46 \quad 4$	0.0670305237	I. 0359833070	0.6941941003
45	0.8428751774	$47 \quad 3$	0.0669872981	1. 0372845330	0.7066501282
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$q=0.017972387008967, \quad \Theta 0=0.9640554346, \quad \mathrm{HK}=0.7325237222$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	90-r
1.0000000000	I. 0745699318	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	1. 6857503548	90
0.9998473018	1. 0745472183	0.0022568053	894	I. 6670197953	89
0.9993892548	1. 0744791054	0.00451 II469	888	I. 6482892358	88
0.9986260018	I. 0743656761	0.0067605625	87 I3	I. 6295586763	87
0.9975577806	1. 0742070687	0.0090025936	86 I7	I.61082 81168	86
-0.99618 49242	1. 0740034764	0.OII23 47869	85 21	I. 5920975573	85
0.9945078603	1.07375 51471	0.01345 46957	8425	I. 5733669978	84
0.99252 7III5	I. 0734623837	0.01565 98823	$83 \quad 29$	I. 5546364383	83
0.9902432948	I.07312 55426	0.01784 79196	8233	I. 5359058788	82
0.9876571218	I. 0727450344	0.02001 63924	8I 38	1.51717 53193	8 I
0.9847693979	1.07232 13226	0.02216 28998	8042	I. 4984447598	80
0.9815810224	1.0718549236	0.0242850568	7946	I. 4797 I 42003	79
0.9780929880	1.07134 64055	0.02638 0496I	7849	I. 4609836408	78
0.9743063806	I. 070796388 I	0.0284468702	$77 \quad 53$	I. 44225 30813	77
0.9702223787	I. 0702055414	0.0304818529	$76 \quad 57$	I. 4235225218	76
0.9658422530	I. 0695745853	0.0324831417	76 I	I. 40479 I9623	75
0.96116 73661	I. 0689042887	0.0344484594	754	I. 38606 14028	74
0.95619 91719	I.06819 54682	0.0363755563	748	I. 3673308433	73
0.95093 92151	I. 0674489874	0.0382622123	$73 \quad 12$	I. 3486002839	72
0.9453891306	I. 0666657559	0.04010 62389	72 I5	I. 3298697244	71
0.9395506429	I. 0658467280	0.0419054809	7 I 18	I.31II3 91649	70
0.9334255657	I. 0649929016	0.04365 78194	7022	I. 2924086054	69
0.9270158009	1.06410 53170	0.04536 11731	$69 \quad 25$	I. 2736780459	68
0.9203233381	I. 0631850556	0.0470135012	$68 \quad 28$	I. 2549474864	67
0.9133502539	I. 0622332387	0.04861 28052	67 3I	I. 2362169269	66
0.9060987113	I. 0612510260	0.0501571313	6634	I. 2174863674	65
0.8985709587	1.06023 96142	0.0516445728	$65 \quad 36$	I. 19875 58079	64
0.89076 9329I	1. 0592002357	0.0530732725	6439	I. 18002 52484	63
0.8826962394	I.05813 41567	0.0544414248	63 4I	I. 16129 46889	62
0.8743541897	I. 0570426763	0.0557472783	6244	I. 14256 41294	61
0.8657457620	1.05592 71242	0.0569891384	6I 46	I. 1238335699	60
0.85687 36199	1.0547888596	0.0581653694	6048	I. 1051030104	59
0.8477405068	I. 0536292695	0.0592743970	5950	I. 0863724509	58
0.83834 9246İ	I. 0524497665	0.0603147110	$58 \quad 52$	I. 0676418914	57
0.82870 27391	1.05125 17878	0.0612848679	$57 \quad 54$	1.04891 13319	56
0.81880 39648	I. 0500367930	0.0621834927	5655	I. 0301807724	55
0.8086559785	I. 0488062525	0.06300 92824	55 57	I.O1145 02129	54
0.7982619108	I. 0475616953	0.0637610074	5458	0.9927196534	53
0.7876249668	I. 0463046080	0.0644375150	5359	0.9739890939	52
0.77674 84245	I. 0450365320	0.0650377310	53 -	0.95525 85344	5 I
0.76563 56343	I. 0437590125	0.06556 06627	52	0.9365279749	50
0.7542900174	I. 0424736057	0.066005401 I	512	0.9177974154	49
0.7427150649	I.O4II8 18779	0.0663711230	503	0.8990668559	48
0.7309143366	I. 0398854029	0.0666570938	493	0.8803362964	47
0.71889 14599	1.0385857601	0.0668626693	483	0.86160 57369	46
0.70665 01282	I. 0372845330	0.0669872981	473	0.8428751774	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=1.7312451757, \quad \mathrm{~K}^{\prime}=2.0347153122, \quad \mathrm{E}=1.4322909693, \quad \mathrm{E}^{\prime}=1.2586796248$,

r	F ϕ	ϕ	E(r)	$\mathrm{D}(\mathbf{r})$	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.01923 60575	I 6	0.0033209329	I. 0000319451	O.OI740 9III5
2 -	0.0384721150	212	0.0066371847	I.00012 77415	0.0348129991
3	0.0577081725	318	0.0099440836	1.00028 72724	0.0522064403
4	0.0769442300	424	0.01323 69759	I.0005I 03436	0.06958 42 I 54
5	0.0961802875	530	0.0165I 12357	I. 0007966833	0.0869411086
6	0.II541 63450	$6 \quad 36$	0.01976 22733	I.00114 59427	0.10427 19100
7	0.13465 24025	742	0.02298 55446	1.00155 76965	0.12157 14162
8	o. 1538884600	848	0.02617 65594	I. 0020314429	O.I3883 44322
9	-.17312 45176	$9 \quad 54$	0.0293308900	I. 0025666050	-.15605 57726
10	0.19236 05751	II 0	0.03244 4I797	1.00316 25308	0. 1732302632
II	0.2II59 66326	125	0.03551 21508	I.00381 84944	0.19035 27418
12	0.2308326901	I3 II	0.03853 06122	I. 0045336968	0.2074I 80603
13	0.2500687476	1416	0.0414954668	1.00530 72668	0.22442 10857
14	0. 269304805 I	15 22	0.0444027192	I. 0061382620	0.24135 67013
I 5	0.2885408626	$16 \quad 27$	0.04724 84818	1. 0070256701	0.25821 98088
16	0.30777 69201	$17 \quad 32$	0.0500289819	I. 0079684103	0.27500 53288
17	0.32701 29776	1837	0.052740567 I	1.00896 53340	0.29170 82026
18	0.34624 90351	I9 42	0.05537 97II8	I. OIOOI 52268	0.3083233939
19	0.3654850926	2047	0.05794 30217	I.OIIII 68099	0.3248458897
20	0.38472 II501	2 I 52	0.0604272392	1.01226 87413	0.3412707019
21	0.40395 72077	2256	0.0628292476	1.01346 96177	0.3575928687
22	0.42319 32652	24 0	0.06514 6075I	I. OI47I 79763	0.3738074559
23	0.4424293227	25 5	0.0673748988	I.OI601 22964	0.3899095585
24	0.4616653802	269	0.0695 I 30473	I. OI735 IOOI2	0.4058943019
25	0.4809014377	27 I3	0.0715580036	I. OI873 24599	0.42175 68435
26	0.5001374952	2816	0.0735074079	I.02015 49897	0.43749 23737
27	0.5193735527	2920	0.0753590588	I.O2I6I 68576	0.45309 61179
28	0. 5386096102	$30 \quad 23$	0.07711 09151	I. 023 II 62828	0.46856 33375
29	-. 5578456677	$3 \mathrm{I} \quad 27$	0.0787610969	I. 0246514386	0.4838893314
30	0.57708 17252	3230	0.0803078862	1. 0262204548	0.4990694371
31	0.59631 77827	$33 \quad 32$	0.08174 97274	1.0278214201	0.51409 90330
32	0.61555 38402	3435	0.0830852267	I. 029452384 I	0.5289735386
33	0.6347898977	3537	0.0843131523	I.O3III I3599	0.54368 84170
34	0.6540259552	3640	0.085432433 I	I. 0327963263	0.55823 91754
35	0.6732620128	3742	0.0864421580	1. 0345052308	$0.57262 \quad 13672$
36	0.6924980703	3843	0.08734 I574I	1.03623 59914	0.5868305928
37	0.7117341278	3945	0.0881300853	I. 0379864996	0.6008625017
38	0.73097 01853	$40 \quad 46$	0.0888072502	I. 0397546228	0.6147127930
39	0.75020 62428	4148	0.0893727798	I.04I5382068	0.6283772177
40	0.7694423003	4249	0.0898265352	1. 0433350787	0.6418515792
41	0.7886783578	4349	0.09016 85246	1.04514 30495	0.65513 17355
42	0.80791 44153	4450	0.0903989009	I. 0469599164	0.6682 I 35999
43	0.8271504728	45 50	0.09051 79579	I. 0487834660	0.6810931428
44	0.84638 65303	46 5I	0.0905261280	1.05061 14765	0.6937663926
45	0.86562 25878	47 5I	0.0904239779	1. 0524417208	0.7062294378
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	G (r)	C(r)	$\mathrm{B}(\mathrm{r})$

TABLE $\theta=35^{\circ}$
$q=0.024915062523981, \quad \Theta 0=0.9501706456, \quad \mathrm{HK}=0.7950876364$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.00000 00000	I. 1048866859	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	1.73124 51757	90
0.9998469394	I. 1048547369	0.00300 62320	896	1.7120091181	89
0.9993878065	I . IO475 89287	0.00600 93218	8812	1. 6927730606	-88
0.9986227471	I. 10459 93781	0.00900 6I288	$87 \quad 17$	1.6735370031	87
0.9975520048	I. 1043762795	0.OI 19935156	$86 \quad 23$	I. 6543009456	86
0.9961759200	I. 1040899048	0.01496 83495	$85 \quad 29$	I. 635064888 I	85
0.9944949305	I. 1037406029	0.01792 75043	8435	1.61582 88306	84
0.9925095707	1. 1033287996	0.0208678620	8340	I. 5965927731	83
0.9902204719	I. 1028549965	0.02378 63141	8246	I. 5773567156	82
0.9876283615	I. 1023I 977II	0.0266797640	81 5I	I.55812 0658 I	8I
0.9847340633	I. IOI72 37756	0.0295451279	80	I. 5388846006	80
0.98I53 84966	I . IOIO6 77362	0.0323793372	$80 \quad 2$	I.519648543I	79
0.9780426763	1. 1003524524	0.0351793404	798	I. 5004124856	78
0.9742477117	1. 0995787957	0.0379421046	78 13	I.48II7 6428I	77
0.9701548073	1. 0987477089	0.0406646178	7719	I.46194 03706	76
0.9657652612	1. 0978602047	0.0433438907	$76 \quad 24$	1. $44270 \quad 43130$	75
0.9610804649	1.09691 73646	0.04597 69592	. $75 \quad 29$	I. 4234682555	74
0.9561019028	I. 0959203375	0.04856 08861	$\begin{array}{ll}74 & 34\end{array}$	I. 4042321980	73
0.95083 II516	1.09487 03382	0.0510927637	$\begin{array}{ll}73 & 38\end{array}$	I. 38499 61405	72
0.9452698796	1. 0937686463	0.0535697161	7243	1.36576 00830	71
0.9394198461	1.09261 66042	0.0559889014	7148	I. 3465240255	70
0.9332829005	I.0914I 56156	0.0583475147	$70 \quad 52$	1. 3272879680	69
0. 02686 09817	I.09016 71440	0.0606427902	6956	I. 3080519105	68
0.9201561173	1.0888727107	0.0628720041	69 I	I. 28881 58530	67
0.9131704228	1.08753 38930	0.0650324775	685	I. 2695797955	66
0.9059061007	I. 08615 2322I	0.0671215792	$67 \quad 9$	I. 2503437380	65
0.8983654396	I. 0847296815	0.0691367285	66 I2	I. 2311076805	64
0.89055 08135	I. 0832677048	0.0710753988	$65 \quad 16$	I. 2118716230	63
0.8824646805	1.08176 81732	0.0729351200	$64 \quad 19$	I. I9263 55655	62
0.87410 95823	1.08023 29140	0.0747I 34824	$63 \quad 23$	I. I 733995080	61
0.86548 81427	1.07866 37978	0.07640 81398	$62 \quad 26$	1. I5416 34504	60
0.8566030670	I. 0770627365	0.0780168127	6129	I. I3492 73929	59
0.84745 71408	1.07543 16809	0.0795372924	$60 \quad 31$	I. II569 I3354	58
0.8380532290	I. 0737726184	0.0809674440	5934	I. 0964552779	57
0.82839 42745	1. 0720875705	0.0823052102	$58 \quad 36$	1.07721 92204	56
0.81848 32973	1. 0703785902	0.08354 86I 52	$57 \quad 39$	1. 0579831629	55
0.8083233933	1.06864 77599	0.08469 57684	56 41	1.0387471054	54
0.79791 77333	1. 0668971884	0.0857448680	5543	1.01951 10479	53
0.7872695615	I. 0651290086	0.0866942053	5444	1. 0002749904	52
0.7763821945	1. 0633453750	0.0875421680	5346	0.9810389329	5 I
0.7652590201	1.06I5484606	0.0882872448	5248	0.9618028754	50
0.7539034961	I. 0597404548	0.0889280287	5149	0.9425668179	49
0.7423191490	1. 0579235605	0.0894632214	5049	0.9233307604	48
0.7305095727	1.05609 99913	0.0898916370	4950	0.9040947028	47
0.7184784273	I. 0542719690	0.0902122056	$48 \quad 50$	0.88485 86453	46
0.7062294378	1. 0524417208	0.0904239779	$47 \quad 51$	0. 8556225878	45
A(r)	D (r)	E(r)	ϕ	F $\boldsymbol{\phi}$	r

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	$\mathrm{A}(\mathrm{r})$
o	0.0000000000	$\mathrm{o}^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1. 0000000000	0.00000 00000
1	0.01985 29904	I 8	0.00437 25767	1.0000434107	o.oI737 52657
2	0.0397059807	216	0.0087386910	1.00017 35897	0.0347453796
3	0.0595589712	324	0.0130918945	1.0003903787	0.0521051913
4	0.07941 -19615	432	0.0174257681	1.00069 35136	0.06944 95525
5	0.09926 49519	$5 \quad 4 \mathrm{I}$	0.0217339351	I. 0010826253	0. 0867733185
6	0.11911 79423	649	0.0260100761	I. OOI55 72398	o. 1040713496
7	0.13897 09327	$7 \quad 57$	0.0302479420	1.00211 67791	0.1213385117
8	0.15882 39231		0.0344413683	1.00276 05620	o.13856 96780
9	0.17867 69135	IO 13	0.0385842875	I. 0034878042	o.1557597300
10	o. 1985299039	11	0.0426707422	1.0042976203	o. 1729035587
II	0.2183828943	$12 \quad 28$	0.0466948973	I.00518 90239	0.18999 60657
12	0. 2382358847	$13 \quad 36$	0.0506510519	1.00616 09295	0. 2070321648
I3	0.258088875 I	1443	0.05453 36499	1.00721 21534	0.22400 67828
14	0.27794 18655	15 51	0.0583372913	1.00834 14154	0.24091 48609
15	0.29779 48558	$16 \quad 58$	0.0620567422	1. 0095473402	0. 25775 I3559
16	0. 3176478462	18	0.06568 69435	1.01082 84592	0.27451 12417
17	0.33750 08366		0.0692230203	1.01218 32120	0.29118 95099
18	o. 3573538270	$20 \quad 18$	0.0726602895	I. OI360 99487	0. 3077811718
19	0.37720 68174	$2 \mathrm{I} \quad 25$	0.0759942673	1.oi510 69318	0.32428 12593
20	0. 3970598078	2231	0.0792206754	I. O 166723379	0. 3406848260
21	0.4169127981	$23 \quad 37$	0.0823354475	1. 0183042606	0.3569869491
22	0.4367657885	$24 \quad 42$	0.0853347336	1.0200007123	0.3731827300
23	0.45661 87789	2548	0.0882149046	1.02175 96267	0.3892672959
24	0.4764717693	$26 \quad 53$	0.09097 25564	1. 0235788616	0.4052358014
25	0.4963247597	$27 \quad 59$	0.0936045123	1. 0254562012	0.42108 34293
26	0.51617 77501		0.0961078252	1.0273893589	0. 4368053924
27	- . 5360307405		0.09847 97792	1. 0293759801	0.4523969344
28	-. 5558837309	31.13	0.10071 78905	1.03141 36450	0.4678533318
29	0.57573 67212	$32 \quad 17$	0.10281 99075	1. 0334998717	0.4831698948
30	0. 5955897 I 16	$33 \quad 22$	o. 1047838101	1.0356321191	0.4983419688
31	0.6154427020	$\begin{array}{ll}34 & 25\end{array}$	0.10660 78092	1.03780 77899	0.51336 49360
32	0.6352956924	$35 \quad 28$	o. 1082903444	1.04002 42340	0.5282342166
33	0.6551486828	$36 \quad 31$	0. 1098300821	I. 0422787515	0. 5429452702
34	0.6750016732	$37 \quad 34$	0.11122 59132	1. 0445685961	0. 5574935973
35	0.6948546636	$38 \quad 37$	0.11247 69491	1.0468909786	0. 5718747405
36	0.7147076540	3939	0.11358 25187	1. 0492430699	0. 5860842864
37	0.7345606443	$40 \quad 41$	0. II454 21645	I. 0516220047	0.6001178665
38	0.7544136347	4142	0.11535 56375	1. 0540248851	0.61397 11590
39	0.7742666251	$42 \quad 44$	0.11602 28932	1. 0564487839	0.6276398902
40	0.7941196155	$43 \quad 46$	0.11654 40861	1. 05889 07481	0.64 III 98356
41	0.81397 26059	$44 \quad 46$	0.1169195649	1.06134 78029	0.6544068220
42	0.83382 55963		0.11714 98662	1.06381 69550	0.6674967282
43	0.8536785867	$46 \quad 47$	0.11723 57096	1.06629 51962	0.68038 54871
44	0.8735315771	$47 \quad 48$	0.1171779914	1. 0687795074	0.6930690869
45	0.89338 45674	$48 \quad 48$	0.11697 77784	1.0712668617	0.7055435725
90	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	B(r)

TABLE $\theta=40^{\circ}$
$q=0.033265256695577, \quad \theta=0.9334719356, \quad \mathrm{HK}=0.8550825245$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	$90-\mathrm{r}$
1.0000000000	I. I4254 42177	0.0000000000	$90^{\circ} \quad 0^{\prime}$	1. 7867691349	90
0.9998463487	1. I 425007942	0.0038284907	898	I. 7669161445	89
0.9993854451	I. I4237 05769	0.0076531872	88 I5	1.74706 3154 I	88
0.9986174408	1.14215 37243	0.0114702963	8723	I. 7272101637	87
0.997542588 I	I.1418505008	0.0152760269	8630	1. 7073571733	86
0.99616 12401	1.14146 12760	0.01906 65913	$85 \quad 38$	I. 6875041829	85
0.9944738506	I. 14098 65243	0.0228382057.	8446	I. 66765 I1926	84
0.9924809734	I. I 404268243	0.0265870918	8353	I. 6477982022	83
0.99018 32628	I. 1397828584	0.03030 94781	83 I	1.6279452118	82
0.9875814726	I. 13905 54II3	0.0340016009	828	I. 6080922214	8I
0.9846764560	I. 13824 53698	0.0376597054	81 16	I. 5882392310	80
0.98146 91652	1.13735 37211	0.0412800477	$80 \quad 23$	1. 5683862406	79
0.9779606509	1.13638 15521	0.04485 88958	7930	I. 5485332502	78
0.97415 20616	I . 1353300476	0.0483925314	$78 \quad 37$	I. 5286802598	77
0.9700446432	1. 1342004893	0.05187 72514	$77 \quad 44$	1.50882 72694	76
0.9656397386	I. 13299 42539	0.0553093702	76 51	1. 4889742791	75
0.9609387866	I.13171 28116	0.0586852206	$75 \quad 57$	I. 4691212887	74
0.9559433213	I. I3035 77242	0.0620011573	754	1. 4492682983	73
0.9506549716	I. 1289306433	0.06525 35577	74 IO	I. 4294153079	72
0.9450754604	I . 1274333082	0.0684388251	$\begin{array}{ll}73 & 17\end{array}$	I. 4095623175	71
0.93920 66032	I. 1258675438	0.0715533910	$72 \quad 23$	I. $3^{8970} 93271$	70
0.9330503082	I. 1242352584	0.0745937 I 77	7102	I. 3698563367	69
0.92660 85744	I. 1225384414	0.0775563011	$70 \quad 34$	I. 3500033463	68
0.9198834913	I. 1207791607	0.0804376736	6940	I. 3301503560	67
0.91287 72377	I. II89595604	0.0832344077	6845	I. 3102973656	66
0.9055920807	1. 1170818582	0.0859431188	67 51	1. 2904443752	65
0.89803 03745	I.II5I4 83422	0.08856 04692	6656	I. 2705913848	64
0.89019 45598	I. 11316 13690	0.0910831714	66 o	I. 2507383944	63
0.8820871618	I. IIII2 33599	0.09350 79923	65 5	I. 2308854040	62
0.87371 07901	1. 1090367986	0.09583 17573	649	I. 2110324136	61
0.86506 81367	1. 1069042279	0.09805 13545	6314	1. 1911794233	60
0.8561619751	I. 1047282465	o. IOOI6 37391	$62 \quad 18$	1. 17132 64329	59
0.84699 51593	I. 10251 15061	O. 1021659383	6121	I. I5I47 34425	58
0.8375706220	I. 1002567080	o. 1040550557	$60 \quad 25$	I. I3I62 0452 l	57
0.8278913739	1. 0979665999	o. 1058282770	$59 \quad 28$	1.11176 74617	56
0.8179605020	1. 0956439724	o. 1074828746	$58 \quad 32$	1.09191 44713	55
0.80778 11684	I. 09329 16556	o. IO901 62132	$57 \quad 34$	1.0720614809	54
0.7973566091	1.09091 25160	o. IIO42 57553	56	1.05220 84905	53
0.78669 01322	1.08850 94525	O. III70 90668	5539	1.0323555001	52
0.77578 51173	1.08608 53932	O. 1128638228	$54 \quad 42$	1. 0125025098	5 I
0.7646450133	1.0836432917	0.II388 78137	5344	0. 9926495194	50
0.7532733376	1.08118 61237	o.11477 89511	5245	0.97279 65290	49
0.7416736742	1.0787168830	o. II553 52736	5146	0.95294 35386	48
0. 7298496728	1.07623 85782	o. II6I5 49535	5046	0.9330905482	47
0.7178050468	I. 0737542288	o.II663 63025	$49 \quad 47$	0.9132375578	46
0.70554357 .25	1.0712668617	O. 1169777784	$4^{8} \quad 4^{8}$	0. 8933845674	45
A(r)	D (\mathbf{r})	E (r)	ϕ	F $\boldsymbol{\phi}$	r

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$\mathrm{o}^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.02060 08297	1 II	0.0055922185	I. 0000576114	0.01732 23240
2	0.0412016595	222	0.0III7 56998	1.00023 03752	0.0346396092
3	0.06180 24892	$3 \quad 32$	0.0167417286	I.00051 80814	0.05194 68175
4	0.0824033190	443	- 0222816343	I. 0009203796	0.0692389126
5	0.10300 41487	$5 \quad 54$	0.0277868124	I. OOI43 67802	0.0865108611
6	O. 1236049785	74	0.0332487460	I. 0020666547	0.10375 76329
7	0.14420 58082	$8 \cdot 15$	0.0386590273	I. 0028092364	0.1209742023
8	0.16480 66380	925	0.04400 93780	I. 0036636213	o.I3815 55494
9	0.I8540 74677	IO 36	0.0492916689	1. 0046287696	O.I5529 66598
10	0.20600 82975	II 46	0.0544979400	1. 0057035065	0.17239 25270
II	0.22660 91272	1256	0.0596204166	I. 0068865237	0.I8943 81524
12	0.2472099570	146	0.0646515306	I. 0081763813	0. 2064285463
13	0.26781 07867	15 I5	0.0695839334	1. 0095715091	0.2233587294
14	0.28841 16165	1625	0.0744 I 05129	I. OIIO7 02088	0.2402237330
15	0.30901 24462	1734	0.0791244078	1. 0126706562	0.25701 86008
16	0.32961 32760	1843	0.0837190207	1.01437 09030	0.2737383893
17	0.35021 41057	I9 52	0.0881880301	I. O16I6 88793	0.2903781691
18	0.37081 49355	21	0.0925254012	1. O1806 23965	0. 3069330262
I9	0.39141 57652	229	0.09672 53955	1.02004 91494	0.3233980622
20	0.4120165950	2317	0. 1007825794	1.02212 67193	0.3397683967
21	0.43261 74247	2425	O. 1046918308	1. 0242925769	0.35603 91671
22	0.4532I 82545	2533	0. 1084483455	I. 0265440853	0.37220 55308
23	0.47381 90842	2640	0.11204 76417	I. 0288785035	0.3882626656
24	0.4944I 99139	$27 \quad 47$	o. 11548 55630	1.0312929893	0.4042057714
25	0.5150207437	$28 \quad 54$	-.11875 82813	1. 0337846028	0.42003007 II
26	0.53562 15734	30 0	O.12186 22978	1.0363503103	0.43573 08120
27	0.5562224032	$3 \mathrm{I} \quad 6$	0.12479 44425	I. 0389869880	0.4513032670
28	0.5768232329	$32 \quad 12$	0.12755 18736	I.04I69 1425I	0.4667427359
29	0.5974240627	3317	O. I3013 20757	I. 0444603288	0.4820445468
30	0.6180248924	$34 \quad 22$	0.13253 28561	I. 047290327 I	0.4972040572
31	0.6386257222	$35 \quad 27$	o.13475 23413	I.05017 79739	0.5122I 66556
32	0.6592265519	3632	0.1367889725	I. O53II 97528	0. 5270777628
33	0.6798273817	$37 \quad 36$	o.13864 14993	I.056II 20812	0.54178 28334
34	0.70042 82II4	3839	O.I4030 89744	I. O5915 13149	0.55632 73569
35	0.7210290412	3943	0.14179 07457	1. 0622337524	0.57070 68597
36	0.7416298709	4046	o.14308 64509	1. 0653556397	0.5849I 6906I
37	0.7622307007	4 I 48	0.14419 60059	I. 0685131742	0.59895 31001
38	0.78283 I 5304	42 5I	0.145II 96000	1.07170 25103	0.6128110868
39	0.8034323602	$43 \quad 54$	0.14585 76849	1.0749197630	0.6264865539
40	0.8240331899	$44 \quad 54$	0.14641 0967I	1.07816 10137	0.6399752334
4 I	0.8446340197	4555	0.14678 03964	1.08142 23139	0.6532729030
42	0.86523 48494	4656	o.14696 71583	I. 0846996910	0.6663753880
43	0.8858356792	$47 \quad 57$	0.146972663I	I. 0879891523	0.6792785625
44	0.9064365089	$48 \quad 57$	0.14679 85365	1.09128 66907	0.6919783514
45	0.9270373387	$49 \quad 57$	0.14644 66094	I. 0945882886	0.7044707318
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$q=\mathrm{e}^{-\pi}=0.04321391826377, \quad \Theta 0=0.9135791382, \quad \mathrm{HK}=0.9135791382$

B(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	1.18920 71150	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	I. 8540746773	90
0.99984 54246	I. 1891494665	0.00470 60108	8910	I. 8334738476	89
0.99938 17514	I. 1889765912	0.0094076502	8820	I. 8128730178	88
0.9986091406	I. 1886887000	0.01410 05467	8730	1. 7922721881	87
0.9975278584	I. 1882861440	0.01878 03289	8640	1.7716713583	86
0.9961382775	1. 1877694140	0.02344 26255	8549	1.7510705286	85
0.9944408767	1.18713 91403	0.0280830653	8459	1.7304696988	84
0.9924362407	I. 1863960914	0.03269 72774	849	I. 7098688691	83
0.9901250593	I. 18554 II736	0.0372808916	$83 \quad 18$	I. 6892680393	82
0.9875081276	I. I8457 54293	0.0418295382	$82 \quad 28$	1. 6686672096	8 I
0.98458 63450	I. 1835000363	0.04633 88487	81	1. 6480663798	80
0.98I36 07I5I	I. 1823163059	0.05080 44575	$80 \quad 47$	I. 6274655501	79
0.9778323446	I. 18102 56817	0.05522 19994	$79 \quad 56$	I. 6068647203	78
0.9740024430	I. I7962 97376	0.05958 71139	795	I. 5862638906	77
0.9698723216	I. 17813 O1756	0.06389 54439	$78 \quad 14$	I. 5656630608	76
0.9654433929	I. 1765288244	0.06814 26379	$77 \quad 23$	I. 54506223 II	75
0.9607171696	I. I7482 76366	0.0723243506	$76 \quad 32$	I. 52446 14013	74
0.9556952639	I. I7302 86866	0.0764362449	7540	I. 5038605716	73
0.9503793863	I.I7II3 41680	0.0804739933	$74 \quad 48$	I. 4832597418	72
0.94477 I3447	I. 1691463907	0.0844332799	7357	I. 462658912 I	7 I
0.9388730433	1. 1670677783	0.0883098027	735	I. 4420580823	70
0.93268 64814	I. 1649008653	0.09209 92756	72 I 3	I. 4214572526	69
0.9262137526	I. 1626482937	0.09579 74315	7120	I. 4008564228	68
0.9194570430	I. 1603I 28097	0.09940 00252	$70 \quad 27$	I. 380255593 I	67
0.9124186305	I. 1578972608	0. 10290 28362	6934	1. 3596547634	66
0.9051008831	I. I 554045920	0.10630 16727	68 41	I. 3390539336	65
0.89750 62579	I. 1528378419	O. 10959 23752	$67 \quad 48$	I.31845 31039	64
0.8896372995	I. I 5020 O1398	0. 1127708206	$66 \quad 54$	I. 2978522741	63
0.88149 66386	I. 1474947011	o. II583 29266	66 o	I. 2772514444	62
0.87308 69906	I. 1447248239	0.1187746567	656	I. 2566506146	61
0.86441 II542	1.14189 38846	O.12I59 20252	64 II	I. 2360497849	60
0.8554720099	I. I3900 53339	0.12428 11025	6316	I. 2154489551	59
0.8462725182	I. I3606 26928	0.12683802II	62 21	I. 1948481254	58
0.83681 57184	I. I 330695480	o.12925 89815	6126	I. 17424 72956	57
0.82710 47269	I. I3002 95477	o.13154 02588	6030	I. I 536464659	56
0.8171427355	I. 1269463970	0.1336782099	5934	I. 1330456361	55
0.8069330099	I. 12382 38537	o.I3566 92789	$58 \quad 38$	I. II244 48064	54
0.7964788881	I. 12066 57231	0.1375100077	5742	1.09184 39766	53
0.7857837785	I. II747 58542	o. 1391970407	5645	1.0712431469	52
0.77485 II587	I. II425 8I342	0.14072 71344	5547	1.0506423171	51
0.7636845735	I.IIIOI 64844	0.14209 71663	5450	1. 0300414874	50
0.7522876332	I. 1077548548	o.14330 41415	5352	I. 0094406576	49
0.7406640121	I. 1044772199	O. 14434 52037	5253	0.9888398279	48
0.7288174469	I. IOII8 75735	0.1452I 76436	5 I 5	0.96823 8998I	47
0.7167517348	1. 0978899237	0.14591 89078	5056	0.9476381684	46
0.7044707318	1. 0945882886	0.14644 66094	$49 \quad 57$	0.9270373387	45
A(r)	$\mathrm{D}(\mathrm{r})$	E(r)	ϕ	F ϕ	r

$\mathrm{K}=1.9355810960, \quad \mathrm{~K}^{\prime}=1.7867691349, \quad \mathrm{E}=1.3055390943, \quad \mathrm{E}^{\prime}=1.3931402485$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$\mathrm{o}^{\circ} \mathrm{o}^{\prime}$	\% 0.0000000000	1.00000 00000	0.0000000000
1	0.02150 64566	1 I 4	0.0069985212	1.0000752700	0.0172417831
2	0.04301 29132	228	0.0139853763	1.00030 09884	0.0344786990
3	0.06451 93699	3 41	0.0209489334	1.00067 68809	0.05170 58810
4	0.0860258265	455	0.0278776288	I. OOI20 24903	0.06891 84630
5	0. 1075322831	69	0.0347600006	1. 0 O187 71775	0.086II 15805
6	0.12903 87397		0.0415842717	1.00270 O1222	o.10328 03705
7	-.1505451963	836	0.0483406320	1.00367 03237	0.12041 99725
8	O. 1720516530	949	0.0550167694	I. 0047866023	O. 1375255283
9	0.19355 81096	II 3	0.0616024003	1.00604 76005	o. I5459 2I83I
10	0.21506 45662	1216	0.0680870479	1. 0074517850	0.17161 50856
II	0.2365710228	1328	0.0744605194	I. 0089974482	O. 1885893888
12	0.2580774795	14 4I	0.0807129320	1.01068 27105	0.2055102505
I 3	0.27958 3936I	1553	0.0868347367	I. OI250 55225	0. 2223728335
14	0.30109 03927	176	0.0928167403	1.01446 36673	0.2391723067
15	0.3225968493	$18 \quad 18$	0.0986501256	I.OI655 47635	0. 2559038457
16	0.3441033059	1929	o. 1043264694	I. OI 87762678	0.2725626330
17	0.36560 97626	2040	o. 1098377593	1.02II2 54784	0.28914 38591
18	0.38711 62192	2 I I	o.II51764068	I. 0235995379	0.3056427234
19	0.40862 26758	$23 \quad 2$	0.12033 52604	I. 02619 54370	0.32205 44344
20	0.4301291324	24 I3	0.12530 76146	I. 02891 00179	0.3383742110
21	0.45163 55891	$25 \quad 22$	0.13008 72182	I.03I73 99787	0.35459 72832
22	0.47314 20457	26 3I	o. I3466 82799	I. 0346818764	0.3707188930
23	0.4946485023	27 4I	o. I3904 54724	1. 0377321323	0.3867342953
24	0.516I5 49589	2850	0.1432I 39340	1. 0408870352	0.4026387589
25	0.53766 14155	2959	o.14716 92687	1.04414 27466	0.4184275678
26	0.55916 78722	31.6	0.15090 75443	I. 0474953052	0.4340960218
27	0.58067 43288	3214	-. 15442 52892	I. 0509406315	0. 44963 94381
28	0.60218 07854	33-21	o. 1577194871	I. 0544745329	0.4650531522
29	0.6236872420	3429	o. 1607875703	1. 0580927090	0.4803325191
30	0.6451936987	$35 \quad 36$	0.16362 74123	I. 06179 0756I	0.4954729148
31	0.66670 01553	3641	o. 1662373178	I. 0655641737	0.51046 97376
32	0.6882066119	3746	0.16861 6013I	1. 0694083686	0.5253184091
33	0.7097130685	38 51	0.17076 26341	1.07331 86617	0.54001 4376I
34	0.73121 9525I	3956	o. 1726767142	1. 0772902929	-. 55455 3III9
35	0.75272 59818	4 I I	0.17435 81713	1.08131 84270	0. 56893 OII77
36	0.7742324384	424	o.17580 72936	I. 0853981601	0.58314 09242
37	0.7957388950	437	o. 1770247258	I. 0895245247	0.59718 10935
38	0.81724 53516	449	O.17801 14536	I. 0936924965	0.61104 6220I
39	0.83875 18083	45 I2	o. 1787687890	1.0978970001	0.62473 19335
40	0.86025 82649	46 I5	O. 1792983544	I. IO2I3 29153	0.6382338991
41	0.88176 47215	47 I5	o. 1796020675	I . 1063950831	0.65I54 78204
42	0.90327 II781	4816	o. 17968 21252	I. IIO6783124	0.6646694406
43	0.9247776347	49 16	o. I7954 09878	I. II497 73861	0.67759 45449
44	0.9462840914	$50 \quad 17$	0.17918 1364I	I.II928 70673	0.6903189618
45	0.9677905480	5117	0.17860 61952	1. 1236021058	0.7028385652
90-r	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$B(r)$.

TABLE $\theta=50^{\circ}$
$q=0.055019933698829, \quad Ө 0=0.8899784604, \quad \mathrm{HK}=0.9715669451$

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	$90-\mathrm{r}$
1.0000000000	I. 2472865857	0.0000000000	$90^{\circ} \quad 0^{\prime}$	I. 9355810960	90
0.9998440186	I. 2472112154	0.0056192362	$89 \quad 12$	1.9140746394	89
0.99937 61319	1. 2469851964	0.01123 36482	8825	1.8925681828	88
0.9985965127	I . 2466088048	0.0168384106	$87 \quad 37$	1.8710617261	87
0.9975054487	I. 2460824999	0.0224289646	8650	I. 8495552695	86
0.9961033424	I. 2454069243	0.0279996670	862	1.8280488129	85
0.9943907108	I. $24445^{8} 29027$	0.0335464884	$85 \quad 14$	I. 8065423563	84
0.99236 81849	I. 2436114410	0.0390643123	8426	I. 7850358997	83
0.9900365093	1. 2424937250	0.04454 82835	$83 \quad 39$	1. 7635294430	82
0.9873965416	1.24123 III92	0.0499935367	8251	1. 7420229864	8I
0.9844492517	I. 2398251648	0.05539 51961	823	1.72051 65298	80
0.9811957210	1. 2382775779	0.06074 83740	81 14	1.69901 00732	79
0.9776371417	I. 2365902476	0.0660481700	8026	I. 6775036165	78
0.9737748160	I. 2347652334	0.0712896708	79	I. 65599 71599	77
0.96961 01546	I. 2328047629	0.0764679497	$78 \quad 49$	I. 6344907033	76
0.9651446762	1.2307112287	0.0815780662	78 o	I. 6129842467	75
0.9603800059	1.2284871860	0.08661 50665	77 10	I. 5914777901	74
0.9553I 78745	1.22613 53491	0.0915739836	$76 \quad 21$	I. 5699713334	73
0.9499601167	I. 2236585882	0.09644 98379	75 31	I. 5484648768	72
0.94430 86698	1.22105 99257	0. IOI23 76383	$74 \quad 42$	I. 5269584202	71
0.9383655727	I. 2183425328	0. 1059323833	$73 \quad 52$	I. 5054519636	70
0.9321329639	I. 2155097252	O. I1052 90627	73	I. 4839455069	69
0.9256130802	I. 2125649596	0.11502 26595	72 II	I. 4624390503	68
0.9188082552	I. 2095118289	O. II940 8i52I	$7 \mathrm{I} \quad 20$	I. 4409325937	67
0.9117209173	I. 2063540582	0.12368 05174	$70 \quad 30$	1.41942 61371	66
0.9043535883	1. 2030954999	0.12783 47335	6939	I. 3979196805	65
0.89670 88815	I. 19974 O1294	0.13186 57834	$68 \quad 47$	I. 3764132238	64
0.88878 94998	I. 1962920396	o.13576 86595	6755	I. 3549067672	63
0.8805982341	I. 1927554368	0.13953 83674	672	I. 3334003106	62
0.87213 79612	I. 18913 46345	0.143I6 99314	66 10	1.31189 38540	6 I
0.8634116420	I. 1854340490	0.14665 83999	$65 \quad 18$	1. 2903873973	60
0.85442 23195	I. 18165 81935	0.1499988516	$64 \quad 24$	I. 2688809407	59
0.8451731166	I. 1778116727	O.I5318 64017	6330	I. 247374484 I	58
0.8356672345	I. 17389 91774	o. I562I 62095	6236	I. 2258680275	57
0.82590 79506	1. 1699254783	O. I5908 34859	6142	I. 2043615709	56
0.81589 86161	I. 1658954205	0.16178 35017	$60 \quad 48$	1. 1828551142	55
0.8056426543	I. I6I81 39175	0.16431 15964	$\begin{array}{ll}59 & 52 \\ 58\end{array}$	I. 1613486576	54
0.7951435583	I . I 576859453	0. 1666631878	$\begin{array}{ll}58 & 56 \\ 58\end{array}$	I. 1398422010	53
0.7844048891	I. I535I 65361	o. 16883 37818	58 o	1. 1183357444	52
0.7734302735	1. 14931 07723	0.17081 89832	$57 \quad 4$	1. 0968292877	5 I
0.7622234019	1. 1450737802	o. 1726145069	568	I. 0753228311	50
0.7507880264	I. 1408107240	0.1742I 61892	5510	1.05381 63745	49
0.7391279584	1. 1365267992	0. 1756200006	$54 \quad 12$	1.03230 99179	48
0.7272470671	I. I3222 72263	o. 1768220583	5313	1.01080 34613	47
0.7151492767	I. 12791. 72446	o. 1778186395	5215	0.9892970046	46
0.7028385652	1. 1236021058	0.17860 61952	5117	0.9677905480	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=2.0347153122, \quad \mathrm{~K}^{\prime}=1.7312451757, \quad \mathrm{E}=1.2586796248, \quad \mathrm{E}^{\prime}=1.4322909693$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	$\mathrm{A}(\mathrm{r})$
0	0.0000000000	$0^{\circ} \quad \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.02260 79479	18	0.00862 00346	1.0000974600	0.0171213223
2	0.0452158958	235	0.01722 45749	1.0003897217	0.0342380342
3	0.06782 38437	353	0.02579 81795	I. 00008764305	o.05134 55249
4	0.0904317916	5 10	0.0343255123	I. OOI 5569957	0.0684391832
5	0.11303 97395	$6 \quad 28$	0.04279 13942	1. 0024305914	0.08551 43971
6	0.13564 76875	745	0.0511808539	1.00349 61575	0. 1025665538
7	0.15825 56354	92	0.0594791769	1. 0047524006	o.11959 10390
8	0. 1808635833	10 19	0.0676719530	1.00619 77962	0.13658 32373
9	0.20347 I5312	1136	0.07574 51216	1.0078305901	o.1535385318
10	0.2260794791	$12 \quad 52$	0.0836850144	1.0096488003	o. 1704523039
11	0. 2486874270		0.09147 83960	1. 0116502201	o.18731 99332
12	0.2712953749	$15 \quad 25$	0.0991125013	I. OI383 24199	0.20413 67975
13	0.2939033229	1640	o. 1065750694	I. O1619 27508	0. 2208982730
14	0.3165112708	$17 \quad 56$	0.11385 43755	I. OI 87283473	0. 2375997340
15	o.33911 92187	19 II	0.12093 92580	1. 0214361311	0.2542365532
16	0.3617271666	$20 \quad 25$	0.12781 91435	1.0243128147	0.27080 41017
17	0.38433 51145	2140	0. 1344840670	I. 0273549050	0.2872977496
18	0.4069430624	2254	0. 1409246901	I. 0305587080	0.30371 28656
19	0.4295510103	$24 \quad 7$	0.14713 23140	1. 0339203331	0. 32004 48178
20	0.4521589583	$25 \quad 20$	0.15309 88906	1. 0374356974	o. 3362889743
21	0.4747669062	$26 \quad 33$	o. 1588 I 70288	1.0411005314	0.35244 07031
22	0.4973748541	$27 \quad 45$	o. 1642799989	1.04491 03831	0. 3684953729
23	0.5199828020	$28 \quad 56$	0.16948 17327	1.0488606244	0. 3844483538
24	0.54259 07499		0.1744I 68208	1. 0529464558	0.4002950181
25	0.56519 86978	3118	0.17908 05075	1. 0571629130	0.4160307408
26	0.58780 66457	3228	0.18346 86827	1.0615048720	0.4316509003
27	0.6104145937	$33 \quad 38$	0.18757 78710	1. 0659670560	0.44715 08801
28	0.6330225418	3446	o.19140 52188	1.0705440415	0.4625360691
29	0.6556304895	$35 \quad 55$	o. 1949484794	1.07523 02647	0.4777718627
30	0.6782384374		o. 1982059959	1.0800200285	0. 4928836645
31	0.7008463853	38 וо	0.2011766827	1.0849075092	0. 5078568872
32	0.7234543332	$39 \quad 16$	0. 2038600053	1. 0898867634	0. 5226869541
33	0.7460622811	$40 \quad 23$	0. 2062559591	1. 0949517358	o. 5373693004
34	0.7686702290	$\begin{array}{ll}41 & 28\end{array}$	0.2083650468	1. 1000962656	-.55189 93747
35	0.7912781769		0.21018 82554	I. 1053140947	0. 5662726408
36	0.81388 61249	$43 \quad 38$	0.2117270324	1.11059 88749	0. 5804845794
37	0.83649 40728	$44 \quad 41$	0.21298 326II	1.11594 41760	0. 5945306894
38	0.85910 20207	$45 \quad 45$	0.2139592364	1.12134 34929	0.6084064905
39	0.88170 99686	$46 \quad 48$	0.21465 76400	I. 1267902542	0.6221075244
40	0.9043179165	$47 \quad 50$	0.21508 15155	1.13227 78297	0.6356293571
4 I	0.9269258644	$48 \quad 51$	0.2152342440	1. 1377995386	0.6489675812
42	0.9495338123	4953	0.2151195200	1. 1433486579	0.6621178175
43	0.9721417602	5053	0.21474 13276	1.1489184299	0.6750757177
44	0.99474 9708I	5 I 53	0.21410 39170	I. 1545020711	0.6878369663
45	1. 0173576561	$52 \quad 52$	0.21321 17818	1.1600927802	0.7003972833
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C (r)	$\mathrm{B}(\mathrm{r})$

TABLE $\theta=55^{\circ}$
$q=0.069042299609032, \quad Ө 0=0.8619608462, \quad \mathrm{HK}=1.0300875730$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	$90-\mathrm{r}$
1.0000000000	I. 3203964540	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	2.0347153122	90
0.99984 19155	1. 3202987371	0.00654 66917	89 I5	2.0121073643	89
0.9993677261	1. 3200057060	0.01308 82806	88 31	1. 9894994164	88
0.9985776238	1.31951 77192	0.01961 96606	8746	I. 9668914685	87
0.9974719280	1.3188353734	0.02613 57182	87 I	I. 9442835205	86
0.9960510861	1. 3179595033	0.0326313295	86 I 7	1.92167 55726	85
0.9943156720	I. 31689 I1801	0.03910 13564	8532	I. 8990676247	84
0.99226 63864	I. 3156317106	0.0455406434	8447	1.8764596768	83
0.9899040553	I.31418 26349	0.0519440144	842	I. 85385 I7289	82
0.9872296302	I. 3125457253	0.0583062693	$83 \quad 17$	1.8312437810	8 I
0.98424 41861	I. 3107229838	0.06462 21812	$82 \quad 32$	I. 8086358331	80
0.9809489213	I. 3087166392	0.0708864934	8146	1. 7860278851	79
0.97734 51558	I. 3065291449	0.0770939167	8 I I	1.7634199372	78
0.9734343300	1.30416 31759	0.0832391270	80 15	I.74081 19893	77
0.9692180039	1.3016216250	0.08931 .67629	$79 \quad 29$	1.7182040414	76
0.9646978546	I. 2989075994	0.0953214240	$78 \quad 43$	I. 6955960935	75
0.9598756758	I. 2960244173	0.10124 76688	$77 \quad 56$	I. 6729881456	74
0.9547533753	1. 2929756032	0. 1070900133	77 10	1. 65038 or977	73
0.9493329736	I. 2897648840	0.II284 29301	$76 \quad 23$	1. 6277722497	72
0.9436166021	1.28639 61840	0.11850 08473	$75 \quad 35$	1. 6051643018	71
0.9376065006	I. 2828736204	0.12405 81487	$74 \quad 48$	I. 5825563539	70
0.93130 50161	1. 2792014980	0.12950 91731	74 o	I. 5599484060	69
0.9247145998	I. 2753843041	o. 1348482I53	7312	I. 53734 04581	68
0.9178378055	I. 2714267027	o. 14006 95267	$72 \quad 23$	I. 5147325102	67
0.9106772870	I. 26733 35291	o.14516 73172	7135	I. 4921245623	66
0.90323 57961	I. 2631097835	o. 15013 57566	$70 \quad 46$	1.46951 66144	65
0.89551 6I797	I. 2587606253	o. I 549689777	6956	I. 4469086665	64
0.88752 13778	I. 2542913663	0. I5966 10790	697	I. 4243007185	63
0.8792544206	I. 2497074646	o. 1642061290	$68 \quad 16$	I. 4016927706	62
0.87071 84265	1.24501 45176	o. 16859 81701	$67 \quad 26$	I. 3790848227	6 I
0.86191 65988	I. 2402 I 82552	0.17283 12244	6635	I. 3564768748	60
0.85285 22237	1. 2353245329	0.17689 92991	6543	I. 3338689269	59
0.84352 86672	1. 2303393242	0.18079 63935	64 51	1.31126 09790	58
0.83394 93726	1. 2252687137	O.I845I 65064	6359	1. 28865303 II	57
0.824II 78578	I. 2201188895	O. 1880536444	636	I. 2660450832	56
0.81403 77126	I. 2148961356	o. 19140 18312	$62 \quad 12$	I. 24343 71353	55
0.8037125960.	I. 2096068240	o. 1945551177	6119	I. 2208291873	54
0.79314 62334	I. 2042574072	O. 1975075927	$60 \quad 24$	I. 19822 12394	53
0.7823424136	I. 1988544102	0. 2002533955	5930	I. 17561 32915	52
0.77130 49868	I. 1934044225	0. 2027867279	5835	I. I 530053436	51
0.7600378612	I . 1879140899	0.20510 18688	5739	I. I3039 73957	50
0.74854 50007	I. 1823901066	0.20719 31885	5642	I . 1077894478	49
0.73683 0.4220	I. 1768392068	o. 2090551650	5546	1.08518 14999	48
0.7248981922	I. 17126 81567	0. 2106824001	5448	I. 0625735519	47
0.7127524260	1. 1656837461	0. 2120696376	5350	1. 0399656041	46
0.7003972833	1. 16009 27802	0.21321 17818	5252	I. OI735 76561	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

Smithsonian Tables

r	F ϕ	ϕ	$\mathrm{E}(\mathbf{r})$	$\mathrm{D}(\mathbf{r})$	A(r)
0	0.0000000000	- $0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
I	0.02396 I2850	I 22	0.0105021636	I. 0001258452	0.0169424822
2	0.0479225699	245	0.0209836904	1.00050 32288	0.03388 07351
3	0.0718838549	47	0.0314240274	I. OOII3 I6945	0.0508105279
4	0.09584 51399	529	0.04180 27880	1.0020104822	0.0677276275
5	O.II980 64248	6 5I	0.0520998337	I. 0031385295	0.0846277970
6	O. 14376 77098	$8 \quad 13$	0.0622953533	I. 0045144723	0.10150 67944
7	0.16772 89948	$9 \quad 35$	0.07236 99392	I.006I3 66468	0.11836 03717
8	0.19169 02798	$10 \quad 56$	0.0823046606	1.00800 30911	O.I3518 42734
9	0.21565 I5647	1217	0.09208 II 326	I. OIOII I5480	-.I5I9742358
10	0.2396I 28497.	1338	o. IOI68 I580I	I. OI24594672	0.16872 59855
II	0.2635741347	1458	O.IIIO8 88976	I. OI504 40088	0.18543 52386
12	0.2875354197	1618	0.12028 67034	I. OI786 20463	0.2020976999
13	0.3II49 67046	1738	O.I2925 93879	I. 02091 O1701	0.2187090619
14	0.33545 79896	$18 \quad 57$	0. 13799 21563	I. 0241846923	0.2352650037
15	0.3594I 92746	$20 \quad 16$	o. 14647 10652	1.0276816504	0.25176 II9II
16	0.38338 05595	2 I 35	o. I5468 30530	I.03139 68120	0.26819 32750
17	0.4073418445	2253	0.I626I 59647	1.03532 56803	0.28455 68916
18	0.43 I 3031295	2410	0.17025 85702	1.0394634991	0.3008476617
19	0.45526 44145	2526	0.17760 05773	1.04380 52583	0.3170611903
20	0.4792256994	$26 \quad 42$	o. 1846326382	1. 0483457003	0.3331930665
21	0.5031869844	$27 \quad 58$	o.19134 63517	1.0530793260	0.3492388634
22	0.5271482694	29 I3	0.19773 42593	I.05800 04010	0.36519 4138I
23	0.55110 95544	$30 \quad 27$	0.20378 .9837 I	I.06310 29632	0.3810544318
24	0.5750708393	3 I I	0.2095074827	I. 0683808291	0.39681 52701
25	0.5990321243	3254	0.2148824988	1. 0738276019	0.4124721633
26	0.6229934093	$34 \quad 7$	0.2199110718	I. 0794366784	0.4280206069
27	0.6469546942	3518	0.22459 02484	I. 0852012575	0.44345 60826
28	0.6709159792	$36 \quad 29$	0.22891 79082	I.09111 43480	0.4587740585
29	0.6948772642	$37 \quad 39$	0.2328927342	1.09716 87771	0.47396 99905
30	0.7188385492	3849	0.23651 41807	1. 1033571989	0.4890393230
31	0.7427998341	3958	0.2397824399	I . 1096721031	0.5039774905
32	0.76676 III9I	4 I 6	0.2426984060	I. II6IO 58243	0.51877 99184
33	0.790722404 I	4213	0.24526 36394	I . 1226505510	0. 5334420249
34	0.81468 36890	4320	0.2474803283	I. 1292983350	0. 5479592224
35	0.83864 49740	$44 \quad 26$	0.24935 12513	I. 1360411010	0.56232 69191
36	0.86260 62590	45 31	0.2508797387	I. I4287 06563	0.57654 0.5212
37	0.88656 75440	$46 \quad 35$	0.2520696336	I. 1497787007	0.59059 54347
38	0.9105288289	$47 \quad 39$	0. 2529252540	I. I5675 68364	0.6044870673
39	0.93449 OII39	$48 \quad 42$	0. 25345 I 3545	I. 16379 65783	0.6182I 08313
40	0.95845 13989	$49 \quad 44$	0.2536530884	I. 1708893642	0.6317621451
4 I	0.9824 I 26838	5045	0.2535359713	I. 1780265652	0.64513 64364
42	I. 0063739688	5 I 46	0.25310 58450	I.18519 94959	0.6583291446
43	1.03033 52538	5246	0. 2523688429	I . 1923994253	0.6713357232
44	I. 0542965388	5345	0.25133 13558	I. I996I 75873	0.6841516433
45	1. 0782578237	5444	0.2500000000	1. 2068451910	0.6967723959
$90-\mathrm{r}$	F ψ	ψ	. $\mathrm{G}(\mathrm{r})$	C(r)	$\mathrm{B}(\mathrm{r})$

Smithsonian Tables

TABLE $\theta=60^{\circ}$
$q=0.085795733702195, \quad Ө 0=0.8285168980, \quad \mathrm{HK}=1.0903895588$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90 r
1. 0000000000	I.4142I 35624	0.0000000000	$90^{\circ} 0^{\prime}$	2.1565156475	90
0.9998387925	I. 4140870799	0.00746 45017	$89 \quad 19$	2.13255 43625	89
0.9993552434	I.41370 77878	0.01492 38646	$88 \quad 38$	2.1085930775	88
0.9985495732	1.4130761515	0.0223729430	8757	2.0846317926	87
0.9974221491	1.41219 29466	0.02980 65777	8716	2.0606705076	86
0.9959734843	1.41105 92570	0.0372195889	8635	2.0367092226	85
0.9942042378	I. 4096764744	0.0446067701	8553	2.0127479377	84
0.992 II 52 I 35	I. 4080462958	0.05196 28815	85 II	1.98878 66527	83
0.9897073588	1.40617 07222	0.0592826440	8429	I. 9648253677	82
0.9869817641	1.40405 20551	0.0665607336	$83 \quad 47$	I. 9408640827	81
0.9839396610	I. 4016928947	0.07379 I7757	835	1.91690 27978	80
0.9805824210	I. 39909 61356	0.0809703401	$82 \quad 23$	I. 89294 I5I28	79
0.97691 I 5541	I. 3962649639	0.0880909364	81 4I	I. 8689802278	78
0.9729287065	I. 3932028531	0.0951480095	$80 \quad 58$	I. 8450189429	77
0.9686356591	1.38991 35592	-. IO2I3 59353	$80 \quad 15$	I.82105 76579	76
0.9640343250	I. 38640 III 69	0.10904 90175	7932	1.7970963729	75
0.9591267478	1. 3826698339	O. II 588 I4840	7849	1.77313 50879	74
0.9539150985	1.37872 42853	O. 1226274837	785	1.74917 38030	73
0.9484016738	1. 3745693090	O. 1292810844	77 21	1.72521 25180	72
0.9425888926	I. 3702099983	O. I3583 62697	$76 \quad 37$	1.7012512330	71
0.9364792941	I. 3656516965	o. 14228 69378	$75 \quad 53$	1. 6772899480	70
0.9300755342	I. 3608999899	O. 1486268991	758	I. 6533286631	69
0.9233803829	I. 3559607006	o. I5484 98749	$74 \quad 23$	I. 6293673781	68
0.9163967210	I. 3508398797	O. 1609494967	73 37	I. 6054060931	67
0.9091275372	I. 3455437995	o.1669193054	72 51	I.58144 48082	66
0.9015759245	I. 3400789457	0.17275 27505	725	I. 5574835232	65
0.89374 50771	I. 3344520094	-. 17844 31913	7118	I. 5335222382	64
0.8856382868	I. 3286698789	o. 1839838964	$70 \quad 30$	I. 5095609532	63
0.8772589396	I. 3227396308	0. 1893680462	6942	1. 4855996683	62
0.8686I 05I22	I. 3166685215	o. 1945887340	68 54	I. 4616383833	6 I
0.85969 65682	I. 3104639783	o. 1996389691	68 5	I. 4376770983	60
0.85052 07549	I. 3041335898	0.2045116802	$67 \quad 16$	1.4137158134	59
0.84108 67990	I. 2976850969	0.2091997204	6626	I. 3897545284	58
0.83I39 85036	1. 2911263832	0.2136958722	6536	I. 3657932434	57
0.8214597438	I. 2844654650	0.21799 28546	$64 \quad 45$	I.34183 19584	56
0.8112744636	I. 2777104815	0. 22208333 I 3	6353	1.3178706735	55
0.8008466719	I. 2708696850	0.2259599196	63 I	I. 2939093885	54
0.7901804386	I. 2639514305	0.2296152018	629	I. 2699481035	53
0.7792798915	1. 2569641655	0.2330417372	$6 \mathrm{I} \quad 15$	I. 2459868185	52
0.7681492120	I. 2499164194	0.23623 20761	6021	I. 2220255336	5 I
0.7567926317	I. 2428 I 67937	0.2391787758	$59 \quad 27$	I. 1980642486	50
0.7452 I 44290	I. 2356739504	0.2418744177	$58 \quad 32$	I. 1741029636	49
0.7334189253	I. 2284966025	0.2443116265	5736	I. 15014 16787	48
0.72141 04816	1.22129 35025	0.2464830908	5639	I. 1261803937	47
0.7091934952	I. 2140734320	0. 2483815864	$55 \quad 42$	I. 1022191087	46
0.6967723959	1. 2068451910	0.2500000000	$54 \quad 44$	I. 0782578237	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=2.3087867982, \quad \mathrm{~K}^{\prime}=1.6489952185, \quad \mathrm{E}=1.1638279645, \quad \mathrm{E}^{\prime}=1.4981149284$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.00000 00000	1.0000000000	0.00000 00000
1	0.0256531866	I 28	0.0127171437	1.00016 31607	0.01667 62945
2	0.0513063733	256	0.02540 65870	I. 0006524464	0.0333489266
3	0.0769595599	424	0.0380407622	1.00146 72698	0.05001 42309
4	0.10261 27466	$5 \quad 52$	0.0505923651	I. 0026066524	0.0666685367
5	0. 1282659332	$7 \quad 20$	0.06303 44839	1.00406 92257	0.0833081651
6	0.15391 91199	847	0.0753407235	I. 0058532333	0.0999294260
7	0.17957 23085	$10 \quad 14$	0.0874853252	I . 0079565320	o. 1165286159
8	0.2052254932	114	0.09944 32800	I. 10103765954	0.13310 20150
9	0. 2308786798	13	0.1119 04341	1.01311 05159	o. 1496458850
10	0.2565318665	1434	0.12270 35875	1.01615 50083	0.16615 64662
11	0.28218 5053I		0.13396 05824	I. 0195064139	0. 1826299754
12	0.3078382398	1725	0.14494 03827	1.02316 07042	o. 1990626038
13	0.33349 14264	1850	o. 1556231436	1.02711 34860	0.21545 05144
14	0.35914 46131	$20 \quad 14$	0.16599 02705	1.0313600060	0.2317898405
15	0.3847977997	2138	0. 1760244678	1.03589 51569	0. 2480766833
16	0.41045 09864	23	o.18570 97766	1.04071 34825	0. 2643071105
17	0.43610 41730	$24 \quad 23$	o.19503 16024	I. 0458091848	0. 2804771545
18	0.4617573596	2544	0.2039767323	1.0511761304	0. 29658 28110
19	0.4874105463	27	0.2125333427	1.05680 78572	0.3126000376
20	0.5130637329	$28 \quad 24$	0.2206909968	1. 0626975825	0. 3285847528
21	0.53871 69196	2943	0.2284406338	1.0688382109	0.3444728350
22	0. 56437 о1062	31	0.23577 45496	1. 0752223418	0.36028 O1217
23	0. 5900232929	32 19	0.24268 63696	1.08184 22789	0.3760024088
24	0.6156764795	$33 \quad 36$	0.24917 10151	I. 0886900386	0.3916354503
25	0.6413296662		0.2552246626	1. 0957573598	0.40717 49584
26	0.66698 28528	$36 \quad 7$	0.2608446988	1.10303 57129	0.4226166028
27	0.6926360395	$37 \quad 21$	0. 2660296698	1.11051 63106	0.4379560117
28	0.7182892261	3834	0.27077 92271	I. 1181901175	0.4531887717
29	0.7439424127	3946	0.2750940704	1.12604 78613	0.4683104285
30	0.7695955994	$40 \quad 58$	0.2789758872	I. 1340800433	0.4833164880
31	0.79524 87860		0.2824272920	I. 1422769496	0.4982024170
32	0.82090 19727	$43 \quad 18$	0.2854517629	I. 1506286634	0.5129636449
33	o.84655 51593	4426	0.28805 35786	1. 1591250752	0.5275955647
34	0.8722083460	$45 \quad 34$	0.29023 77551	1. 1677558964	0. $542093535{ }^{2}$
35	0.89786 15326	$46 \quad 41$	0.29200 99830	1.1765106705	0. 5564528823
36	0.9235147193	$47 \quad 47$	0.29337 65659	1. 1853787860	0. 5706689018
37	0.9491679059	$48 \quad 52$	0. 2943443597	I. 1943494887	0.58473 68614
38	0.9748210926	$49 \quad 56$	0.2949207141	1. 2034118951	0.5986520033
39	1.00047 42792	$50 \quad 59$	0.29511 34159	1. 2125550050	0.6124095465
	1. 0261274659		0.2949306347	1.2217677148	0. 6260046907
41	1.05178 06525		0.2943808705	1.2310388308	0.6394326185
42	1. 0774338392	54	0. 2934729047	1.2403570830	0.6526884992
43	1. 1030870258	55	0.2922157532	I. 2497111383	0.6657674922
44	1.12874 02125	56 o	0.29061 86227	1. 2590896145	0.6786647507
45	1.15439 33991	$56 \quad 58$	0. 2886908691	1.2684810938	0.6913754254
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0.106054020185994, \quad \Theta 0=0.7881449667, \quad \mathrm{HK}=1.1541701350$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.0000000000	I. 5382462687	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	2.3087867982	90
0.9998341412	I . 53808 I 5440	0.00834 87781	$88 \quad 23$	2.28313 36115	89
0.9993366526	1. 5375875740	0.0166926008	8846	2.2574804249	88
0.9985077970	I. 5367649688	0.0250265041	889	2.2318272382	87
0.9973480125	I.5356I 47447	0.0333455075	8732	2.2061740516	86
0.9958579109	1. 5341383232	0.0416446052	$86 \quad 54$	2.1805208649	85
0.9940382778	I. 53233 75281	0.0499187582	8616	2.15486 76783	84
0.9918900707	I. 5302145843	0.0581628855	$85 \quad 38$	2.12921 44916	83
0.9894144182	1. 5277721140	0.0663718564	85 o	2.10356 I3050	82
0.98661 26176	1.52501 31340	0.07454 04819	8422	2.07790 81184	8 I
0.9834861339	1.5219410514	0.0826635068	8344	2.0522549317	80
0.9800365970	1.51855 96596	0.0907356016	836	2.02660 17451	79
0.9762657996	I. 51487 31329	0.09875 13547	8227	2.0009485584	78
0.9721756947	I. 5108860218	0.10670 52642	8148	1.97529 53718	77
0.9677683924	I. 5066032466	O. II459 17308	8 I 9	I. 94964 2185I	76
0.9630461576	I. 5020300916	0. 1224050500	$80 \quad 30$	I. 9239889985	75
0.9580114060	I.4971721977	O. 13013 94047	$79 \quad 50$	I. 89833 58118	74
0.9526667013	1. 4920355559	o. 1377888583	79 10	I. 8726826251	73
0.94701 475II	1. 4866264993	O. 1453473477	$78 \quad 30$	I. 8470294385	72
0.9410584035	I. 4809516947	o. 1528086769	$77 \quad 49$	I. 8213762519	71
0.9348006429	I. 4750181348	0.16016 65105	$77 \quad 8$	1. 7957230652	70
0.9282445859	1. 4688331288	0.16741 43683	$76 \quad 26$	1.77006 98786	69
0.9213934772	I. 4624042933	o.17454 56190	7544	I. 7444 I 66919	68.
0.914250685 I	I. 4557395424	0.18155 34763	$75 \quad 2$	1.71876 35053	67
0.90681 96968	I. 4488470781	0.18843 09933	$74 \quad 19$	1. 6931103186	66
0.8991041140	I.44173 53793	0.19517 10594	$73 \quad 36$	1. 6674571320	65
0.89110 76479	- 1.4344131916	0.2017663966	$72 \quad 52$	I. 6418039453	64
0.88283 41144	1.4268895162	0.2082095570	728	1.61615 07587	63
0.8742874294	1.41917 35981	0.21449 292II	71	I. 590497572 I	62
0.8654716034	1.41127 49149	0.2206086968	70	I. 5648443854	6 I
0.85639 07366	1.40320 31647	0.22654 89197	69 5I	I. 53919 I1988	60
0.8470490138	I. 394968254 I	0.23230 54536	$69 \quad 4$	I. 513538012 I	59
0.8374506991	I. 3865802852	0.23786 99932	$68 \quad 17$	I. 4878848255	58
0.82760 01310	I. 3780495440	0.2432340676	$67 \quad 29$	I. 4622316388	57
0.81750 17168	I. 3693864865	0.2483890447	66 41	I. 4365784522	56
0.8071599276	1. 36060 17261	0. 25332 61379	$65 \quad 52$	I. 4109252655	55
0.7965792934	I.35170 60205	0.25803 64133	$65 \quad 2$	I. 3852720789	54
0.78576 43973	I. 3427 I 02582	0.26251 08001	64 11	I. 3596188922	53
0.7747198708	I. 3336254449	0. 26674 OIOI2	$63 \quad 20$	I. 3339657055	52
$0.76345 \quad 03889$	I. 3244626900	0.2707150065	6228	1.30831 25189	51
0.7519606646	1.31523 31927	0.2744261086	6135	I. 2826593322	50
0.7402554443	I. 3059482284	0.27786 39198	$60 \quad 41$	I. 2570061456	49
0.7283395027	I. 2966191348	0.28101 88920	5946	1. 2313529589	48
0.7162176383	I. 2872572976	0.28388 14388	$58 \quad 51$	I. 2056997723	47
0.7038946686	I. 2778741372	0.2864419600	5755	I. 1800465856	46
0.6913754254	1. 2684810938	0. 288690869 I	$56 \quad 58$	I. 1543933991	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

r	F ϕ	ϕ	$\mathbf{E}(\mathbf{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.0278283342	I 36	0.OI539 55735	I. 0002142837	0.0162742346
2	0.05565 66684	3 II	0.0307531429	1.00085 68806	0.0325456619
3	0.0834850026	447	0.0460349252	I.00192 70294	0.04881 14698
4	O.III3I 33368	622	0.0612035769	1.0034234614	0.0650688358
5	0.13914 16710	$7 \quad 57$	0.0762224069	I. 0053444028	0.0813149227
6	0.1669700053	932	0.0910555815	1.00768 75763	0.0975468734
7	o. 1947983395	II 6	o. 1056683193	I. 0104502032	O.II376 I8057
8	0.22262 66737	1240	0. 1200279732	I. O1362 90072	0.12995 68083
9	0.25045 50079	14 I 3	O. 1340996984	I. O1722 02I72	O.I4612 89355
10	0.278283342 I	1546	o. 1478556040	1.0212I 95717	0.16227 52029
II	0.306II 16763	$17 \quad 18$	0.16I2658874	1. 0256223237	O. 1783925828
12	0.3339400105	$18 \quad 50$	O.I7430 34501	1.03042 32454	O. 1944780006
13	0.36176 83447	$20 \quad 20$	O. 1869430948	I.03561 6634I	0.21052 83297
14	0.38959 66790	2 I 50	o.19916 16028	I.04II9 63I85	0.2265403885
15	0.4174250132	$23 \quad 20$	0.2109377918	1.04715 56657	0.2425109363
16	0.4452533474	$24 \quad 48$	0.22225 25549	I. 0534875877	0.25843 66697
17	0.47308 16816	26 I6	0. 2330888806	I. 0601845500	0.2743142196
18	0.50091 00158	$27 \quad 42$	0.24343 18557	I. 0672385795	0.2901401480
19	0.52873 83500	298	0.25326 86498	I. 0746412734	0.3059109453
20	0. 5565666842	$30 \quad 32$	0. 2625884862	1.0823838086	0.3216230277
2 I	0.58439 50184	3 I 56	0.27I38 25968	I. 0904569513	0.3372727349
22	0.6122233526	3318	0.2796441653	I. 0988510673	0.35285 63285
23	0.6400516869	3440	0.28736 82581	I . 10755 61330	0.3683699898
24	0.66788002 II	36 o	0.29455 17462	I. II656 I7464	0.38380 98186
25	0.6957083553	$37 \quad 19$	0.30119 32185	I. 12585 71388	0.39917 18323
26	0.7235366895	$38 \quad 37$	0.30729 28884	I. 13543 II 869	0.41445 19649
27	0.7513650237	3954	0.3128524953	I. I4527 24256	0.42964 60668
28	0.77919 33579	4110	0.3178752022	I . I5536 90607	0.4447499043
29	0.80702 I 692 I	4224	0.3223654911	I. 1657089825	0.45975 91601
30	0.83485 00263	$43 \quad 38$	0.3263290569	1. 1762797795	0.4746694339
31	0.8626783605	4450	0.32977 27014	1. 1870687529	0.4894762428
32	0.8905066948	$46 \quad 1$	0.3327042283	I. 1980629307	0.5041750229
33	0.9183350290	47 I I	0.33513 23398	I. 2092490830	0.5187611309
34	0.9461633632	4820	0.33706 65364	I. 2206137375	0.5332298456
35	0.9739916974	$49 \quad 27$	0.33851 70194	I. 2321431946	0.5475763701
36	I.O0182 00316	$50 \quad 34$	0. 3394945975	I. 2438235438	0.5617958348
37	I. 0296483658	$5 \mathrm{I} \quad 39$	0.34001 05978	I. 2556406798	0.5758832996
38	1. 0574767000	5243	0.3400767814	I. 2675803194	0.5898337576
39	I. 0853050342	5346	0.3397052640	I. 2796280178	0.6036421381
40	I. 11313 33684	$54 \quad 48$	0.33890 84414	I. 2917691861	0.6173033109
41	1.14096 17027	5549	0.3376989203	I. 3039891085	0.63081 20897
42	I. 1687900369	5648	0.33608 94543	I. 3162729599	0.6441632373
43	I.1966I 83711	5747	0.33409 28851	I. 3286058237	0.65735 14695
44	I. 2244467053	$58 \quad 44$	0.3317220892	I. 3409727096	0.6703714605
45	1.25227 50395	59 4I	0.32898 99283	I. 3533585717	0.6832 78479
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	\mathbf{C} (r)	B(r)

$q=0.131061824499858, \quad Ө 0=0.7384664407, \quad \mathrm{HK}=1.2240462555$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	90-r
1. 00000000000	1.7099135651	0.0000000000	$90^{\circ} 0^{\prime}$	2.5045500790	90
0.9998271058	I. 7096953883	0.00917 03805	$89 \quad 27$	2.47672.17448	89
0.9993085325	1.70904 II308	0.01833 63062	8855	2.4488934106	88
0.9984446074	1.7079516110	0.0274933119	8822	2.4210650764	87
0.9972358755	1.7064281917	0.0366369110	$87 \quad 49$	2.3932367422	86
$0.99568 \quad 30984$	1.7044727784	0.0457625853	87 I6	2.3654084079	85
0.9937872533	1.7020878163	0.0548657745	8643	2.3375800737	84
0.9915495309	I. 6992762875	0.06394 18650	86 IO	2.3097517395	83
0.9889713334	I. 6960417067	0.07298 61798	8536	2.28192 34053	82
0.9860542725	I. 69238 81168	0.08199 39678	853	2.25409507 II	8 I
0.98280 O1661	1. 6883200831	0.0909603928	8429	2.2262667369	80
0.9792110356	1. 6838426872	0.0998805231	8355	2.19843 84027	79
0.9752891023	1.67896 15207	o. 1087493206	83 21	2.17061 00685	78
0.9710367835	I. 6736826771	o. II756 16303	8246	2.14278 17343	77
0.9664566885	1.66801 27439	0.12631 2169I	8212	2.II49534000	76
0.9615516144	I. 6619587940	0. 13499 55158	$8 \mathrm{I} \quad 37$	2.0871250658	75
0.9563245409	I. 6555283761	0.14360 60995	81 I	2.0592967316	74
0.9507786259	I. 6487295046	o.I5213 81898	$80 \quad 25$	2.0314683974	73
0.9449171996	1.6415706491	o. 1605858855	7949	2.0036400632	72
0.9387437597	1. 6340607230	o. 16894 31044	79 I 3	1.97581 17290	71
0.9322619647	I. 6262090720	0.17720 35729	$\begin{array}{ll}78 & 36\end{array}$	1.9479833948	70
0.9254756289	1.61802 54615	o. 18536 08158	$77 \quad 58$	1.92015 50606	69
0.91838 87155	1. 6095200637	o. 19340 81461	$77 \quad 20$	I. 8923267264	68
0.9110053304	I. 6007034445	0.20133 86551	$76 \quad 42$	I. 864498392 I	67
0.9033297156	I. 5915865494	0.20914 52034	763	I. 8366700579	66
0.8953662423	I. 5821806891	0.2168204110	$75 \quad 23$	1.8088417237	65
0.88711 94043	I. 5724975252	0. 2243566494	$74 \quad 43$	1.7810133895	64
0.8785938106	I. 5625490544	0.2317460328	$74 \quad 2$	1.75318 50553	63
0.8697941783	I. 5523475933	0. 23898 04III	73 21	I. 72535672 II	62
0.86072 53257	1.54190 57623	0.24605 13624	7239	I. 6975283869	61
0.85I39 21644	I. 5312364694	0.2529501875	7156	1. 6697000527	60
0.84179 96923	I. 5203528933	0.2596679043	7113	I. 6418717185	59
0.83195 29861	I. 5092684668	0.26619 52443	$70 \quad 29$	1.61404 33842	58
0.8218571938	I. 4979968595	0.2725226492	6944	I. 5862 I 50500	57
0.8II5I 75269	I. 48655 I960I	0.2786402697	6859	I. 5583867158	56
0.8009392537	1. 4749478592	0. 2845379654	$68 \quad 12$	1.53055 83816	55
0.7901276914	1.46319 88308	0.2902053069	$67 \quad 25$	I. 5027300474	54
0.77908 81986	I.45131 93148	0.2956315786	$66 \quad 37$	1.47490 17132	53
0.76782 61683	1. 4393238985	0.30080 57852	6548	1. 4470733790	52
0.7563470207	1.42722 72983	0.3057166593	$64 \quad 59$	I. 4192450448	51
0.7446561957	1.41504 43413	0.31035 26720	648	1.39141 67106	50
0.7327591466	1. 4027899470	0.31470 20462	$63 \quad 17$	1. 3635883763	49
0.7206613327	I. 3904791083	0.31875 27727	6224	I. 335760042 I	48
0.7083682126	I.37812 68735	0. 3224926298	6131	1. 3079317079	47
0.69588 52382	I. 365748327 I	0.32590 92064	$60 \quad 36$	1. 2801033737	46
0.6832 I 78479	1.35335 85717	0. 3289899283	59 4 1	I. 2522750395	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$K=2.7680631454=K^{\prime} \sqrt{3}, \quad K^{\prime}=1.5981420021, \quad E=1.076405113, \quad E^{\prime}=1.5441504969$,

r	F $\boldsymbol{\phi}$	ϕ	$\mathrm{E}(\mathbf{r})$	D (r)	A(r
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0307562572	I 46	0.OI878 7I553	1.00028 90226	0.OI564 67728
2	0.06151 25143	$3 \quad 37$	0.03752 OI2OI	I.OOII5 57568	0.0312920711
3	0.0922687715	5 I7	0.0561450985	1.00259 92025	0.0469344040
4	0.12302 50287	72	0.0746090790	1.00461 76935	0.0625722754
5	0. 15378 I2859	$8 \quad 47$	0.0928602109	I. 0072088997	0.0782041558
6	0.18453 75430	1031	0.IIO84 81632	I. OIO36 98288	0.09382 84843
7	0.2152938002	12 I5	0.12852 44620	I. O1409 68295	0.10944 36574
8	0.2460500574	I3 58	0.14584 27986	1. OI838 55946	0.1250480220
9	0.2768063145	1540	0.1627593073	1. 02323 I1658	0.14063 98665
10	0.3075625717	1722	0.17923 28093	I. 0286279374	O.I5621 74137
II	0.3383I 88289	193	0.19522 50184	I. 0345696626	0.1717788130
12	0.36907 50860	2043	0.2107007095	I. 0410494593	0.18732 21327
I3	0.3998313432	$22 \quad 22$	0.2256278479	I. 0480598163	0.2028453538
14	0.4305876004	$23 \quad 59$	0.2399776797	1. 0555926010	0.21834 63622
15	0.4613438576	$25 \quad 36$	0.2537247838	I. 0636390673	0.2338229430
16	0.49210 OII47	$27 \quad 12$	0.26684 70884	I. 0721898642	0.2492727739
17	0.5228563719	2846	0.27932 58519	1.08123 50446	0.2646934194
18	0.5536I 26291	$30 \quad 19$	0.29114 56129	1.09076 40755	0.2800823255
19	0. 5843688862	3150	0.30229 4IIIO	I. 1007658484	0. 29543 68145
20	0.6I5I2 51434	33 21	0.3127621816	I. III22 86903	0.3107540803
2 I	0.6458814006	3450	0.32254 36297	I. I22I4 03756	0.32603 II 842
22	0.6766376577	3617	0.33163 50828	I. 1334881382	0.3412650509
23	0.7073939149	3743	0.34003 58309	I. 14525 86847	0.35645 24653
24	0.738 I 5 OI721	398	0.34774 76532	I. I 574382078	0.3715900694
25	0.7689064293	$40 \quad 31$	0.3547746364	I. 1700124008	0.38667 43599
26	0.79966 26864	415	0.36II2 2988I	I. I8296 64722	0.40170 16862
27	0.8304I 89436	4312	0.36680 08467	1.19628 51612	0.41666 82489
28	0.86117 52008	44 31	0.37181 80918	I . 2099527538	0.43I57 00988
29	0.89193 14579	$45 \quad 48$	0.37618 61563	I. 2239530995	0.44640 3I36I
30	0.92268 77151	473	0.3799178428	1. 2382696285	0.4611631110
31	0.95344 39723	$48 \quad 18$	0.38302 71460	I. 2528853692	0.4758456238
32	0.9842002294	4930	0.38552 90817	I. 2677829672	0.49044 61259
33	I. 0149564866	50 4I	0.3874395246	I. 2829447038	0.50495 99214
34	1.0457I 27438	5 I 51	0.38877 50552	I. 2983525154	0.51938 21695
35	1. 0764690010	5259	0.38955 28I59	.1.3I398 80140	0.53370 78866
36	I. 1072252581	545	0.38979 03785	I. 3298325072	0. 5479319494
37	I. I3798 I5I53	55 IO	0.38950 56204	I. 3458670195	0.5620490989
38	I. 1687377725	5614	0.38871 66125	I. 3620723140	0.57605 39442
39	I. 1994940296	57 I6	0.38744 1517I	1. 3784289138	0.58994 09669
40	I. 2302502868	5817	0. 3856984955	I.39491 71251	0.60370 45267
4 I	1.26100 65440	5917	0.38350 56260	I.4115170596	0.6173388663
42	I. 2917628011	60 I5	0.38088 08305	I. 4282086579	0.63083 8II79
43	1.3225190583	615	0.3778418107	I. 44497 I7132	0.6441963092
44	1. 3532753155	628	0.3744059923	1.46178 58952	0.6574073705
45	I. 3840315727	$63 \quad 2$	0.3705904774	1. 4786307744	0.6704651423
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

TABLE $\theta=75^{\circ}$
$q=0.163033534821580, \quad Ө 0=0.6753457533, \quad \mathrm{HK}=1.3046678096$

B(r)	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90
1.0000000000	1.9656305108	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$		
0.99981 60886	1.9653312951	0.0098991720	8933	$\begin{aligned} & 2.7680631454 \\ & 2.7373068882 \end{aligned}$	90 89
o. 9992644975	1. 9644340309	0.01979 47043	895	2.7065506310	88
0. 9983456552	1. 9629398674	0.0296829453	8838	2.6757943738	87
0.99706 02753	1.96085 07176	0.0395602195	88 10	2.6450381167	86
0.9954093546	1.95816 92561	0.04942 ${ }^{28154}$	8743	2.6142818595	85
0.99339 41714	1.95489 89147	0.0592669738	8715	2.5835256023	8
0.99101 62829	1.95104 38778	0.06908 88752	8647	2.5527693451	83
0.9882775221	I. 9466090763	0.0788846278	8619	2.5220130880	82
0.9851799940	I. 9416001803	0.0886502550	85 51	2.4912568308	81
0.9817260720	1. 9360235909	0.09838 16828	$85 \quad 22$	2.4605005736	80
0.9779183923	1. 9298864309	o. 1080747268	8454	2.4297443165	79
0.97375 98498	1.92319 65349	0.11772 50798	8425	2.3989880593	78
0.9692535914	1.9159624373	0.1273282981	8355	2.3682318021	77
0.9644030106	1.90819 33609	0.13687 97883	8326	2.3374755450	76
0.9592117405	I. 8998992030	o. 1463747936	8256	2.30671 92878	75
0.9536836468	I. 8910905214	o. 1558083802	$82 \quad 25$	2.2759630306	4
0.9478228200	1.8817785195	o. 1651754225	8 I 55	2.2452067734	73
0.9416335686	I. 8719750301	0. 17447805894		2.2144505163	72
0.9351204092	1. 8616924991	0.1836883293	$80 \quad 52$	2.1836942591	71
0.9282880593	I. 8509439670	o. 1928228550	$80 \quad 20$	2.1529380019	70
0.9211414274	1.8397430516	0. 2018681293	$79 \quad 48$	2.12218 17448	69
0.9136856040	I. 8281039279	0.2108178488	$79 \quad 15$	2.0914254876	68
0.9059258521	I. 8160413089	0.2196654291	$78 \quad 41$	2.0606692304	67
0.8978675972	1. 8035704247	0.2284039887	$78 \quad 7$	2.0299129733	66
0.8895164174	1.7907070015	0. 2370263334	$77 \quad 32$	1.9991567161	65
0.8808780328	I. 7774672401	0. 2455249406	$76 \quad 56$	1. 9684004589	64
0.8719582952	1. 7638677929	0.25389 19433	$76 \quad 20$	I. 9376442017	63
0.8627631773	1. 7499257419	0.2621191147	7543	1. 9068879446	62
0.8532987622	I. 7356585746	0.2701978524	75	1. 8761316874	61
0.8435712322	1.7210841609	0.2781191636	$74 \quad 27$	1. 8453754302	60
0.83358 68580	1. 7062207286	0.2858736500	7348	I. 8146191731	59
0.82335 19876	1. 6910868389	0.29345 14936	73	1. 7838629159	58
0.8128730353	1.6757013618	0. 3008424433	$72 \quad 28$	1.75310 66587	57
0.8021564710	1. 6600834507	0.30803 58026	7146	1. 7223504016	56
0.7912088085 0.7800365955	1. 6442525175	0.3150204176	$\begin{array}{ll}71 & 4\end{array}$	1. 6915941444	55
0.7800365955	1.6282282065	0. 3217846673	$70 \quad 20$	1.6608378872	54
0.7686464021	1.6120303692	0.32831 64547	6936	1.6300816300	53
0.7570448103	1. 5956790385	0. 3346032006	68 50	1. 5993253729	52
0.7452384036	1.57919 44025	0.3406318384	684	1. 5685691157	51
0.7332337566	1. 5625967789	0.3463888130	$67 \quad 16$	1. 5378128585	50
0.7210374248	I. 5459065890	0.35186 00808	$\begin{array}{lll}66 & 28\end{array}$	I. 5070566014	49
0.7086559347	1.52914 43320	0.35703 11148	$\begin{array}{lll}65 & 38\end{array}$	1. 4763003442	48
0.6960957739	1. 5123305588	o. 3618869115	$\begin{array}{ll}64 & 47 \\ 63 & 55\end{array}$	I. 4455440870	47
0.6833633823	1. 4954858469	0.36641 20039	6355	1. 4147878299	46
0.6704651423	1. 4786307744	0. $37059 \quad 04774$	63	1. 3840315727	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

Smithsonian Tables
$\mathrm{K}=3.1533852519, \quad \mathrm{~K}^{\prime}=1.5828428043, \quad \mathrm{E}=1.0401143957, \quad \mathrm{E}^{\prime}=1.5588871966$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1. 00000000000	0.0000000000
1	0.0350376139	20	0.02346 68886	1. 0004113182	0.01460 06854
2	0.0700752278	4 I	0.04685 05457	I. 0016448264	0.0292020956
3	o. I05II 28417	6 I	0.0700685417	I. 0036991860	0.0438049412
4	0.14015 04556	8 o	0.0930400333	I. 0065721668	0.05840 99043
5	0.1751880695	$9 \quad 59$	o. II568 65173	I. 0102606485	0.0730176251
6	0.21022 56835	I I 58	o. 13793 25365	I. O1476 06225	0.087628687 I
7	0.24526 32974	I3 55	o. 1597063263	1. 0200671948	0. 1022436040
8	0.2803009113	I 502	0.18094 03901	1.02617 45886	0.11686 28061
9	0.31533 85252	1747	0.20157 19949	I. 0330761484	o.I3I48 66263
10	0.35037 61391	194 I	0.2215435813	1. 0407643440	0. I46II 52882
I I	0.3854137530	2134	0.2408030831	1.04923 07759	o. 1607488922
12	0.4204513669	2326	0.2593041559	1.05846 6i800	O. 1753874040
13	0.4554889808	2516	0.27700 63163	I. 0684604345	0. 1900306422
I4	0.49052 65947	$27 \quad 4$	0. 2938749943	1.07920 25667	0.2046782669
15	0. 5255642086	28 5I	0.3098815035	I. 0906807598	0.2193297686
16	0.56060 18226	3036	0.32500 29380	I. 1028823622	0.2339844577
17	0.5956394365	3220	0.3392220017	I. II579 38955	0.2486414540
18	0.6306770504	34 I	0.3525267798	I . 1294010647	0.26329 96779
19	0.66571 46643	35 4I	0.36491 04618	I. 1436887684	0.2779578408
20	0.7007522782	37 18	0.3763710249	I. I5864 IIIOI	0.2926144375
2 I	0.735789892 I	$38 \quad 54$	0.3869108879	I. 1742414105	0.3072677376
22	0.7708275060	4028	0.3965365430	I. 1904722196	0.32191 57797
23	0.80586 51199	$4 \mathrm{I} \quad 59$	0.40525 81757	I. 2073153312	0.3365563638
24	0.84090 27338	$43 \quad 29$	0.41308 92784	1.2247517970	0.35118 70467
25	0.8759403477	4456	0.4200462655	I. 242761942 I	0.36580 51367
26	0.91097 79617	$46 \quad 22$	0.4261480965	I.26132 53814	0.3804076896
27	0.94601 55756	$47 \quad 45$	0.4314I 59095	1.28042 10369	0.3949915050
28	0.9810531895	497	0.435872672 I	I. 3000271557	$0.40955 \quad 31244$
29	I. 0160908034	5026	0. 4395428505	I.32012 13294	0.4240888287
30	1.0511284173	5 I 44	0.4424521005	I. 34068 05139	0.4385946375
3 I	1.08616 60312	5259	0.4446269813	I.36168 10508	0.4530663090
32	I. 1212036451	5412	0.446094693 I	I. 3830986893	0.4674993405
33	I. I5624 I2590	$55 \quad 24$	0.44688 28394	I. 4049086089	0.4818889699
34	1. 1912788729	5633	0.44701 92128	I. 4270854443	0.49623 OI775
35	I. 2263164868	57 4I	0.4465316053	1. 4496033094	0.51051 76900
36	I.26I35 41008	$58 \quad 47$	0.4454476404	I. 472435824 I	0. 5247459832
37	I. 2963917147	59 5I	0. 4437946284	I. 4955561410	0.53890 92878
38	I. 3314293286	6053	0.4415994403	I. 518936973 I	0.55300 15938
39	I. 3664669425	6154	0.43888 84024	I. 5425506233	0.5670I 66575
40	I. 4015045564	6253	0.4356872080	I. 5663690138	0.5809480084
4 I	I. 4365421703	6350	0.43202 08450	I. 5903637173	0. 5947889567
42	I. 4715797842	6445	0.4279135381	I. 6145059885	0.6085326019
43	I. 5066 I 7398 I	$65 \quad 39$	0.4233887053	I. 6387667967	0.6221718423
44	I. 5416550120	6632	0.4184689243	1. 663 II 68595	0.6356993846
45	I. 5766926259	$67 \quad 23$	0.4131759112	1. 6875266770	0.64910 77548
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B (r)

[^1]TABLE $\theta=80^{\circ}$
$q=0.206609755200965, \quad Ө 0=0.590423578356, \quad \mathrm{HK}=1.406061468420$

B(r)	C(r)	G(r)	ψ	F ψ	90-r
1.0000000000	2.3997438370	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.15338 52519	90
0.9997975549	2.3993024464	0.01049 98939	8939	3.11834 76380	89
0.9991904200	2.39797 88675	0.0209972691	89 I 8	3.0833100241	88
0.99817 9196I	2.3957748778	0.0314895952	$88 \quad 57$	3.0482724102	87
0.9967648832	2.3926934364	0.0419743187	8836	3.0132347963	86
0.9949488778	2.3887386793	0.0524488508	88 I5	2.9781971823	85
0.9927329703	2.3839159122	0.06291 05559	8754	2.9431595684	84
0.9901193406	2.3782316019	0.0733567394	8732	2.9081219545	83
0.987 II 05534	2.3716933654	0.0837846353	87 I I	2.8730843406	82
0.9837095524	2.3643099572	0.09419 I 3935	8649	2.8380467267	8I
0.9799196536	2.3560912550	0. 1045740674	$86 \quad 27$	2.8030091128	80
0.9757445380	2.3470482431	O. II4929600I	864	2.7679714989	79
0.9711882434	2.3371929943	0.1252548110	8542	2.7329338850	78
0.9662551552	2.3265386504	0.13554 63814	$85 \quad 19$	2.69789627 II	77
0.9609499971	2.3150994002	0.14580 08404	8456	2.6628586572	76
0.9552778200	2.3028904563	0.15601 45490	8432	2.6278210432	75
0.9492439913	2.2899280308	0. 1661836848	848	2.5927834293	74
0.9428541832	2.2762293087	o. I7630 42256	8344	$2.557745^{15} 54$	73
0.9361143595	2.26181 24201	O. 1863719320	83 I9	2.5227082015	72
0.9290307633	2.2466964112	0. 1963823298	8254	2.4876705876	7 I
0.9216099031	2.2309012139	0.2063306915	8228	2.4526329137	70
0.9138585385	2.2144476139	0.2162120167	82	2.41759 53578	69
0.9057836660	2.19735 72184	0. 2260210124	8 I 35	2.38255 77459	68
0.8973925035	2.17965 24214	0.2357520713	817	2.34752 O1320	67
0.88869 24749	2.16135 63692	0.24539 92508	$80 \quad 39$	2.312482518 I	66
0.87969 II 946	2.1424929245	0.2549562494	80 IO	2.2774449041	65
0.8703964511	2.1230866296	0.26441 63838	79 41	2.2424072902	64
0.8608I 61906	2.1031626690	0. 2737725638	79 I I	2.2073696763	63
0.8509585006	2.0827468307	0.2830172673	$78 \quad 40$	2. 17233 20624	62
0.8408315928	2.0618654682	0.2921425142	$78 \quad 8$	2. 13729 44485	61
0.8304437863	2.0405454606	0.30113 98388	$77 \quad 35$	2.1022568346	60
0.81980 34906	2.01881 41730	0.31000 02630	$77 \quad 2$	2.0672192207	59
0.80891 91886	1.99669 94165	0.31871 42670	$76 \quad 28$	2.03218 16068	58
0.7977994194	I. 9742294075	0.32727 176II	$75 \quad 52$	I.99714 39929	57
0.78645 27612	I.95143 27275	0.33566 2056I	7516	1.9621063790	56
$0.77488 \quad 78149$	I. 9283382823	0. 3438738337	$74 \quad 39$	I. 9270687650	55
0.7631131867	1.90497 526II	0.35189 51171	74 I	I. 89203 II5 II	54
0.7511374717	1.88137 30959	0.35971 32414	73 2I	I. 8569935372	53
0.7389692379	I. 8575614210	0.3673I 48250	7241	1. 8219559233	52
0.72661 70097	I. 8335700328	o. 3746857413	715	1. 7869183094	5 I
0.7140892524	I. 8094288493	0.38I8I 10919	7116	I. 7518806955	50
0.7013943563	1.78516 78703	0.38867 51812	$70 \quad 32$	I. 7168430816	49
0.6885406225	1.76081 71386	0.39526 14938	6947	I. 6818054677	48
0.6755362475	I. 7364067003	0.40155 26735	69 0	1. 6467678538	47
0.6623893095	I. 7119665668	0.407530507 I	$68 \quad 12$	1.6II73 02399	46
0.64910 77548	1. 6875266770	0.4131759112	$67 \quad 23$	I. 5766926259	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

Smithsonian Tables
$\mathrm{K}=3.2553029421, \quad \mathrm{~K}^{\prime}=1.5805409339, \quad \mathrm{E}=1.033789462, \quad \mathrm{E}^{\prime}=1.5611417453$,

r	F ϕ	ϕ	$\mathrm{E}(\mathbf{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0361700327	24	0.0246681037	1.00044 63617	0.0143061216
2	0.0723400654	48	0.04924 41210	I. OOI78 49728	0.02861 35824
3	0.10851 00981	$6 \quad 12$	0.0736369132	I.00401 44114	0.0429237056
4	0.14468 01308	8 16	0.0977572158	1.00713 23089	0.0572377835
5	0.18085 01635	$10 \quad 18$	0.12I5I 85252	I.OIII3 53504	0.0715570609
6	0.21702 01961	1220	o.14483 79258	I.OI601 92772	0.0858827206
7	0.25319 02288	14 2I	0.16763 68426	I. 0217788885	0.1002I 58677
8	0.2893602615	16 21	0.18984 17049	I. 0284080440	O.II455 75144
9	0.3255302942	$18 \quad 20$	0.2113845101	I. 0358996677	0.12890 85656
10	0.36170 03269	2018	0.2322032821	I. 04424 575II	0.14326 98042
II	0.39787 03596	22 I4	0.2522424183	I. 0534373577	O. I5764 18767
12	0.4340403923	248	0.2714529257	I. 0634646282	0.17202 52803
13	0.4702104250	26	0.28979 25485	I.0743I 67854	o. 1864203484
14	0.5063804577	$27 \quad 53$	0.3072257913	1. 0859821410	0.2008272392
15	0.5425504904	2942	0.3237238467	I. 0984481017	0.2152459210
16	0.57872 05230	3129	0.33926 44357	I.III70 II775	0.22967 61638
17	0.6148905557	3315	0.35383 15704	I. I2572 69891	0.2441175248
18	0.6510605884	3458	0.3674I 52534	I. I405I 02773	0.2585693397
19	0.68723062 II	3640	0.38001 II 223	I. 1560349127	0.2730307120
20	0.7234006538	$38 \quad 19$	0.3916200536	I. 1722839058	0.2875005037
21	0.7595706865	$39 \quad 56$	0.4022477358	I. 18923 94189	0.3019773269
22	0.79574 07192	$4 \mathrm{I} \quad 32$	0.4119042239	I. 2068827779	0.3164595358
23	0.83191 07519	434	0.42060 34838	I. 2251944855	0.3309452195
24	0.86808 07846	4435	0.42836 29362	I. 2441542355	0.3454321958
25	0.9042508173	$46 \quad 4$	0.4352030077	I. 2637409274	0.3599180053
26	0.9404208500	$47 \quad 30$	0.44II4 66947	I. 2839326825	0.3743999070
27	0.9765908826	4854	0.4462191466	I. 30470 686I I	0.3888748743
28	I. 0127609153	5016	0.45044 72717	I. 3260400803	0.4033395918
29	1.04893 09480	5136	0.4538593683	I. 3479082334	0.4177904532
30	1.08510 09807	5254	0. 4564847848	I. 3702865097	0.4322235599
3 I	1.12127 10134	$54 \quad 9$	0.45835 36084	I. 3931494160	0.4466347209
32	I. I5744 1046I	$55 \quad 23$	0.45949 6383I	I.4164707992	0.46101 94525
33	I.19361 10788	56	0.4599438581	I. 4402238696	0.4753729805
34	I. 22978 IIII5	$57 \quad 43$	0.4597267648	1. 4643812257	0.4896902419
35	1. 26595 II442	58 51	0.45887 56209	1.48891 48802	0.5039658883
36	1.302I2 11769	5956	0.45742 05619	I.51379 62870	0.51819 42896
37	I. 33829 I2095	610	0.45539 I 1968	I. 5389963693	0.5323695393
38	I. 37446 I2422	622	0.45281 64872	1. 564485549 I	0.5464854602
39	I.41063 12749	63 I	0. 4497246468	1. 5902337776	0.5605356107
40	1. $44680 \quad 13076$	640	0.44614 30615	1.6162105676	0.5745 I 32929
4 I	I. 4829713403	6456	0.4420982256	I. 6423850248	0.5884I 15607
42	1.5191413730	65 51	0.43761 56944	I. 6687258833	0.6022232286
43	I. 55531 I 4057	6644	0.4327200503	I. 6952015399	0.6159408825
44	I. 59148 14384	$67 \quad 35$	0.4274348807	1.7217800903	0.6295568896
45	1.62765 14711	$68 \quad 25$	0.4217827675	1. 7484293662	0.6430634108
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

TABLE $\theta=81^{\circ}$
$q=0.217548949699726, \quad Ө 0=0.5693797108, \quad \mathrm{HK}=1.4306906219$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.00000 00000	2.52833 O1251	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.255302942 I	90
0.9997922836	2.5278454320	0.0106010292	89 4I	3.2191329095	89
0.99916 93515	2.5263920136	0.0211997963	89 2I	3.1829628768	88
0.9981318540	2.5239718509	0.0317940278	892	3.1467928441	87
$0.99668 \quad 08734$	2.5205882420	$0.04238 \quad 14278$	8842	3.1106228114	86
0.9948179213	2.5162457960	0.0529596662	8822	3.0744527787	85
0.9925449353	2.51095.04254	0.0635263677	$88 \quad 2$	3.0382827460	84
0.9898642745	2.5047093354	0.0740790993	8742	3.0021127133	83
0.9867787139	2.49753 10120	0.0846153590	8722	2.9659426806	82
0.9832914382	2.4894252067	0.09513 2563I	872	2.9297726479	81
0.9794060344	2.4804029203	0.10562 80337	86 41	2.8936026152	80
0.9751264836	2.4704763835	o. 11609 89854	8620	2.8574325825	79
0.9704571520	2.4596590364	0.12654 25123	8559	2.8212625499	78
0.9654027806	2.4479655051	o. 13695 55734	8538	2.7850925172	77
0.9599684748	2.4354115773	O. 1473349785	8516	2.7489224845	76
0.9541596925	2.4220141749	0.15767 73727	8454	2.7127524518	75
0.9479822318	2.40779 I 3262	0.1679792208	8432	2.6765824191	74
0.9414422181	2.3927621349	0.17823 67907	849	2.6404 I 23864	73
0.93454 60898	2.3769467487	o. 18844 61360	8345	2.6042423537	72
$0.92730 \quad 05843$	2.3603663252	o. 1986030778	83 2I	2.5680723210	71
0.9197127230	2.3430429976	0.2087031860	8257	2.5319022883	70
0.9117897950	2.3249998377	0.21874 17592	8232	2.4957322556	69
0.9035393417	2.30626 08184	0.2287138038	827	2.4595622230	68
0.89496 91397	2.2868507750	0.2386 I 40125	8141	2.4233921903	67
0.8860871836	2.2667953647	0.2484367407	81 14	2.3872221576	66
0.87690 16690	2.2461210260	0.25817 .59833	$80 \quad 47$	2.3510521249	65
0.8674209743	2.2248549364	0.26782 53494	80 I9	2.3148820922	64
0.8576536425	2.2030249697	0.2773780358	$79 \quad 50$	2.2787120595	63
0.84760 83633	2.18065 96524	0. 2868268004	$79 \quad 20$	2.2425420268	62
0.83729 3954I	2.15778 81197	0.29616 39332	$78 \quad 50$	2.20637 1994I	61
0.8267193416	2.13444 00706	0.3053812272	$78 \quad 19$	2. 17020 19614	60
0.81589 35429	2.11064 57227	0.31446 99478	$77 \quad 47$	2. 13403 19287	59
0.80482 56467	2.0864357672	0. 32342 08014	$77 \quad 14$	2.0978618960	58
0.7935247945	2.0618413229	0.3322239026	$76 \quad 40$	2.0616918634	57
0.7820001623	2.0368938902	0.34086 87415	765	2.0255218307	56
0.77026094 II	2.OII62 53056	0. 34934 41494	$75 \quad 29$	I. 9893517980	55
0.75831 63194	1.98606 76958	0. 3576382644	$74 \quad 53$	1.95318 17653	54
0.74617 54642	I. 9602534320	0.3657384971	74	1.91701 17326	53
0.73384 75039	I. 9342 I 50843	0.3736314953	$73 \quad 35$	I. 8808416999	52
0.72134 15096	1.9079853771	0.3813031100	7255	1. 8446716672	51
0.7086664787	I.88159 71433	0.3887383616	7213	I. 8085016345	50
0.6958313178	I. 8550832817	0.3959214068	7130	I. 7723316018	49
0.6828448256	I. 82847 67117	0.40283 55079	$70 \quad 46$	1.73616 15691	48
0.66971 56781	1.80181 033II	0. 4094630040		1.69999 15365	47
0.65645 24120	I.77511 69734	0.4157852846		$1.66382 \quad 15038$	46
0.6430634108	1. 7484293662	0.4217827675	$68 \quad 25$	1. 62765 147 II	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F $\boldsymbol{\phi}$	r

Smithsonian Tables
$\mathrm{K}=3.3698680267, \quad \mathrm{~K}^{\prime}=1.5784865777, \quad \mathrm{E}=1.027843620, \quad \mathrm{E}^{\prime}=1.5629622295$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.03744 29781	29	0.0260053438	1.0004871379	0.01396 87846
2	0.07488 59561	417	0.0519080180	1.001948048 I	0.02793 96081
3	0.11232 89342	$6 \quad 26$	0.07760 64875	I. 0043812208	0.04191 44920
4	o. 14977 19123	835	0.10300 14601	1. 0077841400	0.05589 5423I
5	0.1872148904	1040	0.12799 69416	1.OI215 32844	0.0698843359
6	0.22465 78684	1246	O. 1525012188	1.01748 41292	0.0838830956
7	0.26210 08465	1451	0.17642 77402	1. 02377 I 1470	0.09789 34813
8	0. 2995438246	1655	0.19969 58914	1.03100 78103	0.1119171690
9	0.3369868027	I8 58	0.2222316400	1.03918 6594I	0.12595 57152
10	0.3744297807	$20 \quad 59$	0.243968048 I	I. 0482989781	0.14001 05412
11	0.4118727588	2258	0.26484 56468	I. 0583354510	-. 1540829167
12	0.44931 57369	$24 \quad 56$	0.2848I 26740	1.06928 55135	0.16817 39451
13	0.4867587150	$26 \quad 52$	0.30382 51779	1.08113 76835	0.18228 45483
14	0.5242016930	2846	0.32I84 69961	1. 0938795005	0.19641 54524
15	0.56I64 467II	$30 \quad 38$	0.33884 96193	I. 1074975312	0.2105671740
16	0.59908 76492	3228	0.35481 19530	I. 12197 73762	0.2247400071
17	0.6365306273	34 I6	0.36971 99918	I. I3730 36763	0.2389340100
18	0.6739736053	362	0.38356 64197	I. I 5346 OI 207	0.25314 89941
19	0.71141 65834	3746	0.39635 OI 539	I. I704294549	0.2673845 I 23
20	0.74885 95615	$39 \quad 27$	0.40807 58450	I.I8819 34902	0.28163 98484
2 I	0.7863025396	416	0.41875 33497	I. 20673 31139	0.29591 40077
22	0. 8237455176	4242	0.4283971871	I. 2260282998	0.31020 57076
23	0.86ıI8 84957	44 I6	0.43702 59916	I. 24605 81209	0.3245133701
24	0.89863 14738	$45 \quad 48$	0.44466 19725	1. 2668007616	0.33883 51142
25	0.9360744519	47 I8	0.45133 03888	1. 2882335321	0.35316 87494
26	0.9735I 74299	$48 \quad 45$	0. 4570590462	I. 3103328836	0.36751 17704
27	1.01096 04080	5010	0.46187 78212	I. 3330744242	0.38186 13526
28	I. 0484033861	5132	0.46581 82I8I	I. 3564329365	0.3962I 43484
29	1.08584 6364I	5252	0.46891 29597	1.38038 23962	0.4105672843
30	I. 1232893422	54 IO	0.4711956148	I. 4048959917	0.42491 63594
31	I. 1607323203	5526	0.4727002620	I. 42994 61457	0.4392574448
32	I.19817 52984	5639	0.47346 11908	I. 4555045373	0. 4535860835
33	I. 2356182764	57 50	0.47351 26377	I.48I54 21259	0.46789 74917
34	1. 2730612545	59 o	0.4728885574	1.50802 91764	0.4821865611
35	I. 3105042326	$60 \quad 7$	0.47162 24256	I. 5349352855	0.4964478621
36	I. 3479472107	6112	0.4697470729	I. 5622294100	0.5106756480
37	I. 38539 O1887	62 I5	0. 4672945464	I. 5898798960	0. 5248638600
38	I. 4228331668	6316	0.4642959969	I. 6178545092	0.53900 61335
39	I. 46027 61449	64 I5	0.46078 I5892	1.64612 04680	0.5530958052
40	1.4977191230	$65 \quad 12$	0. 4567804338	1. 6746444762	0. 5671259210
4 I	1.53516 21010	667	0.45232 05363	1.70339 27583	0.58108 92454
42	I. 5726050791	67 I	0.4474287637	1.73233 10960	0. 5949782708
43	I. 6100480572	$67 \quad 53$	0.44213 08242	1.76142 48657	0.60878 52287
44	I. 6474910353	$68 \quad 44$	0.43645 12599	I. 7906390777	0.6225021016
45	1. 6849340133	$69 \quad 32$	0.43041 34495	I.81993 84164	0.6361206349
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$B(r)$

$q=0.229567159881194, \quad Ө 0=0.5464169465, \quad H K=1.4575481002$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	2.6805403437	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.3698680267	90
0.9997862112	2.6800036787	o.oI069 49I35	8942	3.3324250486	89
0.99914 50809	2.6783944283	0.0213878301	8924	3.2949820705	88
0.9980773170	2.6757148255	0.0320767423	896	3.2575390925	87
0.9965840972	2.6719685860	0.0427596209	$88 \quad 48$	3.22009 6II44	86
0.9946670666	2.6671609043	0.0534344040	8830	3.18265 31363	85
0.9923283334	2.6612984418	0.0640989867	$88 \quad 12$	3.14521 O1582	84
0.9895704645	2.65438 93156	0.0747512085	8753	3.1077671802	83
0.9863964786	2.6464430842	0.0853888428	8735	3.0703242021	82
0.9828098400	2.6374707296	0.09600 95847	8716	3.0328812240	81
0.97881 44497	2.6274846381	0.1066I 10385	8657	2.9954382459	80
0.9744146367	2.6164985778	o.11719 07054	$86 \quad 37$	2.9579952679	79
0.9696151474	2.6045276741	0.12774 59701	8618	2.9205522898	78
0.96442 II 348	2.5915883828	o. 1382740870	8558	2.8831093117	77
0.95883 81466	2.5776984606	0.14877 21662	8538	2.8456663336	76
0.9528721117	2.5628769342	0.15923 71580	$85 \quad 17$	2.8082233556	75
0.9465293269	2.5471440664	o. 16966 58376	8456	2.7707803775	74
0.9398164421	2.53052 I 3208	o. 18005 47885	8435	2.7333373994	73
0.9327404449	2.5130313248	o. 1904003849	84 I3	2.6958944213	72
0.9253086446	2.4946978294	0. 2006987739	83 51	2.6584514433	71
0.9175286553	2.4755456695	0.2109458556	$83 \quad 28$	2.6210084652	70
0.9094083786	2.4556007207	0.22113 72633	835	2.5835654871	69
0.9009559853	2.43488 98556	0.23126 83422	8241	2.5461225090	68
0.8921798975	2.4134408985	0.24I33 41265	8216	2.5086795310	67
0.88308 87690	2.3912825787	0.2513293157	81 51	2.4712365529	66
0.87369 14660	2.368444483 I	0.2612482501	8 I 25	2.4337935748	65
0.8639970475	2.3449570070	0.27108 48837	8059	2.3963505967	64
0.85401 47452	$2.32085 \quad 13053$	0.28083 27574	$80 \quad 32$	2.3589076187	63
0.8437539427	2.2961592414	0. 2904849692	$80 \quad 4$	2.3214646406	62
0.83322 41555	2.2709133365	0.30003 41444	$79 \quad 35$	2.2840216625	6 I
0.8224350100	2.2451467182	0.3094724031	795	2.2465786844	60
0.81139 62227	2.2188930687	0.31879 13276	$78 \quad 35$	2.2091357064	59
0.80011 75795	2.19218 65719	0.32798 19272	$78 \quad 4$	2.1716927283	58
0.78860 89149	2.1650618621	0.33703 46027	77 31	2. 13424 97502	57
0.77688 009II	2.13755 39706	0.3459391087	$76 \quad 58$	2.096806772 I	56
$0.76494 \quad 09778$	2.10969 82742	0.3546845152	$76 \quad 23$	2.0593637941	55
0.7528014315	2.0815304423	0.36325 91686	7548	2.0219208160	54
0.74047 12755	2.0530863856	0.37165 06505	75 II	I. 9844778379	53
0.7279602805	2.0244022044	0.3798457377	$74 \quad 34$	I. 9470348599	52
0.71527 81443	I. 9955141373	0.38783 03601	7355	1.90959 18818	51
0.7024344736	1.96645 85115	0. 3955895596	$73 \quad 14$	I. 8721489037	50
0.68943 87648	1.93727 16923	0.40310 74491	7233	I. 8347059256	49
0.6763003866	I. 9079900345	0.4103671725	7150	I. 7972629476	48
0.6630285617	I. 8786498345	0.41735 08655	716	I. 7598199695	47
0.6496323506	I. 8492872824	0.42403 96200	$70 \quad 20$	1. 7223769914	46
0.6361206349	I. 8199384164	0.4304134495	$69 \quad 32$	I. 6849340133	45
A(\mathbf{r})	D (r)	E(r)	ϕ	F ϕ	1

$\mathrm{K}=3.5004224992, \quad \mathrm{~K}^{\prime}=1.5766779816, \quad \mathrm{E}=1.022312588, \quad \mathrm{E}^{\prime}=1.5649475630$,

r	F ϕ	ϕ	$\mathrm{E}(\mathbf{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
o	0.00000 00000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
I	0.0388935833	$2 \quad 14$	0.02751 52459	1.0005354142	0.01357 81428
2	0.0777871666	427	0.0549149171	I. 0021411230	0.0271591294
3	0.11668 07500	640	0.08208 48196	I. 0048 I 5243	0.0407457840
4	o. 1555743333	853	0.10891 34862	1.00855 59486	0.0543408922
5	0.19446 79166	11	o. I 352934531	1.O1335 86590	0.06794 71815
6	0.2333614999	1315	o.16112 24388	I. O1921 88518	0.0815673027
7	0.2722550833	15 15	o. 1863043989	1.02613 06577	0.0952038101
8	0.31114 86666	$17 \quad 33$	0.2107504315	1. 0340871422	0.10885 91438
9	0.35004 22499	1940	0.2343795237	1.0430803072	0.12253 561II
ıо	0.38893 58332	2145	0.2571191248	1.05310 10924	0.13623 53681
11	0.4278294166	$23 \quad 48$	0.27890 55463	1.06413 93774	0. 1499604030
12	0.46672 29999	$25 \quad 50$	0. 2996841874	1. 0761839836	0.16371 25182
13	0.50561 65832	2750	0.31940 95974	1. 0892226769	o. 1774933141
14	0.54451 01665	2947	o. 3380453836	1.10324 21710	0.19130 41733
15	0.58340 37499	3142	o. 3555639822	I. 11822 81308	0.20514 62446
16	0.6222973332	3335	0.37194 63079	I.13416 51764	0.2190204287
17	0.6611909165	$35 \quad 26$	0.38718 13038	I. 1510368883	0.2329273637
18	0.70008 44998	$37 \quad 14$	0.4012654102	I. 1688258124	0.2468674120
19	0.7389780832	3859	0.41420 19722	1.18751 34668	0. 2608406476
20	0.7778716665	$40 \quad 42$	0. 4260006064	1. 2070803483	0.2748468440
21	0.8167652498	$42 \quad 23$	o. 4366765427	I. 2275059404	0. 2888854637
22	0.85565 88331	44	0. 4462499581	1.2487687226	0. 3029556475
23	0.89455 24165	$\begin{array}{ll}45 & 37\end{array}$	o. 4547453170	I. 2708461798	0.3170562057
24	0.93344 59998	47 Іо	0.462190728 I	I. $29371{ }^{881} 35$	0.33118 56095
25	0.972339583 I	$48 \quad 40$	0.46861 73287	1.3173501537	0.34534 19839
26	1.01123 31664	508	0. 4740587042	1.34172 67728	0.35952 31012
27	1.05012 67498	$5 \mathrm{I} \quad 33$	0. 4785503463	I.3668182994	0. 3737263757
28	1. 0890203331	$52 \quad 56$	0.4821291569	I. 3925974348	0.3879488593
29	I. 1279139164	$\begin{array}{ll}54 & 17\end{array}$	0.4848329959	1.4190359703	0.402187238 I
30	1. 1668074997	$55 \quad 35$	0. 4867002770	1.44610 48057	0.4164378306
31	I. 2057010830	56 50	0. 4877696093	1. 4737739701	0.4306965861
32	I. 2445946664	58	0.48807 94838	I. 5020126433	0.4449590849
33	I. 2834882497	59 14	0. 4876680032	I. 5307891792	0.45922 05390
34	1. 3223818330	$60 \quad 23$	0. 4865726520	1.56007 11317	0.4734757948
35	1.36127 54163	6130	0.4848301039	I. 5898252804	0.48771 93356
36	1.40016 89997	$62 \quad 34$	0. 4824760647	1.62001 76598	0.50194 52865
37	I. 4390625830	$63 \quad 36$	o. 4795451456	I.65061 35895	0.51614 74196
38	1.47795 61663	6436	0.4760707644	1.6815777058	0.53031 91603
39	I. 5168497496	$65 \quad 35$	o. 4720850753	1. 7128739955	o. 5444535952
40	1. 5557433330	66 31	0.4676189121	1.7444658318	-. 5585434803
41	I. 5946369163	$67 \quad 25$	0.4627017621	1.77631 60110	0.57258 12511
42	I. 6335304996	$\begin{array}{ll}68 & 18\end{array}$	0. 4573617475	1.80838 67918	0. 5865590333
43	I. 6724240829		0.45162 56249	1. 8406399362	0.6004686540
44	1.71131 76663	$69 \quad 58$	0.44551 87962	1.87303 67513	0.61430 16549
45	1.75021 12496	$70 \quad 45$	0. 4390653283	1.9055381344	0.6280493057
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

Smithsonian Tables

TABLE $\theta=83^{\circ}$
$q=0.242912974306665, \quad Ө 0=0.5211317465, \quad \mathrm{HK}=1.4872214813$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1. 0000000000	2.8645259727	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	$3 \cdot 5004224992$	90
0.9997791249	2.8639254580	$0.01078 \quad 10889$	8944	3.4615289158	89
0.9991167583	2.8621247652	0.0215604536	8927	3.4226353325	88
0.9980136755	2.8591264461	0.0323363597	89 I I	3.3837417492	87
0.99647 11670	2.8549347485	0.0431070526	8855	$3 \cdot 3448481659$	86
0.9944910345	2.8495556077	0.05387 07471	$88 \quad 38$	$3 \cdot 3059545826$	85
0.9920755874	2.8429966356	0.0646256168	88 2I	3.2670609992	84
0.9892276367	2.8352671062	0.0753697836	885	3.2281674159	83
0.98595 04884	2.8263779377	0.08610 13069	8748	3.1892738326	82
0.9822479350	2.8163416722	0.0968ı 8ı7I8	8730	3.1503802493	8 I
0.9781242473	2.8051724517	0.10751 82779	8713	3.1II48 66659	80
0.9735841628	2.7928859919	o.II819 94268	8655	3.0725930826	79
0.9686328755	2.7794995523	O.I288593097	8637	3.0336994993	78
0.9632760226	2.7650319042	O.I3949 54938	86 I9	2.9948059160	77
0.9575196711	2.7495032957	O.I5010 54088	86 I	2.9559123326	76
0.9513703036	2.7329354142	0.16068 63318	8542	2.9170187493	75
0.94483 48022	2.71535 13465	0.17123 53724	8523	2.87812 51660	74
0.9379204329	2.6967755363	0.18174 94560	853	2.8392315827	73
0.9306348276	2.6772337397	o.19222 53067	8443	2.8003379993	72
0.9229859663	2.6567529786	0.2026594294	8422	2.76144 44160	71
0.91498 21585	2.63536 14921	0.2130480901	$84 \quad 1$	2.7225508327	70
0.9066320234	2.6130886858	0.2233872956	$83 \quad 39$	2.6836572494	69
0.8979444698	2.5899650797	0.2336727719	83 I7	2.6447636660	68
0.88892 86753	2.5660222548	0. 24389 99414	8254	2.6058700827	67
0.87959 40653	2.5412927973	0.2540638981	8231	2.56697 64994	66
0.8699502909	2.5158102430	0.26415 93822	$82 \quad 7$	2.52808 29161	65
0.8600072069	2.4896090190	0.27418 07525	8I 42	2.4891893327	64
0.8497748495	2.4627243859	0.28412 19576	8 I I6	2.4502957494	63
0.8392634134	2.4351923782	0.2939765053	8050	2.4114021661	62
0.8284832287	2.4070497447	0. 3037374301	$80 \quad 23$	2.3725085828	61
0.81744 47382	$2.37833 \quad 38874$	0.3133972593	$79 \quad 55$	2.3336149994	60
0.806I5 84738	2.34908 28015	0. 3229479773	7926	2.2947214161	59
0.7946350337	2.3193350143	0.3323809873	$78 \quad 56$	2.2558278328	58
0.7828850590	2.2891295239	0.3416870724	$78 \quad 26$	2.21693 42495	57
0.7709192109	2.2585057383	o. 3508563539	$77 \quad 54$	2.17804 06662	56
0.75874 81476	2.2275034151	0. 3598782486 .	$77 \quad 21$	2.13914 70828	55
0.7463825018	2.1961626008	0.36874 14237	$76 \quad 47$	2.10025 34995	54
0.7338328587	2 . 1645235708	0. 3774337507	$76 \quad 12$	2.06I35 99162	53
0.72 I10 97334	2.13262 67708	0. 3859422578	$75 \quad 36$	2.02246 63329	52
0.70822 35503	2.1005I 27578	0.39425 30813	$74 \quad 58$	1. 9835727495	51
0.6951846210	2.0682221426	0.4023514155	$74 \quad 20$	1.9446791662	50
0.68200 31247	2.035795533 I	0.4102214630	7340	1.90578 55829	49
0.66868 90878	2.0032734790	0.4178463843	7258	I. 8668919996	48
0.6552523646	1.9706964170	0.4252082479	72 I6	I. 8279984162	47
$0.64170 \quad 26188$	1.93810 46179	0.43228 79822	7131	1.78910 48329	46
0.6280493057	1.90553 81 344	0.4390653283	$70 \quad 45$	I. 7502 I 12496	45
A (r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=3.6518559695, \quad \mathrm{~K}^{\prime}=1.5751136078, \quad \mathrm{E}=1.017236918, \quad \mathrm{E}^{\prime}=1.5664967878$,

r	F $\boldsymbol{\phi}$	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.0405761774	2	0.0292515342	1.00059 38572	0.OI3II 92586
2	0.08115 23549	429	$0.05837 \quad 13484$	1.0023748641	0.0262422974
3	0.12172 85323	655	0.0872294380	I. 0053413262	0.0393728749
4	0.16230 47098	916	0.11569 91812	I. 0094904192	0.0525147063
5	0. $20288 \quad 08872$	1133	0.14365 89152	1.0148181886	0.0656714426
6	0.2434570646	1349	o. I7099 33783	1.02131 95491	0.0788466485
7	0.2840332421	164	o.19759 49853	I. 028988284 I	0.09204 37819
8	0.3246094195	$18 \quad 17$	0.2233649075	1.03781 70450	0.10526 6i73I
9	0.365I8 55969	$20 \quad 29$	0.2482 I 3938 I	I. 0477973504	0.11851 70041
10	0.4057617744	$22 \quad 39$	0.2720631341	1.05891 95857	0.1317992889
I I	0.4463379518	2446	0.2948442309	1.07117 30024	0.14511 58534
12	0.4869141293	$26 \quad 52$	0.3164998365	I. 0845457174	o.I584693168
13	0.52749 03067	2856	0.33698 34175	1. 0990247131	0.17186 20726
14	0.5680' 6484I	3058	0.35625 90959	I. II459 58374	0.18529 627II
15	0.6086426616	3255	$0.37430 \quad 12782$	I. 1312438038	0.19877 38016
16	0.6492188390	34 5I	0.3910941430	1.14895 21925	0.2122962758
17	0.6897950165	3644	0.40663 IOI47	I. 1677034514	0.2258650123
18	0.73037 II939	$38 \quad 36$	0.42091 3648I	I. I 874788983	0.23948 102II
19	0.77094737 I 3	$40 \quad 24$	0.4339514533	I. 2082587235	0.2531449894
20	0.8115235488	429	0.44576 06829	1. 2300219929	0.2668572683
21	0.8520997262	43 5I	0.4563636044	I. 2527466524	0.2806178600
22	0.89267 59037	45 31	0.4657876783	1. 2764095335	0.29442 64067
23	0.93325 208II	478	0.47406 47564	1.30098 63590	0.30828 21794
24	0.9738282585	$48 \quad 42$	0.4812303147	1. 3264517509	0.3221840690
25	I. O1440 44360	5013	0.4873227312	I. 3527792393	0.3361305773
26	I. 05498 06134	5142	0.4923826159	1. 3799412721	0.3501I 98097
27	1. 0955567908	538	0.4964521966	1. 4079092268	0.3641494689
28	I. 13613 29683	54 3I	0. 4995747663	I. 4366534239	0.3782I 68497
29	I. 17670 91457	55 51	0.5017941897	I. 4661431412	0.3923I 88350
30	1.21728 53232	$57 \quad 9$	0.5031544701	1. 4963466307	$0.40645 \quad 18927$
3 I	1. 25786 I 5006	$58 \quad 25$	0.5036993739	I. 52723 II369	0.4206120743
32	I. 2984376780	5938	0.5034721104	I. 5587629167	0.4347950141
33	I.33901 38555	6048	0.5025I 50624	I. 5909072622	0.4489959303
34	1. 3795900329	6 I 56	0.50086 9565I	I. 623628524 I	0.4632096265
35	1. 4201662104	632	0.49857 57270	I. 65689 O1387	0.4774304952
36	I. 4607423878	645	0.4956722903	1. 6906546558	0.4916525218
37	1.50131 85652	657	0.49219 65260	I. 7248837696	0.5058692908
38	I.54189 47427	666	0.488I8 4I583	I. 7595383514	0.5200739919
39	I. 5824709201	673	0.48366 93168	I. 7945784847	0. 5342594285
40	I. 6230470975	$67 \quad 58$	0. 4786845099	1. 8299635024	0. 5484180268
41	1. 6636232750	68 51	0.4732606189	I. 8656520265	0. 5625418461
42	I. 7041994524	6942	0.4674269071	1.90160 20099	0.5766225903
43	1. 7447756299	70	0.46121 10428	1.93777 07807	0.5906516209
44	1. 7853518073	719	0.4546391336	I.974II 50881	0.6046199704
45	1. 8259279847	725	0. 4477357684	2.0105911517	0.6I85183573
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$q=0.257940195766337, \quad Ө 0=0.4929628191, \quad H K=1.5205617314$

B(r)	C(r)	G(r)	ψ	$\mathrm{F} \psi$	90 r
1.0000000000	3.0930199213	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.6518559695	90
0.99977 07150	3.0923385676	0.0108590483	$89 \quad 45$	3.6112797920	89
0.9990831458	3.0902954977	0.0217166503	89 3I	$3 \cdot 57070$ 36146	88
0.99793 81489	3.0868936827	0.0325713506	89 16	3.53012 74372	87
0.9963371496	3.0821380679	0.04342 16747	89 I	$3 \cdot 4895512597$	86
0.9942821381	3.0760355627	0.0542661204	$88 \quad 47$	$3 \cdot 4489750823$	85
0.9917756649	3.0685950269	0.0651031473	$88 \quad 32$	3. 3083989048	84
0.9888208340	3.0598272527	0.0759311673	88 17	$3 \cdot 3678227274$	83
0.98542 I 2955	3.0497449431	0.0867485345	882	$3 \cdot 3272465500$	82
0.9815812363	3.0383626866	0.09755 35344	8746	3.2866703725	81
0.9773053698	3.0256969280	o. 10834 43731	$87 \quad 30$	3.2460941951	80
0.9725989240	3.01176 59358	c.II9II 91660	87	3.20551 80177	79
0.9674676286	2.9965897659	-. 1298759255	8658	3. 1649418402	78
0.9619177007	2.9801902223	o. I406I 25487	8642	3. 1243656628	77
0.9559558299	2.9625908137	o.15I32 68040	8625	3.0837894853	76
0.9495891609	2.9438167083	0.16201 63172	868	3.04321 33079	75
0.9428252769	2.9238946843	o. 1726785562	$85 \quad 50$	3.0026371305	74
0.9356721802	2.9028530783	0.1833I 0816I	$85 \quad 32$	2.9620609530	73
0.9281382732	2.8807217308	o. 1939102013	8514	2.9214847756	72
0.9202323376	2.8575319293	0.2044736088	8455	2.8809085981	71
0.9119635133	2.8333163492	0.2149977081	$84 \quad 36$	2.8403324207	70
0.9033412763	2.8081089917	0.2254789218	$84 \quad 16$	2.7997562433	69
0.8943754154	2.7819451210	0.23591 34034	8355	2.7591800658	68
0.8850760096	2.7548611988	0. 2462970143	8334	2.7186038884	67
0.87545 34034	2.72689 48173	0.25662 52995	$83 \quad 13$	2.6780277109	66
0.8655I 81826	2.6980846313	0. 2668934606	8251	2.6374515335	65
0.85528 11491	2.6684702880	0.27709 63287	8228	2.5968753561	64
0.84475 32958	2.6380923575	0. 2872283335	$\begin{array}{lr}82 & 4 \\ 81\end{array}$	2.55629 2.51572886 30012	63
0.83394 57809	2.6069922604	0. 2972834722	$\begin{array}{ll}81 & 39 \\ 8 \mathrm{I} & 14\end{array}$	2.5157230012 2.4751468238	62
0.82286 99019	2.57521 21966	0.30725 52753	8 I 14	2.47514 68238	61
0.8115370701	2.5427950725	0.3171367705	$\begin{array}{ll}80 & 48 \\ 80\end{array}$	2.4345706463	60
0.7999587840	2.5097844281	0.32692 04449	$80 \quad 21$	2.39399 44689	59
0.7881466036	2.4762243648	0.33659 82039	7953	2.3534182914 2.31284 21140	58 57
0.7761121247	2.4421594723	0.34616 13287	$\begin{array}{ll}79 & 24 \\ 78 & 54\end{array}$	2.3128421140 2.2722659366	57 56
0.7638669524	2.4076347564	0.35560043 I 3	$78 \quad 54$	2.2722659366	56
0.7514226764	2.3726955671	0. 3649054063	$\begin{array}{ll}78 & 23 \\ 77 & 51\end{array}$	2.2316897591 2.19111 35817	55
0.73879 08451	2.33738 75276	o. 3740653814 0. 3830686651	$\begin{array}{ll}77 & 51 \\ 77 & 18\end{array}$	2.19111 2.15053 74017 4042	54 53
$\begin{array}{ll}0.72598 & 29409 \\ 0.721301 & 03561\end{array}$	2.3017564635 2.2658483337	0.38306 86651 0.3919026919	$\begin{array}{ll} 77 & 18 \\ 76 & 44 \end{array}$	2. 1505374042 2.10996 12268	53 52
0.7130103561	2.2658483337	0.39190 26919	76 76	2.0693850494	5 I
0. 6998843682	2.22970 91619	0.4005539659			
0.68661 6II72	2. 19338 49695	0.4090080023	75 31	2.0288088719	50
0.6732165825	2.15692 17102	0.41724 92673	$\begin{array}{ll}74 & 53\end{array}$	I. 9882326945 I. 947656517 I	49 48
0.6596965607	2.1203652053	0.42526 III65	74	I. 9070803396	47
0.6460666446	2.0837610820	0.43302 57335	$\begin{array}{ll} 73 & 32 \\ 72 & 49 \end{array}$	1.9070803396 1.866502	46
0.6323372022	2.0471547117	0.4405240667	7249	1.866504162	4
0.6185183573	2.01059 11517	0.4477357684	725	1. 8259279847	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$\mathrm{K}=3.8317419998, \quad \mathrm{~K}^{\prime}=1.5737921309, \quad \mathrm{E}=1.0126635062, \quad \mathrm{E}^{\prime}=1.5678090740$,

r	F $\boldsymbol{\phi}$	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1. 0000000000	0.0000000000
I	0.04257 49III	226	0.031297584 I	I. 0006667396	0.0125698450
2	0.08514 98222	$4 \quad 52$	0.0624425476	I. 0026663652	0.0251445765
3	0.12772 47333	718	0.0932844601	I. 0059970974	0.0377290570
4	o. 17029 96444	943	0. 1236772052	I. OIO65 59692	0.0503281006
5	0.2128745555	126	O. 1534809749	I. OI663 88247	0.0629464495
6	0.2554494667	1429	O.I8256 40780	I. 0239403165	0.0755887497
7	0. 2980243778	1650	0.2108045154	I. 0325539030	0.088259528 I
8	0.34059 92889	19 9	0.23809 12866	I. 0424718453	0. 1009631685
9	0.38317 42000	2 I 26	0.2643254039	1. 0536852030	O.II370 38895
10	0.42574 9IIII	2342	0.2894206026	I.06618 38299	0. 1264857214
II	0.4683240222	2555	0.31330 37505	I. 0799563700	o. I3931 24846
12	0.5108989333	285	0.33591 49667	I. 0949902519	O.I5218 77682
13	o. 5534738444	3013	0.3572074739	I.III27 16844	0.165II 49087
14	0.5960487555	32 18	0.37714 72II7	I. 12878 565I3	0.17809 69700
I5	0.6386236666	342 I	0.39571 22464	I. I475159063	0.19113 67239
16	0.68119 85777	3620	0.4128920138	I. I6744 49685	0.2042366315
17	0.7237734889	$38 \quad 17$	0. 4286864336	I. 1885541178	0.2I739 88246
18	0.7663484000	40 I I	0.44310 49337	I. 2108233907	0.2306250891
19	0.8089233111	42 I	0.4561654173	1.2342315771.	0.24391 68485
20	0.85I49 82222	$43 \quad 49$	0.4678932075	I. 2587562174	0.25727 51484
21	0.89407 31333	4533	0.4783I 99952	I. 2843736007	0.2707006428
22	0.9366480444	47 I5	0.4874828142	I.3IIO5 87634	0.2841935800
23	0.9792229555	4853	0. 4954230625	I. 3387854900	0.2977537910
24	I. O2I79 78666	$50 \quad 28$	0.5021855842	I. 3675263142	0.3II38 06778
25	1. 0643727777	52 0	0.50781 78217	I. 3972525218	0.3250732040
26	I. 10694 76888	5329	0.51236 90454	I. 4279341552	0.33882 98857
27	I. I4952 25999	5456	0.51588 96635	I. 45954 OOI95	0.35264 87839
28	I. 19209 75110	56 19	0.51843 06I 38	I. 4920376904	0.3665274982
29	1. 2346724222	5739	0.52004 28338	I. 5253935243	0.38046 31619
30	1. 2772473333	5859	0. 5207768087	I. 5595726706	0. 3944524378
3 I	I. 3198222444	$60 \quad 12$. 0.5206821896	I. 59453 9085I	0.40849 15164
32	I. 3623971555	6 I 24	0.51980 74799	I. 6302555479	0.42257 6II40
33	I. 4049720666	6234	0.51819 978ıI	I. 66668 36814	0.4367014735
34	I. 4475469777	63 4I	0.51590 45944	I. 7037839728	0.4508623658
35	I.49012 18888	6446	0.5129656697	1.7415157980	0.4650530926
36	I. 5326967999	6548	0.5094248984	1.77983 74487	0.4792674909
37	I. 57527 I7IIO	6648	0. 5053222421	1.81870 61627	0. 4934989386
38	I. 6178466221	6746	0. 5006956936	I. 8580781564	0.50774 03615
39	1. 66042 I5332	68 4I	0.49558 12646	I. 8979086607	0.52198 42419
40	1. 7029964444	6935	0.49001 29952	I.938I5 19599	0. 53622 2628I
41	1. 74557 I 3555	$70 \quad 26$	0.4840229824	I. 97876 14331	0.55044 71457
42	I.78814 62666	7 I 16	0.47764 14227	2.0196895998	0.5646490099
43	I. 83072 II777	723	0.47089 66670	2.0608881669	0.57881 90394
44	I. 8732960888	7249	0.4638I 52836	2.1023080805	0. 5929476712
45	1.91587 09999	$73 \quad 33$	0.4564221286	2.14389 95792	0.6070249768
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

[^2]TABLE $\theta=85^{\circ}$
$q=0.275179804873563, \quad \Theta 0=0.4610905222, \quad \mathrm{HK}=1.5588714533$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	$3 \cdot 3872870037$	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	3.8317419998	90
0.999760504 I	$3 \cdot 3864990904$	0.01092 82185	8947	3.7891670887	89
0.9990423353	$3 \cdot 3841365337$	0.02I85 52713	8934	3.74659 21776	88
0.9978464504	$3 \cdot 38020$ 28815	0.0327799847	8922	3.70401 72665	87
0.9961744409	3.3747040379	0.04370 11679	899	3.6614423554	86
0.9940285290	3.36764 82512	0.0546176051	$88 \quad 56$	3.6I886 74443	85
0.9914115622	3.3590460961	0.0655280467	8843	3.57629 2533I	84
0.9883270058	$3 \cdot 3489104507$	0.0764312000	8829	$3 \cdot 5337176220$	83
0.9847789335	$3 \cdot 3372564694$	0.0873257205	8816	3.49114 27109	82
0.9807720177	3.3241015504	0.0982102023	$88 \quad 2$	3.4485677998	8I
0.9763115168	3.3094652989	0.10908 31677	8749	3.4059928887	80
0.9714032619	3.2933694854	0.11994 30573	8735	$3 \cdot 3634179776$	79
0.9660536420	3.2758379999	0.13078 82183	8720	3.3208430665	78
0.9602695874	3.2568968018	o.I4I6I 68937	876	3.27826 81554	77
0.9540585520	3.2365738654	o. I5242 72092	86 5	3.2356932443	76
0.9474284947	3.2148991220	0.16321 71605	8635	3.193II 83332	75
0.9403878585	3.19190 43978	O. 1739845990	8620	-3.15054 3422I	74
0.9329455499	3.16762 33486	0.18472 72171	864	3.1079685109	73
0.925 II 09158	3.14209 13909	o. 19544 2532 I	8548	3.0653935998	72
0.9168937204	3.II534 56304	0.2061278689	85 31	3.0228186887	7 I
0.9083041205	3.0874247870	0.21678 03419	85 I3	2.9802437776	70
0.8993526403	3.0583691177	0.22739 68349	8455.	2.9376688665	69
0.89005 01452	3.0282203368	0.2379739802	$84 \quad 37$	2.8950939554	68
0.88040 78152	2.9970215345	0. 2485081357	84 I 8	2.8525190443	67
0.8704371170	2.9648170925	0. 2589953603	$83 \quad 58$	2.8099441332	66
0.8601497763	2.9316525995	0.2694313876	$83 \quad 38$	2.7673692221	65
0.84955 77491	2.8975747641	0.27981 15977	$83 \quad 17$	2.7247943110	64
0.8386731932	2.8626313272	0.2901309871	8255	2.6822 I 93999	63
0.82750 84383	2.8268709732	0.3003841353	8233	2.6396444888	62
0.81607 59576	2.7903432412	0.3105651708	82 IO	2.5970695776	61
0.8043883372	2.7530984351	0.3206677330	8I 46	2.55449 46665	60
0.79245 82474	2.7151875345	0.33068 49323	8 I 2I	2.5119197554	59
0.7802984129	$2.67666 \cdot 21047$	0.3406093073	8055	2.4693448443	58
0.7679215834	2.63757 4208I	0.3504327789	80	2.4267699332	57
0.7553405043	2.5979763158	0.36014 66018	$80 \quad 0$	2.3841950221	56
0.74256 78883	2.5579212198	0.3697413124	79 31	2.34162 olilio	55
0.72961 63864	2.51746 19471	0.3792066740	$79 \quad 2$	2.2990451999	54
0.7164985603	2.4766516742	0.38853 16185	$78 \quad 30$	2.2564702888	53
0.7032268545	2.4355436438	0.3977041848	$77 \quad 58$	2.2138953777	52
0.68981 35699	2.39419 10827	0.4067114546	$77 \quad 24$	2.1713204666	51
0.6762708370	2.3526471220	0.4155394843	$76 \quad 50$	2.12874 55554	50
0.6626105910	2.3109647190	0.42417 32345	76	2.0861706443	49
0.6488445467	2.26919 65819	0.43259 64967	$75 \quad 35$	2.0435957332	48
0.6349841750 0.6210406800	2.2273950955 2.1856122515	$\begin{array}{ll}0.44079 ~ 18172 \\ 0.44874 & 04204\end{array}$	$\begin{array}{ll}74 & 56 \\ 74 & 16\end{array}$	2.0010208221 1. 0584459110	47 46
0.6210406800	2.18561 22515	0.4487404204	7416	I. 9584459110	46
0.6070249768	2.14389 95792	0.4564221286	$73 \quad 33$	I.9158709999	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F $\boldsymbol{\phi}$	r

Smithsonian Tables
$\mathrm{K}=4.0527581695, \quad \mathrm{~K}^{\prime}=1.5727124350, \quad \mathrm{E}=1.0086479569, \quad \mathrm{E}^{\prime}=1.5688837196$,

r	F ϕ	ϕ	E (r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1. 0000000000	0.0000000000
I	0.04503 06463	235	0.0337931823	1. 00007614948	O.OII89 42847
2	0.0900612927	59	0.06740 53633	1. 003045367 I	0.0237947903
3	o. 1350919390	743	o. IO065 84494	1.00684 97794	0.0357077106
4	0.18012 25853	IO 16	0.13338 00630	I. O12I7 16668	0.04763 91855
5	0.2251532316	1248	o. 1654061602	I. OI900 67332	0.0595952742
6	0.27018 38780	I5 18	o. 1965833739	I. 0273494459	0.0715819286
7	0.3I52I 45243	I7 46	0.22677 10168	1.03719 30291	0.08360 49670
8	0.36024 51706	20 I3	0.2558426948	1.0485294558	0.0956700478
9	0.40527 58170	$22 \quad 37$	0.283687502 I	I. 0613494387	0. 1077826441
10	0.4503064633	$24 \quad 58$	0.31021 07894	1. 0756424197	O.II994 80I82
I I	0.4953371096	27 18	0.33533 45137	I. 0913965585	0.13217 II972
12	o. 5403677559	2934	0.35899 71966	I. 1085987206	o. I4445 69485
I3	0.5853984023	3 I 47	0.38115 3529I	I. 1272344637	o. I5680 97563
I4	0.6304290486	$33 \quad 57$	0.4017736714	I. 1472880243	O. 1692337988
I5	0.6754596949	$36 \quad 4$	0. 4208423033	I. 1687423039	o.I8I73 29260
16	0.72049 03413	$38 \quad 8$	0.43835 74800	I. 1915788539	o.1943I 06384
17	0.7655209876	408	0.4543293515	I.21577 78616	0.2069700661
18	0.8105516339	425	0.4687787966	I. 2413I 81358	0.2197I 39498
19	0.85558 22802	$43 \quad 58$	0.4817360209	I. 26817 70925	0.23254 46217
20	0.9006129266	$45 \quad 53$	0.4932391602	I. 2963307415	0.2454639877
21	0.9456435729	4735	0.5033329227	I. 3257536734	0. 25847 35II5
22	0.9906742192	49 I8	0.5120672988	I. 3564 I 90478	0.2715741984
23	I. 0357048656	$50 \quad 57$	0.51949 63591	I. 3882985826	0. 28476 658II
24	1.08073 55119	5233	0.5256771528	I. 4213625446	0.298050707 I
25	I. 12576 61582	546	0.53066 87177	I. 4555797413	0.31142 61261
26	I. 17079 68045	5536	0.53453 12033	I.49091 75157	0.3248918800
27	I.2I582 74509	$57 \quad 2$	0.5373251072	I. 52734 I7416	0.33844 64932
28	I. 2608580972	$\begin{array}{lll}58 & 25\end{array}$	0.5391I 06227	I. 5648168225	0.3520879650
29	I. 3058887435	5945	0.5399470893	I. 6033056919	0.3658137630
30	I.35091 93898	6 I	0. 5398925408	I. 6427698172	0.3796208180
3 I	I. 3959500362	6216	0.53900 33421	I. 6831692055	0.3935055205
32	1. 4409806825	6328	0. 53733 39051	I. 7244624133	0.4074637182
33	I. 4860 I 13288	6436	0. 5349364751	I. 7666065590	0.4214907161
34	1.53104 19752	6542	0.53186 09786	I. 8095573388	$0.43558 \quad 12766$
35	I. 5760726215	6645	0.528I5 49246	I. 8532690463	0.4497296226
36	I. 6211032678	6746	0.5238633506	I. 8976945959	0.4639294409
37	I. 666I3 3914I	6844	0.5190288062	I. 9427855494	0.4781738881
38	I. 7111645605	6940	0.51369 13678	1.98849 21476	0.4924555978
39	I.75619 52068	$70 \quad 33$	0.5078886793	2.0347633449	0.5067666888
40	1.80122 5853I	7125	0.5016560117	2.0815468491	0.5210987757
41	I. 8462564995	72 14	0.49502 63387	2.1287891642	0.5354429804
42	I. 8912871458	$73 \quad 2$	0.4880304242	2.1764356384	0.5497899455
43	I.93631 77921	$73 \quad 47$	0.4806969176	2.2244305163	0.564129849I
44	I.9813484385	74 3I	0.4730524550	2.2727169945	0.57845 24208
45	2.0263790848	75 I2	0.4651217631	2.3212372832	0. 5927469597
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B (r)

$q=0.295488385558687, \quad Ө 0=0.4242361430, \quad \mathrm{HK}=1.6043008048$

B(r)	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90-r
1.00000 00000	3.7862365254	0.00000 00000	$90^{\circ} \mathrm{o}^{\prime}$	4.0527581695	90
0. 9997476964	3.7852999318	0.01098 79345	8949	4.0077275232	89
0.99899 11477	3.7824916163	0.0219749829	8938	3.9626968769	88
0.99773 14382	3.7778159714	0.0329602520	8928	3.9176662306	87
0.9959703726	3.7712803065	0.0439428343	$89 \quad 17$	3.8726355842	86
0.99371 04703	3.7628948312	0.0549218007		3.8276049379	85
0.99095 49588	3.7526726317	0.06589 6193I	$88 \quad 54$	3.7825742916	84
0.98770 77652	3.7406296405	0.0768650165	8843	3.7375436452	83
0.9839735058	3.7267846000	0.08782 72314	$88 \quad 32$	3.6925129989	82
0. 9797574732	3.7111590191	0.0987817452	8820	3.6474823526	81
0.97506 56227	3.6937771248	o. 1097274034	88	3.6024517063	80
0. 9699045558	3.6746658061	0. 1206629807	$87 \quad 56$	3.55742 10599	79
0.96428 15032	3.6538545535	0.13158 71709	8744	3.51239 04136	78
0. 9582043054	3.6313753926	o. 1424985767	$87 \quad 32$	3.4673597673	77
0.95168 13914	3.6072628114	0.15339 56986	$87 \quad 19$	3.4223291209	76
0.9447217573	3.5815536840	0. 1642769227	875	3.37729 84746	75
0. 9373349419	3.5542871880 .	0.17514 05085	$86 \quad 52$	3.3322678283	74
0.9295310017	3.5255047184	0.18598 45746	86 38	3.2872371820	73
0.92132 04850	3.4952497967	0. 1968070842	$86 \quad 24$	3.2422065356	72
0.9127144039	3.4635679762	0.20760 58292	869	3.1971758893	71
0.9037242062	$3 \cdot 4305067437$	0.21837 84126	85	3.15214 52430	70
o. 8943617453	$3 \cdot 3961154178$	0.2291222300	85	3.10711 45967	69
o. 8846392502	$3 \cdot 3604450445$	0. 2398344495	85 85	3. 0620839503	
o. 8745692937	3.3235482896	0.2505119896	85	3.0170533040	67
0.86416 47610	3.2854793300	0.26115 14957	$84 \quad 48$	2.9720226577	66
o. 8534388167	3.2462937417	0.27174 93142	8430	2.9269920113	65
0.84240 48716	3.2060483874	0. 2823014649	84 II	2.8819613650	64
o.83107 65499	3.1648013024	0. 2928036106	$83 \quad 52$	2.8369307187	63
0.81946 76545	3.12261 15798	0.3032510250	$83 \quad 32$	2.7919000724	62
0.80759 21336	3.0795392551	0.31363 85568	83 II	2.7468694260	61
0. 7954640466	3.0356451912	0.3239605923	8249	2.7018387797	60
0.78309 75297	2.9909909630	0.33421 10135		2.6568081334	59 58
0.77050 67624	2.9456387432	0. 3443831544	$\begin{array}{lr}82 & 3 \\ 81 & 39\end{array}$	2.6117774870 2.56674684 .07	
0.75770 59335	2.8996511884	0.3544697527 0.3644628984	$\begin{array}{ll}81 & 39 \\ 8 \mathrm{I} & \text { 13 }\end{array}$	2.56674 2.52171 684.074	57 56
0. 7447092077	2.8530913269	0.3644628984		2.5217161944	56
0.73153 06927	2.8060224483	0.3743539786	$80 \quad 47$	2.4766855480	55
0.7181844065	2.7585079940	0.3841336176	80	2.43165 49017	54
o. 7046842455	2.7106114508	0.3937916142	$79 \quad 50$	2.38662 42554	53
0.69104 39537	2.6623962465	0.4033158729	$79 \quad 20$	2.3415936091	52
0.6772770914	2.613925648 I	0.412697332 I	$78 \quad 49$	2.2965629627	51
0.6633970061	2.5652626633	0.42191 98869	$\begin{array}{ll}78 & 17 \\ 77\end{array}$	2. 2515323164	
0.6494168038	2.5164699446	0. 4309703076	$\begin{array}{ll}77 & 43 \\ 77 & 8\end{array}$	$\begin{aligned} & \text { 2. } 20650 \\ & \text { 2. } 16147 \\ & 16701 \\ & 10238 \end{aligned}$	49 48 48
0. 6353493209	2.4676096971	o. 4398331542 0.4484916855		2.11644 03774	47
0. 6212070978	2.4187435896 2.36993 26700	0.44849 0.45692 77651	$\begin{array}{ll}76 & 31 \\ 75 & 5\end{array}$	2.07140 97311	46
0. 5927469597	2.3212372832	0.46512 17631	$\begin{array}{ll}75 & 12\end{array}$	2.0263790848	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
I	0.04820 72664	246	0.03700 05198	1.0008926934	0.01102 97158
2	0.09641 45328	5. 31	0.07377 86246	1.00357 01695	0.0220673089
3	0.14462 17992	8 I5	o.1ioil 59944	1.00803 06141	0.0331206260
4	0.1928290656	1059	o. 1458023384	1.0142709982	0.0441974541
5	0.2410363320	1341	0.18063 90239	1.0222870707	0.0553054893
6	0. 2892435984	16 2I	0.21444 22668	1.0320733471	0.06645 23081
7	0.3374508648	1859	0. 2470457854	1.0436230963	0.0776453371
8	0.3856581312	2134	0. 2783028485	1.0569283239	0.0888918239
9	0.4338653976		0.3080876822	1.0719797531	0.10019 88085
10	0.4820726640	$26 \quad 37$	0.33629 62369	1.08876 68032	0.11157 30946
1 I	0.5302799304		0.36284 63422	1. 1072775652	0.12302 12218
12	0.5784871968	3127	0.3876773064	1. 1274987762	-.13454 94383
13	0.6266944632	3346	0.41074 90335	1.14941 57909	0.14616 36738
14	0.6749017296	362	0.4320407437	1. 1730125520	0.15786 95139
15	0.72310 89960	$38 \quad 14$	0.45154 93887	1.19827 15591	0.16967 21746
16	0.7713162624	$40 \quad 23$	0. 4692878534	1. 2251738362	0.1815764776
17	0.8195235288	$42 \quad 27$	0.4852830289	1. 2536988987	o. 1935868272
18	0.8677307952		0. 4995738349	I. 2838247193	0.2057071870
19	0.9159380616	$46 \quad 24$	0.51220 92565	1.31552 76945	0.2179410587
20	0.96414 53280	$48 \quad 16$	0.52324 64512	1.34878 26100	0.2302914612
21	1. OI235 25944	505	0. 5327489656	I. 3835626077	0.2427609111
22	1. 0605598608	5 I 50	0. 5407850933	1.41983 91529	0.2553514044
23	1. 1087671272	53 30	0.5474? 63924	I. 457582002 I	0.2680643994
24	1.15697 43936	557	0.55274 63730	1. 4967591734	0.2809008008
25	1.2051816600	5640	0.55681 93566	1. 5373369175	0.2938609452
26	I. 2533889264	58 10	0.5597195044	I. 5792796919	0.3069445879
27	1.30159 61928	5936	0.56152 00057	1.62255 OI370	0.3201508913
28	I. 3498034592	$60 \quad 58$	0.56229 24153	1.66710 90551	0.3334784147
29	1.39801 07256	$62 \quad 17$	0.56210 61265	1.7129153925	0.3469251057
30	1.44621 79920	6333	0.56102 79658	1. 7599262260	0.3604882928
31	1. 4944252584	6446	0.55912 18929	1. 8080967519	0. 3741646804
32	I. 5426325248	$65 \quad 55$	0. 5564487947	1. 8573802804	0.3879503444
33	1. 5908397912		0. 5530663561	1. 9077282336	0.40184 07305
34	1. 6390470676		0. 5490289975	I. 9590901488	0.4158306538
35	1. 6872543240		0. 5443878661	2.0114136867	0.42991 42995
36	I. 7354615904	70	0.53919 08711	2.0646446451	0.44408 52267
37	I. 7836688568		0. 5334827539	2. 1187269773	0.45833 63730
38	1.8318761232	71	0.5273051847	2.17360 28173	0.4726600609
39	1.88008 33896	$72 \quad 45$	0. 5206968791	2.2292125107	0.4870480065
40	I. 9282906560		0.51369 37297	2.2854946508	0. 5014913298
41	1.97649 79224	$74 \quad 20$	0. 5063289466	2.34238 61220	-.51598 05665
42	2.0247051888		0. 4986332034	2.3998221493	-. 5305056822
43	2.0729124552	$75 \quad 47$	0.4906347860	2.4577363538	-. 5450560878
44	2.1211197216	$76 \quad 58$	0.4823597411	2.5160608149	o. 5596206569
45	2.1693269880		0.4738320219	2.5747261393	0.57418 77451
90	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0.320400337134867, \quad \Theta 0=0.3802048484, \quad \mathrm{HK}=1.6608093153$

$B(r)$	C(r)	$\mathbf{G}(\mathbf{r})$	ψ	F ψ	90-r
I. 0000000000	4.37119 23556	0.0000000000	$90^{\circ} \quad 0^{\prime}$	$4 \cdot 3386539760$	90
0.9997308085	4.3700295871	O.OIIO3 73956	8951	4.2904467096	89
0.9989236540	$4 \cdot 3665432014$	0.0220741777	8943	4.2422394432	88
0.9975797949	$4 \cdot 3607389539$	0.0331097273	8934	4.1940321768	87
0.99570 I 3248	$4 \cdot 3526264203$	0.0441434137	8925	4.14582 49104	86
0.99329 I I 666	4.3422I 8973I	0.0551745893	8916	4.0976176440	85
0.9903530638	$4 \cdot 32953$ 37471	0.0662025830	897	4.0494103776	84
0.98689 I5704	$4 \cdot 31459$ I 5972	0.0772266944	8858	4.00120 3III2	83
0.9829120378	4.2974170454	0.0882461873	8849	3.9529958448	82
0.9784205999	4.2780382196	0.0992602826	8839	3.9047885784	8I
0.9734241557	4.2564867836	0.11026 8I5I5	8830	3.85658 I3I20	80
0.9679303503	4.2327978580	O.I2I2689076	8820	3.8083740456	79
0.9619475529	4.2070099336	O.I3226 I5989	88 IO	3.7601667792	78
0.9554848341	4. I7916 47765	O.I4324 51989	88 0	3.7119595128	77
0.9485519406	4.14930 73254	O.I542I 85972	8749	3.6637522464	76
0.94II5 92676	4.II748 55826	0.165I8 05896	$87 \quad 38$	3.6155449800	75
0.9333178308	4.083750497 I	0.176I2 98666	8727	3.5673377136	74
0.9250392359	4.0481558427	O.I8706 50017	8716	3.5I9I3 04472	73
0.9163356463	4.0107580891	O.I9798 44386	874	3.47092 31808	72
0.9072 I 97509	3.9716162682	0.2088864763	8651	3.4227159144	7 I
0.8977047288	3.93079 I8356	0.2197692546	8638	3.3745086480	70
0.8878042140	3.8883485274	0.2306307363	8625	3.32630 I3816	69
0.8775322590	3.8443522135	0.24I4686896	86 II	3.27809 4II52	68
0.8669032971	3.7988707472	0.2522806673	$85 \quad 57$	3.2298868488	67
0.8559321039	3.7519738123	0.26306 39853	8542	3.1816795824	66
$0.84463 \quad 37589$	3.7037327678	0.27381 56982	$85 \quad 27$	$3.13347 \quad 23160$	65
0.8330236055	3.6542204910	0.28453 2573I	85 I I	3.0852650496	64
0.82III 72 II 3	3.6035 I 12193	0.2952 I IO6IO	8454	3.0370577832	63
0.80893 0328I	3.5516803915	0.3058472655	8437	2.9888505168	62
0.79647 885I6	$3.49880 \quad 44891$	0.3164369081	84 I9	2.9406432504	6 I
0.7837787810	3.4449608773	0.32697 529II	84 O	$2.89243 \quad 59840$	60
0.7708461787	3.390227648 I	0.3374572566	8340	2.8442287176	59
0.7576971307	3.33468 3464I	0.34787 7I42I	83 I9	2.79602 I4512	58
0.7443477069	3.2784074042	0.35822 873I9	8257	2.7478141848	57
0.7308139218	3.2214788 II 8	0.36850 52042	8235	2.6996069184	56
0.717II 16962	3.16397 71463	0.3786990740	82 I I	2.6513996520	55
0.7032568193	3 . 10598 I8371	0.38880 2I304	8 I 47	2.6031923856	54
0.6892649116	3.0475721420	0.39880 53693	8I 21	2.55498 51192	53
0.675I5 I3887	2.9888270090	0.40869 89202	8054	2.5067778528	52
0.66093 I4267	2.9298249435	0.41847 19672	8026	2.4585705864	5 I
0.6466I 99275	2.8706438790	0.428II 26638	$79 \quad 56$	2.4103633200	50
0.6322314865	2.8113610542	0.4376080415	7925	2.3621560536	49
0.6177803606	2.7520528945	0.4469439 III	7853	2.3139487872	48
0.6032804384	2.6927948995	0.45610 47583	78 I9	2.2657415208	47
0.5887452110	2.63366 I 5364	0.46507363 II	7744	2.2175342544	46
0.5741877451	2.57472 6I393	0.4738320219	$77 \quad 7$	2.1693269880	45
A(r)	$\mathrm{D}(\mathrm{r})$	$E(\mathbf{r})$	ϕ	F $\boldsymbol{\phi}$	r

Smithsonian Tables
$\mathrm{K}=4.7427172653, \quad \mathrm{~K}^{\prime}=1.5712749524, \quad \mathrm{E}=1.0025840855, \quad \mathrm{E}^{\prime}=1.5703179199$,

r	F ϕ	ϕ	E (r)	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.05269 68585	3 I	0.0415083698	1.00109 49202	0.0098461866
2	o. 1053937170	62	0.0827260369	1.00437 91719	0.01970 23988
3	o.15809 05755	9 I	0.12336 86879	1.00985 12249	0.0295786287
4	0.2107874340	II 59	0.1631644916	I.O1750 85180	0.0394848012
5	0. 2634842925	1456	0.20185 96235	I. 0273474434	0.0494307415
6	0.31618 11510	1749	0.2392229917	1. 0393633238	0.05942 61408
7	0.3688780095	2040	0.2750499964	I. 0535503843	0.0694805245
8	0.4215748680	$23 \quad 28$	0.30916 52198	1.0699017180	0.0796032187
9	0.47427 I7265	$26 \quad 13$	0.3414240166	1.08840 92458	0.089803318 I
10	0. 5269685850	$28 \quad 53$	0.37171 30376	1. 1090636709	0.10008 96542
II	0.5796654435	3130	0.39994 97772	I. I3I85 44282	O. 1104707636
12	0.6323623020	$34 \quad 2$	0.42608 12751	I. 1567696284	0.12095 48573
13	0.6850591605	3630	0.45008 21300	I. 1837959985	-.I3I54 97896
14	0.73775 60190	3853	0.47195 19964	I.2129188I75	0.14226 30292
15	0.79045 28775	412	0.49171 27333	1.24412 18489	0.15310 16293
16	0.84314 97360	$43 \quad 26$	0. 5094053625	1. 2773872698	0.16407 21997
17	0.8958465946	4535	0.52508 69758	1.31269 55975	0.17518 08788
18	0.9485434531	$47 \quad 40$	0.53882 77072	I. 3500256142	0. 1864333074
19	1.00124 03II6	4940	0.55070 78595	I. 3893542896	0.19783 46027
20	I. 05393 71701	5134	0.56081 52531	I. 4306567027	0. 2093893338
2 I	I. 1066340286	$53 \quad 25$	0.56924 28378	I. 4739059633	0.22110 14976
22	I. I 59330887 I	55 I I	0.57608 6592I	I.51907 31337	0.2329744971
23	I. 2120277456	$56 \quad 52$	0.58144 37I72	1.56612 71505	0.24501 III93
24	I. 2647246041	$58 \quad 29$	0.5854I III88	I. 6150347485	0.2572135159
25	1.31742 14626	$60 \quad 2$	0. 5880841618	1. 6657603865	0. 2695831846
26	I.37011 832II	6131	0.58955 56773	1.71826 61750	0.2821209517
27	I.4228151796	6255	0.5899151945	1.77251 18082	0.29482 69565
28	I.4755I 20381	64 I6	0.58924 8372 I	I. 8284544989	0.3077006377
29	I. 5282088966	6533	0.5876366017	I. 8860489185	0.3207407202
30	I. 580905755 I	6646	0.58515 67551	1.94524 71416	0.3339452050
31	I. 63360 26136	6756	0.58188 10541	2.0059985969	0.34731 13599
32	I. 686299472 I	693	0. 5778770364	2.0682500238	0.36083 57125
33	I. 7389963306	706	0.57320 76019	2.13194 54360	0.3745I 40449
34	I.7916931891	717	0.56793 III88	2.19702 60925	0.38834 13902
35	I. 8443900476	724	0.56210 15757	2.2634304764	0.4023120314
36	I. 897086906 I	7259	0. 5557687678	2.3310942822	0.4164195021
37	1. 9497837646	73 51	0. 5489785058	2.39995 04116	0.43065 65890
38	2.0024806231	74 41	0.54177 28388	2.4699289791	0.44501 53371
39	2.0551774816	$75 \quad 28$	0.5341902851	2.54095 73266	0.4594870563
40	2. 1078743401	$76 \quad 12$	0. 5262660647	2.6129600482	0.474062331 I
4 I	2.16057 11986	7655	0.51803 23296	2.6858590255	0.4887310316
42	2.2132680571	$77 \quad 35$	0.5095183887	2.7595734731	0. 5034823272
43	2.2659649156	7814	0.5007509241	2.8340199954	0.51830 47025
44	2.31866 17741	78 50	0.49175 41985	2.9091126530	0.53318 59750
45	2.3713586326	$79 \quad 25$	0.4825502516	2.9847630422	0.548II 33155
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	\mathbf{C} (r)	B(r)

TABLE $\theta=88^{\circ}$
$q=0.353165648296037, \quad Ө 0=0.3246110213, \quad H K=1.7370861537$

B(r)	C(r)	G(r)	ψ	F ψ	90-r
1.00000 00000	5.35291 58734	0.0000000000	$90^{\circ} \quad 0^{\prime}$	4.7427172653	90
0.9997065254	5.35135 39870	0.01107 55804	8954	4.6900204068	89
0.9988266090	$5 \cdot 34667$ III 20	0.0221508037	8947	4.6373235483	88
0.99736 I77 II	$5 \cdot 3388755928$	0.0332253090	89 4I	4.5846266898	87
0.9953145401	$5 \cdot 32798$ 13106	0.0442987274	8935	4.53192 983I3	86
0.9926884456	5.31400 76445	0.0553706778	8928	4.4792329728	85
0.9894880069	5.2969794165	0.06644 07630	89 2I	4.42653 6II43	84
0.9857187199	5.2769268222	0.0775085650	89 I5	4.3738392558	83
0.9813870401	5.2538853459	0.0885736405	898	4.32114 23973	82
0.9765003636	5.2278956618	0.0996355161	89 I	4.2684455388	8I
0.9710670046	5.19900 35203	o. IIO69 36828	$88 \quad 54$	4.2157486803	80
0.96509 61704	5.16725 96214	O.I2I74 75905	8846	4.1630518218	79
0.9585979343	5.1327I 94744	0.13279 66420	8839	4.1103549633	78
0.9515832050	5.0954432457	O.I4384 OI862	88 3I	4.0576581048	77
0.9440636948	5.0554955939	0.15487 75112	8823	4.0049612463	76
$0.93605 \quad 18846$	5.01294 54947	0.16590 78361	88 I5	3.9522643878	75
0.9275609875	4.9678660538	0.17693 03026	886	3.8995675293	74
0.9186049094	4.92033 43119	O.I8794 39654	$87 \quad 58$	3.8468706707	73
0.9091982095	4.8704310392	O. 19894 77822	8748	3.7941738122	72
0.89935 60570	4.8182405226	0.2099406015	8739	$3 \cdot 7414769537$	71
0.8890941880	4.7638503454	0.22092 II 507	$87 \quad 29$	3.6887800952	70
0.8784288604	4.7073511607	0.23I8880216	87 18	3.6360832367	69
0.8673768071	4.6488364589	0.24283 96552	878	3.5833863782	68
0.8559551894	4.5884023314	0.2537743247	8656	$3 \cdot 5306895197$	67
0.84418 1548I	$4 \cdot 5261472300$	0.2646901166	8645	3.47799 26612	66
0.8320737552	4.46217 17234	0.2755849098	8632	3.4252958027	65
0.8196499644	4.3965782526	0.2864563526	86 I9	3.3725989442	64
0.8069285610	4.3294708849	0.29730 18370	866	3.3199020857	63
0.79392 81128	4.2609550677	0.308II 847II	$85 \quad 52$	3.2672052272	62
0.7806673195	4.19113 73836	0.3189030470	$85 \quad 37$	3.2145083687	61
0.7671649636	4.12012 53075	0.3296520072	$85 \quad 21$	3.16181515102	60
0.7534398604	4.0480269653	0.3403614062	855	3.109II 46517	59
0.7395108099	3.9749508972	0.35102 68681	8448	3.0564177932	58
0.7253965478	3.9010058247	0.36164 35409	8429	3.0037209347	57
0.7IIII 56987	3.8263004227	0.3722060448	84 IO	2.9510240762	56
0.6966867291	3.7509430973	0.3827084160	83 5I	2.8983272177	55
0.6821279026	3.6750417706	0.39314 40446	8330	2.8456303592	54
0.6674572351	$3 \cdot 59870 \quad 36716$	0.40350 56060	838	2.7929335007	53
0.6526924519	$3 \cdot 5220351359$	0.41378 49862	8244	2.7402366422	52
0.6378509470	3.4451414133	0.42397 31992	8220	2.6875397837	51
0.6229497425	3.36812 64840	0.4340602965	8 I 55	2.6348429252	50
0.6080054504	3.2910928843	0.4440352686	81 28	2.5821460667	49
0.5930342368	3.2141415421	0.45388 59368	$80 \quad 59$	2.52944 9208I	48
0.5780517864	3.13737 16225	0.46359 88357	$80 \quad 29$	2.4767523496	47
0.5630732704	3.06088 03834	0.473I5 9085I	$79 \quad 58$	2.4240554911	46
0.54811 33155	2.9847630422	0.4825502516	$79 \quad 25$	2.3713586326	45
A(r)	$\mathrm{D}(\mathbf{r})$	\mathbf{E} (r)	ϕ	F ϕ	r

Smithsonian Tables
$K=5.4349098296, \quad K^{\prime}=1.5709159581, \quad E=1.0007515777, \quad E^{\prime}=1.5706767091$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
o	0.00000 00000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0603878870	$3 \quad 27$	0.04919 51488	1. 0014876066	0.00797 98676
2	0.12077 57740	654	0.09795 31901	1. 0059504088	0.01597 27570
3	o.18116 36610	$10 \quad 19$	o. 1458495983	I. O1338883449	0.0239916544
4	0.24155 I5480	$13 \quad 42$	o. 1924842494	1.0238012862	0.0320494760
5	0.30193 94350	17	0.23749 17959	1.0371889963	0.0401590322
6	0.3623273220	$20 \quad 19$	0. 2805500559	1.0535510766	0.0483329925
7	0.4227152090	$23 \quad 32$	0.32138 60670	1. 0728868948	0.0565838508
8	0.48310 30960	2640	0.35977 96610	1.0951955002	0.0649238899
9	- 5434909830	2943	0. 3955646136	1.1204755228	0.0733651472
10	0.6038788700	3240	0. 4286275917	1. 1487250597	0.0819193794
11	0.6642667569	$35 \quad 32$	0.4589052450	1. 1799415472	0.0905980283
12	0.7246546439	$38 \quad 18$	0.48637 98590	1.2141216208	0.09941 21860
13	0.7850425309	$40 \quad 58$	0.5110740138	I.25126 09628	0. 1083725614
14	0.8454304179	$43 \quad 32$	-. 5330446717	1. 2913541391	0. II74894454
15	0.90581 83049	$45 \quad 59$	0. 5523770723	1. 3343944250	o. 1267726784
16	0.9662061919	$48 \quad 20$	0.5691787466	1. 3803736227	0.13623 16162
17	I. 0265940789	5035	0. 5835738857	I. 4292818693	0.14587 50978
18	1. 0869819659	5244	o. 5956982320	I.48110 74384	0.15571 14129
19	I. 1473698529	5447	0.60569 4585I	I. 5358365353	o. 1657482707
20	I . 2077577399	56	0.61370 89715	1. 5934530865	0.1759927682
21	1. 2681456269	58	0.6198874725	I. 6539385266	0. 1864513603
22	I. 3285335139	$60 \quad 20$	0.62437 36797	1.7172715815	0. 1971298307
23	1. 3889214009	62	0.62730 67243	1. 7834280514	0.2080332624
24	1. 4493092879	$63 \quad 35$	0.62881 98144	1.85238 05926	0.2191660113
25	1.50969 71749	$65 \quad 5$	0.62903 92100	1.9240985022	0.2305316788
26	1. 5700850619	6630	0.62808 35657	1. 9985475042	0.2421330872
27	1. 6304729489	67 51	0.6260635735	2.0756895405	0.2539722556
28	I. 6908608359	697	0.6230818462	2.1554825676	0.2660503772
29	1.75124 87229	$70 \quad 19$	0.6192329878	2.2378803597	0.2783677989
30	1.8116366099	$\begin{array}{ll}71 & 27\end{array}$	0.61460 38040	2.3228323203	0.2909240017
31	I. 8720244969	$72 \quad 31$	0.6092736149	2.4102833038	0.30371 75832
32	1.93241 23839	$\begin{array}{ll}73 & 32\end{array}$	0.6033146378	2.5001734479	0.3167462424
33	1. 9928002709	74	0. 5967924144	2.5924380185	0.33000 67656
34	2.05318 81579	$75 \quad 23$	0. 5897662623	2.687007268 I	0.34349 50157
35	2.11357 60449	$76 \quad 14$	0. 5822897341	2.7838063098	0. 3572059222
36	2. 1739639318		0.57441 10737	2.8827550068	0.3711334754
37	2.2343518188	$\begin{array}{ll}77 & 48\end{array}$	-. 5661736598	2.9837678796	0. 3852707211
38	2.2947397058	$78 \quad 31$	o.55761 64315	3.0867540315	0. 3996097596
39	2.3551275928	79 II	o. 5487742910	3.1916170942	0.4141417461
40	2.4155154798	7949	0. 5396784809	3.2982551932	0. 4288568946
4 I	2.47590 33668	80	-. 5303569362	3.4065609346	0. 4437444843
42	2.53629 12538	80	0. 5208346089	$3 \cdot 5164214148$	0. 4587928694
43	2.59667 91408	8130	0.51113 37664	3.6277182525	0. 4739894906
44	2.6570670278		0.50127 42646	3.7403276441	0.4893208915
45	2.7174549148	$82 \quad 28$	0.4912737968	3.8541204436	0.5047727366
90-r	F ψ	ψ	G(r)	C(r)	B(r)

[^3]$q=0.403309306338378, \quad \Theta 0=0.2457332317, \quad \mathrm{HK}=1.8599580878$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1.0000000000	7.5695897180	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	5.43490 98296	90
0.9996643156	7.5670529325	0.01110 10463	8956	5.3745219426	89
0.9986579343	$7 \cdot 5594477064$	0.02220 19579	8953	$5 \cdot 3141340556$	88
0.9969828696	7.5467894142	0.0333025985	8949	5.2537461686	87
0.9946424694	7.5291036233	0.0444028272	8945	5.19335 82816	86
0.9916414052	$7 \cdot 5064260102$	0.05550 24979	8942	5.I329703946	85
0.9879856557	7.4788022428	0.0666014556	8938	5.0725825077	84
0.9836824869	7.4462878301	0.0776995354	8934	5.01219 46207	83
0.9787404272	7.4089479407	0.0887965593	8930	4.9518067337	82
0.9731692390	7.3668571893	0.0998923340	8926	4.8914188467	8 I
0.9669798856	7.3200993943	0. 1109866481	8922	4.8310309597	80
0.96018 44944	7.2687673054	0.12207 92686	$89 \quad 17$	4.7706430727	79
0.9527963165	7.2129623044	0.1331699380	89 I3	4.7102551857	78
0.9448296828	7.1527940797	0. 1442583704	898	4.6498672987	77
0.9362999559	7.0883802759	O. I5534 42469	893	$4 \cdot 58947$ 941I7	76
0.9272234802	7.01984 61207	0.16642 72118	8858	4.52909 I 5247	75
0.9176175278	6.9473240301	O.I7750 68667	8853	4.4687036377	74
0.9075002426	6.8709531948	O. 1885827648	$88 \quad 47$	4.4083157507	73
0.8968905812	6.79087 9148I	O. 1996544048	88 4I	4.3479278637	72
0.88580 82522	6.7072533191	0.2107212232	8835	4.2875399767	71
0.8742736532	6.6202325717	0.2217825863	8829	4.2271520897	70
0.8623078063	6.5299787323	0.2328377807	$88 \quad 22$	4.16676 42027	69
0.8499322921	6.4366581080	0.2438860035	88 I 5	4.10637 63157	68
0.8371691826	6.3404409975	0.2549263501	$88 \quad 7$	4.0459884287	67
0.82404 09732	6.24150 I 1966	0. 2659578012	8759	3.9856005417	66
0.81057 0514I	6.1400155012	0.2769792084	87 51	3.92521 26547	65
0.7967809414	6.0361632083	0.28798 92768	8742	3.8648247677	64
0.7826956083	5.9301256192	0.29898 65471	8733	3.8044368807	63
0.7683380165	5.8220855452	0.3099693739	8723	3.7440489937	62
0.75373 17477	$5 \cdot 7122268183$	0.3209359022	87 I2	3.6836611067	61
0.7389003962	5.60073 38100	0.3318840408	87 I	3.6232732197	60
0.7238675024	5.4877909576	0.34281 14317	86 50	3.56288 53328	59
0.7086564877	$5 \cdot 3735823026$	0.35371 54168	86	$3 \cdot 5024974458$	58
0.6932905904	5.25829 10413	0.36459 29992	8624	3.4421095588	57
0.6777928032	5.14209 90885	0. 37544 08012	86 IO	3.3817216718	56
0.6621858136	5.02518 66588	0. 3862550154	$85 \quad 55$	3.32133 37848	55
0.6464919448	4.9077318631	0.39703 13507	8540	3.2609458978	54
0.6307330999	4.7899103252	0.4077649715	$85 \quad 23$	3.2005580108	53
0.61493 07081	4.6718948167	0.41845 04298	856	3.14017 O1238	52
0.59910 56732	$4 \cdot 5538549133$	0.42908 I5883	$84 \quad 47$	$3.07978 \quad 22368$	5 I
0.5832783254	$4 \cdot 4359566732$	0.43965 15347	$84 \quad 27$	3.0193943498	50
0. 5674683750	4.3183623371	0.45015 24856	846	2.9590064628	49
0.55169 48696	4.2012300521	0.46057 56791	8344	2.8986185758	48
0.53597 6ı539	4.08471 36196	0.47091 12546	8320	2.8382306888	47
0.5203298326	3.9689622668	0.48114 81189	8255	2.7778428018	46
0.5047727366	3.8541204436	0.4912737968	$82 \quad 28$	2.7174549148	45
A(r)	D (r)	E (r)	ϕ	F ϕ	r

INDEX

The numbers refer to pages.
A PAGE
Absolute convergence 109
Addition formulas, Elliptic Functions 250
Algebraic equations 2
Algebraic identities I
Alternating series 110
Archimedes, spiral of 52
Area of polygon 36
Arithmetical progressions 26
Asymptotes to plane curves 40
Axial vector 95
B
Ber and Bei functions 204
Bernoullian numbers 25
polynomial 140
Bessel functions 196
addition formula 199
multiplication formula 199
references 213
Bessel-Clifford differential equation 205
Beta functions 132
Binomial coefficients 19
Binormal 59
Biquadratic equations 10
Bromwich's expansion theorem 212
C
Cassinoid 53
Catenary 52
Cauchy's test 109
Center of curvature, plane curves 39
surfaces 56
Change of variables in multiple inte- grals 17
Characteristic of surface 56
Chord of curvature, plane curves 39
Circle of curvature 39
Circular functions, see Trigonometry
Cissoid 53
Clairaut's differential equation 166
Coefficients, binomial 19
Combinations 17
Comparison test 109
Complementary function 167
Concavity and convexity of plane curves 38, 42
Conchoid 53
Conditional convergence 109
Confluent hypergeometric function I85
Conical coordinates 104
Consistency of linear equations 15
Convergence of binomial series 117
tests for infinite series 109
Covariant property 17
Cubic equations 9
Curl 93
Curvature, plane curves 38
space curves. 5^{8}
Curves, plane 36
space 57
Curvilinear coordinates 99
Curvilinear coordinates, surfaces of revolution 106
Cycloid 5I
Cylindrical coordinates 32, 102
Cylinder functions, see Bessel functions 197
D
d'Alembert's Test 109
Definite integrals, computation by dif-ference functions.225
Simpson's method 22 I
expressed as infinite series 134
de Moivre's theorem 66
Derivatives 155
of definite integrals 156
of implicit functions 161
Descartes' rule of signs 5
Determinants II
Difference functions 222
Differential equations 162
numerical solution 220
Differentiation of determinants 13
Discriminant of biquadratic equa- tion II
Divergence 93
Double periodicity of elliptic functions 250
PAGE
PAGE
PAGE
Maxima and minima I 52
Polynomial 2
Mehler's integrals 193
Minor of determinant 14
Multinomial theorem. I 20
Multiplication of determinants 12
Multiple roots of algebraic equations. 5
N
Neoid 53
Neumann's expansion, zonal har- monics 194
Newton's interpolation formula 22
method for roots of equations 7
theorem on roots of algebraic equa- tions. 2
Normal to plane curves. 36
Numbers, Bernoulli's 140
Euler's 14I
Numerical series 140
Numerical solution of differential equa- tions 220
0
Oblate spheroidal coordinates 107
Operational methods 210
Orthogonal curvilinear coordinates. 100
P
II function, Gauss's 133
Parabola 45
Parabolic coordinates 107
Parabolic cylinder coordinates 105
Parabolic spiral. 53
Parallelepipedon, volume of 92
Partial fractions 20
Particular integral 167
Pedal curves. 10
Pendulum 247
Permutations and combinations. 17
Plane 53
Plane curves 36
polar coordinates 41
Plane geometry 34
Points of inflexion 39, 42
Polar coordinates 32, 101
Plane curves 41
Polar subtangent 37
subnormal 37
normal 37
tangent 37
Polar vector 95
Bernoullian 25
series 119
Principal normal to space curves 58
Products, finite of circular functions 84
limiting values of 152
of two series 110
Progressions. 26
Prolate spheroidal coordinates 107
Q
Quadratic equations 9
Quadriplanar coordinates 33
R
Raabe's test 109
Radius of curvature, plane curves. 38, 42
space curves. 58
surfaces 55
Radius of torsion 59
Reciprocal determinants 14
Resolution into partial fractions 20
Reversion of series 116
Rodrigues' formula 193
Roots of algebraic equations. 2
transcendental equations 84
Rot 93
Routh's rule 6
S
Scalar product 91
Schlomilch's expansion, Bessel func- tions. 201
Series, finite, circular functions 8I
infinite 109
special finite 26
numerical 140
of Bessel functions 201
hypergeometric 209
of zonal harmonics 194
Simpson's method. 221
Singular points. 41
Skew determinants 14
Skew-symmetrical determinants 15
Solid geometry 53
Space curves 57
Spherical polar coordinates IOI
Spherical triangles 78
Spheroidal coordinates 127
Spiral of Archimedes 52
Stirling's formula 28
PAGE PAGE
Stokes's theorem 95
Sturm's theorem 6
Subnormal 36
Subtangent 36
Sums, limiting values of 151
Summation formula, Euler's 25
Surfaces 55
Symbolic form of infinite series II 2
Symbolic methods in differential equa- tions. I 73
Symmetrical determinants 14
Symmetric functions of roots of algebraic equations 2
T
Tables, binomial coefficients 20
hyperbolic functions 72
trigonometric functions 62
Tangent to plane curves 36
Taylor's theorem III
Theta function 248, 251
Toroidal coordinates 108
Tractrix 53
Transcendental equations, roots of 84
Transformation of coordinates 29
determinants 12

4 둘

RETURN Astronomy/Mathematics/Statistics Library TO $\rightarrow 100$ Evans Hall 642-3381

LOAN PERIOD 1 1 MONTH	2	3
4	5	6

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
DUE AS STAMPED BELOW

CD54607398

MATHISTAT
LIBARAY

[^0]: ${ }^{1}$ A second edition of Gray and Mathews' Treatise, prepared by A. Gray and T. M. MacRobert, has been published (192z) while this volume is in press. The notation of the first edition has been altered in some respects.

[^1]: SMITHSONIAN TABLES

[^2]: Smithsonian Tables

[^3]: Smithsonian Tables

