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ADVERTISEMENT
The Smithsonian Institution has maintained for many years a group of

publications in the nature of handy books of information on geographical,

meteorological, physical, and mathematical subjects. These include the

Smithsonian Geographical Tables (third edition, reprint, 1918); the Smithsonian

Meteorological Tables (fourth revised edition, 1918); the Smithsonian Physical

Tables (seventh revised edition, 1921); and the Smithsonian Mathematical

Tables: Hyperbolic Functions (second reprint, 1921).

The present volume comprises the most important formulae of many branches

of applied mathematics, an illustrated discussion of the methods of mechanical

integration, and tables of elliptic functions. The volume has been compiled by
Dr. E. P. Adams, of Princeton University. Prof. F. R. Moulton, of the Univer

sity of Chicago, contributed the section on numerical solution of differential

equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley,

C. B., under the direction of Sir George Greenhill, Bart., who has contributed the

introduction to these tables.

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to

many physicists and mathematicians, especially to Dr. H. L. Curtis and col

leagues of the Bureau of Standards, for advice, criticism, and cooperation in

the preparation of this volume.

CHARLES D. WALCOTT,

Secretary of the Smithsonian Institution.

May, IQ22.

781394



PREFACE

The original object of this collection of mathematical formulae was to bring

together, compactly, some of the more useful results of mathematical analysis

for the benefit of those who regard mathematics as a tool, and not as an end in

itself. There are many such results that are difficult to remember, for one who

is not constantly using them, and to find them one is obliged to look through a

number of books which may not immediately be accessible.

A collection of formulae, to meet the object of the present one, must be

largely a matter of individual selection; for this, reason this volume is issued

in an interleaved edition, so that additions, meeting individual needs, may be

made, and be readily available for reference.

It was not originally intended to include any tables of functions in this

volume, but merely to give references to such tables. An exception was made,

however, in favor of the tables of elliptic functions, calculated, on Sir George

Greenhill s new plan, by Colonel Hippisley, which were fortunately secured for

this volume, inasmuch as these tables are not otherwise available.

In order to keep the volume within reasonable bounds, no tables of indefinite

and definite integrals have been included. For a brief collection, that of the

late Professor B. O. Peirce can hardly be improved upon; and the elaborate

collection of definite integrals by Bierens de Haan show how inadequate any

brief tables of definite integrals would be. A short list of useful tables of this

kind, as well as of other volumes, having an object similar to this one, is appended.

Should the plan of this collection meet with favor, it is hoped that suggestions

for improving it and making it more generally useful may be received.

To Professor Moulton, for contributing the chapter on the Numerical

Integration of Differential Equations, and to Sir George Greenhill, for his Intro

duction to the Tables of Elliptic Functions, I wish to express my gratitude.

And I wish also to record my obligations to the Secretary of the Smithsonian In

stitution, and to Dr. C. G. Abbot, Assistant Secretary of the Institution, for the

way in which they have met all my suggestions with regard to this volume.

E. P. ADAMS
PRINCETON, NEW JERSEY
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SYMBOLS

log logarithm. Whenever used the Naperian logarithm is understood.

To find the common logarithm to base 10 :

logio a = 0.43429 ... log a.

log a = 2.30259 . . . logio a.

1 Factorial, nl where n is an integer denotes 1.2.3.4 n,

Equivalent notation 12

: Does not equal.

&amp;gt; Greater than.

&amp;lt; Less than.

^ Greater than, or equal to.

^ Less than, or equal to.

Binomial coefficient. See 1.61-

&amp;gt; . Approaches.

|
dik

|

Determinant where a a is the element in the ith row and &th column,

a(i, K2, . . . .)
Functional determinant. See 1.37.

dOi, xz )

|

a
\

Absolute value of a. If a is a real quantity its &quot;numerical value,

without regard to sign. If a is a complex quantity, a = a -\- i{3,

|

a
|

= modulus of a = +Va2 + /3
2

.

1 The imaginary = +V i.

*-*

2 Sign of summation, i.e., ^au = 0i + 02 + 03 + + n .

i-i

^=n

Product, i.e., JJ(i + jfe)
=

(i + x)(i + 2x)(i + 33) . . . . (i + *).

viii



I. ALGEBRA
1.00 Algebraic Identities.

!. an - b
n = (a

- b}(a
n~l + an

~2b + an~*b2 + ..... + ab n~2

2. a&quot; 6 n = (a + 6) (a&quot;&quot;

1 - an~2& + an~362 -

n odd: upper sign.

n even: lower sign.

=F ab n~2

3. (x + ai)(x + a2) ..... (x + an) = xn

+ Pn_i* + Pn .

pl
= ai + a2 -f ...... + an .

Pk = sum of all the products of the a s taken k at a time.

Pn

4. (a
2 + &

2
)(a

2 + |8
2
)
= (aa T bft)

2 + (aft &a)
2
.

5. (a
2 - 6

2
)(a

2 -
ft

2
)
= (aa ^/3)

2 -
(aft ia)

2
.

6. (a
2 + 62 + c

2
)(a

2 + /3
2 + 72

)
= (aa + bfi + cyY + (by

-
ftc? + (ca

-

+ (aft
- abY.

7 . (fl
2 + 52 + C

2 + ^2)(a
2 + ^2 + y + 52)

=
(fla + ^ + ^ + ^5)2

+ (a/3 -ba + cd- dy)
2 + (7 - ^6 - ca + d/3)

2 + (a5 + 67 -
eft

- ^a

8. (ac
-

bd)
2 + (ad + be)

2 = (ac + bd)
2 + M -

5c)
2

.

9. (a + b)(b + c}(c + a) =
(a + b + c)(a& + be + ca) -afc.

10. (a + b)(b + c)(c + a) = a2
(b + c) + &2

(c + fl) + c
2
(a + b) + 2abc.

11. (a + b)(b + c)(c + a) = bc(b + c) + ca(c + a) + a6(a + 6) + 2abc.

12. 3 (a + 6) (6 + c)(c + a) = (a + 6 + c)
3 -

(a
3 + 53 + c

3
).

13. (6
-

a)(c
-

a)(c -b) = a2
(c
-

b) + ^2 (^
-

c) + c2 (&
-

a).

14. (6
-

a)(c
-

a)(c
-

6)
=

a(7&amp;gt;

2 - c
2
) + b(c

2 - a2
) + c(a

2 - b2
).

15. (6
-

a)(c
-

a)(c
-

b) =
bc(c

-
b) + ca(a

-
c) + ab(b

-
a).

!6. (a
-

b)
2 +(b- c)

2 + (c- a)
2 = 2[(0

-
b}(a

-
c) + (b

-
a)(b

-
c)

+ (c
-

a)(c
-

b)-].

17. a\V - c2) + b*(c
2 - a2

) + c*(a
2 - b2)

= (a
-

b)(b
-

c}(a
-

c)(ab + be + ca)

18. (a + b + c)(a
2 + 52 + c

2
)
= bc(b + c) + ca(c + a) + a&(^ + W + 3 + ^3 +

19. (a + b + c)(bc + ca + ab) = a2
(b + c) + &2

(c + a) + c
2
(a + b) + ^abc.

20. (b + c- a)(c -{-a- b)(a + b - c)
= a2

(6 + c) + 6
2
(c + a) + c

2
(a + b)
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21. (a f l&amp;gt;
+ c](

- a. b -f c)(a
- b + c)(a + b - c)

= 2(b
2
c
2 + cW + a?b2)

-O4 + b4 + c
4
).

22. (a t c + /: + d}
1

-r.fc-p - c - d)
2 + (a + c - b - d)

2 + (a + d - b - c)
2

= 4 (a
2 + & + (* + d2

).

If ,4 = aa + by + eft

B =
aft + ba + cy

C = ay + bft + COL

23. (a + b + c)(a + (3 + y)=A+B + C.

24. [a
2 + b2 + c

2 -
(aft + bc+ ca)~] [a

2 + /3
2 + 72 -

(aj8 + fty +
= ^2 + ^2 + C2 _

(AB + BC + CA).

25. (a
3 + 63 + c

3 -
3flfc)(a

8 + ]S
3 + 7 3 -

3 a^7) = A* + 53 + C3

ALGEBRAIC EQUATIONS
1.200 The expression

is an integral rational function, or a polynomial, of the wth degree in #.

1.201 The equation /(^)
= o has n roots which may be real or complex, dis

tinct or repeated.

1.202 If the roots of the equation f(x)
= o are ci, GZ, . .

.,
c nj

f(x)
= aQ (x

-
Ci)(x

- c2) ...... (x
- c n)

1.203 Symmetric functions of the roots are expressions giving certain com

binations of the roots in terms of the coefficients. Among the more important

are:

cn = - -
00

#2

+ CiCtfi + . . . + CiC&t + ..... + Cn--2.Cn-.iCn = --

Cn

1.204 Newton s Theorem. If s& denotes the sum of the kth powers of all the

roots of f(x)
=

o,
k k k

Sk = Ci + C2 + ...... + Cn

101 +
202 +

404
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or:

_ _ 01

dQ

_ 202 01
2

dQ dQ
2

s
303 30102 0i

3

00 00&quot;&quot; 00

404 40 1#3 40i
2
02_

2
0o

3
ao

2
0o

4

1.205 If Sk denotes the sum of the reciprocals of the &th powers of all the

roots of the equation f(x)
= o :

C\ Cz C

Idn-l + Sid n = O

2fln_2 + Sidn-i + S2dn = O

0n-l

dn

dn

1.220 If /(5c) is divided by ^ - ^ the result is

Q is the quotient and R the remainder. This operation may be readily per

formed as follows :

Write in line the values of
, &amp;lt;h,

. . ., 0n- If any power of ^ is missing

write o in the corresponding place. Multiply a by h and place the product in

the second line under a\; add to a\ and place the sum in the third line under a\.

Multiply this sum by h and place the product in the second line under a*,
,
add

to 2 and place the sum in the third line under 03. Continue this series of

operations until the third line is full. The last term in the third line is the

remainder, R. The first term in the third line, which is
,
is the coefficient of

xn
~l in the quotient, Q-, the second term is the coefficient of xn~2

,
and so on.



4 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

1.221 It follows from 1.220 that /(/?)
= R. This gives a convenient way of

evaluating f(x) for x = h.

1.222 To express f(x) in the form :

f(x) AQ(X h)
n + AI(X ti)

n~l + .... + A n_i(x h) + A n .

By 1.220 form f(h)
= A n . Repeat this process with each quotient, and the

last term of each line of sums will be a succeeding value of the series of co

efficients A n ,
A n-l, j AQ.

Example :

f(x)
= 3#

5 + 2X* - SX2 + 2X - 4 k = 2

32 = Al

3 = ^o

Thus:

240; + 50

^ ~ 2)
4 + 1360 - 2)

3 + 28o(o:
-

2)
2 + 2 74(^ - 2) + 96

TRANSFORMATION OF EQUATIONS

1.230 To transform the equation f(x)
= o into one whose roots all have their

signs changed: Substitute x for x.

1.231 To transform the equation f(x)
= o into one whose roots are all multi

plied by a constant, m : Substitute x/m for x.

1.232 To transform the equation f(x)
= o into one whose roots are the

reciprocals of the roots of the given equation : Substitute i/x for x and multiply

by xn
.

1.233 To transform the equation f(x)
= o into one whose roots are all increased

or diminished by a constant, h : Substitute x h for x in the given equation,
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5

the upper sign being used if the roots are to be diminished and the lower sign
if they are to be increased. The resulting equation will be:

/(*) + */(*) +
jj/&quot;(A)

+ -J &quot;(K) + = o
o *

where f (x) is the first derivative of f(x), f&quot;(x), the second derivative, etc.

The resulting equation may also be written :

A ox&quot; + A^ n~l + A 2xn~2 + + A n_ix + A n = o

where the coefficients may be found by the method of 1.222 if the roots are to

be diminished. To increase the roots by h change the sign of h.

MULTIPLE ROOTS

1.240 If c is a multiple root of f(x) =
o, of order m, i.e.. repeated m times,

then

/(*)
= (x

-

c is also a multiple root of order m i of the first derived equation, f(x) = o;

of order m 2 of the second derived equation, f&quot;(x)
=

o, and so on.

1.241 The equation f(x) = o will have no multiple roots if f(x) and / (x) have

no common divisor. If F(x) is the greatest common divisor of f(x) and / (#),

f(x)/F(x) =
fi(x), and/i(#) will have no multiple roots.

1.250 An equation of odd degree, n, has at least one real root whose sign is

opposite to that of a n .

1.251 An equation of even degree, n, has one positive and one negative real

root if an is negative.

1.252 The equation f(x)
= o has as many real roots between x = xi and x = #2

as there are changes of sign in f(x) between xi and x%.

1.253 Descartes Rule of Signs: No equation can have more positive roots

than it has changes of sign from + to and from to +, in the terms of f(x).

No equation can have more negative roots than there are changes of sign in f(x).
1.254 If f(x) = o is put in the form

A Q (X
-

k)
n + Ai(x ~ ti)

n~l + + A n = O

by 1.222, and A
, A\, ,

A n are all positive, h is an upper limit of the

positive roots.

If f(x) = o is put in a similar form, and the coefficients are all positive,

h is a lower limit of the negative roots.
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If /(i/#) = o is put in a similar form, and the coefficients are all positive,

h is a lower limit of the positive roots. And with /(- i/x) =
o, h is an upper

limit of the negative roots.

1.255 Sturm s Theorem. Form the functions:

/O) = a x n + 0!*&quot;-
1 + a2x

n~2 + .... + a n

/iO) = / (*) = na xn~l + (n
-

i)ai*&quot;-
2 + .... + an-i

MX) = -R! in /(
= ii* + ^i

3 (*)
= -R2 in !*

The number of real roots of f(x)
= o between x = x\ and x = x% is equal to the

number of changes of sign in the series f(x), fi(x), fa(x), . . . when xi is sub

stituted for x minus the number of changes of sign in the same series when x2

is substituted for x. In forming the functions /i, /2 ,
. . . . numerical factors

may be introduced or suppressed in order to remove fractional coefficients.

Example :

f(x)
= x* 2x* 3^

2 + i off 4

fi(x)
= 2x* - 3*

2 -
3* + 5

/2 (ff)
=

gx*
- 2jx + ii

MX) = -8x -
3

/4 (ff)
= -1433

ff=-oo+ ++ 3 changes

x = o + + 2 changes

#=-foo + + + i change

Therefore there is one positive and one negative real root.

If it can be seen that all the roots of any one of Sturm s functions are

imaginary it is unnecessary to calculate any more of them after that one.

If there are any multiple roots of^the equation f(x)
= o the series of Sturm s

functions will terminate with / r ,
r &amp;lt; n. f r (x) is the highest common factor of

/ and /i. In this case the number of real roots of f(x)
= o lying between x = x\

and ff = xz, each multiple root counting only once, will be the difference be

tween the number of changes of sign in the series /,/i,/2, . . . .,/r when ffi and xz

are successively substituted in them.

1.256 Routh s rule for finding the number of roots whose real parts are

positive. (Rigid Dynamics, Part II, Art. 297.)

Arrange the coefficients in two rows :

xn do 02 #4 ....
n~l
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Form a third row by cross-multiplication:

Form a fourth row by operating on these last two rows by a similar cross-

multiplication. Continue this operation until there are no terms left. The
number of variations of sign in the first column gives the number of roots

whose real parts are positive.

If there are any equal roots some of the subsidiary functions will vanish.

In place of one which vanishes write the differential coefficient of the last one

which does not vanish and proceed in the same way. At the left of each row
is written the power of x corresponding to the first subsidiary function in that

row. This power diminishes by 2 for each succeeding coefficient in the row.

Any row may be multiplied or divided by any positive quantity in order

to remove fractions.

DETERMINATION OF THE ROOTS OF AN EQUATION

1.260 Newton s Method. If a root of the equation f(x)
= o is known to lie

between x\ and x2 its value can be found to any desired degree of approximation

by Newton s method. This method can be applied to transcendental equations
as well as to algebraic equations.

If b is an approximate value of a root,

b
TTJ-}

= c is a second approximation,

c 77-7-7-
= d is a third approximation.

This process may be repeated indefinitely.

1.261 Homer s Method for approximating to the real roots of f(x)
= o.

Let pi be the first approximation, such that pi + i &amp;gt; c &amp;gt; pi, where c is the

root sought. The equation can always be transformed into one in which this

condition holds by multiplying or dividing the roots by some power of 10

by 1.231. Diminish the roots by pi by 1.233. In the transformed equation

A (x
-

p,)
n + Ai(x - piY~

l + .... + An-i(x -pd+A n = o

put

10 A n^i

and diminish the roots by 2/10, yielding a second transformed equation

IO
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If Bn and B n_i are of the same sign pz was taken too large and must be dimin

ished. Then take

P* _
B n

100 B n-l

and continue the operation. The required root will be:

c ^ pi + h + P^ + ,

10 100

1.262 Graeffe s Method. This method determines approximate values of all

the roots of a numerical equation, complex as well as real. Write the equation

of the nth degree

f(x)
= a Qx

n - aix
n~l + chx

n~2 -
. . . . a n = o.

The product

/(x)-f(-x) = A Qx
2n - A&2 &quot;-2 + A 2x2n~* - . . . . A n = o

contains only even powers of x. It is an equation of the nth degree in x2
. The

coefficients are determined by

AQ = do
2

A! = di
2 - 20002

The roots of the equation

A y
n - A^n~l + A 2y

n~2 -
. . . . A n = o

are the squares of the roots of the given equation. Continuing this process we

get an equation
R Qun - RiUn-1 + R2un~2 -

. . . . R n = o

whose roots are the 2
rth powers of the roots of the given equation. Put X = 2 r

.

Let the roots of the given equation be Ci, c2 ,
. . . .

,
cn . Suppose first that

Ci &amp;gt; C2 &amp;gt; C3 &amp;gt; ..... &amp;gt; Cn

Then for large values of X,

, , ... ., n =
-&quot;-o K\ A n_i

If the roots are real they may be determined by extracting the Xth roots of

these quantities. Whether they are is determined by taking the sign which

approximately satisfies the equation f(x) = o.

Suppose next that complex roots enter so that there are equalities among
the absolute values of the roots. Suppose that

I
4 I &amp;gt;

| 4 |
&amp;gt;

| 4 I.
&amp;gt;
---- *\c,\i \cp \&amp;gt;\

cp+l | ;
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Then if X is large enough so that cp
x

is large compared to Cp_|_i
x

, Ci
x

,
c2
x

&amp;gt;

cp
x
approximately satisfy the equation:

and Cp+i
x

, Cp+2
X

,
. . .

,
cn
x
approximately satisfy the equation:

*&amp;gt;-* -
. .Rn = o.

Therefore when X is large enough the given equation breaks down into a number

of simpler equations. This stage is shown in the process of deriving the suc

cessive equations when certain of the coefficients are obtained from those of

the preceding equation simply by squaring.

REFERENCES: Encyklopadie der Math. Wiss. I, i, 3a (Runge).

BAIRSTOW: Applied Aerodynamics, pp. 553-560; the solution of a numerical

equation of the 8th degree is given by GraefTe s Method.

1.270 Quadratic Equations.

#2 + 2ax + b = o.

The roots are:

Xi = a + \/a2 b

x% = a \/a2 b

#1 + #2
= 2a

XiX% = b.

If a2
&amp;gt; b roots are real,

a2 &amp;lt; b roots are complex,

a2 = b roots are equal.

1.271 Cubic equations.

(i) xs + ax2 + bx + c = o.

Substitute

/ \
(2) x = y

- -

o

(3) y
3 - spy -

here

ab i ,
20 = ---- a3

c.

3 27

Roots of (3) :

If p &amp;gt; o, q &amp;gt; o, (f &amp;gt; p

cosh * =
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,

2\/p cosh
o

= - - + iV$p sinh
o

- iVsP sinh
o

If p &amp;gt; o, q &amp;lt; o, g
2

&amp;gt; p
3
,

cosh = ^=

2^/p cosh
O

=
-7 +

= __
2

sinh
3

sinh
3

If p &amp;lt; o

sinh
&amp;lt;f&amp;gt;

=
V-p3

= 2\/ -
/&amp;gt;

sinh

= + ^\/ -
3_/&amp;gt;

cosh
O

-
-^-iV~^~3p cosh|-

If p &amp;gt; o, q
2

&amp;lt; p*,

cos
4&amp;gt;

1.272 Biquadratic equations.

aox* +
Substitute

2V^ COS

~~

+

sin-

+ ^4 = o.
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H = #o#2
S- #i

2

G = #0
2
#3 3#0#1#2 + 2#i

3

F = #o
3
#4 - 4#o

2
#i#3 + 6# #i

2
#2 - 3#i

4

/ = # #4

7-1 97-F = #0 /

II

2#i#2#3 #o#3
2

#1
2
#4 #2

3

= the discriminantA = /3

G2 + #3

Nature of the roots of the biquadratic:

A = o Equal roots are present

Two roots only equal: / and / are not both zero

Three roots are equal : I = J = o

Two distinct pairs of equal roots: G = o; # 2/ - i2//2 = o

Four roots equal : H = I = J = o.

A &amp;lt; o Two real and two complex roots

A &amp;gt; o Roots are either all real or all complex :

H &amp;lt; o and # 2/ - i2#2
&amp;lt; o Roots all real

H &amp;gt; o and a&amp;lt;?I
i2H2

&amp;gt; o Roots all complex.

DETERMINANTS

1.300 A determinant of the nth order, with n2
elements, is written :

A =

#21 #22

#31 #32

#13

#23

#33

#ln

#2n

#3n

, (t, /, =1, 2, ., n)

#nl #n2 #n3 #ni

1.301 A determinant is not changed in value by writing rows for columns and

columns for rows.

1.302 If two columns or two rows of a determinant are interchanged the re

sulting determinant is unchanged in value but is of the opposite sign.

1.303 A determinant vanishes if it has two equal columns or two equal rows.

1.304 If each element of a row or a column is multiplied by the same factor

the determinant itself is multiplied by that factor.
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1.305 A determinant is not changed in value if to each element of a row or

column is added the corresponding element of another row or column mul

tiplied by a common factor.

1.306 If each element of the Ith row or column consists of the sum of two

or more terms the determinant splits up into the sum of two or more de

terminants having for elements of the Ith row or column the separate terms of

the Ith row or column of the given determinant.

1.307 If corresponding elements of two rows or columns of a determinant

have a constant ratio the determinant vanishes.

1.308 If the ratio of the differences of corresponding elements in the pth and

qth rows or columns to the differences of corresponding elements in the rth

and 5th rows or columns be constant the determinant vanishes.

1.309 If p rows or columns of a determinant whose elements are rational

integral functions of x become equal or proportional when x =
h, the determinant

is divisible by (x h)
p~l

.

MULTIPLICATION OF DETERMINANTS

1.320 Two determinants of equal order may be multiplied together by the

scheme :

I an |
X

| ba |

=
1 Cii |

where

cu = dubji + a^b ft + + ainbjn .

1.321 If the two determinants to be multiplied are of unequal order the one

of lower order can be raised to one of equal order by bordering it; i.e. :

1.322 The product of two determinants may be written
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Ln O

dnn O

o bn

13

O

DIFFERENTIATION OF DETERMINANTS

1.330 If the elements of a determinant, A, are functions of a variable, t:

aA
dt

+

where the accents denote differentiation by t.

EXPANSION OF DETERMINANTS

1.340 The complete expansion of a determinant of the nth order contains n\

terms. Each of these terms contains one element from each row and one ele

ment from each column. Any term may be obtained from the leading term :

by keeping the first suffixes unchanged and permuting the second suffixes among
1,2,3,. -,n- The sign of any term is determined by the number of inversions

from the second suffixes of the leading term, being positive if there is an even

number of inversions and negative if there is an odd number of inversions.

1.341 The coefficient of a t-/ when the determinant A is fully expanded is:

a A
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Ay is the first minor of the determinant A corresponding to a i3
- and is a de

terminant of order n i. It may be obtained from A by crossing out the row

and column which intersect in an, and multiplying by ( i)
i4

*.

1.342

an 4- a i2 A jz + . . . . + a n Ayn ^
*

! _ ?

flij Aiy + 02t A2 y + ..... + aniA n j
=

A
* *-

7-

l\ 11 I = J

1.343

a 2A aA,

is the coefficient of aiya fcz in the complete expansion of the determinant A. It

may be obtained from A, except for sign, by crossing out the rows and columns

which intersect in aij and aui.

1.344

A iy |

X
|

ati |

= A&quot;

I A.-,- -A-*.

The determinant
| A-/ |

is the reciprocal determinant to A.

1.345

1.346

1.347

d 2A

A2

a2 A

_ _ ^

dan dak i dan

An A iq

A kl A kq

A pl A pq

a2 A

1.348 If A =
o,

a_A a_A _ c^A aA

dan da k i dau dak j

1.350 If an = a a the determinant is symmetrical. In a symmetrical

determinant

1.351 If an = -da the determinant is a skew determinant. In a skew

determinant

A* = (-i^A*.



ALGEBRA

1.352 If ai j
= an, and an =

o, the determinant is a skew symmetrical

determinant.

A skew symmetrical determinant of even order is a perfect square.

A skew symmetrical determinant of odd order vanishes.

1.360 A system of linear equations:

#11*1 + #12*2 + + #ln*n = &1

#21*1 + #22*2 + + #2n*n = k2

#nl*l + #n2*2 + + annXn = k n

has a solution:

A-ffi = ki AH + k2 A2 f + + k n A n ;

provided that

A =
| aii \

* o.

1.361 If A =
o, but all the first minors are not o,

A..-*/-*.A./ + V&,- - =
i, 2, .... )/ -/ oa 88da r j

r=i

where 5 may be any one of the integers i, 2, ....,.
1.362 If &i = #2 = = kn = o, the linear equations are homogeneous,

and if A =
o,

X
j

X s f \

A-
=
A78

C/-i,,...).

1.363 The condition that w linear homogeneous equations in n variables shall

be consistent is that the determinant, A, shall vanish.

1.364 If there are n + i linear equations in n variables :

#11*1 + #12*2 + + #ln*n = #1

#21*1 + #22*2 + + #2n*n = #2

#nl*l + #n2*2 + + #nn*n = kn

CiXi + Cotf2 + +CnXn = kn+l

the condition that this system shall be consistent is that the determinant-

11 #12 #ln kl

21 #22 #2n ^2

ni #n2 #nn k n

i C2 Cn k n
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1.370 Functional Determinants.

If yi, yz, . . . ., yn are n functions of x\, x2 , ,
xn :

yk =
fk(Xi, Xz, ,

Xn)

the determinant:

ji&amp;gt; yz&amp;gt;
-

., yn)

d(Xi, Xz, . . .
., Xn)

dF

the symmetrical determinant:

H =

dF dF dF\

dx^ dx2 dxn/

&quot;&amp;lt;Z, ,
Xn)

is the Hessian.

1.372 If y} , yz ,
.....

, yn are given as implicit functions of

xn by the n equations :

x2 ,

Fn (yi, , yn , xi, x2 ,

= o

then

d(xi, xz, . .
.,
xn) d(yi, yz, . . .

, yn)

1.373 If the n functions yi, yz, , yn are not independent of each other

the Jacobian, /, vanishes; and if / = o the n functions y\, y2 ,
. . . ., yn are not

independent of each other but are connected by a relation

F(yi, yz, , y n)
= o
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1.374 Covariant property. If the variables #1, %,...., #n are transformed

by a linear substitution:

Xi =
0&amp;lt;il l + 0i2& + ...... + flnn (*

=
I, 2, . . . ., w)

and the functions y\,yz, ..... , yn of xi, xz, .......,xn become the functions

r?i, 172, ..... , *7n of 1, 2 ,
.......

, *:

, dQ?i, 772, ..... , r?n) _ dpi, yz, ..... &amp;gt;

or / = / aiy

where
| a,-,- 1

is the determinant or modulus of the transformation.

For the Hessian,

1.380 To change the variables in a multiple integral :

/ = /....... fF(yi, yi, ..... , yn)dyidyz ..... dyn

to new variables, x\, xz, . . . ., xn when yi t yz, ..... , yn are given functions

of xi t xz, ..... &amp;gt;

xn :

i
d(Xi, Xz, ..... ,

Xn)

where F(x) is the result of substituting xi, X*, . . . ., xn for yi, y2 ,
. .

., y
in F(yi, yz, ..... , y).

PERMUTATIONS AND COMBINATIONS

1.400 Given n different elements. Represent each by a number, 1,2, 3, ..... ,

n. The number of permutations of the n different elements is,

nPn = n\

e.g., n = 3 :

(123), (132), (213), (231), (312), (321) =6 =
3!

1.401 Given n different elements. The number of permutations in groups of

r
(r&amp;lt;n), or the number of r-permutations, is,

nr ~
(n-r}\

e.g., n =
4, r = 3 :

(123) (132) (124) (142) (134) (143) (234) (243) (231) (213) (214) (241) (341) (314)

(312) (321) (324) (342) (412) (421) (431) (413) (423) (432)
= 24
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1.402 Given n different elements. The number of ways they can be
divided into m specified groups, with xi, x2 , ,

xm in each group respec
tively, (xi + xz + + xm)

= n is

nl

TI fr I v \
*vl ..V2 vvfA*

e.g., n =
6, m =

3, Xi =
2, x* =

3, xs
= i :

(12) (345) (6) (13) (245) (6) X 6 = 60

(23) (145) (6) (24) (135) (6)

(34) (125) (6) (35) (124) (6)

(45) (123) (6) (25) (234) (6)

(14) (235) (6) (15) (234) (6)

1.403 Given n elements of which Xi are of one kind, x2 of a second kind,

,
xm of an wth kind. The number of permutations is

i

Xi + X2 + + Xm = H.

1.404 Given n different elements. The number of ways they can be permuted

among m specified groups, when blank groups are allowed, is

(m + n- i) !

(m-i)l

e.g., n =
3, m = 2 :

(123,0) (132,0) (213,0) (231,0) (312,0) (321,0) (12,3) (21,3) (13,2) (31,2) (23,1)

(32,1) (1,23) (1,32) (2,31) (2,13) (3,12) (3,21) (0,123) (0,213) (0,132) (0,231)

(0,312) (0,321)
= 24

1.405 Given n different elements. The number of ways they can be permuted

among m specified groups, when blank groups are not allowed, so that each group
contains at least one element, is

n\(n- i)!

(n m)l(m i)!

e.g., n =
3, m = 2 :

(12,3) (21,3) (13,2) (31, 2) (23,1) (32,1) (1,23) (1,32) (2,31) (2,13) (3,12) (3,21) = 12

1.406 Given n different elements. The number of ways they can be combined

into m specified groups when blank groups are allowed is

mn

e.g., n =
3, m = 2 :

(123,0) (12,3) (13,2) (23,1) (1,23) (2,31) (3,12) (0,123)
= 8

1.407 Given n similar elements. The number of ways they can be combined

into m different groups when blank groups are allowed is
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(n + m -
i)l

(m-
e.g., n =

6, w = 3 :

Group i 6554443333222221 ii i iiooooooo
Group 2 0102013021403125041326051423 =28

Group 3 0010210312041320514230615243
1.408 Given n similar elements. The number of ways they can be combined

into m different groups when blank groups are not allowed, so that each group
shall contain at least one element, is

(n-i)l

(m i)l(n m)i

BINOMIAL COEFFICIENTS

1.51

fn\ nl ( n

(k)
= W^W\

=
\n -

n(n i)(n 2) . . . (n
- k + i)

10. 0+0- +&amp;lt;-&amp;gt;(:)-

II. I +
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1.52 Table of Binomial Coefficients.

C) C) C) (;) C) P (.&quot;.) (.:)

1.521 Glaisher, Mess, of Math. 47, p. 97, 1918, has given a complete table

of binomial coefficients, from n = 2 to n =
50, and k = o to k = n.

1.61 Resolution into Partial Fractions.

If F(x) and f(x) are two polynomials in x and f(x) is of higher degree than

F(x),

F(X) = y F(a) i

y&amp;lt;

i d*-*VF(cy i i

where

The first summation is to be extended for all the simple roots, a, of f(x) and the

second summation for all the multiple roots, c, of order p, of f(x).

FINITE DIFFERENCES AND SUMS.

1.811 Definitions.

1. A/0) -/(**+*)-/(*).
2. A2/W = A/0 + h)

- A/0).
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3. A3
/(*)

= A2/0 + h)
- A2

/0).

= /(* + 3*)
- 3/0 + 2A) + 3/0

nh)
-

-f(x + n-

1.812

i. A[c/0)] = cA/0) (c a constant)

2.

=
/!W - A/2 (x)

1.813 The wth difference of a polynomial of the wth degree is constant. If

/(a;)
= aoXn + a^&quot;-

1 + ..... + a n-ix + a n

An
/0) = nla hn .

1.82

A&quot;*{(j
- b)(x -b-h)(x-b-2h) (x-b- n^

n(n i)(n 2 ) (n m + i)h
m

2. A

= (x
- b)(x -b - h)(x -b-2h)....(x-b-n-m- ih).

i

(x + b) (x + 6 + h) (x + b + 2/0 . . . . + i + n - ih)

rn n(n+i) (n+2) (n + m-
(x + b) (x + b + h) (x + b + 2/0 . . . . + 6 + n + m -

iti)

3. Ama x = (a
A

i)
ma x

4.

5. Am sm JN / . Ch\
m

. / ^ + 7T\
+ a) =

I 2 sm 1 sin I ex + a + m- 1

Cch\
m

( ch 4- TT\
2 sin \ cos f ex + d + w-

j

-
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1.83 Newton s Interpolation Formula.

/(*)
-M +

X

-^ A/(o) +
(*- H*-*-*) Ay(a)

+ (x-a) (x-a-h) (x-a-n-iti)^^
(x- a) (x-a-h) (x

- a - nti) n+1) (
.

+ i!

where has a value intermediate between the greatest and least of a, (a + nti),

and x.

1.831

/( + **) -
/(a) + i A/(.) + 5felJl Ay(a) +

^&quot; )
&quot;

1.832 Symbolically

1. A = e*fa- i

2. f(a + nti)
=

(i + A)
n
/(#)

1.833 If UQ =
f(a), ui=f(a + h), uz = f(a + 2ti), . . . ., u x = f(a + xti),

hx
U x = (i + A)

XU = e
X
~d~x UQ.

1.840 The operator inverse to the difference, A, is the sum, S.

dx -

1.841 If AFO) =/0),

where C is an arbitrary constant.

1.842

2. SCAM +/2w + ...] = SAW + s/2w + . . .

3 .
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1.843 Indefinite Sums.

i. S[0 - b)(x -b - h)(x - b - 2h) ... (x
- b - rT^h)]

(n

V^
2.

(x-b-nh)+C.

(x + b)(x + b + h) . . . . (x + b + n -
ih)

i i

(n-i)h (x + b) (x + b + ti) . . . . (x + b + n -
2h)

c.

sin (ex ---h d\

4. , cos (ex -f d) = -
7--h C.

2 sn
2

,^ cos

5.

/ ch A
lex ---h d\

2 sin
2

1.844 If /(#) is a polynomial of degree n,

S a^}
-
?r:

1.845 If f(x) is a polynomial of degree n,

f(x)
= a Qx

n + aix
n~l + .... + an-ix + an ,

and

2f(x) = FW + C,

F(x) = cox
n+1 + Cix

n + c2xn~l + . . . . + c nx + cn+i,

where

(n + i)hc Q
- a

(n -f i)-
j

- /rc + w/fCi = 0i

-
i) ., w(w -

i) 72 , N7
/?

3c +- ^ ^i + (n - i)hcz = 02

The coefficient cn+i may be taken arbitrarily.
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1.850 Definite Sums. From the indefinite sum,

2f(x) = F(x) + C,

a definite sum is obtained by subtraction,

a+nh

a+mh

1.851

)
= /GO

= F(a + A)
-

F(a).

By means of this formula many finite sums may be evaluated.

1.852
a+nh

^(x -b)(x-b- ti)(x
- b - 2ti) .... (x

- b - Y=
a

1.853
a+nh

= (a
- b + nh) (a

- b + n -
ih) . . . . (a

- b + n -
kti)

(k + i)A

(a-b)(a-b-h) . . . . (a
- b - kh)

(k + i)A

[x a) (x a ti) . . . . (x a k iti)

_ n(n - i)(n - 2) . . . . (n
-

k) Lk
/ 7 \ iv *

1.854 If f(x) is a polynomial of degree m it can be expressed :

f(x) = AQ+- AI(X a) + A 2 (x a) (x a ti) + . . . .

+ A m (x a) (x a ti) . . (x a m iti),

a+nh

n(n -0..-(&quot;- )
A-.

(m+ i)

1.855 If f(x) is a polynomial of degree (w i) or lower, it can be expressed :

f(x)
= A o + Ai(x + mti) 4- A 2 (x + mti) (x + m iti)

+ .... + Am-i(x + mti) . . . (x + 2h)

and,

x(x + ti)(x + 2ti) . . . (x + mti) mh
[ a(a + ti) . . . (a + m iti)
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I

(a + nh) (a + n + m iti)

i

(m i)h \ a(a + h) . . . (a + m 2Ji) (a + nh) . . . (a + n + m 2ti)

+ +
A m-l I I

a a + nh

1.856 If f(x) is a polynomial of degree m it can be expressed :

f(x)
= AQ + AI(X + mh) + A 2 (x + mh)(x + m -

ih) + . . . .

+ A m (x + mh) . . . (x + h)

and,
a+nh_/(*)_ = ^_0/_I_.

x(x + h) . . . (x + mh) mh \ a (a + h) . . . . (a + m -
ih)--1 I

(a + nh) ..... (a + m + n -
ih) J

where,

a + n

1.86 Euler s Summation Formula.

S/(*)
=
| AW* + A,

j/(6)
-

/(a) }
+ ^ 2fe (/ () -/(a)

ftJ a \ (

x=b
w/0 + /t

-
z)

2

ml(f&amp;gt;m (z). with h =
i, is the Bernoullian polynomial.

Ai = -^, ^4 2 fc + i
= o; the coefficients A^ k are connected with Bernoulli s

numbers (6.902), B k , by the relation,
Bi-

(2k)l

I

12 720 30240
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1.861
b

dz -
\ /&amp;lt;

-
/(&amp;gt; + ~

1.862

C , i i dwx i d*ux i

ux = C + I Uxdx --ux ^---y-
--

-r-r H
^ 2 12 &amp;lt;& 720 dx3

30240

SPECIAL FINITE SERIES

1.871 Arithmetical progressions. If 5 is the sum, a the first term, 6 the common

difference, / the last term, and n the number of terms,

5 = a + (a + 5) + (a + 28) + . . . . [a + (n - 1)6]

/ = a + (n
-

i) d

s = -[_2a + (n 1)6]

1.872 Geometrical progressions.

5 = a + ap + ap
2 + + ap

n~l

p
n

i

If
p&amp;lt;i,

n =
&amp;gt;,

* =
7rry

1.873 Harmonical progressions, a, b, c, d, . . . . form an harmonical progression

if the reciprocals, i/a, i/b, i/c, i/d, .... form an arithmetical progression.

1.874.

x = n x = n

(+i) V^
I.

j/jX
x = i

[( + OT
^~

^(n + i) (2W + i)
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1.875 In general,

?
- T +50*- -

i
/ L\

Bi, B2 ,
Bs ,

... are Bernoulli s numbers (6.902), (j\
are the binomial

coefficients (1.51) ;
the series ends with the term in n if k is even, and with the

term in n2
if k is odd.

1.876

( + i) (n + 2)

7 = Euler s constant = 0.5772156649 . . .

1.878

i

12

80

2O

1.877

12

at = i A(i-*) (2
-

kjo

2

(n + i) (w + 2) (n + 3)

(n + i) (n + 2) ( + 3)

I I
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1.879 Stirling s Formula.

log (nl)
=

log \/27r + ( n +-J log n n

f d! 4 ...
A (**-4)l

W

(2^-2)!

o&amp;lt;0&amp;lt;i. The coefficients ^4* are given in 1.86.

1.88

1. i + i! + 2-2! + 3-3! + . . . . + != (n+i)\

2. i-2-3 + 2-
vv4+3-4-5 + . . . . +w(w+i) (w + 2)

= -(+ i) (n + 2

4

3. 1-2-3 ..../-+ 2-3-4 . . . 0+ i) + ....... + n(n+ i) O + 2)

....( + r - i)

n(w + i) (^ + 2) . . . . (n + r)

4. !/&amp;gt; + 2(p + i) + 3(/&amp;gt; + 2) + ....... + (

2^ - 2).

5 .
.

g + (/,
-

i) (q
-

i) + (p
- 2 ) (g

-
2) + ....... (p-n) (q-n)

&quot;*&quot;

a
&quot;*&quot; aa i

b(b+ i) . . . . (b + ri)___
+ i a)a(a + i) . . . . (a + i) Z&amp;gt; + i a



II. GEOMETRY
2.00 Transformation of coordinates in a plane.

2.001 Change of origin. Let x, y be a system of rectangular or oblique coor

dinates with origin at O. Referred to x, y the coordinates of the new origin O
f

are a, b. Then referred to a parallel system of coordinates with origin at O
the coordinates are x

, y .

x = x + a

2.002 Origin unchanged. Directions of axes changed. Oblique coordinates.

Let co be the angle between the x y axes measured counter-clockwise from

the x- to the y-axis. Let the # -axis make an angle a with the #-axis and the

/-axis an angle /3 with the #-axis. All angles are measured counter-clockwise

from the #-axis. Then

x sin co = x sin (co
- a) + y sin (co /?)

y sin co = x sin a -f y sin ]3

co =
j3
- a.

2.003 Rectangular axes. Let both new and old axes be rectangular, the new

axes being turned through an angle 6 with respect to the old axes. Then

x = x
r
cos 6 y sin 6

y = x
r

sin 6 + y cos 6.

2.010 Polar coordinates. Let the y-axis make an angle co with the #-axis and

let the x-axis be the initial line for a system of polar coordinates r, 6. All angles

are measured in a counter-clockwise direction from the x-axis.

_ r sin (co B)

sin co

sin 6
y = r

sin co

2.011 If the x, y axes are rectangular, co =
,

x = r cos B

y = r sin B.

29
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2.020 Transformation of coordinates in three dimensions.

2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coor

dinates with origin at O. Referred to x, y, z the coordinates of the new origin

O are a, b, c. Then referred to a parallel system of coordinates with origin at

O f

the coordinates are x
, y ,

z .

x = x
f + a

y = y + b

z = z + c

2.022 Transformation from one to another rectangular system. Origin un

changed. The two systems are x, y, z and x y z .

Referred to x, y, z the direction cosines of x are /i, miy n\

Referred to x, y, z the direction cosines of y are /2 , m%, th

Referred to x, y, z the direction cosines of z are 13 , m^, n^

The two systems are connected by the scheme :

x = hx + ky
f + hz

y = m\x + why +
z = n\x + n^y + n

/i
2 + m? + nf = i /2

2 +

wi\n\

4-

= O

= o

2.023 If the transformation from one to another rectangular system is a rotation

through an angle 6 about an axis which makes angles a, ]8, y with x, y, z re

spectively,
2 COS 6 =

/i + W2 + W3 I
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cos2 cos2 7
i / r 7 7 i

2.024 Transformation from a rectangular to an oblique system, x, y, z rec

tangular system : x
f

, y ,
z oblique system.

cos xx =
li cos xy = k cos xz = h

&quot;

V
cos yx = mi

^-^&quot;&quot;-^

cos zx
f = HI

cos yy = m%
*^***&amp;lt;*

cos ay
=

7*2

x = fa + /2y + hz

y = m\x
f + nhy + w3z

cos yz =

cos zz
f =

COS z =

cos x y
f =

+

+ ^2^3 +

+ ^i
2 = i

2.025 Transformation from one to another oblique system.

+

z = nix + nzy +

+ (2/3
-

+ (3/i
- w

+ +

COS yZ + 2ii COS ZJC +
COS ^Z + 27*2/2 COS Z# +
cos yz + 2^3/3 cos zx +

COS y = I

COS Xy = I

cos xy = i

of + y cos xy + z cos #z = /i# + /2/ +
y + a; cos rry + z cos zy = m\x + m^y +
z + x cos xz + y cos zy = n\x + Wsy +
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2.026 Transformation from one to another oblique system.

If n x ,
n y ,

n z are the normals to the planes yz, zx, xy and n x t
n yj n z the

normals to the planes y z
}
z x

,
x y ,

x cos xn x = x cos x n x + y cos y n x + z cos z n x .

y cos yn y
= x cos x n y + y

1

cos y n y -f z cos z w y .

2 cos zn z
= x

f

cos tf wz + y cos ;y wz + z cos z n z .

x cos x n x = x cos xn x + y cos yw* + z cos z

y cos y w/ = # cos xn y + 3;
cos yn y

f + z cos z

z cos z n/ = # cos xn z + y cos
)&amp;gt;/ + z cos z

2.030 Transformation from rectangular to spherical polar coordinates.

r, the radius vector to a point makes an angle 6 with the z-axis, the projection

of r on the x-y plane makes an angle (p with the #-axis.

x = r sin 6 cos
&amp;lt;/&amp;gt;

r2 = x2 + f + z2

z

y = r sin 6 sin d&amp;gt; 6 = cos&quot;
1

Vx2 + y
z + z2

z = r cos 6 . y
q&amp;gt;

=
tan&quot;&quot;

1

2.031 Transformation from rectangular to cylindrical coordinates.

p, the perpendicular from the z-axis to a point makes an angle 6 with the

x-z plane. _
x = p cos 6 p = \/x2 + y

2

y = p sin 6 6 = tan-1 ^

z = z

2.032 Curvilinear coordinates in general.

See 4.0

2.040 Eulerian Angles.

Oxyz and Ox y z are two systems of rectangular axes with the same origin 0.

OK is perpendicular to the plane zOz drawn so that if Oz is vertical, and the

projection of Oz perpendicular to Oz is directed to the south, then OK is directed

to the east.

Angles zVz =
6,

yOK= 0,

yVK = $.
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The direction cosines of the two systems of axes are given by the following
scheme :

2.050 Trilinear Coordinates.

A point in a plane is denned if its distances

from two intersecting lines are given. Let CA,
CB (Fig. i) be these lines :

PR =
p, PS =

q, PT = r.

Taking CA and CB as the x-, y-axes, including

an angle C,

sinC

q

sin C

Any curve f(oc,y)
= o becomes :

s

FIG. i

^
VsinC

1

sinCy

If 5 is the area of the triangle CAB (triangle of reference),

2s = ap + bq + cr,

a = BC,
b = CA,
c = AB,

and the equation of a curve may be written in the homogeneous form :

2Sp 2SQ \

f cr) sin C)M + bq sin C (ap + bq +

2.060 Quadriplanar Coordinates.

These are the analogue in 3 dimensions of trilinear coordinates in a plane

(2.050).
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Xi, x2 ,
x3 , Xi denote the distances of a point P from the four sides of a tet

rahedron (the tetrahedron of reference); /i, wi, n\\ 1%, m2 ,
n2 J

/3 , m*, ^3; and

14 ,
m4 ,

n4 the direction cosines of the normals to the planes x\ =
o, x2

=
o, x3

=
o,

x4
= o with respect to a rectangular system of coordinates x, y, z; and di, d2 ,

ds,

d4 the distances of these 4 planes from the origin of coordinates :

L
= /!# -f- ^1^y -f 7^3 ^x

5i, 52, 53 ,
and 54 are the areas of the 4 faces of the tetrahedron of reference

and V its volume:

By means of the first 3 equations of (i) x,y,z are determined :

y = A 2xi + B2x2 + 2X3 + A,

The equation of any surface,

F(x ty,z)
=

o,

may be written in the homogeneous form :

/ f D] 1
1 L 3^

^
_T

U^l + ^2 + C2X, + ^- (5^ + S,X2 + 53.T3 + 5,T4)1
L

5

3^
u

J

[^3^ +^2 + C3.T3 +^ (^ + S2X2 + 53.T3 + ^4)1 1 = O
3^

SlXl
J J

PLANE GEOMETRY

2.100 The equation of a line :

Ax + By + C = o.

2.101 If p is the perpendicular from the origin upon the line, and a and /3 the

angles p makes with the x- and y-axes :

p = x cos a + y cos /?.

2.102 If a and /3 are the angles the line makes with the x- and ;y-axes :

p = y cos a x cos /? .

2.103 The equation of a line may be written

y = ax + 6.

a = tangent of angle the line makes with the #-axis,

b =
intercept of the ^-axis by the line.
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2.104 The two lines:

y = a\x + bi y

y = OzX + b2)

intersect at the point :

,

a\ #2 #1 #2

2.105 If is the angle between the two lines 2.104 :

tan =
I + diOz

2.106 Equations of two parallel lines :

J
Ax + By + d = o ^ f y = ax + bly

\
Ax + By -f C2

= o 1 y = ax + b2 .

2.107 Equations of two perpendicular lines :

(Ax + By + Ci-o (y = ax + b1}

\Bx-Ay + C2
= o

[y.-l + fc.

2.108 Equation of line through xi} y\ and parallel to the line :

Ax + By + C = o or y = ax + b
y

A(x Xi) -\- B(y yi)
= o or

3; y\
= a(x Xi)

2.109 Equation of line through xi, y\ and perpendicular to the line

Ax + By + C = o or y = ax + b,

x - Xi
B(x -

Xi)
- A (y

-
yi)

= o or y -

2.110 Equation of line through x\, y\ making an angle with the line y = ax + b :

a + tan
f

y yi =-
r (x Xi).

i - a tan
(/&amp;gt;

v

2.111 Equation of line through the two points, xi, y\ y
and x2 , y2 :

2.112 Perpendicular distance from the point xi, yi to the line

Ax + By + C = o or y = o# + &,

+ ^V] + C _ &amp;gt;

i

-
g..ri

- b

2.113 Polar equation of the line
3;
= ax -f

b cos

sin (0
- a)

where

tan a. = a.
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2.114 If p, the perpendicular to the line from the origin, makes an angle
with the axis:

p = r cos (B
-

ft).

2.130 Area of polygon whose vertices are at x^ y^ x2) y2
-,

x nj yn = A.

PLANE CURVES

2.200 The equation of a plane curve in rectangular coordinates may be given
in the forms:

(a) y -/().

(b) x=fi(t), y = fz (t). The parametric form.

(c) F(x,y) = o.

2.201 If r is the angle between the tangent to the curve and the #-axis:

/ \ dy ^
/o i t~p n T = . \\

^

(b) tan T
dt

dfi(t)

dt

.
^

(c) tan T = dx

dF(x, y)

dy

In the following formulas,

y = & = tan T (2.201).dx

2.202 OM =
x, MP =

y, angle XTP = r

FIG. 2

TP = y esc T =
tangent,

TM = y cot r = y =
subtangent,

PN = y sec T = y\/i + y
2 = normal,

MN = y tan T = yy = subnormal.

2.203 OT = x -, =
intercept of tangent on #-axis,

OT = y - xy =
intercept of tangent on y-axis,

ON = x -f yy =
intercept of normal on #-axis,

ON = y + =
intercept of normal on ^-axis.
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2.204 OQ = ~^: = = distance of tangent from origin
= PS = projection of

VI +
&amp;gt; radius vector on normal.

Coordinates of Q: ^Z^), L^L.

2.205 OS = - ^ = distance of normal from origin
= PQ =

projection of

&quot;V
J + y radius vector on tangent.

x 4- yy
f

(x + yy )y
Coordinates of S:

75- ,

~
2

*

2.206 OR =
y

t
= polar subtangent,

y = lar tangent

, y(xy
f -

y) x(y
- xv )

Coordinates of R: ^-^--
r~,

-^-V1

x + yy x + yy

2.207 OF = Vx
2 + y

2
(s + yyO = lar subnormal,

= + = lar normal&amp;gt;

y-xy

y(x + yy ) #0 4- yy )
Coordinates pf F: ^^-

^^7-^,
--^j-

y-xy
1 y- xy

2.210 The equations of the tangent at xi, y\ to the curve in the three forms

of 2.200 are:

(a) y
-

yi =f(xi) (x
- xj.

(b)

(c)

2.211 The equations of the normal at Xi, y\ to the curve in the three forms

of 2.200 are:

(a) f (x } ) (y
-

yi) + (x
- x^ = o.

(b) (y
-

yi)fz(ti) + (x xi)fi (ti)
= o.

( \ N f9F\
(c) (

fete
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2.212 The perpendicular from the origin upon the tangent to the curve

F(XJ y)
= o at the point x

} y is:

dF dF
x ^~ + y T~

_ dx dy
*

i / \ T T \ *&amp;gt; y *\ T&amp;gt;\ o

IfdFV fdF\*

Vfe)
+
fe)

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve

lies entirely on one side of the tangent, it is concave or convex upwards according

d?y
as

y&quot;

= 72 *s positive or negative. The positive direction of the axes are shown

in figure 2.

2.220 Convention as to signs. The positive direction of the normal is related

to the positive direction of the tangent as the positive y-axis is related to the

positive tf-axis. The angle r is measured positively in the counter-clockwise

direction from the positive #-axis to the positive tangent.

2.221 Radius of curvature = p; curvature = i/p.

p ds

where 5 is the arc drawn from a fixed point of the curve in the direction of the

positive tangent.

2.222 Formulas for the radius of curvature of curves given in the three forms

of 2.200.

y&quot;

(d_x\* (dy\

(b) P = M+w
dx2

;\2 1 5

dx d2
y dy d2x

dt di2 ~~di dF2 1 WJ \dt
2

If s is taken as the parameter t:

^ = dx (Py_dy d*x = { (d*x\* /^V 1
*

p
~

ds ds2 ds ds2
\ (ds

2
)
+

(ds
2
) J

(c) P = -

dxdy dx dy dy
2

\dx
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2.223 The center of curvature is a point C (fig. 2) on the normal at P such

that PC =
p. If p is positive C lies on the positive normal (2.213) ;

if negative,

on the negative normal.

2.224 The circle of curvature is a circle with C as center and radius =
p.

2.225 The chord .of curvature is the chord of the circle of curvature passing

through the origin and the point P.

2.226 The coordinates of the center of curvature at the point x, y are
, rj:

= x - p sin T

dy
tan T = -

dx

77
= y + p cos T

If /
,
m?

are the direction cosines of the positive normal,

= x+ I p

f\
= y + m P-

2.227 If /, m are the direction cosines of the positive tangent and I
,
m those

of the positive normal,

dl I dm m
ds

~
p ds p

I = m, m = -I,

dV_ _ I dm m
ds p ds p

2.228 If the tangent and normal at P are taken as the x- and y- axes, then

limit %
P = ~~

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point

^2/y ^2^&amp;gt;

of inflexion is a point at which one at least of 35 an^ TT exists and is con-
dx2

dy
2

tinuous and at which one at least of -
3 and - vanishes and changes sign.dx2

dy
2

If the curve is given in the form (b) a point of inflexion, /i, is a point at which

the determinant:

/! 00 /!

vanishes and changes sign.

2.230 Eliminating x and y between the coordinates of the center of curvature

(2.226) and the corresponding equations of the curve (2.200) gives the equation

of the evolute of the curve - the locus of the center of curvature. A curve

which has a given curve for evolute is called an involute of the given curve.
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2.231 The envelope to a family of curves,

i. F(x, y, a) =
o,

where a is a parameter, is obtained by eliminating a between (i) and

dF

9i--
2.232 If the curve is given in the form,

1. *-/ift a)

2. y=fz(t, a),

the envelope is obtained by eliminating t and a between (i), (2) and the func

tional determinant,

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed

point upon the tangent to a given curve is the pedal of the given curve with

reference to the fixed point.

2.240 Asymptotes. The line

y = ax + b

is an asymptote to the curve y =
/(*) if

= t / (*)

2.241 If the curve is

and if for a value of /, /i, /i or /2 becomes infinite, there will be an asymptote if

for that value of / the direction of the tangent to the curve approaches a limit

and the distance of the tangent from a fixed point approaches a limit.

2.242 An asymptote may sometimes be determined by expanding the equation

of the curve in a series,

K limit ^ b k

x-^&amp;lt;*Zj xk
=

k= I

the equation of the asymptote is

J

n
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If of the first degree in x, this represents a rectilinear asymptote; if of a higher

degree, a curvilinear asymptote.

2.250 Singular Points. If the equation of the curve is F (x, y)
=

o, singular

points are those for which

dF^_ dF _
k

dx dy

Put,
d2F *V

dx2
dy

1 dx dy

If A&amp;lt;o the singular point is a double point with two distinct tangents.

A&amp;gt;o the singular point is an isolated point with no real branch of the curve

through it.

A = o the singular point is an osculating point, or a cusp. The curve has two

branches, with a common tangent, which meet at the singular point.

dF dF d2F d2F d2F
simultaneously vanish at a point the singular

dx dy dx2
dy

2 dx dy

point is one of higher order.

PLANE CURVES, POLAR COORDINATES

2.270 The equation of the curve is given in the form,

r=f(0).

In figure 2, OP =
r, angle XOP =

6, angle XTP =
r, angle pPt = 0.

2.271 6 is measured in the counter-clockwise direction from the initial line,

OX, and s, the arc, is so chosen as to increase with 6. The angle &amp;lt;f&amp;gt;

is measured

in the counter-clockwise direction from the positive radius vector to the positive

tangent. Then,
T = e + 0.

2.272 tan &amp;lt;

=
r

-j?

rdO
sin

&amp;lt;p

= r-
as

i

,
dr

cos&amp;lt;/&amp;gt;

= -
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2.273 . dr
sm V -r + r cos 6

du
tan r =

:

a dr . a
cos u -TZ - r sin

2.274 PR = r I + -= polar tangent
dr

PV ....

Y^+
= polar normal

7/3

OR = r2 = polar subtangent

OV =
-TQ

= polar subnormal.

r2

2.275
O&amp;lt;2

=
,

= p = distance of tangent from origin.

OS =
, = = distance of normal from origin.

2.276 If u =
-, the curve r = f(6) is concave or convex to the origin according as

is positive or negative. At a point of inflexion this quantity vanishes and changes

sign.

2.280 The radius of curvature is,

2.281 If u = the radius of curvature is

*
P =
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2.282 If the equation of the curve is given in the form,

r-f(s)

where s is the arc measured from a fixed point of the curve,

2.283 If p is the perpendicular from the origin upon the tangent to the curve,

dr (T-

2.284 If M =

S+-
2.286 Polar coordinates of the center of curvature, n, 0i:

+ ,
dd

+
dd

,dd,

2.287 If 2C is the chord of curvature (2.225):

dr p
2C = 2p-= 2p-,

2

2.290 Rectilinear Asymptotes. If r approaches o&amp;gt; as 6 approaches an angle a,

and if r(a 6) approaches a limit, b, then the straight line

r sin (a -
6)

= b

is an asymptote to the curve r = f(d) .
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2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane
curve is one giving the radius of curvature, p, as a function of the arc, s,

If T is the angle between the #-axis and the positive tangent (2.271) :

ds

T = TQ
/*

ds

/

X = XQ+ I COS T ds
Jsa

y = yo+ I sin T ds.

2.300 The general equation of the second degree:

= o

A = #11 di2 013

021 022 023

031 032 033

A hk = Minor of a hk .

Criterion giving the nature of the curve:

(Pascal: Repertorium der hoheren Mathematik, II, i, p. 228)
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2.400 Parabola (Fig. 3).

2.401 0, Vertex; F, Focus;

ordinate through D, Direc

trix.

Equation of parabola,

origin at O,

x = OM, y = MP,

FL = 20, = semi latus

rectum.

FP = D P.

2.402 FP = FT = MD
= x + a.

FIG. 3

NP = 2Va(a + x), TM = 2X, MN = 2a, ON = x + 20.

FB perpendicular to tangent TP.

FB = Va(a + x), TP = 2TB =- 2Vx(a + x).

~FJ? = FT x FO = FP X FO.

The tangents TP and UP at the extremities of a focal chord PFP meet

on the directrix at U at right angles.

T = angle XTP.

tan r
V/
1 -

V x

The tangent at P bisects the angles FPD and FUD .

2.403 Radius of curvature:

Va 4

Coordinates of center of curvature:

2fl, r;
= -

Equation of Evolute:

4(0; 2a)
3

.
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2.404 Length of arc of parabola measured from vertex,

i +
^
+ \-J

Area OPM = -
xy.

2.405 Polar equation of parabola:

6 = angle XFP,

2d

i cos 6

2.406 Equation of Parabola in terms of p, the perpendicular from F upon the

tangent, and r, the radius vector FP:

L-1
p

2 r

I = semi latus rectum.

2.410 Ellipse (Fig. 4).

FIG. 4

2.411 O, Centre; F, F
,
Foci.

Equation of Ellipse origin at O:

MP, o = O^, b = OB.
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2.412 Parametric Equations of Ellipse,

x = a cos
&amp;lt;/&amp;gt;, y = b sin

c/&amp;gt;.

&amp;lt;f)

= angle XOP ,
where P is the point where the ordinate a

t
t P meets the

eccentric circle, drawn with O as center and radius a.

2.413 OF = OF = ea

Va2 - b2

e = eccentricity =

FL = = a(i e2)
= semi latus rectum;

a

F P = a + #, FP = a- ex, FP + F P = 20.

r = angle XTT .

bx

,
or = -, or = -, MT

05

2.414 DD parallel to T T; DD f and PP r

are conjugate diameters:

OD2 = a2 - eW = FPx F P.

OP2 + OD2 = a2 + b2
.

PS X OD = aft.

Equation of Ellipse referred to conjugate diameters as axes:

r&amp;gt; y; a = angle XOP
^ +

b^
=

j8
= angle

2
.

2
..)
-

5
tan a tan ft

= -
a2 sin2 a. + b2 cos2 a &amp;lt;r

b - OP
a2 sin2 & + b2 cos2

p

2.415 Radius of curvature of Ellipse:

+ M.v2)- (a
P &quot;

angle FPN = angle F PA^ = w,

eav
tan co = --,

2 __ I

p cos CD FP &quot;*&quot; F P
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Coordinates of center of curvature:

Equation of Evolute of Ellipse,

2.416 Area of Ellipse, irab.

Length of arc of Ellipse,

/&amp;lt;*&amp;gt;

VT-- e
2 sin2

&amp;lt;j) d&amp;lt;p.

2.417 Polar Equation of Ellipse,

r = F P, 6 = angle XF P,

a(i - e2)
r =

2.418

i e cos 6

OP, d = angle XOP,

b
r =

V i ~ ^ cosz V

2.419 Equation of Ellipse in terms of p, the perpendicular from F upon the

tangent at P, and r, the radius vector FP:

J_ =
2 _ i

p
2
~

r a

I = semi latus rectum.

2.420 Hyperbola (Fig. 5).

2.421 O, Center; F, F
,
Foci.

Equation of hyperbola, origin at O,

_ =
a2 b2

~

x = OM, y = MP, a = OA
%
= OA .

2.422 Parametric Equations of hyperbola,

x = a cosh u, y = b sinh u.

or

x = a sec
&amp;lt;f&amp;gt;, y = b tan 0.

= angle XOP ,
where P is the point where the ordinate at T meets the

circle of radius a, center O.
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2.423 OF = OF = ea.

e = eccentricity = Va
2 + b2

49

FIG. 5

b2

FL = = a(e
2

i)
= semi latus rectum.

a

F P = ex + a, FP = ex- a, F P - FP = 2a,

T = angle XTP.

tan T =
bx

aVx2 a2

NM =^2&amp;gt; ON= e
2
x, OT = - OT = -,

a2 ^ y

MT =

PS =

, PT =

ab

Ve2x2 - a2
, OS =

2.424

e
2x\/x2 a2

Ve2x2 - a2

OU = Asymptote.

tan XOU = -

a

b a distance of vertex A from asymptote.
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2.425 Radius of curvature of hyperbola,
9\ 3- a2
)
2

ab

angle F PT = angle FPT.

angle FPN = co = - - FPT.

angle F PN = co = - + F PT.

aey
tan co = ~
cos co =

p cos co FP F P

Coordinates of center of curvature,

Equation of Evolute of hyperbola,

2.426 In a rectangular hyperbola b =
a; the asymptotes are perpendicular to

each other. Equation of rectangular hyperbola with asymptotes as axes and

origin at O:
a*

xy =
2

2.427 Length of arc of hyperbola,

52
r$ sec2

&amp;lt;f&amp;gt;

d

aejo \/i k2
si- k2 sin2

2.428 Polar Equation of hyperbola:

e cos 6 i

e2 cos2 6 - i

2.429 Equation of right-hand branch of hyperbola in terms of p, the perpen
dicular from F upon the tangent at P and r, the radius vector FP,

2 r a

I = semi latus rectum.
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2.450 Cycloids and Trochoids.

If a circle of radius a rolls on a straight line as base the extremity of any

radius, a, describes a cycloid. The rectangular equation of a cycloid is:

x =
a((f&amp;gt;

sin
(/&amp;gt;),

y = a(i cos 0),

where the #-axis is the base with the origin at the initial point of contact.
&amp;lt;/&amp;gt;

is

the angle turned through by the moving circle. (Fig. 6.)

Fio.6

A = vertex of cycloid.

C = center of generating circle, drawn tangent at A.

The tangent to the cycloid at P is parallel to the chord AQ.

Arc AP = 2 x chord AQ.
The radius of curvature at P is parallel to the chord QD and equal to 2 x chord QD.

PQ = circular arc AQ.

Length of cycloid: s = 8a; a = CA.

Area of cycloid: 5 = 37ra
2

.

2.451 A point on the radius, b&amp;gt;a,
describes a prolate trochoid. A point,

b&amp;lt;a, describes a curtate trochoid. The general equation of trochoids and

cycloids is

x =
a&amp;lt;p

-
(a -f d) sin 0,

y =
(a + d) (i

- cos 0),

d = o Cycloid,

d&amp;gt;o Prolate trochoid,

d&amp;lt;o Curtate trochoid.

Radius of curvature:

P =
ay + ad + d2
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2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a

circle of radius a that rolls on the convex side o a fixed circle of radius b. An

hypocycloid is described by a point on a circle of radius a that rolls on the con

cave side of a fixed circle of radius b.

Equations of epi- and hypocycloids.

Upper sign: Epicycloid,

Lower sign: Hypocycloid.

b a .

x =
(b a) cos

&amp;lt;t&amp;gt;

=F cos-
&amp;lt;/&amp;gt;,

x . , . b a
,

y =
(b d= a) sin

&amp;lt;p

a sin- 0.

The origin is at the center of the fixed circle. The #-axis is the line joining the

centers of the two circles in the initial position and &amp;lt;/&amp;gt;

is the angle turned through

by the moving circle.

Radius of curvature:

2a(b d= a) a .

p = sin d&amp;gt;.

b 2a 2b

2.453 In the epicycloid put b = a. The curve becomes a Cardioid:

2.454 Catenary. The equation may be written:

i. y = -
a(e

a + e
~
a
).

. x
2. y = a cosh

a log

The radius of curvature, which is equal to the length of the normal, is:

p = a cosh2

a

2.455 Spiral of Archimedes. A point moving uniformly along a line which

rotates uniformly about a fixed point describes a spiral of Archimedes. The

equation is:

r = a6,
or

\/x2 + y*
= a tan&quot;

1 -
00

The polar subtangent = polar subnormal = a.

Radius of curvature:

_
6(2 + 2

) r&amp;gt;+ 20?

2.456 Hyperbolic spiral:

rd = a.
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2.457 Parabolic spiral:
r2 = a2

6.

2.458 Logarithmic or equiangular spiral:

r = ae nd
,

n = cot a. = const.,

a = angle tangent to curve makes with the radius vector.

2.459 Lituus:

2.460 Neoid:
r = a + bd.

2.461 Cissoid:

(x
2

-j- y
2
}x = 2ay

2
,

r = 2a tan 6 sin 6.

2.462 Cassinoid:

r
4 2a?r 2 cos 26 = 64 a4 .

2.463 Lemniscate (6
= a in Cassinoid) :

r2 = 20? cos 20.

2.464 Conchoid: AO /LI \ 9 / 2 2\

2.465 Witch of Agnesi:
x2
y = 40? (20, y).

2.466 Tractrix:

11 a + vV-Tyj /-7 7- fa log ,
- Va2 -

/&amp;gt;5
a - Va2 - f

dy = y

dx Va2
y*?

_ aVa
2 - y

2

p ~
y

SOLID GEOMETRY

2.600 The Plane. The general equation of the plane is:

2.601 I, m, n are the direction cosines of the normal to the plane and p is the

perpendicular distance from the origin upon the plane.

. A, B, C
I, m, n =

. ,

p = Ix + my + nz
t

D
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2.602 The perpendicular from the point xi, yi, Zi upon the plane Ax + By +
Cz + D = o is:

2.603 6 is the angle between the two planes:

Aix + Biy + Ciz + A =
o,

A 2x + B2y + C2z + A =
o,

cos

+ B? + Ci

2.604 Equation of the plane passing through the three points (xi, yi, Zi) (x2 , y2 ,
z2)

+ y + z

22

THE RIGHT LINE

2.620 The equations of a right line passing through the point Xi, yi, zi} and whose
direction cosines are /, m, n are:

I m

2.621 6 is the angle between the two lines whose direction cosines are li, mi, n
}

and 12 , w2 , HZ .

cos 6 =
/i/2 + Wim2 +

sin2 = /iWa - ^Wi 2

2.622 The direction cosines of the normal to the plane denned by the two lines

whose direction cosines are /i, mi, n\ and I2 ,
m2nz are:

7~

- /2W])
2

j
*

2.624 The direction cosines of the shortest distance between the two lines

are:
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2.625 The perpendicular distance from the point #2 , yZj 22 to the line:

x - Xi _ y yi _ z zi

k mi ni

is:

d =
{ fa - xi)

2 + (y2
-

yi)
2 + (22

-
si)

2
j

^ -
j/ife

-
xi) + mi(y2

-
yi) + ni(z-

-
zi) 1 .

2.626 The direction cosines of the line passing through the two points Xi, yi} z\

and #2, yz, 22 are:

fe-aQ, (y2 -yO, (zz-zi)

2.627 The two lines:

x = miz + pi, x = m2z + p2 ,

and

y = n\z + gi, y = n& + q2 ,

intersect at a point if,

(mi
- w2) (qi

-
qz)

-
(ni

-
n*&amp;gt;) (pi

-
p%)

= o.

The coordinates of the point of intersection are:

% pi

mi m% HI rh mi m2 n\

The equation of the plane containing the two lines is then

(ni
- nz) (x

- miZ -
pi)

= (mi - w2) (y- n\z - q^.

SURFACES

2.640 A single equation in x, y, z represents a surface:

F(x, y, z)
= o.

2.641 The direction cosines of the normal to the surface are:

^ E1 f\ 77 *\ 77Of U&quot; O&quot;

dx dv dz
I, m, n =

2.642 The perpendicular from the origin upon the tangent plane at x, y, z is:

p = Ix + my + nz.

2.643 The two principal radii of curvature of the surface F (x, y, z)
= o are

given by the two roots of:
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o,

where:

2.644 The coordinates of each center of curvature are:

,. _ p dF p dF

2.645 The envelope of a family of surfaces:

i. F(x, y, z, a) = o

is found by eliminating a between (i) and

dF
2.

da
= o.

2.646 The characteristic of a surface is a curve defined by the two equations

(i) and (2) in 2.645.

2.647 The envelope of a family of surfaces with two variable parameters,

a, j8, is obtained by eliminating a. and ft between:

i.

2.

F(x, y, z, a, ft)
= o.

dF

da
=

dF
3. 7&amp;gt;

= O
f\ /3

2.648 The equations of a surface may be given in the parametric form:

x =fi(u, v), y =/2 (w, v), z =fz(u, v).

The equation of a tangent plane at %i, yi, Zi is:

where

a(/2 , /8)

d(u, v)

df* a/a

du dv

df* dfr

du dv

,
etc. See 1.370.
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2.649 The direction cosines to the normal to the surface in the form 2.648 aje:

p, p)
?

d(M, v) d(u, v)

f /*(/*, /a)V . W3,/i)V
,

/*(/L

U *(*)/
+

U(&quot;, *)y
+

\ *(, )/

2.650 If the equation of the surface is:

3 =/(#, y)i

the equation of the tangent plane at x\, y\, z\ is:

2.651 The direction cosines of the normal to the surface in the form 2.650 are:

/if) _/^\ + i*

+
\dx)

+
\dy) ]

2.652 The two principal radii of curvature of the surface in the form 2.650

are given by the two roots of:

(rt
- 52) p

2 _
{ (i + f]r - 2pqs + (i + p

2
)t] Vi + p

2 + q* p + (! + f + q*)* = o
,

where

df _ df d*f a2
/&quot;

a2
/

&quot; ~ &quot;

&amp;gt;

~ ~*
2.653 If pi and pz are the two principal radii of curvature of a surface, and p
is the radius of curvature in a plane making an angle &amp;lt;/&amp;gt;

with the plane of pi,

i cos2
4&amp;gt;

sin2 (f)

P Pi P2

2.654 If p and p are the radii of curvature in any two mutually perpendicular

planes, and pi and p2 the two principal radii of curvature:

I + JL = J + .I.

P P Pi P2

2.655 Gauss s measure of the curvature of a surface is:

i i

P
&quot;

PiP2

SPACE CURVES

2.670 The equations of a space curve may be given in the forms

(a) Fi(x, y, 2)
=

o, F2 (x, y, z)
= o.

,
2 =
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2.671 The direction cosines of the tangent to a space curve in the form (a) are:

dFi dFz _ dFi dF2

, dy dz dz dy

~Y~
dFi dF2 OF, dF2

dz dx
~

dx dz
m

T

dFi dF2 dF\ dF&amp;lt;

dx dy dy dx

where T is the positive root of:

dx dx dy dy dz dz

2.672 The direction cosines of the tangent to a space curve in the form (b) are:

,
*&amp;gt; y&amp;gt;

z
-

where the accents denote differentials with respect to t.

2.673 If s, the length of arc measured from a fixed point on the curve is the

parameter, t:

dx dy dz
/, m, n = y

-j-1
ds ds ds

2.674 The principal radius of curvature of a space curve in the form (b) is:

P =
{(y z&quot;

- z
y&quot;)* + (z x&quot;

- x z&quot;Y + (x y&quot;

- y x&quot;Y\*

where the double accents denote second differentials with respect to /, and s,

the length of arc, is a function of /.

2.675 When t = s:

2.676 The direction cosines of the principal normal to the space curve in the

form (b) are:

,
z (z x&quot;

- x
z&quot;)

-
y (x y&quot;

- y x&quot;}

L

f X (X y&quot;

- y x
&quot;)

_ 2 (yV _ 2y)m
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n
y (y z&quot; -z y&quot;}-x (z x&quot; -x

z&quot;)

where

L = x 2 &quot; - z
y&quot;? + (z x&quot;

- x z J + (x y&quot;

-
y *&quot;)

2
}*.

2.677 The direction cosines of the binormal to the curve in the form (b) are:

i&quot;
- *&quot;: ?&quot;.

&quot; &quot;

m
S

r n ..i,.n

S

where

2.678 If 5, the distance measured along the curve from a fixed point on it is

the parameter, t:

where p is the principal radius of curvature; and

*y ^ - * d̂ y
ds ds2 ds ds2

fdz
cPx _ dx

&amp;lt;Pz\~ P
(ds ds2

~
ds ds2)

(dx d?y _dy d?x\
&quot;

^ds ds2
&quot;

^^ ds1
)

2.679 The radius of torsion, or radius of second curvature of a space curve is

T =

S2

x
&quot;

y

2

&quot;

2&quot;

&quot; &quot;

where 5* is given in 2.677.

2.680 When / = 5;
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dx dy dz

ds ds ds

~ds* 7? ds2

d?x d?y dsz

ds3 ds3 dss

2.681 The direction cosines of the tangent to a space curve in the form (c) are:

/, m, n =
i + y

2 + z
2

where accents denote differentials with respect to x:

dx dx

2.682 The principal radius of curvature of a space curve in the form (c) is:

+ V*4- 7.
2V } *

(y z&quot;
- z

y&quot;)

2 + y&quot;

2 + z&quot;

2

2.683 The radius of torsion of a space curve in the form (c) Js:

(i + y
2 + z /2

)
3

T =
2 ff &quot; -p
2
(y

f
z

2.690 The relation between the direction cosines of the tangent, principal

normal and binormal to a space curve is:

I m n = i.

l
r m n 1

I&quot; m&quot; n 1

2.691 The tangent, principal normal and binormal all being mutually perpen
dicular the relations of 2.00 hold among their direction cosines.



III. TRIGONOMETRY
smxi i i

3.00 tan x =-
&amp;gt; sec x = --

&amp;gt; esc x = --
&amp;gt; cot x =

cos x cos x sm x tan x

sec2 x = i + tan2
#, csc2# = i + cot2

#, sin2# + cos2# =
i,

. x
versm x = i - cos x, coversm x = i sm x, haversm x = sm2 -

2

4 /I COS 2X . /
3.01 sin * = - sin (- *) = y ,

=
2y COS - - COS -i

2 2

i + tan**
x

,

tan2
*

cot _ cot x tan + cot
2 2

= cot -
(i cos *) = tan -

(i + cos x),

= sin y cos (* y) + cos y sin (* y),

cos y sin (* + y) sin y cos (x + ^),

3.02 cos x = cos ( x) =
COS

* .
2
*

2
*

cos^ - smj - = 2 cos2
i22 2

i-tan2 -
2 I

+ tan2 *

i + tan2 - i + tan x tan - tan * cot i
2 22

X X
cot tan -

2 2 COt * Sin 2X

x x
&quot;v/i -4- cot ^jc 2 sin x

cot - + tan - *

cos y cos (* + y) + sin y sin (* + y),

cos y cos (* y) sin y sin (* y),

61
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sin 2x i - cos 2x
3.03 tan x = - tan (- x)

=
I + COS 2X sm

1 cos 2# _ sin (# + y) + sin (ac
-

y)

i -f cos 2X cos (x + y) + cos (x y)

cos (x
-

y)
- cos (x + y)

sin (x + y)
- sin (x y)

x

= COt X - 2 COt 2X,

tan tan -
2

+
2

2 tan -
2

i - tan - i + tan - i - tan2 -222
i - tan - i + tan -

2 2

3.04 The values of five trigonometric functions in terms of the sixth are given

in the following table. (For signs, see 3.05.)

3.05 The trigonometric functions are periodic, the periods of the sin, cos, sec,

esc being 2?r, and those of the tan and cot, IT. Their signs may be determined

from the following table. In using formulas giving any of the trigonometric
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functions by the root of some quantity, the proper sign may be taken from this

table.

3.10 Functions of Half an Angle. (See 3.05 for signs.)

3.101

3.102

. i Jisin -x =
y

-
- COS X

-
&amp;lt;
V i + sin x T Vi^ sin # \

COS - = COS X

+ sm x V i sm

^ 2 \ Vi + tan2
a;/

3.103 1 A / 1 cos x
tan -x = V ~

2 V i + cos x
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sin x i - cos x
~

i + cos x
~

sin x

+ tan2 x - i

tan x

3.11 Functions of the Sum and Difference of Two Angles.

3.111 sin (x y)
= sin x cos y cos * sin y,

= cos x cos y (tan x tan y),

tan # =t tan y
sin (# =F y),

tan # T tan y

-
|

cos (x + y) + cos (#
-

y) \ (tan # tan

3.112 cos (# y)
= cos x cos y =F sin x sin y,

= cos x cos y (i T tan # tan y),

cot # =F tan y ,

cot x =h tan 3;

cot ; =F tan

cos

. x N
sin (* ^ y).

cot y tan x =F i

= cos sin 3 (cot 3;
=F tan x).

3.113 tan x tan
tan (a y)

=
i =F tan x tan y

cot y db cot x

cot a; cot y =F i

sin 2x sin 2y

COS 2 + COS 2y

3.114 , N cot x cot
cot (x y)

=
cot y cot #

sin 2 =F sin 2y

COS 2X COS 2y

3.115 The cosine and sine of the sum of any number of angles in terms of the

sine and cosine of the angles are given by the real and imaginary parts of

cos (xi + x2 +.... + x n) + i sin (xl + xz + . . . . + x n)

= (cos Xi + i sin xi) (cos x%-\- i sin x%) (cos xn + i sin xn)
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3.12 Sums and Differences of Trigonometric Functions.

3.121 sin x sin y = 2 sin -|(.v y) cos \(x =F y),

= (cos a; + cos y) tan f (# y),

= (cos y
- cos x) cot J(* T )0

tan 4(# =fc y) / . . \= - -^ (sin * =F sin y).
tan J(a =F y)

3.122 cos x + cos y = 2 cos |(j + y) cos J(*
-

y),

_ sin a sin y

tan J(# =t y)
1

cot *(# + y) / x=-
17 ^ (cos y

- cos x).
tan J(a

-
y)

3.123 cos # - cos y = 2 sin %(y + x) sin J(y
-

x)

= -(sin ff sin y) tan |(^ =F y).

sin (j y)
3.124 ^ * tan

cos cosy

=^f^ (tan * T tan y),
sin(^=F^)

= tan y tan (x y) (cot 3;
=F tan

_ i =F tan x tan y

cot (x =b y)

3.125 cot x cot y =

(i =F tan x tan y) tan (x db

sm ^
sin * sm

3.130
sin x d= sin

.

COS Of + COS

Sin:tsin
cos x cos y

sin x + sin y _ tan \ (x + y)

sin x sin y tan J (#
-

y)
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3.140

1. sin2 x + sin2 y = i - cos (x + y) cos (x y).

2. sin2 x sin2 y = cos2
y
- cos2 x

= sin (x + y) sin (x y).

3. cos2 x sin2 y = cos (x + y) cos (x
-

y).

4. sin2 (x + y) + sin2 (#
-

y)
= i - cos 20; cos 2y.

5. sin2 (# + ?)- sin2 (x ~
y)

= sin 2^ sin 2y.

6. cos2
(# + y) + cos2

(#
-

y)
= i + cos 2x cos 23;.

7. cos2 (x + y) cos2 (# y)
= sin 2# sin 2y.

3.150

1. cos nx cos wo; = J cos (n m)x + | cos (w + w)#.

2. sin w# sin w# = f cos (n
- m)x \ cos (n + m)x.

3. cos nx sin w# = J sin (w + m)x \ sin ( m)x.

3.160

2. a x+iy = a x
{cos (j log a) + i sin (j log a)

3. (cos x i sin #)
n = cos nx z sin nx

[De Moivre s Theorem].

4- sin (x iy)
= sin x cosh y z cos ^ sinh y.

5- cos (# iy)
= cos ac cosh y^ri sin # sinh y.

6. cos x = \(e
ix + e~ ix

).

7. sin ac = -- (e
ix e~ ix

).

8. e ix = cos x + i sin #.

9- e~ ia; = cos x - i sin x.

3.170 Sines and Cosines of Multiple Angles.

3.171 n an even integer:

sin nx - ncos* sin * - * ~ 2*

cos
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3.172 n an odd integer:

,

,

sin nx = n ( sin #--
j

- sm3 x H
&amp;lt;3

*

cos nx = cos
(n

2 - i
2
) .

2 (^
2 - i

2
) (n

2 -
3
2
) ,

I

i - --
j

- sm2 3 H--- *^ sin4
*-....&amp;gt;

3.173 an even integer:
/ / \

sin wrx; = (-i)
2 cos # &amp;lt; 2

n~l sin 71
&quot;1 # - --

j

2 n
~3 sinn

~3 x

- 4)
2n
_5

s
.

nn
_5 ^ _ (n- 4)(*-5)(*-6) 7 sinn

_7 ^
2! 3

cos nx = (-1)2 { 2
n~l sin 71 x

(

2 n
~3 sin 71

&quot;2 x -i
-

j-^ 2 n
~5 sin n~

.&quot;(&quot;-aHtt-S),.-,^,-.,.

3.174 n an odd integer :

sin nx =
( i)~T~ &amp;lt; 2 n

~l sin 71 x
j

2 n
~3 sinn

~2 x -|
j

~ 2
n~5 sin n

~4 x

&amp;gt;t

~
5) 2- sin-

cos nx = (-1) 2 cos x
{

2 n
~1 sin 71

&quot;1 x - 2 n
~3 sin n

~3 x

&amp;lt;*

-
4) ( &quot;

-
5) ( &quot;

-
6)

2- sin-

3.175 n any integer :(^ 2
2 n
~l COS 71

&quot;1 ^ 2 n~3 COS 71
&quot;3 X

(n
-

3) (n
-

4)
2n
_ 5 cosn

_5 x _ (n - 4) (n
-

5) O -
6)

2n
_7 cosn

_7

2! 3!

cos nx = 2 n
~l cos 71 x ^7 2

n~3 cos n~2 x -\ r^^ 2
n~5 cos 71

&quot;4 x
i! 2!

_(-4)(-5) a
.-T cos..-, iH..
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3.176 sin 2x = 2 sin x cos x.

sin 30:
= sin x (3

- 4 sin2 x)

= sin #(4 cos2 # i).

sin 4x = sin #(8 cos3 # - 4 cos x).

sin 50;
= sin x($ - 20 sin2 x + 16 sin4 #)

= sin x(i6 cos4
a; - 12 cos2 ^ + i).

sin 6x = sin #(32 cos 5 x 32 cos3
a; + 6 cos #).

3.177 cos 2x = cos2 x sin2 x
= 1 2 sin2 x

= 2 COS2 # I.

cos 3# = cos #(4 cos2 # 3)

- cos x(i 4 sin2 x).

cos 4 = 8 cos4 # - 8 cos2 x + i.

cos 50;
= cos a;(i6 cos4 x 20 cos2 ^ + 5)

= cos x(i6 sin4 ^ - 12 sin2 ^ + i).

cos 6x = 32 cos6 x - 48 cos4 x + 18 cos2 x - i.

3 -1170 2 tan x
178 tan 2# =

COt

i tan2 x

cot2 x - i

2 COt X

3.180 Integral Powers of Sine and Cosine.

3.181 n an even integer :

n(n-

cos&quot; x =~ cos nx + n cos (n - 2)* + ?l(?Lz
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3.182 n an odd integer :

n i

sinn x = *_/
I

sin nx - n sin (n
-

2}x + -
^

sin (w
-

4)3;

n(n i) (n 2) .
,

, ^LL n! }- - -^ Hsin (n
- 6)x + .... + (-1) 2

;
_ Sin

O *

cosn x =
, \

cos nx + n cos (w
-

2)x -\ : cos (n
- 4)x

2 1
^

21

. w(w -
i) (n

-
2) n\

3.183

sin2 x = i( T cos 2x).

sin3 = |(3 sin ^ - sin 3^).

sin4 x = | (cos 4^ 4 cos 2x -f 3) .

sin5 x = -^(sin 5^ 5 sin 3^; + 10 sin x).

sin6 x = -%(cos 6x 6 cos 4#+ 15 cos 2x 10).

3.184

COS2 X = J(l + COS 2^).

cos3
a; = i(3 cos nc + cos 3^).

cos4 x = 1(3 -V 4 cos 2^ + cos 4#).

cos5 ^ = -rs(io cos x + 5 cos 3^ + cos 5).

cos6 # = ^V(10 + X 5 cos 2ic + 6 cos 4^ + cos 6x).

INVERSE CIRCULAR FUNCTIONS

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if

w
o&amp;lt;sm~

1

x&amp;lt;,
2

the solution of x = sin 6 is :

6 = 2mr + sin&quot;
1

x,

where n is a positive integer. In the following formulas the cyclic constants are

omitted.
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sin&quot;
1 x = sm~l (x) = -

-cos&quot;
1^ = cos&quot;

1 \/i x2

-
sin&quot;

1 Vi - #2 = - + - sin-1

(2#
2 -

i)

= -
cos&quot;

1

(i 2x2
)
= tan&quot;

1
,

2 Vi -

= 2 tan&quot;
1

I - X2
1 I _x j

2#V I - X2

2 1 I - 2 2

COt&quot;
1

& log (x + V a:
2

i)

3.22

cos 1 x = w - cos-1

(-x) = - sin-1 x = cos&quot;
1

(2^ -
i)

= 2 COS

= 2 tan-1

Vi - *2

*

2X2 - I
, /

i log (x + a;
2 - i)= 7T- * log

-X2

3.23

tan-1 x = - tan-1

(-*) = sin-1
x

=

= sn = - cot-1 x = sec-1

7T ,1 I i - x2

tan&quot;
1 - = -

cos&quot;
1

52 # 2 i + x2

2 COS
.

\/2\I
= 2 Sin

2\/I

I
, , 2iC= - tan-1 = 2 tan

= - tan-1 c + tan-1

I -

1 . , i - w- z log r
2

6 1+
I ^ 1

^ + ^ = _
J

I +^
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3.25

i.

2.

3-

4-

5-

sin&quot;
1 x sin-1 y = sia~l

cos&quot;
1 z cos

sin- a; db cos&quot; y =

X rt &quot;V

tan-1 x d= tan&quot;
1

y = tan&quot;
1

^ x

tan&quot;
1 x cot&quot;

1

y = tan-1 -
ŷ=Fx

= cot-1

HYPERBOLIC FUNCTIONS

3.30 Formulas for the hyperbolic functions may be obtained from the corre

sponding formulas for the circular functions by replacing x by ix and using the

following relations:

1. sin ix = \i(e
x - e~ x

}
= i sinh x.

2 . cos ix = \(e
x + e~ x

)
- cosh x.

3-

4-

5-

6.

7-

10.

.

tan ix =

cot ^ =
a; i

i

i tanh x.

i coth 35.

sec ix =

CSC

= sech x.

21 = i csch x.
e
x e~ a

sin&quot;
1 w; = i sinh&quot;

1 # = i log (# + Vi + x2
}

7T

cos&quot;
1 ix = - i cosh-1 # = log (*

tan&quot;
1

c = i tanh&quot;
1 x = i log

i + jc

cot i coth x ^ = i log

i - x

X+ I

X I
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3.310 The values of five hyperbolic functions in terms of the sixth are given in

the following table :

3.311 Periodicity of the Hyperbolic Functions.

The functions sinh x, cosh x, sech x, csch # have an imaginary period 2iri, e.g. :

cosh x = cosh (x + 2win),

where n is any integer. The functions tanh x, coth x have an imaginary period iri.

The values of the hyperbolic functions for the argument o, i, iri,
-

&amp;gt;

are given in the following table :
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3.33

1. sinh (x d= y)
= sinh x cosh

;y
cosh x sinh

2. cosh (x y)
= cosh a; cosh y sinh # sinh

, tanh x db tanh,

tanh (s y)

. f ,

coth (* y)

r- r
i d= tanh x tanh

coth ^ coth 3;- --
coth y coth x

3.34

1. sinh x + sinh y = 2 sinh J(# + y) cosh \(x y).

2. sinh x sinh y = 2 cosh J(# + y) sinh %(x y).

3. cosh x + cosh y = 2 cosh J(# + y) cosh \(x y).

4. cosh x cosh y = 2 sinh |(# + y) sinn i(^ y)

sinh (x + r)
c. tanh x + tanh v =

6. tanh x tanh y =

cosh # cosh y

sinh (.r
-

3 )
- ^-

cosh x cosh y

sinh ( + y)
7. coth s + coth y = -^-r . /

sinn x smn y

sinh (# y)
8. coth x - coth y = --

:

^

.
,

sinn x sinh
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3.35

1. sinh (x + y) + sinh (x y)
= 2 sinh x cosh

;y.

2. sinh (x + y) sinh (# y) =2 cosh a; sinh y.

3. cosh (# + y) + cosh (# y)
= 2 cosh # cosh y.

4. cosh (# + y) cosh (# y)
= 2 sinh x sinh y.

, i , x sinh x =t sinh y
5. tanh }( y)

= r--
cosh x + cosh y

N sinh x T sinh y
6. cothiO;

tanh # + tanh y sinh (^ + y).

tanh # tanh y sinh (a; y).

r-
cosh x cosh y

sinh (^ + y).

sinh (a; y).

coth x + coth y _ sinh (x + y)

coth x coth y sinh (x y)

3.36

1. sinh (x + y) + cosh (x + y)
= (cosh # + sinh x) (cosh y + sinh y).

2. sinh (# + y) sinh (of
-

y)
= sinh2 # - sinh2 y

= cosh2 # - cosh2
y.

3. cosh (x + y) cosh (# y)
= cosh2 # + sinh2

y

= sinh2 x + cosh2
y.

i + tanh i#
4. sinh ^ + cosh x = -

= T~
*

i tanh %x

5. (sinh aj + cosh x)
n = cosh w^: + sinh nx.

3.37

1. e x = cosh + sinh

2. e~ x = cosh x sinh

3. sinh x = \(e
x e~ x

).

4- cosh x = \(e
x + e&quot;

1
).
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3.38

1. sinh 2X = 2 sinh x cosh x,

2 tanh x
~

i - tanh2 x

2. cosh 2X = cosh2 x + sinh2 x = 2 cosh2 x i,

= 1 + 2 sinh2
#,

i + tanh2 x

tanh 2X =

i tanh2 x

2 tanh #

i + tanh2 x

4. sinh 3* = 3 sinh x + 4 sinh3
#.

5. cosh 3# = 4 cosh3 # 3 cosh x.

3 tanh re + tanh3 x
6. tanh rr

1 + 3 tanh2 x

3.40 Inverse Hyperbolic Functions.

The hyperbolic functions being periodic, the inverse functions are multiple

valued (3.311). In the following formulas the periodic constants are omitted,

the principal values only being given.

1. sinn&quot;
1 x =

log (x + vV + i)
= cosh&quot;

1 Vx2 + i.

2. cosh&quot;
1 x =

log (x + V*2 -
i)

= sinh&quot;
1 Vjc2 i.

3. tanh-1 x =
log W ;* i A-

4. coth&quot;
1 # = log V/

- - =& V x - i

T- J
= tann&quot;

1 -
x

&amp;lt;;.

seen&quot;
1 x = log (

- + V/-^
- i

)
= cosh&quot;

1 -*
Ve T o / #

6. csch&quot;
1 # =

log (-

3.41

1. sinh-1 x d= sinh&quot;
1

y = si

2. cosh&quot;
1 x d= cosh&quot;

1

y = cosh&quot;
1

(xy V(x2
i)(y

2
i)).

^ _j_ -y

3. tanh&quot;
1 ^ tanh&quot;

1

y = tanh&quot;
1
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3.42

i. cosh&quot;
1

-\x + -
)
= sinh&quot;

1
-{ -),

2\ x/ 2\ xy

, . X2
I X I= tanh&quot;

1 = 2 tanh&quot;
1

,

=
log x.

2. cosh&quot;
1 csc 2x = sinh&quot;

1 cot 2X = tanh&quot;
1 cos 2x,

=
log tan x.

3. tanh&quot;
1 tan2

(
- +

-J
= -

log csc x.

4. tanh&quot;
1 tan2 - = -

log sec x.22

3.43 The Gudermannian.

1. cosh x = sec 9.

2. sinh x = tan 6.

e
x = sec 6 + tan 6 = tan

4. * =
log tan + -

5.
= gd x.

(- + -
J

3.44

1. sinh x = tan gd x.

2. cosh x = sec gd x.

3. tanh x = sin gd x.

4- tanh - - tan -
gd x-

i cos
( hgdzj

^- \ 2

. /7T \m
^-

+ gd
xj

,

c * I + sm g

COS gd ^
sm
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6. tanh&quot;
1 tan x = i gd 2X.

7.
tan-1 tanh x = i gd&quot;

1 2X.

SOLUTION OF OBLIQUE PLANE TRIANGLES

3.50

a, b, c = Sides of triangle,

a
t ft, 7 = angles opposite to a, b, c, respectively,

A = area of triangle,

s = (a + b + c).

Given Sought Formula

a, b, c a.

1 /(s -b)(s-c)
tan -a= V

2 V s (s
-

a)

cos a = -
20C

a, b, a ft sin ft
=

A = Vs(s - a)(s-b)(s-c).

b sin a.

When a&amp;gt;b, 3&amp;lt; and but one value results. When b&amp;gt;a

2

has two values.
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Given Sought Formula
1 , . i sin j3 sin 7

^4 ^1 = - ab sin 7 = - a2
T-

L -

2 2 sin a

a sin 7
a, b, y & tan

b a cos 7

a, ft iO + ft) =9o-iT-

tan -(a -
ft)

= 7 cot J^
2 a + b

c = (a
2 + ft

2 -
2&amp;lt;z cos 7)*.

= a b*-ab cos2

2sn

a & , sin
where tan

&amp;lt;/&amp;gt;

=
cos 9 a b

a sn 7
sin a

A =\ ab sin 7.

SOLUTION OF .SPHERICAL TRIANGLES

3.51 Right-angled spherical triangles.

a, b
}

c = sides of triangle, c the side opposite 7, the right angle,

a, ]8, 7 = angles opposite a, &, c, respectively.

3.511 Napier s Rules:

The five parts are a, b, co c, co a, co ft where co c = - - c. The right angle

7 is omitted.

The sine of the middle part is equal to the product of the tangents of the

adjacent parts.

The sine of the middle part is equal to the product of the cosines of opposite

parts.

From these rules the following equations follow:

sin a = sin c sin a,

tan a = tan c cos |8
= sin b tan a,

sin b = sin c sin /3,

tan b = tan c cos a = sin a tan ft

cos a = cos a sin ft

cos /3
= cos 6 sin a,

cos c = cot a cot j8
= cos a cos b.
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3.52 Oblique-angled spherical triangles.

a, b, c = sides of triangle.

a? p j y = angles opposite to a, b, c, respectively.

5 = J (a + b + c),

Given

a, b
}
c

a, P, 7

a, c, a.

Ambiguous case.

Two solutions

possible.

a, 7, c

Ambiguous case.

Two solutions

possible.

a + l3+y 1 80 = spherical excess,

surface of triangle on sphere of radius r.

Sought

a

Formula

sin2 J a = haversin a,

sin (5 b) sin (s c)

sin b sin c

sin (s b) sin (s c)i- a. =
2

COS2 - a =
2

haversin a =

sin s sin (s a)

sin s sin (5 a)

sin b sin c

hav a - hav (b
-

c)

sin 6 sin c

sin2 \a = haversin a,

2
T

2

sin 7 =

cos cr cos (cr a)

sin j3 sin 7
- cos cr cos (cr op

cos (cr j3) cos (cr 7)

cos (cr
- g) cos (o-

- 7)

sin ]8 sin 7

sin a. sin c

sin a

tan 6 = tan a cos c.

sin (/3 + 6)
= sin tan c cot

cot = tan c cos a.

cos a sin
&amp;lt;/&amp;gt;

,.
sin

(&+&amp;lt;/&amp;gt;)

cos c

sin c =
sin a sin 7

sin a:
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Given Sought Formula

tan c sin
&amp;lt;/&amp;gt;

b tan b = -
7 ^

sin (a + &amp;lt;/&amp;gt;)

cos*+
sin a + p

cot Ja cot J& + cos y
cot * e =

-n^r-
tan2

Je = tan J^ tan \(s
-

a) tan %(s
-

b)

tan ^-

FINITE SERIES OF CIRCULAR FUNCTIONS

3.60 If the sum, / (r), of the finite or infinite series:

/ (r)
=

flo + 0i r + ^2 ^2 +

is known, the sums of the series:

51 = a cos x + air cos (x + y) + a2 r2 cos (x + 2?

52
= ao sin x + ai r sin (x + y) + #2 r2 sin (# + 2?

are:

51 = J{*
x
/(&quot;*

v
) + r- V(rr)| f

52
= - ~{e

ix
f(re

iv
)
- e~ ix

f(r e~
iy
)}.

3.61 Special Finite Series.

. nx . n+i
sin -- sin x

. , 2 2
sm kx =

sin -

nx n+ i
cos sin

2. S J ^V^D t\*\s

sin -

2
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n cos (n+ i)#-sin nx
n~ kx =

:

2 2 sm x

n+ 2 cos (w 4- i)#-sin
4. &amp;gt;

,
cos2 kx =--

1

2 sin a;

n cos

2,
. ,

sm nx
ksmk m-

...as . *
4 snr- 2 sin -

/2 - i\
sm - - la

\ 2 / i cos
k cos

. x . .x
2 sin -

4 sin&quot;
1 -

2 2

.

7. 7 . Sin (2k I)X =
:

sm x

sm a: H sm

8.

, fn+ i \m - y
l 2

sn

COS ( i

9. 7&quot; cos (x + ky)
=

sin-

/ i. / \ sm
sm (2k i)x = (-i)

2 COS X

n cos

2 COS
2

n i

X^ . . , r sin #(i - rn cos w#) -
(i
- r cos #)r

n sin
12.

&amp;gt;,
r*sinjbf~-

^-* i 2f cos a: + r2

k=i

ni
,

. _ (i
- r cos x) (i

- rn cos nx) + fn+1 sin x sin nff

i 2r cos x
k=o

IS-

t
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X
= cot - - 2 cot 2X.SI

X I

-r tan ,
=

2
k 2

k 2 n

k=--o

X^ k2 2ir \Jn f mr
? 2/ cos

&quot;^

=
-~l

I + cosT
k=o

^\ . k2 27T Vn I mr nir\
18.

&amp;gt;,
sm - ~ i + cos- -sin

J n 2 V 2 2 /
yfe=i

i

2.
&7T 7T

sin = cot
n 2n

22n
&quot;*&quot;2 _ i I X-tan

b
*

2n-l + 4 COt 2X - COt-
ft-o

3.62
i

CSC

Watson (Phil. Mag. 31, p. in, 1916) has obtained an asymptotic expansion

for this sum, and has given the following approximation:

Sn = 2^(0.7329355992 logio(2w)
- 0.1806453871}

0.087266 O.OIO35 O.OO4 O.OO5
I ^ t I 7 . .

w w3 w5 w

Values of 6*n are tabulated by integers from n = 2 to n =
30, and from n = 30

to w = 100 at intervals of 5.

The expansion of

27T 27T
where __-&amp;lt;^&amp;lt;_

is also obtained.
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3.70 Finite Products.

i. sin nx = n sin x cos x I I / i r- I n even.

2. cos nx = I I / i \ n even.

3- sin nx = n sin x
J

I / i -r
j
n odd.

k = 1 I sin2 /
\ n I

ni
2

/ \

n/
sin2 x \/i r 1 n odd.

. 2k - I

* = i \ Sin2 7T/
\ 2H /

ni

5. cos wx cos ny = 2 n
~1 I f &amp;lt; cos x cos f y + -

j
&amp;gt;

*=o
n i

TT I 7 / 2&7T\ ,

6. a2n 2anb n cos wx + 52n =
J

I &amp;lt; a2 200 cos ( ^ H 1 + o
2

Jfe
=

ROOTS OF TRANSCENDENTAL EQUATIONS
3.800 tan x = x.

The first 17 roots, and the corresponding maxima and minima of -

x

are given in the following table (Lommel, Abh. Munch. Akad. (2) 15, 123, 1886):

n xn Max sin x
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3.801

The first three roots are:

tan x =

O,

2X

*2
= 119.26,

If x is large

2 16
Xn = ^7T - -

(Rayleigh, Theory of Sound, II, p. 265.)

3.802

The first two roots are:

3.803

The first two roots are:

3.804

The first seven roots are:

tan x =

= o

gx
2 -

9

= 3-3422.

(Rayleigh, 1. c. p. 266.)

tan x =
i

Xi =
O,

X2 = 2.744.

(J. J. Thomson, Recent Researches, p. 373.)

Xi =
O,

x2
=

1.834671-,

#3 =
2.895071-,

#4 = 3-922S7T,

x$ = 4-9385^

*6
= 5-94897T,

x 7
= 6.95637T.

(Lamb, London Math. Soc. Proc. 13, 1882.)

3.805

tan x
4 -
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The first seven roots are:

Xi =
O,

Xz = O.8l6o7T,

X-3
= I.92857r,

*4 = 2.935Q7T,

X;,
=

3.96587]-,

X6
=

4.972871-,

*7 =
5-97747T-

3.806

The roots are:

3.807

The roots are:

3.808

The roots are:

(Lamb, 1. c.)

cos x cosh x = i.

#4

3.809 The smallest root of

is

= 4.7300408,

= 7.8532046,

= 10.9956078,

= 14.1371655,

*5
= 17.2787596,

xn = i(2w + I)TT w&amp;gt;5.

(Rayleigh, Theory of Sound, I, p. 278.)

cos x cosh x = i.

xi = 1.875104,

x2
= 4.694098,

*3= 7-854757,

*4
=

10.995541,

x5
= 14.137168,

#6
=

17.278759,

xn = \(2n I)TT n&amp;gt;6.

i - (i + r&amp;gt;)
cos x = o.

Xi =
1.102506,

x2 = 4.754761,

^3 =
7.837964,

#4 = 11.003766,

xb
=

14.132185,

XQ =
17.282097.

(Schlomilch: Ubungsbuch, I, p. 354.)

- cot 6 =
o,

(1. c. p. 355.)



TRIGONOMETRY 87

3.810 The smallest root of

B - cos 6 =
0,

6 = 42 2o
f

47&quot;-3.

(1. c. p. 353.)

3.811 The smallest root of

xe x - 2 = o,

is

x = 0.8526.
(1. c. p. 353.)

3.812 The smallest root of

log (i + x)
- }* =

o,

is

x = 0.73360.
(1. c. p. 353-)

3.813
i

tan x x -f
- = o.
x

The first roots are:

xi = 4-480,

*2 =
7-7 2

3&amp;gt;

#3
= 10.90,

#4 = 14.07.

(Collo, Annalen der Physik, 65, p. 45, 1921.)

3.814
i

cot x + x - = o.
00

The first roots are:

Xi =
O,

*2
= 2.744,

#3 = 6.II7,

#4 =
9-3!7&amp;gt;

#5 = 12.48,

X6
= 15.64,

X7 = 18.80.

(Collo, 1. c.)

3.90 Special Tables.

sin 6, cos B: The British Association Report for 1916 contains the following

tables :

Table I, p. 60. sin 6, cos 6, 6 expressed in radians from B = o to 6 = 1.600,

interval o.ooi, 10 decimal places.

Table II, p. 88. 6 - sin 0, i - cos 0,
= o.ooooi to = o.ooioo, interval

o.ooooi, 10 decimal places.
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Table III, p. 90. sin 6, cos 6; 6 = o.i to 6 = 10.0, interval o.i, 15 decimal

places.

J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, 1911) has given sines and

cosines for every sexagesimal second to 21 places.

hav 6, logio hav 6: Bowditch, American Practical Navigator, five-place

tables, o - 180, for
15&quot;

intervals.

Tables for Solution of Spherical Triangles.

Aquino s Altitude and Azimuth Tables, London, 1918. Reprinted in Hydro-

graphic Office Publication, No. 200, Washington, 1918.

Hyperbolic Functions.

The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the

most complete five-place tables of Hyperbolic Functions.

Table I. The common logarithms (base 10) of sinh u, cosh u, tanh u, coth u:

u = o.oooi to u = o.iooo interval o.oooi,

u = o.ooi to u = 3.000 interval o.ooi,

u = 3.00 to u = 6.00 interval o.oi.

Table II. sinh u, cosh u, tanh u, coth u. Same ranges and intervals.

Table III. sin u, cos u, logio sin u, logio cos u:

u = o.oooi to u = o.iooo interval o.oooi,

u = o.ioo to u = i.600 interval o.ooi.

Table IV. Iogi e
u

(7 places), eu and e~u (7 significant figures):

u = o.ooi to u = 2.950 interval o.ooi,

u = 3.00 to u = 6.00 interval o.oi,

u = i.o to u = 100 interval i.o (9-10 figures).

Table V. five-place table of natural logarithms, log u.

u = i.o to u = 1000 interval i.o,

u = 1000 to u = 10,000 varying intervals.

Table VI. gd u (7 places); u expressed in radians, u = o.ooi to u = 3.000,

interval o.ooi, and the corresponding angular measure, u = 3.00 to u =
6.00,

interval o.oi.

Table VII. gd^u, to o .oi, in terms of gd u in degrees and minutes from

o i to 89 59 .

Table VIII. Table for conversion of radians into angular measure.
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Kennelly: Tables of Complex Hyperbolic and Circular Functions.

Cambridge, Harvard University Press, 1914.

The complex argument, x + lq
= pe

id
. In the tables this is denoted p/5.

p = vV + q\ tan 5 = q/x.

Tables I, II, III give the hyperbolic sine, cosine and tangent of (pZo)

expressed as rZ 7 :

5 = 45 to &amp;lt;5

= 90 interval i

p = o.oi to p = 3.0 interval o.i.

sinh 6 tanh 6 . n . ~

Tables IV and V give ^ ,

g
expressed as r /. 7, V = pZd,

p = o.i to p = 3.0 interval o.i,

d = 45 to 5 = 90 interval i.

Table VI gives sinh (p/45), cosh (p/45), tanh (p/45), coth (p/45),

sech (p/45), csch (p/45) expressed as rZ 7:

p = o to p = 6.0 interval o.i,

p = 6.05 to p = 20.50 interval 0.05.

Tables VII, VIII and IX give sinh (x + iq), cosh (x + iq), tanh (x + iq),

expressed as u + iv:

x = o to x = 3.95 interval 0.05,

q = o to q = 2.0 interval 0.05.

Tables X, XI, XII give sinh (x + iq), cosh (x + iq), tanh (x + iq) expressed

as r Z 7 :

x = o to x = 3.95 interval 0.05,

q = o to q = 2.0 interval 0.05.

Table XIII gives sinh (4 + iq), cosh (4 + iq), tanh (4 + iq) expressed both

as u + iv and r Z 7 :

&amp;lt;7

= o to q = 2.0 interval 0.05.

e
x e

x

Table XIV gives
- and logw

x = 4.00 to x = 10.00 interval o.oi.

Table XV gives the real hyperbolic functions: sinh 6, cosh 6, tanh 6, coth 6,

sech d, csch d.

6 = to 0=2. 5 interval o.oi,

=
2.5 to 6 =

7.5 interval o.i.
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Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant

Figures. Berkeley, University of California Press, 1918.

Table I. logio sinh x, with the first three differences.

x = .0000 to x = 2.018 nterval o.ooi.

Table II. logio cosh x.

x = o.ooo to x =
2.032 interval o.ooi .

Table III. logio tanh x.

x = o.ooo to x - 2.018 interval o.ooi.

sinh x
Table IV. logio

x

x = o.oo to x = 0.506 interval o.ooi.

mii -tr i tanh x
Table V. logio ;x

x = o.ooo to x = 0.506 interval o.ooi.

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV,
fifth memoir, Washington, 1921.

i nir

Tables of , *, e~x
,
enir

, e-*, *&, sin x, cos x, to 23-62 decimal places or

significant figures.



IV. VECTOR ANALYSIS

4.000 A vector A has components along the three rectangular axes, x, y, z :

A x ,
A v ,

A z .

A = length of vector.

A = VA x
2 + A y

z + A ?.

A A A
Direction cosines of A, p, f, j-.A. A A.

4.001 Addition of vectors.

A + B = C.

C is a vector with components.

C x = A X + B X .

Cy = A y + By.

C z
= A 2 + B Z .

4.002 B = angle between A and B.

C = VA 2 + B 2 + 2AB cos 6.

CQS e =
A xB x + A yB y + A zB 2

AB

4.003 If a, b, c are any three non-coplanar vectors of unit length, any vector^

R, may be expressed:
R = aa + bb + cc,

where a, b, c are the lengths of the projections of R upon a, b, c respectively.

4.004 Scalar product of two vectors:

SAB - (AB) = AB
are equivalent notations. ^

AB = ylcos AB.

4.005 Vector product of two vectors:

FAB = A X B - [AB] = C.

C is a vector whose length is ^
C = AB sin AB.

The direction of C is perpendicular to both A and B such that a right-handed

rotation about C through the angle A B turns A into B.

91
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4.006 i, j, k are three unit vectors perpendicular to each other. If their direc

tions coincide with the axes x, y, z of a rectangular system of coordinates:

A = A xi + A J + A 2k.

4.007

4.008

4.009

4.010

ii = i
2 =

jj
=

j
2 = kk = k2 =

i,

ij
=

ji
= jk = kj = ki = ik = o.

Fij = -
Vji =

k,

Fjk = - Fkj =
i,

Fki = - Fik =
j.

AB = BA = AB cos AB = A XB X + A yB y + A 2B,

FAB = - FBA = i j k

.^A x **- y **- z

B X By B z

= (A VB 2
- A 2By)i + (A 2B X

- A XB,)J + (A xB y
- A yB x)k.

4.10 If A, B, C, are any three vectors:

AFBC = BFCA = CFAB
= Volume of parallelepipedon having A, B, C as edges

x ** y ** z

C

By B Z

C y C z

4.11

1. FA(B + C) = FAB + FAC.

2. F(A + B) (C + D) = FA(C + D) + FB(C + D).

3. FAFBC = B5AC - C5AB.

4. FAFBC + FBFCA + FCFAB = o.

5. FAB-FCD = AC-BD - BC-AD.

6. F(FAB- FCD) = C5(DFAB) - D5(CFAB)
= OS(A FED) - D5(AFBC)
= B5(AFCD) -A5(BFCD)
= B5(CFDA) - A5-(CT

7
DB).



4.20

i.

2.

VECTOR ANALYSIS

dAE = AdE+EdA.
dVAE = VAdE + VdAE

= VAdB - VEdA.

93

4.21

i.

2.

3. V4&amp;gt;
= grad &amp;lt;/&amp;gt;

= !

4. FVA = curl A = rot A

dA dA

d2 a2 a 2

4.22

i. curl grad curl
V&amp;lt;#&amp;gt;

=
FVV&amp;lt;/&amp;gt;

= o.

2. div grad =

3. div curl A = o.

4. curl curl A = curl2 A = V div A - V 2A.

5. V 2A = iV 2A*

6 -

= V 2
&amp;lt;/&amp;gt;

= + r +
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4.23

1. VAB = grad AB = (AV)B + (BV)A + F.A curl B + F.B curl A.

2. VFAB - div FAB = B curl A - A curl B.

3 . FVFAB = (BV)A - (AV)B + A div B - B div A.

4. div 0A -
(/&amp;gt;

div A + AV&amp;lt;/&amp;gt;.

5. curl 0A = V -

V&amp;lt;/&amp;gt;A + &amp;lt;/&amp;gt;

curl A = F-grad $.A + curl A.

6. VA2 = 2(AV)A + 2 FA curl A.

7. C(AV)B = A(CV)B + AFC curl B.

8. BVA2 = 2A(BV)A.

4.24 R is a radius vector of length r and r a unit vector in the direction of R.

R =
rr,

2.

= -R = r = grad r

4. VV -
;

5. FVR = curl R = o.

6. VR = div R =
3.

8.

9.

10. (AV)R = A.

4.30 dS = an element of area of a surface regarded as a vector whose direction

is that of the positive normal to the surface.

dV = an element of volume a scalar.
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ds = an element of arc of a curve regarded as a vector whose direction is

that of the positive tangent to the curve.

4.31 Gauss s Theorem:

4.32 Green s Theorem

2.

4.33 Stokes s Theorem:

ff curl ArfS = /Ads.

4.40 A polar vector is one whose components, referred to a rectangular system

of axes, all change in sign when the three axes are reversed.

4.401 An axial vector is one whose components are unchanged when the axes

are reversed.

4.402 The vector product of two polar or of two axial vectors is an axial vector.

4.403 The vector product of a polar and an axial vector is a polar vector.

4.404 The curl of a polar vector is an axial vector and the curl of an axial vector

is a polar vector.

4.405 The scalar product of two polar or of two axial vectors is a true scalar,

i.e., it keeps its sign if the axes to which the vectors are referred are reversed.

4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar,

i.e., it changes in sign when the axes of reference are reversed.

4.407 The product or quotient of a polar vector and a true scalar is a polar

vector; of an axial vector and a true scalar an axial vector; of a polar vector

and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a

polar vector.
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4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudo-
scalar is an axial vector.

4.409 The divergence of a polar vector is a true scalar; of an axial vector a

pseudo-scalar.

4.6 Linear Vector Functions.

4.610 A vector Q is a linear vector function of a vector R if its components,
d&amp;gt; (?2, ft, along any three non-coplanar axes are linear functions of the com

ponents RI, R2 ,
R3 of R along the same axes.

4.611 Linear Vector Operator. If co is the linear vector operator,

Q = coR.

This is equivalent to the three scalar equations,

Ql = COn^i + 0)12^2

Q3
= COsi^i -I- C0 32#2 + C033#3 .

4.612 If a, b, c are the three non-coplanar unit axes,

o)n =
S.acoa, co 2 i

= S.bcoa, co 3i
=

S.ccoa,

coi2 = S.acob, co 22
= S.bcob, co 32 = S.ccob,

cois = S.acoc, o) 23 = 5.bcoc a?33 = S.c&c.

4.613 The conjugate linear vector operator oV is obtained from co by replacing

by Ukh y h, k =
i, 2, 3.

4.614 In the symmetrical, or self-conjugate linear vector operator, denoted

by co,

co =
i(co + co ).

Hence by 4.612

S.acob = S.bcoa, etc.

4.615 The general linear vector function coR may always be resolved into the
sum of a self-conjugate linear vector function of R and the vector product of
R by a vector c:

coR = coR + F.cR,
where

co = J(co + co ),
and

C = KC032 - C0 23)i + J(C01 3
-

0&amp;gt;8l)j + }(W21 ~ Wi 2)k,

if i, j, k are three mutually perpendicular unit vectors.

4.616 The general linear vector operator co may be determined by three non-

coplanar vectors, A, B, C, where,
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A = aeon + bo&amp;gt;i2 + ccoia,

B = aco 2i + bco 22 + cco 23,

C = aco 3i + bo&amp;gt;32 + cco 33 ,

and
co = aS.A + bS.B + cS.C.

4.617 If co is the general linear vector operator and co its conjugate,

coR = Rco
,

co R = Rco

4.620 The symmetrical or self-conjugate linear vector operator has three

mutually perpendicular axes. If these be taken along i, j, k,

co = LS.coii + JS.C02J -f kS.co 3k,

where coi, co 2 ,
co 3 are scalar quantities, the principal values of co.

4.621 Referred to any system of three mutually perpendicular unit vectors,

a, b, c, the self-conjugate operator, co, is determined by the three vectors (4.616) :

A = coa = aeon + bco i2 + ccoi 3 ,

B = cob = aco 2 i + bco 22 + cco 23 ,

C = coc = aco 3 i + bco 32 + cco 33 ,

where
COfrfc

=
CO/bfc,

co = aS.A + bS.B + cS.C.

4.622 If w-is one of the principal values, coi, co 2 ,
co 3 ,

these are given by the roots

of the cubic,

w3 - nz
(S.Aa + S.Bb + S.Cc) + w(5.aFBC + 5.bFCA + S.cVAB)

- S.AVEC = o.

4.623 In transforming from one to another system of rectangular axes

the following are invariant:

S.Aa + S.Bb + S.Cc = coi + co 2 + co 3 .

SaFBC + 5.bFCA + S.cFAB = co 2 co 3 + co 3 co! + co!C02 .

S.AVEC = C0ico 2 co 3 .

4.624

COi 4- C0 2 + C0 3
= COn + C0 22 + C0 33 ,

C0 2 C0 3 + C0 3 COi + COiC0 2
= C0 22 C0 33 + C0 33COn -f- COnC0 22 C0

2
23 C0

2
3 i + C0

2
]2,

COiC0 2 C0 3
= COiiC022 C0 33 + 2C0 23 C0 3iCOi2

-
COiiC0

2
23
- C0 22C0

2
3 i
- C0 33 C0

2
i 2 .

4.625 The principal axes of the self-conjugate operator, co, are those of the

quadric:
con*

2 + C022/ + co 33s
2
-f 2C02 3;yz + 2C0 3iS.r + 2Wi 2xy = const.,

where x, y, z are rectangular axes in the direction of a, b, c respectively.
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4.626 Referred to its principal axes the equation of the quadric is,

coi#
2 + co 2;y

2 + co 3s
2 = const.

4.627 Applying the self-conjugate operator, co, successively,

coR = ic^i^i + co 2^2 + ka&amp;gt;3^3

coco
2R =

C0 2

4.628 Applying a number of self-conjugate operators, a, /5, . . .
., all with the

same axes but with different principal values

aR = ia 7?i -f ja 2 J^ 2 -f

4.629



V. CURVILINEAR COORDINATES

5.00 Given three surfaces.

i.

2.

w =fs(x t y t z).

x =
&amp;lt;t&amp;gt;i(u,v,w),

y =
2 O, ^,w),

Z = 03 (tt, V,W).

4.

503 503

~dv dw

50i 501 502 502 503 503

l)w ~du
+

~5w 5w 5w 5w
!

50i 50i 502 502 503 503

du dv du dv
r
du dv

5.01 The linear element of arc, ds, is given by:

ds* = dx2 + dy
2 + dzz = ^ + 7^ + -^ + 2g l dv dw + 2g2 dw du + 2g3 du dv.

5.02 The surface elements, areas of parallelograms on the three surfaces, are:

dv dw ,
--

, o o

/
-

.
27 2 2Vi - ^3
2
/?i

2
g2

2
,
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5.03 The volume of an elementary parallelepipedon is:

du dv dw
dr =

, , ,

5.04 coi, co2 ,
co3 are the angles between the normals to the surface /2 , fa fs,f\ ,

/i, /2 respectively:
COS COi =

cos coo =

cos co3 =

5.05 Orthogonal Curvilinear Coordinates.

gl
=

g2
=

g3
=

O,

du2 dv2 dw2

ds = TT + Ti + TT
/^r fe

2
fe

2

dv dw dw du
, du dv

Ju =

dr =

r~j
fefe

w dv dw

hMiz

5.06 hi
2

,
hz

2
, fa

2 are given by 5.00 (3) and also by:

hf . (%} + m* + (&YU*/ VaW
fW

-(S) +(S)
V

(!)

--(I)
-
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5.07 A vector, A, will have three components in the directions of the normals

to the orthogonal surfaces u, v, w:

A =

5.08

1 . div A =

2. V 2 =

.+ -

du \h?,hz duj dv

curlu A

curU A

d_(A\ _ jjMl

A u \ d
(A

w
\\

lEy-svsv/
A u

5.09 The gradient of a scalar function, i/ ,
has three components in the directions

of the normals to the three orthogonal surfaces:

hi , h2 -r
, hz T *

du dv dw

5.20 Spherical Polar Coordinates.

i w =
&amp;lt;/&amp;gt;

.

f x = r sin 6 cos
&amp;lt;/&amp;gt;.

&amp;lt; y = r sin 6 sin
&amp;lt;,

I 2 = r cos 0.

fa = I, /*2
=

~, /^3
=

Ty-n-

r
= r2 sin 0^0 J0,
= r sin dr d (j),

dS^ = r dr d 6.

2.

div A
sm

i

V 2 =v o .

r2 sin

a2
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8 .

r sin#

I d dA r

}

5.21 Cylindrical Coordinates.

i.

2.

//I

(u =p,
N -

ft

I 2&amp;gt;
= 2.

= p cos 0,

y = p sin 0,

2 = 2.

=
i, h2

= -, fa = i.

r dSr
= P dd dz,

\ dSe = dz dp,

(dS z
= pdpdd.

dr = pd pd ddz.

div A = -

P

dA z

dz

curl A = -
dA z dA e

p dd

dA p

dz
&quot;

dz

dp

5.22 Ellipsoidal Coordinates.

u, v, w are the three roots of the equation

=

u&amp;gt;v&amp;gt;w.

6 = u: Ellipsoid.

9 = v: Hyperboloid of one sheet.

6 = w: Hyperboloid of two sheets.
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(a- + ) (a
2 + z&amp;gt;) (a

2 + w)

103

.v-

Z2 =

(a
2 - V) (a

2 - c
2
)

c
2
) (a

4. div A = 2

(a
2 - c

2
) (b

2 - c2)

4 (a
2 + u) (b

2 + it) (c
2 + K)

(u v) (u w)

4 (a
2 + v) (b

2 + D) (f
2 + i))

(v w) (v u)

(w u) .(w v)

a2 + u) (b
2 + u) (c

2 + u} d

6.

7-

(u
-

v) (u
- w)

V(aTJ
+ 2-

du

(v
- w) (u

-
v)

(\/(U -
V) (U

- W) A u \

f \/(w v) (u
-

v) A v }

+ V(a2 + w) (b
z + w) (c* + w)

Via2 + u) (b
2 + u) (c

2 + u)
_5_

(u - v) (u
- w) du

V(d2 + v) (
2 + v) (be

2 + ) ~
/ // 2 , v &quot;

+ 4- -
ZT.( V (a

2 + v) (b
2 + v) (c

2 + v)
(u

-
v) (v

- w)

\/(a
2 + w) (b + w d /7-5-r WA2 ,

x . 2
--r yV (a

2 + w) (b
2 + w) (c

2 + w) -=-

curlu A

curl,, A =

v w

u - w
uQ a /

/-
\Vv - w A.

dw\

/(&amp;lt;* + )& + *)* + *) at^j^
V z)

- w dw\

V - -
( Viv - u A w \

V y - u du\ I

curLA =
__j v

/(L (6
2 + u} (c

2 + u]

+ v) (c
2 + v)

w v
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5.23 Conical Coordinates.

The three orthogonal surfaces are: the spheres,

1. x2 + y
2 + z

2 = u2
j

the two cones:

2. ^r
b
2

= o.

= o.

n\ = i,

w2 w2 b2 w2 c2

C
2

&amp;gt;v

2
&amp;gt;b

2
&amp;gt;w

2
.

U2V2W2

/y-2, -

b2
c
2

9 u2
(v

2 b2
) (w

2 b2)

b2
(b

2 - c
2
)

2 _ u2
(v

2 - c
2
) (w

2 - c
2
)

c
2
(c

2 - b2
)

- b2
) (c

2 - V
2
) (b

2 - W2
) (C

2 -

U2
(V

2 - W2
)

A j- A J
f 9 A x

6. div A = - (u
2A u) +u2 du u (v

2 - w2
)

2 - v* d ,

vV - w2 A v
dv

V(b2 - w2
) (c

2 -
uP) d- W2

) (C
2 -

U?) d
/

,-

7i zr~ -T
[ v ^ w2 A

u (v
2 - w2

) dw \

7-

~ b2
) (C

2 - V2 ) d

2 - w2
} (c

2 - w2
)

- V(b2 w2
) (c

2 - w2
)

-
( \/v

2 - w2 A v
j

&amp;gt; .

IV

curl A - 4. -
u du

5.30 Elliptic Cylinder Coordinates.

The three orthogonal surfaces are:

i. The elliptic cylinders:

x2
y
2

C2u2 + J(tf~-
= i,
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2. The hyperbolic cylinders:

x2
-v
2

= i.

105

cV c
2
(i
-

3. The planes: z = w.

2C is the distance between the foci of the confocal ellipses and hyperbolas:

4&amp;gt;

x = cuv.

*. y = U2
I \/i V2

curL A =
u2 - v2

.,_ dA,

;

&quot;

dz

curU A = -7^
dz - 2 du

5.31 Parabolic Cylinder Coordinates.

The three orthogonal surfaces are the two parabolic cylinders:

f =
i.

2.

And the planes:

3-

4-

5-

6.

7. div A =

y
2 = -

z = w.

x = c(v u).

y = 2c\/uv.

I U + 1) I W + P

^/uv

u + v \
du

v5E / A / AW 1 ^ 1U L ^!-
u + v \ du \v du)

^
dv \u dv) I

r
dz2
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5.40 Helical Coordinates. (Nicholson, Phil. Mag. 19, 77, 1910.)

A cylinder of any cross-section is wound on a circular cylinder in the form of

a helix of angle a. a = radius of circular cylinder on which the central line of

the normal cross-sections of the helical cylinder lies. The z-axis is along the

axis of the cylinder of radius a.

u = p and v = are the polar coordinates in the plane of any normal section

of the helical cylinder. is measured from a line perpendicular to z and to the

tangent to the cylinder.

w = 6 = the twist in a plane perpendicular to z of the radius in that plane

measured from a line parallel to the #-axis:

x = (a + p cos 0) cos 6 + p sin a sin 6 sin $,

I.

2.

y =
(a + p cos 0) sin 6 - p sin a cos 6 sin

z = a 6 tan a + p cos a sin
&amp;lt;/&amp;gt;.

/?i
=

i, h2
=

-&amp;gt;

a2 sec2 a + 2ap cos
&amp;lt;/&amp;gt;

+ p
2
(cos

2 + sin2 a sin2
0)

5.50 Surfaces of Revolution,

z-axis = axis of revolution.

p, 6 = polar coordinates in any plane perpendicular to z-axis.

1. ds* = dz2 + dp
2 + p*d6

2

du2 di? dw2

~
h? hz

2 k?

In any meridian plane, z, p, determine u, v, from:

2. /(z + ip) = u + iv.

3. w = e.

Then w, z&amp;gt;,

will form a system of orthogonal curvilinear coordinates.
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5.51 Spheroidal Coordinates (Prolate Spheroids):

i. 2 + ip = c cosh (u + iv).

z = c cosh u cos v,

{ p = c sinh u sin v.

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution,

and the planes, 6 :

c
1 cosh2 T

c2 sinh2 M

Z
2

p

v
c
2 cos 2

z&amp;gt; c
2 sin2 v

With cos u = X, cos v =
IJL

:

Z = C\/JL,
4

p = cV(K -
i) ( i- M2

).

2 =
X2 - i ^ =

i -At
2

h 2 =
i

5&quot;
x
~

c
2
(X

2-
At

2
)

~
c
2
(X

2-
At

2
)

~
c
2
(X

2
i) (i

-
At

2

5.52 Spheroidal Coordinates (Oblate Spheroids):

i. p + iz = c cosh(w + iv).

z c sinh u sin v.

2
p = c cosh u cos w.

3. cosh u = X, cos v = fj,.

,
2 _ I At

2
7 2 _ X2 - I , 2

4 * &quot; 22 2
~ 22 2 3

c
2
(X

2 - M2
)

~
c
2
(X

2 - M2
)

~
c2 (X

2 -
i) (i

-
At

2
)

5.53 Parabolic Coordinates:

i. z + ip = c(u + iv)
2

.

z = c(u
2 v2),

2.

p = 2CUV.

3. W2 =

With curvilinear coordinates, X, At, B:
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u I

4. h - -
c K X + /i c\ A +

5.54 Toroidal Coordinates:

z + a -}-,

u + tv = logto

2.

2 - a +

a sinh w

cosh w cos

a sin v

cosh w - cos v

cosh w cos v cosh w cos v
&amp;gt; /Z3

=
: :

a a smh w

The three orthogonal surfaces are:

(a) Anchor rings, whose axial circles have radii,

a coth u,

and whose cross-sections are circles of radii,

a csch u\

(b) Spheres, whose centers are on the axis of revolution at distances,

a cot v,

from the origin, whose radii are,

a esc v,

and which accordingly have a common circle,

p =
a, z =

o;

(c) Planes through the axis,

w = 6 = const.



VI. INFINITE SERIES

6.00 An infinite series:
oo

2 U n = U\ + U2 + UZ + . . . .

ni

is absolutely convergent if the series formed of the moduli of its* terms:

|
i +

|

u2
|
+

|

u2
|
+ . . . .

is convergent.

A series which is convergent, but whose moduli do not form a convergent

series, is conditionally convergent.

TESTS FOR CONVERGENCE

6.011 Comparison test. The series Sw n is absolutely convergent if
|

u n
\

is

less than C
\

vn
\

where C is a number independent of n, and v n is the nth term

of another series which is known to be absolutely convergent.

6.012 Cauchy s test. If
i

Limit ,

,

re-^co !&quot;! &amp;lt;1 -

the series 2wn is absolutely convergent.

6.013 D Alembert s test. If for all values of n greater than some fixed value, r,

the ratio is less than p, where p is a positive number less than unity

and independent of n, the series Swn is absolutely convergent.

6.014 Cauchy s integral test. Let f(x) be a steadily decreasing positive function

such that,

/()&amp;gt;&amp;lt;..

Then the positive term series San is convergent if,

^oo
I f(x)dx,
Jm

is convergent.

6.015 Raabe s test. The positive term series San is convergent if,

I where l&amp;gt;i.

Wn+l /

It is divergent if,

&n+i

109
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6.020 Alternating series. A series of real terms, alternately positive and nega

tive, is convergent if an+i^a n and

limit
an = o.

n &amp;gt;o

In such a series the sum of the first 5 terms differs from the sum of the series by
a quantity less than the numerical value of the (s + i)st term.

limit
6.025 If

Un+l =
i, the series 1iu n will be absolutely convergent if

1

there is a positive number c, independent of n, such that,

limit
/ Wi

I &amp;gt;

= -I - C.

6.030 The sum of an absolutely convergent series is not affected by changing
the order in which the terms occur.

6.031 Two absolutely convergent series,

S = Ui + Uz + US + .....
T = vi + v2 .+ v3 + .....

may be multiplied together, and the sum of the products of their terms, written

in any order, is ST,
ST = uivi + uzvi + UiV2 + .....

6.032 An absolutely convergent power series may be differentiated or inte

grated term by term and the resulting series will be absolutely convergent and

equal to the differential or integral of the sum of the given series.

6.040 Uniform Convergence. An infinite series of functions of x,

S(x) = ui(x) + uz(x) + u3 (x) +

is uniformly convergent within a certain region of the variable x if a finite number,

N, can be found such that for all values oin^N the absolute value of the remain

der, |

Rn after n terms is less than an assigned arbitrary small quantity e at

all points within the given range.

Example. The series,
00

2XZ

(l+*2
)&quot;

=0

is absolutely convergent for all real values of x. Its sum is i + x2
if x is not zero.

If x is zero the sum is zero. The series is non-uniformly convergent in the neigh

borhood of x = o.
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6.041 A uniformly convergent series is not necessarily absolutely convergent,

nor is an absolutely convergent series necessarily uniformly convergent.

6.042 A sufficient, though not necessary, test for uniform convergence is as

follows :

If for all values of x within a certain region the moduli of the terms of the

series, .

5 = ui(x) + u2 (x) +

are less than the corresponding terms of a convergent series of positive terms,

T = Mi + M2 + M3 + . . . .

where Mn is independent of x, then the series S is uniformly convergent in the

given region.

6.043 A power series is uniformly convergent at all points within its circle of

convergence.

6.044 A uniformly convergent series,

S = WiO) + us(x) +.

may be integrated term by term, and,

fSdx =

6.045 A uniformly convergent series,

O ( \ I ( \ I

may be differentiated term by term, and if the resulting series is uniformly

convergent,
00

d

6.100 Taylor s theorem.

/(* + *) - /(*) + 7/W + */&quot;(*) +..-.- + ~
{

6.101 Lagrange s form for the remainder:

6.102 Cauchy s form for the remainder:

J.n+l ( T _
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6.103

* + (*
~

6.104 Maclaurin s theorem:

/(*) = /(o) +/ (o) +/&quot;(o) + . . . .

6.105 Lagrange s theorem. Given:

3;
= z

The expansion of f(y) in powers of x is:

/(y)
= / + *0(0/ () +

SYMBOLIC REPRESENTATION OF INFINITE SERIES

6.150 The infinite series:

- a3^3 + .... + akxk

may be written:

j \ /
&amp;gt;

where ak
is interpreted as equivalent to #&.

6.151 The infinite series, written without factorials,

f(x) = i + a\x + 2#
2 + + akxk

may be written:

I -

where ak
is interpreted as equivalent to ak .

6.152 Symbolic form of Taylor s theorem:

f(x + h) = e
h
d~x f(x).

6.153 Taylor s theorem for functions of many variables:

=
f(xi, x2 ,

. . .) + hi
- + /j2

- + . . . .

O#i OA^o

Ai_

2
ay 2_

a2
/- ^ ay

2! d*1
2 + 2r^2

d*1d*2

+
2! a 2 + *
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TRANSFORMATION OF INFINITE SERIES

Series which converge slowly may often be transformed to more rapidly

converging series by the following methods.

6.20 Euler s transformation formula:

I I / X \
k

. ,

=- do + - / j(
- A fc a

,

I - X I - xLJ \I - XJ

where: Aa = 0i - aQ ,

A2a = Aai Aa = 02 201 + a
,

A3a = A2
ai - A2a = a3

-
3^2 + 3

The second series may converge more rapidly than the first.

Example i.

Example 2.

I,
*.+

6.21 MarkofTs transformation formula. (Differenzenrechnung, p. 180.)

n n m m

T n , &amp;lt;vk
/ | ^ vk\mn , . ^ /X^/Vn s

/ j ***
I T / j &quot; 4 ** // / T ^Nfc+l

u / V / T _^v \l ^// ttmmi *** \i vy ^&quot;^ VA
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6.22 Kummer s transformation.

AQ, AI, Az, .... is a sequence of positive numbers such that

\m = Am -A m+1
^ 1

,

and
Limit x

approaches a definite positive value. Usually this limit can be taken as unity.

If not, it is only necessary to divide Am by this limit:

Limit
Oi = A m dm-

m-^co
Then:

oo oo

2m = (A na n
-

(X) + 2 (*
~ ^m)am .

m=n m=n

Example i.

^ m Limit ^Am = m, Am = -
, Am =

I,m + i m &amp;gt;
oo

a = o

00

T ^

,

= I -

m= i m = i

Applying the transformation to the series on the right:

m ^ m
A m =

,
Am =

,
a =

o,
2 m + 2

co

?(m + i) (m + 2)m=i m=i

Applying the transformation n times:

00 00

21W2
=

\
m.= n+i

Example 2.

m2
(m + i) (m -f 2) . . . . (m + w

m=n+i m=i

Am =
-, X
2 2m + i

oo

- I
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Applying the transformation again, with:

1 2m + i A AW? + i
A m = -

,
\m =

2
-

&amp;gt;

a =
o,

2 2W i 4#r i

00

_ T o2
2 -

i)

Applying the transformation again, with:

1 2m + i x 4w2 + 3
^4m = --

, Am = -
*
--

I
2 2W 3 4w2

9

Example 3.

9 T~&quot;
(2m -ir

m= i

2m - i . 4/w
2 - 4w + i

xj Am =
7
--

7-7 :, OL = O.-
3) (2m -

3) (2m + i)

C _ 5

6.23 Leclert s modification of Kummer s transformation. With the same

notation as in 6.22 and,
Limit A

ATO
=

co,m ^

CO 00

A\a\ a.
a- = a + TT

-

Example i.

=
O, A m =

I, CO =
2,

=
O, Xm =

s = ^ + -

2m + i

4 4 ^(2m + i) (m + i)
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Applying the transformation to the series on the right, with:

2m + i , (2m 4- i)
2

-
A--- X-- &amp;lt;= 4

24 2^ m(m + 2) (2m + i)
2

( 2m + 3)

6.26 Reversion of series. The power series:

may be reversed, yielding:

X = Z + CiZ* + C&3 + C3Z
4
-f

where :

c2 = 62 + 26i
2

,

3
= 63 + 5^162 + 5^i

3
)

cs = 65 + 7(6i6 4 + 6263) + 28(6i
263 + 6i62

2
) + 846i

362 + 426i
5
,

CQ = 6 6 + 4(26165 + 26264 + 63
2
) + 12(36^64 + 6616263 + 62

3
)

+ 6o( 26i
868 + 36i

262
2
) + 33061*62 + I32W,

d = 6 7 + 9(6165 + 6265 + 6364) + 45(6^65 + 6i63
2 + 62

263 + 26i626 4)

+ 165(6^64 + 6i62
3 + 36i

26263) + 495(^i
4
6s + 26i

362
2
)

+ 128761^ + 42961^

Van Orstrand (Phil. Mag. 19, 366, 1910) gives the coefficients of the reversed

series up to ci2 .

6.30 Binomial series.

2! 3!
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6.31 Convergence of the binomial series.

The series converges absolutely for
|

x &amp;lt;i and diverges for
|

x
\

&amp;gt;i.

When x =
i, the series converges for n&amp;gt; -i and diverges for n^ -i. It is abso

lutely convergent only for n&amp;gt;o.

When x = -i it is absolutely convergent for
n&amp;gt;o,

and divergent for n&amp;lt;o.

6.32 Special cases of the binomial series.

If

b .
a .

&amp;lt;i put x = - in 6.30; if &amp;gt;i put x = 7 in 6.30.
a o&amp;gt;

o

n n(m -
n) n(m n) (2m n)

6.33

1
I. (l+x)

m =

3-

4-

5-

6.

m
x*-

_ X + X2 - X3

- 2X + *2 -

2-4 2-4-6 2-4-6

^y,
I

. . .

V- /y,^ .

^
&quot;

2 2 4 2-4-

I _ 1-2
g

I ~r*
&quot;~ * ^ ^

i

2-4-6-8

1-2-5- 8^
/v-4

12. -
2 5 I2 5
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13. (i + *)-& = i - -x + -1
o;
2 - x s + -41 x4 -

.

5-25 125
r

62 5

.

6 72 1296 31104

15. (i + *)-*-i-! + f*--2i=* + -IZ2
6 72 1296 31104

6.350

X X 2X2 AX*
i.

2.

g
i oc i + x i + y? i + x* i + x*

=
^-5 + 4 +

^
g +

i i-x2 i-o:4
i of

6.351

w may be any real number.

6.352 If a is a positive inte^r:

T

6.353 If a and & are positive integers, and a&amp;lt;b:

a a (a + i) a (a + i) (a + 2)

6
+

b(b + i)

*
6(6 +i)(&+ 2)

r

6-o

i
,

i

__
a(a+i) (a + 2) ^a ^ nl

w=o

(Schwatt, Phil. Mag. 31, 75, 1916)



INFINITE SERIES 119

6.360
a\x

POLYNOMIAL SERIES

6.361

6.362

h
---

Oz = O,
#0 #0

,

i iz os .

+ - - + - - + - -3 = 0.

&amp;lt;Zo #0 dQ

Cn =

(do + diX + d2X
2 + . . . . )

n = C Q + dX + C2X
2 + . .

CQ = d n
,

4.

y = a\x

c/. 6.37.

3
=

6.363

=
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3
= 03 + 0102 + -

0i
3

,

4
= 04 4- dias + -

2
2 + -

20i
2

-\
--

af.
2 2 24

6.364

log (i + 0i# + 02Z
2 + a3x3 + . . . )

= cix + c2x + c3x3
-f . .

0i =
ci,

I

Cifli,

I 2
C\a^,

--
C2&1,

v5 v5122-
Cids -- ^2^2 - -444

6.365

y =

2 =

2 + 0361.

6.37. The Multinomial Theorem.

The general term in the expansion of

( I ) (00 + diX + 02#
2 + 03#

3 + . . . .)
n

where n is positive or negative, integral or fractional, is,

^ n(n -
i) (n - 2) . . . (p +

- N

where

1, ^2, Cj, . . . . are positive integers.

If n is a positive integer, and hence p also, the general term in the expansion
may be written,
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!

(3)
alfrlca!

aoW^W 3 .... *c +2&quot;+3o+
. . .

The coefficient of xk
(k an integer) in the expansion of (i) is found by taking

the sum of all the terms (2) or (3) for the different combinations of p,

c3 ,
. . . . which satisfy

Cl + 2C2 + 3C3 + =
k,

p + ci + c2 + c3 + . . . . = n.

cf. 6.361.

In the following series the coefficients Bn are Bernoulli s numbers (6.902)

and the coefficients En ,
Euler s numbers (6.903).

6.400

i. sin
xs x5 x1 v^ , x2n+l

in x = x +
-j

- + . . . .
= /J (-i)

n
7

-

X2 X4 X6 ^\ f
. X2n

2. COS X = I
,
+ :;

-
T, + . .

= / . (-I)
n
7 r:

2! 4! 6! &amp;gt; / (2)!= o

3. tan x = x + - x* -\ x5
-\ x7 + - xg + . . . .

3 i5 3i5 2835

22n( 2
2n _

S 2
2n 2

n _ j

7 .,(2)!

I X I 2 , I
7

4. cot # = x3 xb x7
x 3 45 945 4725

6.41

-1
T 3 5

:. sin&quot;
1 x = x -f JT +

2-3 2-4-5

7T

KJ

1 * 2(2^-1) *nlX

_- ^ . ~ .r .x

2 ^-^ 2
2n

(w!)
2
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2. tan&quot;
1 x = x x3 + - x5 x7 + . . . . (Gregory s Series) \ x2 ^ i

X 2 X2
2-4/ X2 Y

. tan&quot;
1 * =

, i +---; + - -
(

-
9 + . . .

i+x2

\ 3 i + x2
3 5 \i + s2

/

CO

x ^\ 22n (n!)
2

/ ^2 \*

~i + x-
2 Z/( 2^+i)! Vi + ^.y

2

7T I I II
4. ta.n-1 * - H

--
x --; +

2 # jc
3 ^ ^

i
TIII 1-3 i 1-3-

5. sec-1 x = - - + -

2 # 2 3 #rf

2 4 5 X 2-4-6
CO

7T 7T= - -
CSC&quot;

1 X =
2 2

=o [&amp;gt;}

6.42

2 X4
2-4 X5

2-4-6 it&quot;1 2 2 - - -
.

(sin&quot;

1
#)

2 = #2 + - - + - - + - 4- .

32 3-53 3-5-7 4

m+i)!(^+i)
v

n=o

P-

S (-
Q + p-2 A^\^ 2ka + p- a - 2

kQ=i a = i \^a=i /

(Schwatt, Phil. Mag. 31, p. 490, 1916).

x3 2 2-4
:ir i /v v _^ /v5

4. Vi a; sn&quot; x = x ---
1

--
v̂

5 --~ x7 +
3 3 5 3-5-7

= x

3 5 3-5-7
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6.43

= - * + -L

2. log COS X = - - X2 - X* - XG X?
2 12 45 2520

4. log cos # =
&amp;lt;
sin2 x + - sin4

A; + - sin6 x +

6.44

i. ]Qg(x-h*)-
a

+- --

n=i

{log (i + ^)j
p see 7.369.

2. lo, + VM^)-*-

3. log (i + VT+*) =
log

[i*&amp;lt;7

[&amp;lt;?]

f- I^ &amp;lt;
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4. 1&amp;lt;

MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

x 2-3 x 3
2-4-5 x

5. log * =
(*
-

i)
- i

(*
- -

(x
-

i)
3 -

.

6 .

in+l

=I

- T\ 2 T /r r\ 3

, X I I [X I\ 3
I / -

I\
5

7. log = 2 + + - - -
I + . . .

1 x + i 3 V^ + i/ S V* + i/

Si /a; - iV

2W + I U + I/

_ T \2n+l

8. logB
- = 2 (* + -** + -- = - -

-* 3 5

x5 + .

2H

X + I

n=o

II II

IO. log (x

r2n+l

;

o D /

OJ

s&amp;lt;-

ii.
log _ ^3 ^5 _

3 3 5 3-5-7
^7 i

vV T^

2 f-
(

r\n

i
i / /

12. log (j + Vi +
it; 2 a: 2 4 a:= - - - - + - -_....
i 32 3-53

H

? H 1

]
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- J

. iii
where sn = - + ~

-\ h . .123
!4- 7

(See 1.876).

log (i +*) ./i
t

i \x
2

-
- ^r=x-n(n+i)(^ + I

(i + x)
n \n n + i/ 2!

n+ 2/3

6.445 (See 6.705.)

3 i (i-O i V

2-3-4 3-4-5

2.
I f

I + X . I +I I + X . I + ^
. x IX--

log
- + 2 log (i

-
X)

- 2
}

= - -
H--

4^1 V^ z - Vx I 1-2-3 3-4-5

-,+ [&amp;lt;H

3 ; ( i - log (i + x)
- T ^ tan-1 x \ = ^

J 1-2-3 3 4-5

5-6-7

6.455

/ i i\# 4

1. -log (i + x) -log (i
-

#) = x2 + f i - - +
-J

(i
i i i\ x6

i-- + - - + -- +2345/3
1 i +x / i i \x* I ii i iVf

2. -
tan&quot;

1* -log
- - =^2 + (

i - - + - hi-- + --- + -

2
6 i-x V 3 5/3 \ 357 9/J

h-]

3.
- tan-1 x-

6.456

i. cos
I

& log

log (i + ^ -
(i

-f

i)|

3

-
(i
+ I

-f
I +

J
+ . . .

3*
4!

22
) (y^

2 + 4
2
)

6!
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k may be any real number.

2 + I
2
) ~

7 1 / /
-

9\
2. sm k log (x + V i + x2

) } =~\ x

6.457

i - 2x cos a + ^2

where,

2. a x =

3-

cos

!=0

6.460

i. e = i + + - + ~
2! 3!

s + ^ a;
4 + . . .

4

8. e&quot;

1 &quot;&quot;1 =i+* + - _^ + 7
4

2 6 24

6.470

f (
1

2
&amp;lt;
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#2
&amp;lt;

3. tanh x = x - \ x3 + ^ x5 -
-^ x7 + . . . .

i)
n-1 - -Bn o^n

~l
jc
2

&amp;lt;

/v&amp;lt;2 /y4 /y6 ^^ ^ /v2

2. cosh ^ = i + ; + i + , + . .
- 7 ,-T-

3
00

n=i

4. x coth * = i + - a2 - x* +
3 45 945

5. sech^= i - -.T2 + -^
a;

4 -
. . .

,

2 24 720 s-J (2n)\

6. x csch .T = i - \ x2 + -|- x4 - 3I
x6 + . .

6 360 15120

6.475

1. cosh x cos x = i -
^

*4 + ^ *8 -
^7,

* 12 + -

2
2 2 4 2

6

2. sinh x sin # =
: x2

. a;
6 + : ^10

.

2! 6! 10!

6.476
oo

;^^^ ^^COS
I. e xcos8 CQS ^. gjn ^)

=
&amp;gt;^_

_

n=o
00

a / n\ &quot;^
^ ^^

2. e ic ^ sm (a- sin 0)
=^ ^-

W=I

n\ X^ ^2 &quot; sin 2W^
6. sinh (x cos 0) sin (* sin v) = 7. 7

TJ

S/v2

?i pr\c ^77rf

? V
h^2

&amp;lt; i

M=0

OO

2/^.2n+l

(^QC^ (2W ~\~ 1/0

(2w + i)!
w=o
oo

^r^ r\:
2n+1 sin (2^ + i)0

5. cosh (x cos 0) sin (x sin 0)
= /^- -r

i ,,
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6.480

ih&quot;
1 x = x

2-3 2-4-5
i. sinh&quot;

1 x = x xz + *-

CM

II II- 1 I
-

2. smh *
A: = log 2X + --;

-
7 + . . .

2 2x2 2 4 4#
4

4. tanh-1 x = x + - x3 + - x5 + - x7 + . .

3 5 7 n=o

,
I I II I- ? I

5. smh-1 - = --- _
4.
_ _....

*^
/v* /v /i j wo o.yir^ v&quot;

.v 2w 2 3*^ ^ 4 5

, . I , 2 IX2
I

T,
X*

6. cosh&quot;
1 - = log ...
X X 22 2 44

. , ,
i , 2 i ar i ^ x4

7. smh&quot;
1 - =

log
- + - -+....

* * 2 2 2-44
00

= csch&quot;
1 x = log

-

8. tanh- 1 - = T

+ -1 + + ____

2n 1

3. COsh&quot;
1 X = log 2X -

-, . . .

2 2X2 2 4 4
4

CO^ (2w)! _2
r

2=
log 2X /j 2ni h2

# 2 ^2 &amp;gt; I

x^ (2n)\
CSch-1

rC =^ (~ I )
n

22n(M!)2 ( 2^ + i)
a:
~2n &quot;1 U2

&amp;gt;!
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6.490

2 sinh x
n=o

2 cosh x

3.
-
(tanh x i)

=

n=i

oo

4. ^log
tanh

^
= ]^^^ &amp;lt;r

*(-+
&amp;gt;.

=o

6.491
oo &quot;S

i
, V -(-)

2

- + 2j e ^ x)

= I ^ = I )

By means of this formula a slowly converging series may be transformed

into a rapidly converging series.

6.495

i)
2
7T

2 -

)t

3. sec

00

2X 2X 2X I *S?\ 2X

(27T)
2 - X* (3 7T)

2 -

^7T 5?T

4. csc x = - +

(2U l)
2
7T

2

2X

(27T)
2 - X2 ^

(37T)
2 - X2

By replacing # by ix the corresponding series for the hyperbolic functions

may be written.
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INFINITE PRODUCTS
6.50

i. sin

=

CO

3. cos x.
= o

4. cosh a; = lT I +_j_XX \ (2n + l)
2
7T

2
/

n = o

6.51

nsin a; a;

cos r
n = i

6.52

-

6.53

I. cosh * - COS y . 2 (i + *f) sitf Z TTfl + .

*
.1 fl + ^

V // 2 11 V (2W7T + y)V V (2W7T
- y)V

2. cos x cos y =

6.55 The convergent infinite series:

= i + 2j Un -

n = i



INFINITE SERIES

may be transformed into the infinite product

(i + fli) (i 4- vz) (i + 1*3)

where

Vn =
I + Mi + W2 + +

6.600 The Gamma Function:

z may have any real or complex value, except o, -i, -2, -3,

6.601

6.602
Limit

(

i i i_j 1

W-^oo [23 W J

/
f ^~* e~* }

\T^= --Tl
dt =

6.603
Tfz + i)

= zT(z),

6.604 For z real and positive
= x:

og2T + 7-r + 2r

6.605 If z = n, a positive integer:

r( = V5F.
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6.606 The Beta Function. If x and y are real and positive-

&amp;lt;&amp;gt;

.

B (*,?) =

sin

6.610 For :*; real and positive:

6.611

l - ^) = () + 7T COt
6.612

= -7- 2 log 2,

= -7,

6.613

rm
(?-&amp;lt;&amp;gt; P-t* }

dt

/IT
_ tx-i

dt.
i i
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6.620

1 f
,

X + I\
,

X-
{ \l/( 1

- V -

2
(

Y
V 2 /

Y
\2

6.621

6.622

i)
= log 2,

6.630 Gauss s II Function:

k

n (*,* + i) -n (*,

3 .
- ,.

4 . n (z)
= r(z + i).

5- II (-z) II (Z
-

l)
= Tf CSC 7TZ.

6.631 If 2 is an integer, w,

(n)
=

!

133

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES

6.700

k = o

1-3-5
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Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation
to this integral:

--= tan-

FresnePs Integrals:

.701
Jo

6.701 cos M ,
(2k) I (4k + i)

k =jo

-&amp;gt;

i-3-5 (4* + i)K= O

oo

+ sin(s*)2(-

6.702

- cos

1-3-5 W + 3)

oo

6.703

6.704

(Special cases, 6.445 and 6.922).

r*
6.705 / &amp;lt;T /*-!&amp;lt;# = V (-i\n-^l

Jo j^ }

n\(n-\
H = O

6.706 If the sum of the series,

is known, then

+ w6) (a + nb + i) (a + nb + 2) . . . (a + nb + k - i)

a + nb) (a + nb + i) (a + n& + 2) (a + nb + k - i) \J&amp;gt;&amp;gt;o]
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6.707

Example i.

- sin nx-dx = -

~kx

- f (TT
-

2 t/ o
-f 2mr) dt.

I.

~*

** - -

Replacing k by -, and subtracting,

Example 2. With /O) =
&amp;lt;r

x* cos (JLX and e~ Xa; sin

X
3 X2 + u2

+
Trsinh 2X?r

X2 + (w
-

M)
2 X2 + (w COSh 2X?T - COS 2JL17T

2JU7T

4 X2 + u2 ^J } X2 + (n
-

M)
2
^
X2 + (w + M)

2 cosh 2X?r - cos
n= i L J

6.709 If the sum of the series,

is known, then

a + aiy + a*y(y j. t
v~ l

f(t) dt

r

6.710 The complete elliptic integral of the first kind:

dx

(*-x2
) (i- i - snK==

r&quot;
+

If
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6.711 The complete elliptic integral of the second kind:

- k2 sin2 6 dd.

=
2

n=i

I-3-5 . . . (2n - i)\
2 k2n

2-4-6. . . .211 / 2JI I

, ,.-
3^ .....-.&amp;gt;

V

V 2-4-6 . . . 2* /

6.800 If /(x) is uniformly convergent in the interval:

-c&amp;lt;x&amp;lt; H-c

ff . I, TTX 27TX
f(X)

= -0 + 6&amp;gt;l
COS ---f- 02 COS ---h t&amp;gt;3

COS ---
\- . . . .

2 C C C

. 7TX . 27TX -Z7TX
+ 0i sm + 02 sm h 03 sm - +

c c c

mirx ,

cos ax.
i r+c

,/ N

m = ~
I f(x)

t/ c

1 T+c
r/ N WTTO: ,

m = ~
I f(x) sm dx.

C ts c C

6.801 If f(x) is uniformly convergent in the interval:

o&amp;lt;x&amp;lt;c

., ^ I T 27TX AX7T 67TX
f(x)

= -
bo + 0i cos H 2 cos \- 3 cos h . . .

2 C C C

. 2TTX . 47TX . 6lTX
sin \- c2 sin f- #3 sin J-

c c c

V-i/ywC */ o

2m7ro: ,

cos -
&amp;lt;&.

c

2mTTX ,
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6.802 Special Developments in Fourier s Series.

f(x)
= a from x = kc to x = (k + -)c,

f(x)
= -a from x = (k +

l

-)c to x = (k + i)c,

where k is any integer, including o.

A n *^. ^ T o ( O-17 T J 7T

n= I

C C

GQAQ f^T^ t;r ^-iC$4-~.OUO /W -
&quot;A.,

v. -v ^ j

6.804

4

5

4

A)-^Z; &amp;lt;- )&quot;- (^-^^^^
/: c

m(x c), + -
&amp;lt; x &amp;lt; ,

6.805 /W = -
a,

-
56 ^ * ^ -

3&,

= a,
- ft &amp;lt;

*
&amp;lt; + ft.

,

b

a, $ ^ x ^ 56.

.
,

f(x\ = - COS 5 COS COS *-=- + COS --r-
7T

2
\ 4b 3 4^ 5

2

4^ f 46
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6.806
/(*)-^* + ft,

= - -x + b, o

6.807 /(*)=?*,

CO

ff \ -
2a^ ^^ I nlr^

J(X)
-

&amp;lt;L (1

6.810 (c-a
w=i

6.811 cos^ =

n = i

6.813
*-* n
n i

6.815 - - * ^^ cos

2 4
n = i

6.816 ~ - + - =
6 4 12

n = i

-
3

-J-

90 36 48 240

_
7r&amp;lt;a; &amp;lt; 7r1,

-&quot;

6.812 sin cwc = - sin aTT ^]
v

2

1;

g
n sin wo; -7T&amp;lt;o:&amp;lt;7r

VT mffm % ^Z

6 01 A i
i i

&quot;&amp;gt;^
cos nx

.014 -lOg- T= X, 0&amp;lt;^r&amp;lt;^ 97T
2 2(l

- COSX) ^ W
T l_ J

6 818 -&quot;

^ - ^
L - ^ ^ ^^ b111 wx i o &amp;lt;C ^ &amp;lt;C

27T~j
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6-821
eT^=-

=
Tc

~ CZj (
(mry + c*

U ~
n = i

oo

6.822 e- =

- it

5S#T&amp;gt;

2r

r- 1
)&quot;&quot;

1

CT^2
cos

} [

CO

/7T \ . i / 9 \ V^ COS2(fl+l)
6.823 cos 2* - (

- - x Ism 2* + sin2 x log Usm2
x) =

n (n + i)
W = I

[o ^ x ^ TT].

6.824 sin 2X -
(TT

-
2^) sin

2 j - sin x cos s log (4sin
2
x)

Z^ ( + i)
W = I

00 r -,

T 7T ^W^ COS 2HX . . 7T

6.825 j-^-Sc^-ij^+i)

6.830 - _
i - 2r cos w + r2

n = i

6.831

6.832 tan-

6.833

6.834 og
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6.835 -tan- 1

2

cos x x^ v , r

^77
-
2, (- 1

)&quot;&quot;

1

,-^7
cos

&amp;lt;

2 -
)*

6.900
NUMERICAL SERIES

ii
_i_

i 2&quot;
3&quot; 4

6*1 =00
6*6 = =

1.0173430620,

6.901

w2
= 0.9159656 . . .

u4
=

0.98894455 ....

U& = 0.99868522 ....

A table of un from w=itow=38toi8 decimal places is given by Glaisher,

Messenger of Mathematics, 42, p. 49, 1913.

6.902 Bernoulli s Numbers.

22n
~1

7T
2n

p _I_ __ _I_ I ^ i

(2) !

&quot;

i
2n+

2
2n + 2 + ^ + =

Zj ~W~n

2.

( 2
2-l _

,,. ; .-. .i
k = o

6

30
1

B, = -.
42

30
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174611

6.903 Euler s Numbers

6.910

6.911

_= ~
J^+I 5

2n+l
~

?
2n+l

Ei =
i,

E4
= 1385,

2 =5, s
= 50521,

E3
= 61, EG = 2702765.

6.904

2W(2W -
l) _, . 2(2n ~

l) (in
-

2} (2H 3)

En - - - ^n-1 -f
-~

6.905

2
2n

( 2
2n _

j) ( 2H -
l) (2tt

-
2) (2tt

-
3)

L B n = (2H - l)En_l
- -

2H 6-

(2H l) (2H 2) (2H 3) (2H .4) (2^
-

5) ,.

n= i

5&quot;i

=
e, Ss =

$2e,

S2
= 26, 56

= 203^,

5s =
$e, 6*7 =

1 c 32
Si =

-&amp;gt; O3 =
s

2 64

7T
2 - 8 7T

4 + 307T
2 ~ 384
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6.912

i. log 2= U 2 n

n = i

oo

&quot;7T

2 T ^. ^l T-* /i \o ^^. *

2
^2

~
~2

(1 g 2)
=
2/ ^V

6.913

I. 2log 2 - I =
n(4n

2 -
i)

2. -Oog 3 -i)= ^, (9,
2 _

I)

6.914
2-4-6 in

n = i

w2
= 0.9159656 .... (see 6.901)

= 2 log 2 - ^
fe, 5_l = I - -,

7T 7T

= ~2 -
I, 5_2

= i
log 2 +

^
-
^- (2W2 + i),

_ 2 I I 10

I T 78

5

~
225?r

178 i-
&amp;gt;

2257T 6

When r is a negative even integer the value n = - is to be excluded in the

summation.

6.915

A -
T 3 5- - .(211-1) (in - i) !

1 . /In ---~---
2-4-6 . . . . 2n 22n

~ 1

w!(w - i)!
CO

O T

4^ i
W= I
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4.

I ^ A 4 + I.

H
2

~
J H

(2H- l) (2H+2)

n=i

CO

n=i

oo

4 ^ A 4

n=i

6.916

If m is an integer, and n = m is excluded from the summation;

i.

,.
3

4wr ^^ m^
M=I

6.917
CO

Sw
I

~5F

. 2 lOg 2 =

W=I

6.919 -(i
-

log 2)
= 7, { log(

-
)
- i

6.920



144 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

3- += + + + --- = I-S4308.

4.tt*-tl--i+fi
+
|

5. cos i = i -
j

+ -
. . . .

=
0.54030.

6. sin i = i -+.... = 0.84147.
O * D &quot;

6.921

4 i
.

i i
i. -=I-^ + -I--T + ....

5 22
2 4 2

6

Q III
16 _ i i

17

= -
4
* +

4&amp;lt;-4~
6

25 III
= ~ + ~

6.922 -=e~*+ f+* + cr** + . . . ; T(J) - 3.6256

6.923 (Special cases of 6.705) :



VII. SPECIAL APPLICATIONS OF
ANALYSIS.

7.10 Indeterminate Forms.

7.101 -. If -p-r-\ assumes the indeterminate value - for x =
a, the true value

o F (x) o

of the quotient may be found by replacing f(x) and F(x) by their developments
in series, if valid for x = a.

Example :

&quot;

sn x

I - cos

3
/ *2 V
r~ 7i

+
v

I COS X X2 X* I X2

2!

~
4!
+

2!

~
4!

Therefore,

[&quot;

sin2 * 1

LI
- cos x] x=

= 2.

7.102 L Hospital s Rule. If f(a + h) and F(a + h) can be developed by Taylor s

f(x\
Theorem (6.100) then the true value of ^4 for x = a is,

/ (a)

F (a)

provided that this has a definite value (o, finite, or infinite). If the ratio of the

first derivatives is still indeterminate, the true value may be found by taking

that of the ratio of the first one of the higher derivatives that is definite.

7.103 The true value of ~ for x = a is the limit, for h =
o, of

where / (p)
(a) and F (&amp;lt;1 ^

(a) are the first of the higher derivatives of f(x) and F(x)

/TV)
that do not vanish for x = a. The true value of i.V&quot; for x =a is o if

p&amp;gt;q,
if

/&quot;

(p) (a)
p&amp;lt;q,

and equal to
J

p (p}
if P =

q.
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Example:
fsinh x x cosh #1 _ [&quot;-ffsJnhaTl

sin x x cos x J x=o {_
xsinx J X=Q.

[sinh

x~\ cosh x~\

sin#J x=0 |_
cos x J a;=o

7.104 Failure of L Hospital s Rule. In certain cases this rule fails to determine

the true value of an expression for the reason that all the higher derivatives

vanish at the limit. In such cases the true value may often be found by factoring

the given expression, or resolving into partial fractions (1.61).

Example :

[Vx2 - a2
&quot;] r / -, /=

[Vx + a]
= V 2 a.

LVx-aJ x=a

7.105 In applying L Hospital s Rule, if any of the successive quotients contains

a factor which can be evaluated at once its determinate value may be substituted.

Example :

[(i

-
x)e

x - i &quot;I _
[&quot;_

-xe x

tan2 x J x=o L 2 tan xsec2
x] x= Q

C 1
[tan X] X=Q

Hence the given function is,

r v2 sec2 xJ

I

z=0
~

2

7.106 If the given function can be separated into factors each of which is

indeterminate, the factors may be evaluated separately.

Example :

(e
x -

i) tan2
rr&quot; &quot;/tan = I.

x=0

7.110 . If, for x =
&tp(\ takes the form

,
this quotient may be

written:

which takes the form - for x = a and the preceding sections will apply to it.

7.111 L Hospital s Rule (7.102) may be applied directly to indeterminate forms

,
if the expansion by Taylor s Theorem is valid.
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Example:

7.112 If /O) and x approach oo together, and if f(x + i)
-

f(x) approaches a

definite limit, then,
Limit r^l Limit T 1

s-co |_
x J #-oo [/

7.120 o X . . If, for x =
a, f(x) X F(x) takes the form o X ,

this product

may be written,

which takes the form (7.101).

7.130 - - co. If, /(*)
= and F(x) =

f

If
imit

-4^1 is different from unity the true value of f(x)
- F(x) for x = a is .

*-^ /(*)

If
Limlt 1^3 = + i the expression has the indeterminate form oo x o which

-&amp;gt;co f(x)

may be treated by 7.120.

7.140 i oo
, o, oo o. If [F(x) }

(/x) is indeterminate in any of these forms for x =
a,

its true value may be found by finding the true value of the logarithm of the

given expression.

Example:

T lJ*-+o-

= -tan ic-lo *
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[tan
x -

log x
Jx= (

log*
cot* U=o CSC*

sin x

x
sin x = o.

x=0

Hence,
iVan

*1

x) \ x ..

i.

7.141 If f(x) and x approach oo together, and

limit, then,
Limit f(x

/(*)
approaches a definite

7.150 Differential Coefficients of the form -. In determining the differential

coefficient -f from an equation f(x, y)
=

o, by means of the formula,

*y = _^ (l)
dx df

w
dy

it may happen that for a pair of values, x -
a, y =

b, satisfying f(x, y)
=

o,

-j- takes the form -.
dx o

Writing
-j-

= y ,
and applying 7.102 to the quotient (i), a quadratic equation

is obtained for determining /, giving, in general, two different determinate values.

If y is still indeterminate, apply 7.102 again, giving a cubic equation for deter

mining y . This process may be continued until determinate values result.

Example:
f(x, y)

= (x
2 + f)

2 - c
2
xy =

o,

y
2
)
- c2y

y2
} -c2x

(8ry-

For x =
o, y =

o, y takes the value -

Applying 7.102,

=~

Solving this quadratic equation in y, the two determinate values, y =
o, y

r =
,

result for ^ =
o, y = o.
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7.17 Special Indeterminate Forms and Limiting Values. In the following the

notation [/(.v)] means the limit approached by/0) as x approaches a as a limit.

7.171

i

Ki
4-

-
)

= e
c

(c a constant).
X) Joo

2. [Vx + C - &amp;gt;/#],
= O.

3. [V*0 + c)
-

*]co
=

;

4. [v (x + ^l) + ^2) ^]oo
= Jfe + Cj).

5.
kV (X + Ci) (X + C2\ . . . .(X + C n)

-
X\

-

fa + C2 + . . . C n).

riogCci + ggg

L *
6

7-

r

10. =00
(a&amp;gt;i).

L^
W
Joo

11. ^T =0 a positive integer)
|_#._l oo

riog a?!

I3 - Mr =
-

.
Of Joo

14.
- (Ol).

log (a + &quot;

I? .

[ (a
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7.172

. ff sin - = c.

I tfjco

4 -

[(&amp;lt;&quot; :) ]-

6. = I.

8. sin- log (a + be x
)

L x J
c.

1 1

17 c c\xl
. cos- + a sin - = eac.

L\ * / Jco

7.173

[sin

x~\ = i-
* Jo

[tan

i)c&quot;| = i.
x J

Ksin

w^\m~l

-H 1=
w&quot;

7.174

i.
[&amp;gt;*]&amp;lt;,

= i.

[__z

__i i

^a + ftlog* = e ft.

Jo

=o

5. [log cos x cot x] Q
= o.

4. [sin&quot;

1 x cot o:]
= i.

[/,
\

^ cota;~i

tanf
- + -)
\4 2/J J ,

= e.

8. [_x
m

log4 = o
O&amp;gt;o).

Ve x e~ x
2x~\ _ i

L (^ -
1)

3 I
&quot;

3

10.

n

T2

I&quot; e
x - e~ x 1

[log (i + *)Jo
~

[log

tan 2x~\

log. tan a; Jo
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7.175

I&quot;- ~~l
t

;.
cos&quot;

1 --tan
L C 2 CJ C

2. [(TT- 2#)tanaf|ir
= 2. 6. [(a + be

2

or\ tan x~\

~^Jc

tanz\7T 2x
j

_

2

12,
= *

:

4. I (e&amp;lt;

- e)tan ^j
= - ,

c
. 8. [(tan *)

tar

T= = -

7.18 Limiting Values of Sums.

j^iiniL/ 1 -r *&quot; ~r .y i~ ~r //

I,

Limit/i fc + 2 k + 3
fc + . . . . + nk\

=
i .

f
*

n-raV wfc+1
/ ^ + i

coif ^&amp;lt; i.

Limit /j_ _
i i i

j

fjr &amp;gt;\a -wa + 6 na -{- 2b na + (n i)b/

7 (a )

Limit/ ^ - i
2 n - 2

2 w -
3
2

[ 2- ( + i) 2-3-(+ 2)
+
3-4-O + 3)

O-n2

i - a

if a is a positive proper fraction.

- +
;

fwJ

if b&amp;gt;o and a is a positive proper fraction.

6 .

Limit
[\/a +

A + t/a2 +A +N/a
3 + J^ + . . . . + \/a +^

ft &amp;gt;oo [_V i w 2 W 3
&quot; w

=_^i - V
if b&amp;gt;o and a is a positive proper fraction.

Limitr i i
____ +1_ iog ,,]

= 7 = 0.5772157-

(6.602).
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7.19 Limiting Values of Products.

if c&amp;gt;o.

+ &/\
f
na + 2b) V

1 +
na + (n

-
i)b)\

if a, b, c are all positive.

LimitHmQ + i) (m + 2) ..... (m + n -
i)}l~] 2

n-^^\_ m + %(n-i)
if m&amp;gt;o.

Limit

~] _ 2

J ?

7.20 Maxima and Minima.

7.201 Functions of One Variable, y = f(x) is a maximum or minimum for the

values of x satisfying the equation, f (x) = ^^ = o
dx

provided that f(x) is continuous for these values of x.

7.202 If, for x =
a, f(a) =

,

y =
/(#) is a maximum if

f&quot;(a)&amp;lt;o

y =
/(0) is a minimum if

f&quot;(a)&amp;gt;o.

Example:

f (x) = o when x =

f&quot;(x)

*

(x* + ax + 0)
3

For x = +VJ, /&quot;(*)
= ^J -J-

Maximum,
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For *=
-5?

Minimum,

Jmax
=
a

Jmin
=
a -

7.203 If for x =
a, f(a) = o and

f&quot;(a)
=

o, in order to determine whether

y = f(a) is a maximum or minimum it is necessary to form the higher differential

coefficients, until one of even order is found which does not vanish for x a.

y =
f(a) is a maximum or minimum according as the first of the differential

coefficients, /&quot;(a), flv
(a), fvi

(a), of even order which does not vanish

is negative or positive.

7.210 Functions of Two Variables. F(x, y) is a maximum or minimum for the

pair of values of x and y that satisfy the equations,
r 77 n 77or ur

dx dy
and for which

d2F \
2 d2F d2FI d2F Y 32F d2F

(dx dy)

~
dx2

dy
2dx dyj dx2

dy
2

are negative for this pair of values of x and y, F(x, y) is

a maximum. If they are both positive F(x, y) is a minimum.

If both -
^ and -

-;dx2
dy

2

7.220 Functions of n Variables. For the maximum or minimum of a function

of n variables, F(XI, xz ,
x n), it is necessary that the first derivatives,

r) T? r) 77 r)/7

, , ,

- all vanish; and that the lowest order of the higher deriv-
O#i O^2 vXn

atives which do not all vanish be an even number. If this number be 2 the

necessary condition for a minimum is that all of the determinants,

where

Dk fll /12 flk

/21 /22 /2fc

Ai ,/

I, 2,



154 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

shall be positive. For a maximum the determinants must be alternately negative

and positive, beginning with A =
$ negative.

7.230 Maxima and Minima with Conditions. If F(XI, x2 ,
......

,
xn) is to

be made a maximum or minimum subject to the conditions,

X n)
= O

Xn)
= O

I.

=
O,

where
k&amp;lt;n,

the necessary conditions are,

dF
&quot;V, 50y+

where the X s are & undetermined multipliers. The n equations (2) together with

the k equations of condition (i) furnish k + n equations to determine the k + n

quantities, xi, x%, ..... ,
xn , Xi, X2 ,

.....
, X&.

Example :

To find the axes of the ellipsoid, referred to its center as origin,

Denoting the radius vector to the surface by r, and its direction-cosines by
/, m, n, so that x =

Ir, y = mr, z =
nr, it is necessary to find the maxima and

minima of

subject to the condition

(I, m,n) = P + m2 + n* i = o

This is the same as finding the minima and maxima of

F(l t m, n) =

Equation (2) gives:
=

o,

=
o,

= o.

Multiplying these 3 equations by /, m, n respectively and adding,
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Then by (i. 1.363) the 3 values of r are given by the 3 roots of

= O.

7.30 Derivatives.

7.31 First Derivatives.

dxn

I. i

dxn

2. -7- = a x
log 0.

dx

de x
_ x

3 dx
~ 6

dx

a sin x
10. - = cos x.

dx

d cos x
11. - = -sins.

dx

12.

13

d tan x

dx

d cot

~~dx~

= sec x.

= -CSC2
#.

14.
- - = sec2 * -sin*.
dx

dx* ,

4- -r- = * s
(i +

logfl

0&quot;^ o; log

d log x i

^
ji + log ^- log log*).

IS-

16.

17-

18.

19.

csc a:

d sin

C^tf COS X.

d cos&quot;
1 x

d tan&quot;
1 # d cot&quot;

1
A- i

drc dx i +
1

sec&quot;
1 x d esc&quot;

1 # i

dx

d sinh

d*

dx

= cosh ar.

- i

1

cosh x . ,= smh x.
dx
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d tanh x d tanh&quot;
1 x d coth&quot;

1 x i

7.32

1 fifo } 2 ^ y n ^
Jw dv deu du

*

^_

&quot;

rfa; ffa;

dx v2

dau du .
_ &amp;lt;//() &amp;lt;//() c?w

7.33 Derivative of a Definite Integral.

;, a)dx =/(0(a), &amp;lt;

3-

7.35 Higher Derivatives.
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7.351 Leibnitz s Theorem. If u and v are functions of x,

dn
(uv) d n v n du d n~lv n(n i) d?u d n~2 v

~ ~
~~do^ dxn

! x dxn~l
\ d& dxn~2

n(n -
i) (n

-
2) d3u dn~3 v d nu

~7T~
~

dx* dx^3 + V
dxn

7.352 Symbolically,

where
UQ = u,

7.353 :=

~T~^~
= eax

(
a + T

7.354 If
&amp;lt;t&amp;gt;(-j~)

is a polynomial in -T-,

d)\ }e
axu = eax

({) [
a -f- j- }u.

\dx/ \ dx/

7.355 Euler s Theorem. If u is a homogeneous function of the nth degree of r

variables, Xi, *,... #r ,

/
_a_ _a_ j_\

m
w = nmu

\
l

dxi
2
a^2

/r

dxj

where w may. be any integer, including o.

7.36 Derivatives of Functions of Functions.

7.361 If /(*) =F(y), and y = 0(*),

/(*)
= ^^W + %^W +

^f
^

where

7.362

i. (

&amp;gt;-?(:- &amp;gt;.g&Lpwp) +x2n
~2 2 ! \a:/

2. I -*7&quot; ~m tj
=

: o
^\ i ; -r \.&quot;

~
*/ _i i i

+ (-!)(- 2)^=
&quot;

*7^M T&amp;gt; ^-M ?} /H\ n~3

+ (_!)(- 2) (- 3)- %sa ag +...
.s \*/
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7.363

n(n -
x) (- 2 ) (

-
3)

(
_ T ) (n _ 2 ) (

_
3 ) (n _ 4) (n _

2 _ 2ax n
T

,e T

n(n- i)(n- 2)(n- 3) (n
-

4) (n
-

5)

3-

-
i) (/*

-
2) . . . . pit

- M + i) (2^)
n

f n(^ -
i) (i + ax*)

(i + a*2
)&quot;-&quot; 1

J
i (/x

- w + i) 4ax
2

n(w - i)(w - 2)(w -
3)

&quot;

4. (i
- ^)-i = (- i)-i

- &quot;

m
2m ~ l

sin (m cos- ).

7.364

F(n)^^ n& ~
T) ^ n~ 1} (V*)

(n + i)n(n -
i)(n

-
2) F(n

~^(\/x]

2! (S-vAV+2

7.365

If
^L

p(e
x
)
= e

xF (e
x
) + e

2x
F&quot;(e

x
] + e*

x
F&quot; (e

x
) + .

where

3 .

^.
__i_ = _ Eie

*
sin (2

^&quot;^^
+ E^ x

sin (3 tan

7!7
)

^ n
g
x

,-, x
cos (2 tan&quot;

1

?&quot;*) s
cos (3 tan&quot;

1
?&quot;

3

d i + e
2 -&quot;

V(i + e
2
*)

2

~
V(i+e2

-)
3

&quot;
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7.366

It JL p(\og x) = -
I C QFW(\og x)

- CiF^
n -

C =
I,

Ci = i + 2 + 3 + + (n
-

i)

159

C2
= 1-2 + 1-3 + 1-4 +

+ 2-3 + 2-4 +

+ i O -
i)

+ 2-(n - i)

n(n-i)(n-2)(3n-
24

2.

M-t-I

a = CA; +
( i) n

n

Co
2

Ci

C* =
o,

3 A
Ci = 3 Ci =

6,

3 4

C2 =2 C2
=

II,

C = i Ck = i,

=
3 i

= 6
-4

10

C2 -
7 C2

= 25 C2
=

65,

6.

-2
C3

-3 -4
15 C3

= 90 C3
=

350.

7.367 Table of Ck .
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7.368

-
i)(log*)

p-2

-2)(log *)*- -! .

.},

where p is a positive integer. If
n&amp;lt;p

there are n terms in the series. If

2. y (log x)
p =

|
Cn_i/&amp;gt;(log x)

p~ l - CnA su*Jl &amp;gt; O / /v7l
* X \ O /

. ... 2-1
J

( }
P P P+i XP+l P+2

7.369
(log

(, +
)) -C*--fi;TI + C.

-!&amp;lt;*&amp;lt;+.!.

7.37 Derivatives of Powers of Functions. If
&amp;gt;

=
&amp;lt;j)(x).

dn
(n - p\ ( fn\ i . dn

y fn- 2-

j/
/&amp;gt;

- i
7

&amp;lt;fo* \2/ p - 2 dxn

dn
, fn\ i ^ n/

v /w\ i d n
;y
2 /-\ i ^n

y
3

&amp;gt;. 3 log y =
) -rt - 1

2 -j + J ^ -7 ....^n
\i/i-ydx

n
\2/ 2-y

2 dxn
\3/3 &amp;gt;

dx*

7.38

i. j-^
= m(m - i)(m -

2) (m \_n i]) 6&quot;(fl

fl-^V

dn (a + bx)~
l

f N w!&n

2 - ^-- =
(
-

l)n ?^TteFi-

n
log (a + bx) , v n-1

i;
(a

.

dx

tx

= a ne
ax

.

,
n sn 3

o. -T
- = sm

dn cos ^
&amp;gt;

&quot;~ = C S
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dn+l 1-3-5 .... (2w- i) /
i fn\i-x

o. -
-37. sin&quot;

1* = - -===== &amp;lt; i - -
dx n *

2
n

l - X n Vl - X2
( 2ff-I\I/I+*

.

J -3 ln\ /i - x\*__i-3-5_ (n\
/i - Jg

(2
-

i)(2
-

3) W \i + ar/ (2
-

i)(2
-

3)(2
-

5) \3/ \i + *

7.39 Derivatives of Implicit Functions.

7.391 If y is a function of x, and/(#, &amp;gt;)

= o.

d_
dy doc

*
dx

=
~df&quot;

dy

a/y av _ d/ a/ a2
/ /a/y av

a 2

7.392 If 2 is a function of x and y, and f(x, y, z)
= o.

df df
dz dx dz dy

Im
dx

=
&quot;a/&quot; ^y

=
a/

~dz dz

2
dx2

(df

/a/y
a2/ a/; a/ *f_,(*f\*#f

\dz/ dx2
&quot;

ax a.r a^az yax/ as2

A 3

ij

I/&quot; ^/ a2 / . WV ^
^s ay a&amp;gt;&amp;gt;a^

\.a\7 dz2

3- T~s = ~

4-

.dz

/a/y
a2

/-
a

a22
(df\* jPL_*tWjPL + *l &f] +

dJ.^f d^L
\dz) dxdy dz \dx dydz dy dxdz/ dx dy dz*

dxdy /^/\
3

W



VIII. DIFFERENTIAL EQUATIONS.
8.000 Ordinary differential equations of the first order. General form:

g -/(*,?).

8.001 Variables are separable. f(x, y) is of, or can be reduced to, the form:

f(*&amp;gt; y)
= - Y

where X is a function of x alone and Y is a function of y alone.

The solution is:

dx + I Y dy = C.

8.002 Linear equations of the form:

^ + P(x)y = Q(x).

Solution:

8.003 Equations of the form:

Solution :

= c .

8.010 Homogeneous equations of the form:

dy = P(x, y)

dx Q(x, yY

where P(x, y) and Q(x, y) are homogeneous functions of x and y of the same

degree. The change of variable:

y =
vx,

gives the solution:

J P(i t)
&quot; + log

= C

Q(^vJ
+v

162
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8.011 Equations of the form:

dy a x 4- b y 4 c

dx ax + by + c

If ab a b = o, the substitution

x = x* + p, y = y + q,

where

ap + bq 4 c =
o,

a p + b q 4- c =
o,

renders the equation homogeneous, and it may be solved by 8.010.

If ab - a b = o and b
f ^ o, the change of variables to either x and z or y

and 2 by means of

z = ax + by,

will make the variables separable (8.001).

8.020 Exact differential equations. The equation,

P(x, y]dx 4- Q(x, y)dy =
o,

is exact n,

dQ_dP_ f

dx
. dy

The solution is:

*, y)dx + Q(x, y)- p(*&amp;gt; y^dx \dy = C,

or
r

(
X,y)dy + I

&amp;gt;P(
x

, y)-^

8.030 Integrating factors. i (.r, y) is an integrating factor of

P(.v, y) dx + Q(x, y) dy =
o,

if

8.031 If one only of the functions Px + Qy and PA; - Qy is equal to o, the

reciprocal of the other is an integrating factor of the differential equation.

8.032 Homogeneous equations. If neither Px 4- Qy nor Px - Qy is equal to o,

r

is an integrating factor of the equation if it is homogeneous.
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8.033 An equation of the form,

has an integrating factor:

xP-yQ
8.034 If

dP dQ

is a function of x only, an integrating factor is

8.035 If

dQ dP

is a function of y only, an integrating factor is

8.036 If

dP_ dQ

dy_dx

is a function of the product xy only, an integrating factor is

8.037 If

&amp;lt;*x ByI v(y

x+.Qy -F(2)x)

is a function of the quotient
-

only, an integrating factor is
x

8.040 Ordinary differential equations of the first order and of degree higher
than the first.

Write:

2-*
General form of equation:

/(*, y, p) = o.
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8.041 The equation can be solved as an algebraic equation in
/&amp;gt;.

It can be

written

(p-Ri)(p-Rz) (p-Rn) = o.

The differential equations:

P =
Ri(*&amp;gt; y),

p = Rz (x, 3 ),

may be solved by the previous methods. Write the solutions:

where c is the same arbitrary constant in each. The solution of the given

differential equation is:

/iO, y, c)Mx &amp;gt; y&amp;gt;

c) /(* y&amp;gt;

c)
=

-

8.042 The equation can be solved for y:

Differentiate with respect to x:

2. P =

It may be possible to integrate (2) regarded as an equation in the two variables

x, p, giving a solution

3. 0(.r, p, c)
= o.

If p is eliminated between (i) and (3) the result will be the solution of the given

equation.

8.043 The equation can be solved for x:

Differentiate with respect to y:

2.
- =

If a solution of (2) can be found:

3. &amp;lt;t&amp;gt; (y, P, ^ = o.

Eliminate p between (i) and (3) and the result will be the solution of the given

equation.

8.044 The equation does not contain x:

f(y,P)=o.
It may be solved for p, giving,

which can be integrated.
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8.045 The equation does not contain y:

f(x, p) = o.

It may be solved for p, giving,

which can be integrated.

It may be solved for x, giving,
x = F(p),

which may be solved by 8.043.

8.050 Equations homogeneous in x and y.

General form:

. /

(a) Solve for p and proceed as in 8.001

(b) Solve for -:

y =
xf(P).

Differentiate with respect to x:

dx f(p)dp

which may be integrated.

8.060 Clairaut s differential equation:

i. y = px
the solution is:

y = cx+f(c).

The singular solution is obtained by eliminating p between (i) and

2. *+/ () =0.

8.061 The equation

The solution is that of the linear equation of the first order:

** ! () 4&amp;gt; (P)

dp p

which may be solved by 8.002. Eliminating p between (i) and the solution of

(2) gives the solution of the given equation.



DIFFERENTIAL EQUATIONS 167

8.062 The equation:

x(t&amp;gt;(p)

may be reduced to 8.061 by dividing by

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST

8.100 Linear equations with constant coefficients. General form:

d ny dn~ l

y d n~2
y

T^n + fl i -T-T\ + ^2 j-r-i + ....+ a ny = V(x).dxn dxn~ l dx n~2

The complete solution consists of the sum of

(a) The complementary function, obtained by solving the equation with

V(x) =
o, and containing n arbitrary constants, and

(b) The particular integral, with no arbitrary constants.

8.101 The complementary function. Assume y = e^x . The equation for

determining X is:

X n + tfiX&quot;-
1 + a2\ n~2 + ..... + a n = o.

8.102 If the roots of 8.101 are all real and distinct the complementary function

is:

y = Ci6
Xlx + C^x +.... + C ne^n

x
.

8.103 For a pair of complex roots:

M iv,

the corresponding terms in the complementary function are:

e
x
(A cos vx + B cos vx) = Ce x cos (vx - 6) = Ce^ x sin (vx + 0),

where

C = v^4 2 + B2
,

tan0 =
f-A

8.104 If there are r equal real roots the terms in the complementary function

corresponding to them are:

e^ x
(A l + A*x + A 3x

2 + .... + A rx
r~ l

),

where X is the repeated root, and AI, A 2 ,
.....

,
A r are the r arbitrary constants.

.8.105 If there are m equal pairs of complex roots the terms in the complementary
function corresponding to them are:

+ 2x + 3x + .... + nxn
-

cos vx

+ (#1 + B2x + B3x
2 + .... + Bmxm

- 1

) sin vx}

= e
x
{Ci cos (vx

- 00 + C*x cos (vx
-

2 ) + ..... + Cmxm
~ l cos (vx

-
d,,,}}

sin (vx + 0i) + C& sin (vx + 2 ) + ..... + Cmxm
~

l sin (vx + 0J)



1 68 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

where X ifj, is the repeated root and

Ck =

tan 0* =
Â k

The particular integral.

8.110 The operator D stands for
,

&amp;gt;

2 for

The differential equation 8.100 may be written:

(D* + ai Z)--
1 + a^D^ + ..... + an

)&amp;gt; =f(D)y = 7 (a)

f(D)

where \i, \2, ...... ,
X n are determined as in 8.101. The particular integral is:

y = j* x Ce^-^ x dx Ce^-^ dx ....... A-V) V(x)dx.

8.111
Tj-=--

may be resolved into partial fractions:

D - Xi &amp;gt;

- X2

r

L&amp;gt;

- X n

The particular integral is:

I e-^ x
V(x)dx + A^2 * i e~^ x

V(x)dx +

+ N ne\ x
I e~x ri

x
V(x)dx.

THE PARTICULAR INTEGRAL IN SPECIAL CASES

8.120 V(x) = const. =
c,

8.121 F(#) is a rational integral function of x of the wth degree. Expand

r/7V m ascending powers of
Z&amp;gt;, ending with Z)m . Apply the operators D, D2

,

.....
,
D to each term of V(x) separately and the particular integral will be

the sum of the results of these operations.
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8.122 V(x) = ce
k
*,

-.
C

ekxy W)
unless k is a root of

/(&amp;gt;)

= o. If k is a multiple root of order r of f(D) = o

where
, m

8.123 F (x)
= c cos (kx + a).

If ifc is not a root of f(D) = o the particular integral is the real part of

/*

If ik is a multiple root of order r of f(D) - o the particular integral is the real

part of
c*-r^iffc x+Oi)

where
/&amp;lt;

&amp;gt;(*)
is obtained by taking the rth derivative of f(D) with respect to D,

and substituting ^ for D.

8.124 FW = c sin (kx + a).

If ;& is not a root of f(D) = o the particular integral is the real part of

/(**)

If ^ is a multiple root of order r oi f(D)
= o the particular integral is the real

Partof

8.125 V(x)

where X is any function of x.

If X is a rational integral function of x this may be evaluated by the method

of 8.121.

8.126 FW = c cos (kx + a) -X,

where X is any function of x. The particular integral is the real part of

cei(kx+a)
f(DTikj

x

8.127 V(x) = c sin (kx + a)-X.

The particular integral is the real part of

_ :rpi(kx+a) 1 X.
f(D + ik)
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8.128 V(x) = ceP*cos(kx + a).

If (/3 + ik) is not a root of f(D) = o the particular integral is the real part of

cei(kx+a}_I_ e /3x

f(P + ik)

If (/3 + ik) is a multiple root of order r of
/(/&amp;gt;)

= o the particular integral is

the real part of

where /(r)
(/3 + ik) is formed as in 8.123.

8.129 V =
c&amp;lt;#*sm(kx + a).

If (ft + ik) is not a root of f(D) = o the particular integral is the real part of

f(ft + ik)

If (ft + ik) is a multiple root of order r of /(Z?)
= o the particular integral is the

real part of

8.130 V(x) =
a;&quot;X,

where X is any function of x.

The series must be extended to the (m + i)th term.

8.200 Homogeneous linear equations. General form:

n
d n

y n-1 d
n~ l

y dy

Denote the operator:

i)(0- 2) . . (d-m

The differential equation may be written:

F(6)-y = V(x).

The complete solution is the sum of the complementary function, obtained by

solving the equation with V(x) =
o, and the particular integral.
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8.201 The complementary function.

y = cix*
1 + cxX2 + + cnx*n

,

where Xi, X2, ,
X n are the n roots of

F(\) = o

if the roots are all distinct.

If \k is a multiple root of order r, the corresponding terms in the comple

mentary function are:

xXk \bi + 62 log x + h (log *)
2 + ....+ b r (log x)

r~ 1

}.

If X =
fJi

iv is a pair of complex roots, of order r, the corresponding terms

in the complementary function are:

x{[Ai + A 2 log x + A 3 (log x)
2 + .... + A r (log s)

1
- 1

] cos (v log x)

+ IB, + B log x + B3 (log xY + .... + 5r (log .^)
r- 1

] sin (v log ) }
.

.

8.202 The particular integral.

8.203 The operator ^77^ may be resolved into partial fractions:

+ + A-,
e - Xi e - x2

A^ix
Xl fx-^~l

V(x)d

The particular integral in special cases.

8.210 V(x) = cxk
,

unless k is a root of F(&) = o.

If ^ is a multiple root of order r of F(#) = o.

c (log y)
r

F^(*)

where F (r
^(k) is obtained by taking the rth derivative of F(^) with respect to

and after differentiation substituting k for 0.
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V(x) = CX*X,

172

8.211

where X is any function of x.

F(6 + k)
X.

8.220 The differential equation:

( h \ n
dn
y

(
\ n-i d n~

(a
\

dy
,

)a n_i -f- + a nydx V(x),

may be reduced to the homogeneous linear equation (8.200) by the change of

variable
z = a + ox.

It may be reduced to a linear equation with constant coefficients by the

change of variable:
e z = a + bx.

8.230 The general linear equation. General form:

where PQ ,
P

l} ..... ,
pnj V are functions of x only.

The complete solution is the sum of:

(a) The complementary function, which is the general solution of the equation
with V =

o, and containing n arbitrary constants, and

(b) The particular integral.
*

8.231 Complementary Function. If ylt y2 ,
. . . .

, yn are n independent solu

tions of 8.230 with V =
o, the complementary function is

y =
Ciyi + C2y2 + ...... + cnyn .

The conditions that yly y2 ,
. . . .

, yn be n independent solutions is that the

determinant A : o.

A-

When A 4= o:

dx n~ l dxn~ ]

dx dx

dx

dx

dyn

dx

A = Ce
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8.232 The particular integral. If A fc is the minor of
wtj in A, the par

ticular integral is:

VA, , rFA2

8.233 If yi is one integral of the equation 8.230 with v =
o, the substitution

_ ^
will result in a linear equation of order n i.

8.234 If y\, yzj , &amp;gt;

n-i are n - i independent integrals of 8.230 with

V = o the complete solution is:

y = J\ycl!k + c^yk f^ e
--r^dX

k = l k=l

where A is the determinant:

and At is the minor of -; 5- in A.
dxn~2

SYMBOLIC METHODS

8.240 Denote the operators:

Tdx

x = V.
dx

8.241 If X is a function of x:

1. (D -m)~l X = e
mx

I e~mx Xdx.

2. (D - m}-l o = cemx .

. 0-m- l X = xm x~m
~ l Xdx.

(6
- m)~

l o = cxm .
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8.242 If F(D) is a polynomial in D,

1. F(D)e
mx = em *F(m).

2. F(D)e
m *X = emxF(D + m)X.

3- e*F(D)X = F(D - m)e
m *X.

8.243 If F(0) is a polynomial in 0,

1. F(6)x
m = xmF(m).

2. F(0)x
mX = xmF(d + m)X.

3- xmF(6)X = F(6 - m)xmX.

dm
*m -W-*)(0-4 (0 - m f i).

INTEGRATION IN SERIES

8.250 If a linear differential equation can be expressed in the symbolic form:

where F(0) and/(0) are polynomials in 0, the substitution,
oo

/y
=
^^ G ?i .-&amp;gt;;

p+nm
,

n = o

leads to the equations,

&amp;lt;*o/(p)
=

o,

aoF(p) +aif(p + m) =
o,

fliF(p + m) + a2 f(p + 2m) =
o,

2m) + a3 /(p + 3w) = o.

8.251 The equation

/(P) =
o,

is the
&quot;

indicial equation.&quot; If it is satisfied a may be chosen arbitrarily, and the
other coefficients are then determined.

8.252 An equation:

may be reduced to the form 8.250, where,

/(0) - 0(0 - m} 0(0 - i) (0 - 2) (0-m+ i).

If the degree of the polynomial / is greater than that of F the series always con

verges; if the degree of / is less than that of F the series always diverges.
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ORDINARY DIFFERENTIAL EQUATIONS OF SPECIAL TYPES

8.300

dn
y

where X is a function of x only.

where T is the same function of t that X is of x.

8.301

dx*
= Y

where Y is a function of y only.

If

\l/(y)
= 2 I Ydy,

the solution is:

r dv

J W(y) +Cl}*=*
+ C

&quot;

8.302

dxn
vfo&quot;&quot;

1

Put
dn~ lv dY

and this equation may be solved by 8.300.

Or the equation can be solved:

~* x

dY C dY fYdY
F(Y)J F(Y) J F(Y)

where the integration is to be carried out from right to left and an arbitrary

constant added after each integration. Eliminating Y between this result and

gives the solution.

8.303

dxn \dxn-2
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Put

dn~2
y v

dxn~2
~

which may be solved by 8.301. If the solution can be expressed:

y =
(*),

n - 2 integrations will solve the given differential equation.

Or putting

f dY r_dY_ r
J ici+t(Y)}*J Ift+lKlOl*

1

J
where the integration is to be carried out from right to left and an arbitrary
constant added after each integration. The solution of the given differential

equation is obtained by elimination between this result and

Y =
4&amp;gt;(

X).

8.304 Differential equations of the second order in which the independent
variable does not appear. General type:

Put

_ dy dp d2
y

P =
dx

J P
dj

=
~(h

2

A differential equation of the first order results:

If the solution of this equation is:

P=
the solution of the given equation is,

dy_

/oo

8.305 Differential equations of the second order in which the dependent variable
does not appear. General type:

Put

A = &amp;lt;fy dp _d?yP
dx dx~dx2
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A differential equation of the first order results:

If the solution of this equation is:

P-f(),

the solution of the given equation is:

y = c* + ff(x)dx.

8.306 Equations of an order higher than the second in which either the inde

pendent or the dependent variable does not appear. The substitution:

*-*
as in 8.304 and 8.305 will result in an equation of an order less by unity than the

given equation.

8.307 Homogeneous differential equations. If y is assumed to be of dimensions

n, x of dimensions i, -^ of dimensions (n
-

i), -~_ of dimensions (n
-

2),
CvAs dOC&quot;

..... then if every term has the same dimensions the equation is homogeneous.
If the independent variable is changed to 6 and the dependent variable changed
to z by the relations,

x = #, y = zend
,

the resulting equation will be one in which the independent variable does not

appear and its order can be lowered by unity by 8.306.

If y, ~, -r^,
.... are assumed all to be of the same dimensions, and the

dx dx

equation is homogeneous, the substitution:

y = 6SudX
}

will result in an equation in u and x of an order less by unity than the given

equation.

8.310 Exact differential equations. A linear differential equation

* - -

dxn dx* l dx

where P, P , PI, ..... Pn are functions of x is exact if:
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The first integral is:

where,

Qn = Pn,

o p dPn
Vn-l ~ f*r-l

--
Tj

-

If the first integral is an exact differential equation the process may be con

tinued as long as the coefficients of each successive integral satisfy the condition

of integrability.

8.311 Non-linear differential equations. A non-linear differential equation of

the nth order:
rn l/i,

fly

dny
to be exact must contain -=-*- in the first degree only. Put

dxn

dn~l

y _ d^y_ _ dp_

dx^l
~

P) dx^~d^

Integrate the equation on the assumption that p is the only variable and

-f- its differential coefficient. Let the result be FI. In V dx - dV1} -^ ^ is
dx dxn~l

the highest differential coefficient and it occurs in the first degree only. Repeat
this process as often as may be necessary and the first integral of the exact dif

ferential equation will be

Vi + V*+ = c.

If this process breaks down owing to the appearance of the highest differential

coefficient in a higher degree than the first the given differential equation was

not exact.
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8.312 General condition for an exact differential equation. Write :

d* d*2 - dx*

In order that the differential equation:

V(x,y,y ,y&quot;,
..... ,yW&amp;gt;-

be exact it is necessary and sufficient that

8.400 Linear differential equations of the second order.

General form:

+
!+&amp;lt;=*&amp;gt;

where P, Q, 7? are, in general, functions of x.

8.401 If a solution of the equation with R = o:

y = w

can be found, the complete solution of the given differential equation is:

y = c.2w ce- we dx.

8.402 The general linear differential equation of the second order may be

reduced to the form:

g + 7, =

where: y = ve~*fpdx
,

8.403 The differential equation:

d2v dv

d^ +
p

d-x
+ Q &amp;gt;

=
&amp;gt;

by the change of independent variable to

z = fe-SM* dx,

becomes:

By the change of independent variable.

dz = QeS
pd*

dx,

it becomes:
d i dy
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8.404 Resolution of the operator. The differential equation:

d?y dy

may sometimes be solved by resolving the operator,

U $L V A
into the product,

\ dx / \ dx /

The solution of the differential equation reduces to the solution of

The equations for determining p, r, q, s are:

= v
dx

b = w
dx

8.410 Variation of parameters. The complete solution of the differential

equation:

&y
, n dy

, ^. r&amp;gt;

where fi(x) and fz (x) are two particular solutions of the differential equation
with R =

o, and are therefore connected by the relation

C is an absolute constant depending upon the forms of /i and fz and may be

taken as unity.

8.500 The differential equation:

(a? + bzx)
- + (ai + bix)

-2- + (a + ^o^)^ = o.

8.501 Let
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Special cases.

8.502 b2
= bi = b Q

= o.

The solution is:

where:

X2

~~

202

8.503 D -
o, b2 = o,

y = e* x

|
Cl +

where:

7 0i ^1
& = - m = -

0,2 2(22

8.504 D =
o, &2 4= o:

f /

y = e
Xx J

Cl + c
I

e-(k+^*
I /

where

fa 02

and X is the common root of:

8.505 D =Ji o, b2 = bi = o. If f]
= f(Q is the complete solution of:

Xj

\ & /

where

a = /3
= -

4fl2
2 ^ 202

8.510 The differential equation 8.500 under the condition D o can always

be reduced to the form:

8.511 Denote the complete solution of 8.510:

8.512 bz = bi = o:

y =

where:

v = -
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8.513 b% = o, bi ^ o:

where:

-v b Q a\bi 202^0~ a = ~

q=~-p.

8.514 b2 o, b =
4^2

y
where :

\ i-

_

8.515 b2 ^o

p = q

A2

.

4^2

ft
2

where 2
= a2 , ft = &

2? ft = 2 &2A + ft t and X is one of the roots of

^X2 + bi\ + b = o.

8.520 The solution of 8.510 will be denoted:

, *, e.

, ?,
- Q = * F(q, p, Q

3- *(q,P,Q *&amp;lt;r*F(p,q,-Q.

4- F(p, q, Q = i-*-ff F(i -q,i-p, Q.
5- ^( -

#,
-

g, ?) = ?
1+ ^+ ^ F(i + q, i + p, ).

6.

7- ^(^, g + , S -(-!) H #F(p, q, Q
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8.521 The function F(p, q, ) can always be found if it is known for positive

proper fractional values of p and q.

8.522 p and q positive improper fractions:

p = m + r, q = n + s

where m and n are positive integers and r and s positive proper fractions.

7 r fin ( \ ~\

F(m + r, n + 5, Q =
(

-*)&quot;3|s[~*^ (

^ F
0&amp;gt; *&amp;gt; S

] J

8.523 p and # both negative:

p = - (m - i + r) q
= -

(n
- i -f s),

8.524 p positive, q negative:

p = m + r, q
= - n + s,

8.525 p negative, q positive:

p = m + r, q = n + s,

8.530 If either p or q is zero the relation Z) = o is satisfied and the complete

solution of the differential equation is given in 8.502, 3.

8.531 If p = m, a positive integer:

4&amp;gt;
F(m , q, Q = C

8.532 If
/&amp;gt;

= w, a positive integer and both q and J are positive:

u m~ l U*-1 e-* u du.

8.533 If g
= w, a positive integer:

8.534 If g
= w, a positive integer and both

/&amp;gt;

and are positive:

/
r*
1 /^

, J)
= d I u p l

(i
- u)

n~l e-$u du + c2 e~t I (i + u)
^ u n~l e~ u du.

Jo *J
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8.540 The general solution of equation 8.510 may be written:

M- r p-i
( )*~i -&d p&amp;gt;

~J
^

9&amp;gt;
o

q &amp;gt; o

/oo
/ \ 1 1

(i 4- U) p ~~
U q~

(.

T(S) \

~
~S 7l

+
S(S + I) Tl

~
S (S +l)(s+2) ^.

+
J

s = P + q,

_
T T(q)e-t f . (p

-
i)q . (p

-
i)(p

-
2]q(q + i)N = ^r- { i + r^- +

,&amp;gt;.

- +

(/&amp;gt;

-
i)(p

-
2) ..... (p- n -i)(q)(q + i) ..... (q + w -

2)

O -
i) If&quot;-

1

p(p
-

i}(p
-

2) . . . . (ft
-

n)g(y + i)(&amp;lt;7
+ 2) . . . . (q + n -

n\^

where o &amp;lt; p &amp;lt; i and the real part of % is positive.

THE COMPLETE SOLUTION OF EQUATION 8.510 IN SPECIAL CASES

8.550
p&amp;gt;o, q&amp;gt;o,

real part of &amp;gt;o:

F(P, ^,
= K I u p~ l

(i
- u)~le-tudu + c2e-t I (i + u^-^-^-^d

Jo Jo

8.551
p&amp;gt;o, q&amp;gt;o, ^&amp;lt;o:

/I
fao

J

8.552 &quot;p^o. 0*^.0 c~^oi

{/*!

/^

d / (i --w)~ pw~ 9e~^M Jw + C2^ / w~ p
(]

8.553
^&amp;gt;&amp;lt;o 3 ^&amp;lt;o, ^&amp;lt;o:

r /^ T^
00

^(^j ^j )
= ^

1~ p~ 9

|
Ci / (i

-
iif^

pM~ qe~%u du + c2 I (i+u
( Jo Jo

8.554
p&amp;gt;o, q&amp;lt;o

r, where m is a positive integer and r a proper fraction.

F(m + r,q,) =j-m l ?-r-*F(i -
r, i - q, i

m
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&amp;gt;o: F(i -
r, i - q, Q = ci I u~*(i - u)- qe~^u du

/CO
(i + u^u-ie-^du,

&amp;lt;o: F(i -r,i-q,Q-Cif w~r
(i

- u)- qe~-^
u du

Jo
/*00

+ cz I u~r
(i + u)~^u du.

8.555
p&amp;lt;o, q&amp;gt;o,

q
= n + s, where n is a positive integer and s a proper fraction.

*& + * -
f* jp {

^- -^(i - ^ -/. e
}-

^&amp;gt;o: F(i -
f, x - & )

- 4 /Vs

(i
- ii)-*e-&du

Jo

/CO
(i + u)-

su

^&amp;lt;o: F(i -
5, i - p, f)

= 4 /
Vs

(i
-

)-*&amp;lt;r*
&amp;lt;fM

y
/*00

+ c2 / w~5

(i +u)
Jo

8.556 pure imaginary:

p = r
^ q =

S) where r and 5 are positive proper fractions.

i:

F(r, s,

i f**-*(* ~
u)

s~le-tu du

r
+ C2?-

1
&quot;8

/ u~s
(i
- u

2 ju
r-l

(i
-

lO -V-^log / Jw(i -
)
1 du.

%
8.600 The differential equation:*---
is satisfied by the confluent hypergeometric function. The complete solution is:

y = clM(a, 7, x) + c2x
l~^ M(a -7 + 1,2-7,*)= M(a, 7, *),
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where

If (a v x)
-

i + - - + - + ,

f
7 i 7(7 + i) 2!

+
7(7 + i)(7 + 2) 3!

The series is absolutely and uniformly convergent for all real and complex values

of a, y, x, except when 7 is a negative integer or zero.

When 7 is a positive integer the complete solution of the differential

equation is:

y =
|

Cl + c, log *
I
M(a, % *&amp;gt; +^ Y(

~
7 V

q(q+i) *_
2

/_i __ __!__!__!_ i\

7(7 + 1) 2!\a a+i 7 7 + 1 2/

q(a +i)(+ 2) ^ /
_i

i _J i _ i i
j _

i _ i\

7(7 + i)(7 + 2) 3! \a a+i a+2 y y + i 7 + 2 2 37

8.601 For large values of x the following asymptotic expansion may be used

M(a, 7, *)

1. M(a, 7, ac)
= e

x
lf(7 a, 7, #).

2. ^-^AfCa -7 + 1, 2 - 7, a;)
= e xxl~^ M(i -

a, 2 - 7, -#).

3. ^ M(a
+ i, 7 + i, x) = M(a + i, 7, )

- Jlf (a, 7, a).

4. aM(a + i, 7 + i, a) = (a - y)M(a, y + i, x) + yM(ot, y, x).

5. (a + x)M(a + i, 7 + i, x) = (a - y)M(a, y + i, x) + yM(a + i, 7, x).

6. ayM(a + i, 7, a:)
= y(a + ^)M(a, 7, ^)

- x(y - a)M(a, 7 + 1, x).

7. aM(a: + i, y, x)
=

(x + 20. - y)M(a, 7, a;) + (7 - a)M(a -
i, y, x).

, 7, *) + (i

8.62

1. Jlf (a, y, x) = ~ M(a + i, 7 + 1, *).

2. (i
- a) / Af (a, 7, ) ^ =

(i
- y)M(a -

i, 7 -
i, ) + (7 -

i).
./o
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SPECIAL DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS IN TERMS OF M((X, 7, x)

8.630

qx) + &amp;lt; ACtq -\-p~- &amp;lt;7

2w2 + 2qx(p + am) \ y = o
ax

{

Al
/&amp;gt;

C PI QtnjX ~\/j I f\l __/7( V* - 4^7 1
2

I

V 2
^

/

8.631

d2y . ( . . y\dy . f . , .
i / A 1

y =
o,

y = r^^^-jww 7&amp;gt;
2^-

8.632

- w y =
o,

-ic(*-*) ^
a&amp;gt;

- C(X-

8.633

/ . . Q\ dy ( .
i / . A.I/ \ / \ 1

y-o,

y-q
2

jjf ( a&amp;gt; Y, 2to).

8.634

- I
,

,

+ 2+2(6-

8.635

+ + a2 + 2^7 - 4ac + 2^6 - c* + 66 - 2co;2 y =
o,

* J

y = e-ax-*bx2
lil(a, 7, co:

2
).

d?y i / \ /v
y^ + -

2px
r + qr

- r + i -f-d#2
a; \ / ^

2
-

r(pq +yt- 2at)x
r + r*(y

-
q)(2

-
q
- 7) =

o,

8.640 Tables and graphs of the function M(a, 7, x) are given by Webb and

Airey (Phil. Mag. 36, p. 129, 1918) for getting approximate numerical solu-
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tions of any of these differential equations. The range in x is i to 10; in

a, +0.5 to +4.0 and 0.5 to 3.0; in 7, i to 7. For negative values of x the

equations of 8.61 may be used.

SPECIAL DIFFERENTIAL EQUATIONS

8.700

where X(x) is any function of x. The complete solution is:

i fx

y = w + c2e~
nx + - I X(Q sinh n(xQ d.

nj
8.701

The complete solution, satisfying the conditions:

x = o y = y ,

* = %- &amp;gt;

, f . sin n x / . K . , \ }

y = e-*KX &amp;lt; y
f

-

t h To cos nx H 7 sin nx }

(
n \ 2 / J

i C*
+ / e~*K(x~& sin n (x

Jo

I A?~
where n =

y nt -

8.702

ffiy
, f( .dy

dw+^S +

/ e-Sf(x)te

fe-ff(.*)**g(x

8.703

/ { Cl
_

8.704

/ Cl
_ W dy

~
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8.705

8.706

Wu
dy = afe-S W* dx + a.

8.707

8.708

. (a
-

2. (a

y = e
~ax

[ci + czfe
ax~* b*2

dx}

y = e~bx {ci + c fx~aebx dx}

d2
y a dy b

dx2 x dx x2

X = - V(0 -
i)

2 -
4b

i

;
X = - v 4#

-
(a i)

2

2

_ g~ T

y = # T{CI cos (X log x) + c2 sin (X log x}}

y = x logx).

bx*

bx*

y = e 2 (ci cos \x + c2 sin

189

8.710

/a
-(- bx . v

f(x)

Cl (a + bx) +cj e
x -

(a + bx) f^r ex

( J /W
dx
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8.711

8.712

8.713

y = Cie

where :

MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

J;

-/2 / \ i iy (a + x)P**

d?y 2 dy

y = -
&amp;lt; i cos ux + c2 sm ax +

x

d2
y

a 1

V .

^ + 2d
fa3

+ c
-fa2

+ 2
j
+ ay =

&amp;gt;

sin (coi# + i) -f coi cos (co^ +

+ c2e~p2X I p2 sin

4co2
2 = 2 + c - 2 d2 -

d2
,

= d+ Vz- c + d2
,

2p2
= - Vz-C + d2

}

and z is a root of

z3 cz2
4(a -

bd)z + ^(ac ad2 b2
)
= o.

(Kiebitz, Ann. d. Physik, 40, p. 138, 1913)



IX. DIFFERENTIAL EQUATIONS
(continued}

9.00 Legendre s Equation:
dy

9.001 If n is a positive integer one solution is the Legendre polynomial, or

Zonal Harmonic, Pn (x):

P (Y)

(n\y 2(2* -i) a-4-(i-i)(i-3)

9.002 If n is even the last term in the finite series in the brackets is:

9.003 If w is odd the last term in the brackets is:

!^ 2 -

9.010 If w is a positive integer a second solution of Legendre s Equation is the

infinite series:

}
(+i)(n+2) (n+3)Xn ~

(2H+l)l

, (+ l)(+ 2)( + 3)( + 4) _( B+6) ,

2. 4 (2W + 3)(2W+5)
9.011

P,.(cos = (-i)
n

^jy2
{

sin2 &quot; ^ - -^f
sin2-2 cos2

9.012

P2n+i (cos 6) = (~i)
n !L

+ 1 sin2 &quot; cos 6 -

(Brodetsky: Mess, of Math. 42, p. 65, 1912)

IQI
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9.02 Recurrence formulae for Pn (x):

1. (n + i)Pn+i + nPn-i = (2n + i)xPn .

J D J T&amp;gt;

2. (2H + l)P _
dx dx

. . dPn+l dPn
3. (n + i)Pn = j

- x ,

dx dx

dPn dPn-l
4. nPn = x -j

-
i
--

dx dx

jp
5- (i-*2

)^=(^+

6. l-X*) = nP

7- (2 + i) (i
-

x*) j^
= n(n

9.028 Recurrence formulae for Qn (x). These are the same as those for Pn (x).

9.030 Special Values.

PoO) =
i,

PiO) =
x,

-
3*),

2 -
5),

AW = A (429^ - 693*
5 + 315^-35^),

AW = Ti-s(6435^
- 12012^ + 6930^ - I260J2 + 35).

9.031

, , i

QQ(X) = -
log

2
&quot; X I

X+ I

ftW-J- h...



DIFFERENTIAL EQUATIONS

9.032

P-2n+l(o)
=

O,

Pn(l) =
I,

193

9.033 If z = r cos 0:

aP
&quot; (cos *&amp;gt; = 21 Pl (cos 0)Pn (cos 6)

- Pn+1 (cos 0)
dz r

&amp;gt;-*.*(&amp;gt;

9.034 Rodrigues Formula:

9.035 If 2 = r cos 0:

9.036 If m ^ n :

k = O

where:

1-3-5 . . . . (2f- l)

MEHLER S INTEGRALS

9.040 For all values of n:

_2
C cos (n + \.

TrJ -\/2 (cos &amp;lt;/&amp;gt;

- cos 0)

9.041 If n is a positive integer:

f. (cos
0)-^jy&amp;gt;^

9.042

9.043

LAPLACE S INTEGRALS, FOR ALL VALUES OF

T /*7T=~ I \X
- I COS &amp;lt;&amp;gt; rf&amp;lt;.

- i
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INTEGRAL PROPERTIES
9.044

/ Pm (x)Pn (x) dx = oilman

-
if m = n.

2n + i

9.045

(m - n)(m + n + i)J*Pm (x)Pn (x) dx

\(n + i)Pn+i - nPn-i~]
- Pn\_(m + i)Pm+i -

9.046

i

J
+ 2(P!P2 + P2P3 +.... + Pn-lPn)

EXPANSIONS IN LEGENDRE FUNCTIONS

9.050 Neumann s expansion:

2 nn I

9.051 Any polynomial in # may be expressed as a series of Legendre s poly
nomials. If fn (x) is a polynomial of degree n:

ak = -
fn(x)Plt (x) dx.

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS

9.060 For all positive real values of n:

a i + cos rnr \
.

f.\ 5^
2

r. / /\
x - cos &quot;9 = -

Po(cos e) + P2(cos 0)

ffj?



2. sin n6~-

DIFFERENTIAL EQUATIONS

^o(cos 0) + 7-^-, P2 (cos 0)

195

9.061 If n is a positive integer:

/&amp;gt;

i 2-4-6 . . . 2n
i. cos nd = -

. 23-5-7

I&quot;&quot;*;

2
\_n

-

_ \ \-
n

\-
n + irJL -

r*? 2 (ti i\i~\ r^2\n \n 2) j [_n f| _ 4)2]

,/W

2. sm
4 2-4-6 . . . (2W - 2)

9.062
COv

2 2 n4 /I-3-5-. .(^
-

i)
2
V 2-4-6....

n IT IT ^^ (AH +i) /i v &quot;&amp;gt; (2n
9 sin n T I

^ -1^ oill \J S . x

4 2 ^Mtf (2W i) (2H + 2) \ 2-4-6 . . . . 2ft
w=i

i) /I- V i&amp;gt;

. . . . (2 l)\
-r^ -

-
i) \ 2-4-6.... 2W /

9.063

i + sin -

I. log

sm-
2

. 6

9.064 K(k) and (jfe)
denote the complete elliptic integrals of the first and

second kinds, and k = sin 6:



.
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^ /TX 7T
2

7T
2&amp;lt;V1, v (&.n 4- l} /!??. .(?ni}\ 3

2.

(2-l)(2+2) 2-4-6.... 2

(Hargreaves, Mess, of Math. 26, p. 89, 1897)

9.070 The differential equation:

If m is a positive integer, and -i&amp;gt;#&amp;gt; + i, two solutions of this differential

equation are the associated Legendre functions

9.071 If n, m, r are positive integers, and
n&amp;gt;m, r&amp;gt;m:

/* -

1 1

/ Pr (*) PT () ^ = o if r n,Ji

2n + i (n m) I

9.100 BessePs Differential Equation:

d y i dy ( v^\
o ~i~

~
~f~ I i ~

) &quot;V

== o.

9.101 One solution is:

9.102 A second independent solution when v is not an integer is:

y = J-*(x).
9.103 If v =

n, an integer:

/_(*) = (-!)/(*).

9.104 A second independent solution when v =
n, an integer, is:

(see 6.61).
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9.105 For all values of
*&amp;gt;,

whether integral or not:

Yv (x)
= ^vir

(cos virJv (x)
- J-v (x)\

J-v (x)
= cos virJv (x)

- sin virYv (x),

Y-v (x)
= sin virJj,(x) + cos virYv (x).

9.106 For v = n, an integer:

Y.n (x)
= (~lYYn (x).

9.107 Cylinder Functions of the third kind, solutions of Bessel s differential

equation:

1. H\ (x)
= MX) + iYv (x).

2. Hi (x)
= Jv (x)

- iYv (x).

3. H- v (x)
= e

v
^Hl(x).

4. H- v (x)
= e-^Hl(x).

9.110 Recurrence formulae satisfied by the functions Jv ,
Yv ,

Hv ,
H V ,CV

represents any one of these functions.

i. Cv-i(x)
- Cv+i(x) =

2-j^C
v (x).

2,V

2. C _i(x) + Cy+l(x) = Cvfa).
00

3. ^-
Cv (x)

= Cv-i (x)
- - Cv (x) .

4. c (x)
= V
-Cv(x)-Cv+l (x).

5. a

6. = CV+*(X) + C,_2 (*)
-

2C*(X)

9.111

N dYv (x) T r / \ djv (x) 2 r/\T7/\
i. Jv (x) j

- Yv (x) ^ = -- 2. /+!( 7,0) -
u,X CLX TTX

ASYMPTOTIC EXPANSIONS FOR LARGE VALUES OF X

9.120

i. MX) = \l (
P W cos (x

- ^t-1
IT]

- Q v (x) sin (x
- -

IT] } ,

V TTX
{ \ 4 / V 4/J

/~2~ f / 2^+I\ / 2I&amp;gt;+I\)

(x)
= \/-- \ Pv (x) sm(x - - TT + Qv (x) cos

(

-
&quot;*&quot;)(

TTX I \ 4/ \ 4/J2.
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(

THE

2V+I

4 . ff?() =&quot;&amp;lt;&amp;gt;- ^
where

oo

* -

SPECIAL VALUES

9.130
V 6

I.

2 . /,(*) = _ ^M . * / - r M2
-

x M 4
I f*

dx 2

(3

log? + 7 /oW + 4 ;/i(*)- ;\ * / [24

I / I I\fx\
\5 J + - + ---

!)
2
\ 2 3/\2/

i / i

+ T I + -

2!3! V 2

=
(log I

+

- +
2

7 =
0.5772157 (6.602).

9.131 Limiting values for x = o:

Jo(x) =
i,

/iW =
o,

3

3 4
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9.132 Limiting values for # =
&amp;lt; :

7T
cos x -- sin

/ 7T\
in ( x -- 1

sin [x
-

}
cos [*

-
-)

,
(

v _V 47, v , x V 47.
/iO)=- ~T= *xw

/

Vv V?

9.140 Bessel s Addition Formula:

9.141 Multiplication formula:

9.142

where

\(k
- s)T(v + k - s + i)F(M+ 5 +

9.143
fji+v+2k

2,

k=o

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL S FUNCTIONS

9.150 fx\
v

2
laj F-

Jv (x)
= - r /

2 cos (* sin
&amp;lt;f&amp;gt;)

cos2 &quot;

&amp;lt;p-a&amp;lt;p.

, i ^ .

9.151
2 -,

cos (* cos
&amp;lt;/&amp;gt;)

sin&quot;,r
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9.152

Jv (x)
=

If w is an integer:

9.153

I COS (X Sin
&amp;lt;/&amp;gt;)

COS
(2W0)&amp;lt;J0

= -
/ 2 .

^c/o 7ryo

- / COS (* COS 0) COS
(2W0)&amp;lt;/0

= -^ ^ /T.
./o TT J o

Jzn+i(x) =
/ sin sin 0) sin (211 + i) &amp;lt;f)

dti = I ^
~Jo TTjo

/2n+i(ff) = - - I sm(x cos 0) cos (2 + i)d&amp;gt;dci&amp;gt;

= 2(-~ I
-)n

/
^

W J 7T Jo

I /*
+71

&quot;

T C 2lr

=-- I e -in&amp;lt;f&amp;gt;+ix sin0 d(k = J_ /
g-tn^+issin^ ^^

27TJ-TT 27Tjo

9.154

/.(*) = (
&quot;

9.155

9.156

9.157

Jn (X}
=
27T-T

INTEGRAL PROPERTIES

9.160 If Cv (fJix) is any one of the particular integrals:

of the differential equation:

dty i dy

/
__i

r r
f /1~|*^ ~ V? I I

MA;&amp;lt; &quot; ^ v (M/C^
J Ja

;

9.161 If /x& and ^ are two different roots of

C,(/x&) =
o,

/ Cv (fjikx)Cv (iJ,ix)x dx =
c/a Ufc

2

9.162 If p,k and pt z are two different roots of

^
o,

J
If /^ =

ju^:

/*C9(iu*)C9(
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EXPANSIONS IN BESSEL S FUNCTIONS

9.170 Schlomilch s Expansion. Any function f(x) which has a continuous

differential coefficient for all values of x in the closed range (o, TT) may be expanded

in the series:

where

9.171

where

9.172

where:

and

9.180

i. sns

f(x)
= a Q -f j akJQ (kx),

k = i

a Q
=
/(o) + ^

r u f~^f (u sin 6)d6du,
Jo Jo

2 C* C~
ak = I u cos ku I

2

f (u sin 6) dOdu.
*Jo Jo

f(x)
= a xn + akJ

&= I

Jn+i(ak)
=

o,

aQ
= 2(n+i)

I
f(x)x

ak = xf(x)Jn(OikX)dx.

(Bridgman, Phil. Mag. 16, p. 947, 1908)

WW) - aVo 2
!

(Stephenson, Phil. Mag. 14, p. 547, 19?)

SPECIAL EXPANSIONS IN BESSEL S FUNCTIONS

2. cosa: = J (x)



202

9.181

MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

1. cos (x sin 6) = JQ (x) + 2 Jzk(x) cos 2k6,

k = i

CO

2. sin (x sin 6) = 2.J2k + 1 (x) sin (2k + i)0.

9.182

I.

OJ

-2 ( + 2*) (n + k - i) !

9.183

C-D&quot;

k = i

(see 6.61)

9.200 The differential equation:

with the substitution:

becomes:

which is Bessel s equation of order n + -
2

9.201 Two independent solutions are:

JJLX
= p

The former remains finite for p =
o; the latter becomes infinite for p = o.
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9.202 Special values.

9.203

COS

-^ - - cos x
,

9.204

2 +
&amp;lt;&- )}* V^ / J

9.205
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9.210 The differential equation:

d?y i dy

with the substitution,

x =
iz,

becomes BesseFs equation.

9.211 Two independent solutions of 9.210 are:

IP (x) =i~v Jv (ix),

K (x) = /TV &amp;lt;-

|
Hl

v (ix).

9.212 If v =
n, an integer:

CO

T
*

k=0

Kn (X) = *+! ^ ().

9.213

T /v\i; / 7r

( COS

9.214 If x is large, to a first approximation:

7n (a;)
= (27TX COsh j8)~* e

z (cosh ^ - /S sinh^
^n W =

7T(27T^ COsh j8)-*g-*
(cosh /3

-
/3 sinh

w = x sinh j3.

9.215 Ber and Bei Functions.

ber x + ibeix = I (xVl),

ber x i bei x =
Io(ix\/i),

(50
2
V2
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9.216 Ker and Kei Functions:

ker x + i kei x = Ko(x\/i),

ker x i kei x = K (ix\/i),

.

(4!)
2
V 2 3

9.220 The Bessel-Clifford Differential Equation:

With the substitution:

z = xv/zy u = 2\/x,

the differential equation reduces to Bessel s equation.

9.221 Two independent solutions of 9.220 are:

00

&quot; r f r\ ^^ - -- x
CV (X)

= X-2 JV (2Vx) -

v .n (v\ -r V (?\/r}DV (X)
- X 2 Y V {2VX).

9.222
d

9.223 If v = n, an integer:

9.224 Changing the sign of v, the corresponding solution of
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9.225 If v is half an odd integer:

, , N sin (2Vx + 6)

r ( \ - r ( \ - s*n (2 -\/# + ) cos (2\/3g + e)

~^ K*
~^r~ &quot;IT&quot;

rf 3
- 4* . x 3 c s (2\/a + 6)

1W = &quot;

dx lW =
8^~ Sm ~

-$(x) = -cos (2\fx + e),

is arbitrary so as to give a second arbitrary constant.

9.226 For x negative, the solution of the equation:

&y f \ dy
x d*+( v+1^- y ~

when v is half an odd integer, is obtained from the values in 9.225 by changing

sin and cos to sinh and cosh respectively.

9.227

(m + n+i) I Cm+i(x)Cn+i(x) dx = - xCm+i(x)Cn+i(x) - Cm (x)Cn (x),/( ]

xm+nCm(x)Cn(x) dx = xm+n+l xCm+i(x)Cn+i(x) + Cm (x*)Cn (x)
-

[ J

9.228

2. rc(x cos2 0) d(j)
= irCi(x).

3. |C (* sin2 0) sin
&amp;lt;j&amp;gt; d&amp;lt;j&amp;gt;

= C$(x).

4.

rr&amp;gt;

t ? ^\ ^ j^ I - COS 2\/X
Ci(x sin2 9) sm 9 09 = -
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9.229 Many differential equations can be solved in a simpler form by the use

of the Cn functions than by the use of Bessel s functions.

(Greenhill, Phil. Mag. 38, p. 501, 1919)

9.240 The differential equation:

dz
y 2(n+ i) dy

dx~*
+ ~^T~~dx~

with the change of variable:

y = ZX~ n~?
}

becomes Bessel s equation 9.200.

9.241 Solutions of 9.240 are:

1. y = a-&quot;

2. y = x~n-

3- y = *-&quot;-

4. y = x
i
&amp;gt; Hll

n+l (x).

9.242 The change of variable:

x = 2\/z,

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220.

This leads to a general solution of 9.240:

When n is an integer the equations of 9.225 may be employed.

x2
\ sin (x + e)

2 sin (x + e) cos (x + e)/x2\ _
u /

=

9.243 The solution of

d2 2n + i dv

may be obtained from 9.242 by writing sinh and cosh for sin and cos

respectively.

9.244 The differential equation 9.240 is also satisfied by the two independent

functions (when n is an integer):

sin x

._ ,

\(2n + $) (2W+2&+I)
k = o
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i d \
n cos x

xdx) x
CO

1-3-5 . . . (2^- i

x

k = o

9.245 The general solution of 9.240 may be written:

l(l 2) (3 2tt) . . . . (2k 2H l)

~
\x dx x

i

9.246 Another particular solution of 9.240 is:

y -/.(*&amp;gt;
-
(- 1

n(n + i) Q - i)( + i) (n + 2)
&quot;

1-2-3

2-4-6 . . . . 2n(ix)

9.247 The functions ^B (z), ^f
n (^),/n(^) satisfy the same recurrence formulae:

9.260 The differential equation:

^2
);

dx*~

with the change of variable:

y = u\/x

is transformed into Bessel s equation of order n + -.

9.261 Solutions of 9.260 are:

- -V ^
isy *

(T
/7\ n ^~ ia:-~ -

^/ CLX/ X

9.262 The functions Sn (x), Cn (x), En (x) satisfy the same recurrence formulae:

dSn (x) n + i , , c , .
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dSn (x) , . n .

-^~ = Sn-l(x) - ~Sn (x).

9.30 The hypergeometric differential equation:

9.31 The equation 9.30 is satisfied by the hypergeometric series:

i) (ff + 2)
^,

1-2-3 7(7 + i) (7 + 2)

The series converges absolutely when x&amp;lt;i and diverges when x&amp;gt;i. When
x = +i it converges only when a. + jS 7&amp;lt;o, and then absolutely. When
x = -i it converges only when a + ft 7- i&amp;lt;o,

and absolutely if

a + ]8
-

7&amp;lt;o.

9.32

Tl /-A TV-, ~. f.

77 / /D \

9.33 Representation of various functions by hypergeometric series.

(i + xY = F(-n, j3, 0, -*),

log (i + s) =
ofF(i, i, 2, -*),

Limit
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= 2 - --+~, ,

-r-\ I *V IV JL. o
cos nx = F (-, -,-, sin2 x

1,

/n+ii-n$ . \
sin nx = n sin xr , , -, snr x ,

\ 2 2 2 f

tan-1
ff = #F (-, i, -,

- a2
],

O) = F f - w, w + i, i, ^~\P

_,+i w+2
, 3

Qn(x} = F ~~ ~7~ w +
2

i,

9.4 Heaviside s Operational Methods of Solving Partial Differential Equations.

9.41 The partial differential equation,

62u _ du
a
dx2

~
dt

where a is a constant, may be solved by Heaviside s operational method.

d p
Writing =

p, and - =
&amp;lt;? ,

the equation becomes,

whose complete solution is u = e qxA + e~ qxB, where A and B are integration

constants to be determined by the boundary conditions. In many applications

the solution u = e~ qx
B, only, is required: and the boundary conditions will

lead to u = e~ qx
f(q)u ,

where u is a constant. If e~ qx
f(q] be expanded in an

infinite power series in q, and the integral and fractional, positive and negative

powers of p be interpreted as in 9.42, the resulting series will be a solution of

the differential equation, satisfying the boundary conditions, and reducing to

u = o at / = o. The expansion of e~ qx
f(q) may be carried out in two or more

ways, leading to series suitable for numerical calculation under different

conditions.
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9.42 Fractional Differentiation and Integration.

In the following expressions, i stands for a function of / which is zero up

to / = o, and equal to i for /&amp;gt;o.

9.421

9.422

p i = o

p
2
i =o p

n
i = o

fih = o

9.423

2 A / -

/I

3-5

9.424

where v may have any real value, except a negative integer. (Conjectural.)

9.425

P

p^ 1

j i

p a a

9.426 With
/&amp;gt;

= a?
2

,

r*. -
v



212 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

9.427
X*

q&amp;lt;Ti
= ^=

~~

9.428 If z = -^=,
2Vat

2 T^
00

= ^ I e~v2

VTT Jz

9.43 Many examples of the use of this method are given by Heaviside: Electro

magnetic Theory, Vol. II. Bromwich, Proceedings Cambridge Philosophical

Society, XX, p. 411, 1921, has justified its application by the method of contour

integration and applied it to the solution of a problem in the conduction of heat.

9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, 1919, has

shown that the same methods may be applied to the more general partial

differential equations of the type,

and the relations of 9.42 are valid.

9.44 Heaviside s Expansion Theorem.

The operational solution of the differential equation of 9.41, or the more

general equation, 9.431, satisfying the given boundary conditions, may be

written in the form,

F(p)

A(p)

where F(p) and A(^) are known functions of p =
. Then Heaviside s

Expansion Theorem is:

F(o) ^ F(a) at

^pj
+
2^^(aj

e

where a is any root, except o, of
A(/&amp;gt;)

=
o, A (/&amp;gt;)

denotes the first derivative of

A(/&amp;gt;)
with respect to p, and the summation is to be taken over all the roots of

A(/&amp;gt;)

= o. This solution reduces to u - o at t = o.

Many applications of this expansion theorem are given by Heaviside,

Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431,

has also applied this expansion theorem to the solution of the problem of the

distribution of magnetic induction in cylinders and plates.

9.45 Bromwich s Expansion Theorem. Bromwich has extended Heaviside s

Expansion Theorem as follows. If the operational solution of the partial

differential equation of 9.41, obtained to satisfy the boundary conditions, is
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where G is a constant, then the solution of the differential equation is

where No and NI are denned by the expansion,

a is any root of
A(/&amp;gt;)

=
o, A (/&amp;gt;)

is the first derivative of A(p) with respect to p,

and the summation is over all the roots, a. This solution reduces to u = o at

/ = o. Phil. Mag. 37, p. 407, 1919; Proceedings London Mathematical Society,

15, p. 401, 1916.

9.9 References to Bessel Functions.

Nielsen: Handbuch der Theorie der Cylinder Funktionen.

Leipzig, 1904.

The notation and definitions given by Nielsen have been adopted in the pres

ent collection of formulae. The only difference is that Nielsen uses an upper

index, J n
(x), to denote the order, where the more usual custom of writing Jn (x)

is here employed. In place of Hi n and H2
n used by Nielsen for the cylinder

functions of the third kind, Hn
l and Hn

11 are employed in this collection.

Gray and Mathews: Treatise on Bessel Functions.

London, I895.
1

The Bessel Function of the second kind, Yn (x), employed by Gray and

Mathews is the function

^
Yn (x] + (log 2 - T)/nW,

of Nielsen.

Schafheitlin: Die Theorie der Besselschen Funktionen.

Leipzig, 1908.

Schafheitlin defines the function of the second kind, Yn (x) t
in the same way

as Nielsen, except that its sign is changed.

Noi^ A Treatise on the Theory of Bessel Functions, by G. N. Watson, Cambridge

University Press, 1922, has been brought out while this volume is in press. This Treatise gives

by far the most complete account of the theory and properties of Bessel Functions that exists,

and should become the standard work on the subject with respect to notation. A particularly

valuable feature is the Collection of Tables of Bessel Functions at the end of the volume and

the Bibliography, giving references to all the important works on the subject.

9.91 Tables of Legendre, Bessel and allied functions.

Pn (x) (9.001).

1 A second edition of Gray and Mathews Treatise, prepared by A. Gray and T. M.

MacRobert, has been published (1922) while this volume is in press. The notation of the first

edition has been altered in some respects.
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B. A. Report, 1879, pp. 54-57. Integral values of n from i to 7; from x = o.oi

to x =
i.oo, interval o.oi, 16 decimal places.

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places.

Pn(CGS 0)

Phil. Trans. Roy. Soc. London, 203, p. 100, 1904. Integral values of n from

i to 20, from 6 = o to 6 =
go, interval 5, 7 decimal places.

Phil. Mag. 32, p. 512, 1891. Integral values of n from i to 7, 6 = o to

6 = 90, interval i; 4 decimal places. Reproduced in Jahnke and Emde, p. 85.

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. 1-8. Integral values

of n from i to 8; 6 = o to 6 =
go, interval i, 10 decimal places.

Airey, Proc. Roy. Soc. London, 96, p. i, 1919. Tables by means of which

zonal harmonics of high order may be calculated.

Lodge, Phil. Trans. Roy. Soc. London, 203, 1904, p. 87. Integral values of

n from i to 20; 6 = o to 6 =
go, interval 5, 7 decimal places. Reprinted in

Rayleigh, Collected Works, Volume V, p. 162.

dPn (cos 0)

66

Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of n from i to 7;

6 = o to 6 = go, interval i, 4 decimal places. Reproduced in Jahnke and Emde,

p. 88.

7oW, Ji(x) (9.101).

Meissel s tables, x = o.oi to x =
15.50, interval o.oi, to 12 decimal places,

are given in Table I of Gray and Mathews Treatise on Bessel s Functions.

Aldis, Proc. Roy. Soc. London 66, 40, 1900. x = o.i to x =
6.0, interval

o.i, 21 decimal places.

Jahnke and Emde, Funktionentafeln, Table III. x = o.oi to x =
15.50,

interval o.oi, 4 decimal places.

/(*) (9.101).

Gray and Mathews, Table II. Integral values of n from n = o to n = 60;

integral values of x from x = i to x =
24, 18 decimal places.

Jahnke and Emde, Table XXIII, same, to 4 significant figures.

B. A. Report, 1915, p. 29; n = o to n =
13.

x = 0.2 to x = 6.0 interval 0.2 6 decimal places,

x = 6.0 to x = 1 6.0 interval 0.5 10 decimal places.

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of Jn (x)

for integral values of n from o to 12, and n =
18, x ranging from o to 17.

B. A. Report, 1913, pp. 116-130. x = o.oi to x =
16.0, interval o.oi, 7

decimal places.
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B. A. Report, 1915, x = 6.5 to x =
15.5, interval 0.5, 10 decimal places.

Aldis, Proc. Roy. Soc. London, 66, 40, 1900: x = o.i to x = 6.0. Interval

o.i, 21 decimal places.

Jahnke and Emde, Tables VII and VIII, functions denoted K (*) and KI(Z),

x = o.i to x = 6.0, interval o.i; x = o.oi to x =
0.99, interval o.oi; x = i.o

to x = 10.3, interval o.i; 4 decimal places.

-
^
Yn (x)

= Gn (x).

B. A. Report, 1914, p. 83. Integral values of n from o to 13. x = o.oi to

x = 6.0, interval o.i; x = 6.0 to x = 16.0, interval 0.5; 5 decimal places.

T
- FoO) + (log 2 - 7)/oW, Denoted F fo) and FI(S)

7T
- FI() + (log 2 - y)Ji(x). respectively in the tables.

B. A. Report, 1914, p. 76, x = 0.02 to x = 15.50, interval 0.02, 6 decimal

places.

B. A. Report, 1915, p. 33, x = o.i to x =
6.0, interval o.i; x = 6.0 to

x =
15.5, interval 0.5, 10 decimal places.

Jahnke and Emde, Table VI, x = o.oi to x =
i.oo, interval o.oi; x = i.o

to x = 10.2, interval o.i, 4 decimal places.

Fo(#), Fi(#). Denoted ^Vo(.v) and NI(X) respectively.

Jahnke and Emde, Table IX, x = o.i to x =
10.2, interval o.i, 4 decimal

places.

T
- Yn (x) + (log 2 - 7) J n (x). Denoted Yn (x) in tables.

B. A. Report, 1915. Integral values of n from i to 13. x = 0.2 to x =
6.0,

interval 0.2; x = 6.0 to x =
15.5, interval 0.5, 6 decimal places.

/+*(*).

Jahnke and Emde, Table II. Integral values of n from n = o to n =
6, and

w= i to w =
7; # = oto# =

50, interval i.o, 4 figures.

Watson, Proc. Roy. Soc. London, 94, 204, 1918.

x = 0.05 to x = 2.00 interval 0.05,

x = 2.0 to x = 8.0 interval 0.2,

4 decimal places.

/(), Ja-i(a)

- Ya (a), - - Ya-i(a). Denoted Ga (a) and Gtt_i(a) respectively.
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^
Ya (a) + (log 2 - y)Ja (a),

T

7 Ya-i(a) + (log 2 - 7)/_1 (a). Denoted -F(a) and -F_i(a).

Tables of these six functions are given in the B. A. Report, 1916, as follows:

/(*), Ii(x) (9.211).

Aldis, Proc. Roy. Soc. London, 64, pp. 218-223, 1899; x = o.i to x =
6.0,

interval o.i; x = 6.0 to x = n.o, interval i.o, 21 decimal places.

Jahnke and Emde, Tables XI and XII, 4 places:

x = o.oi to x = 5.10 interval o.oi,

x = 5.10 to x = 6.0 interval o.i,

x = 6.0 to x = i i.o interval i.o.

!(*) (9.211).

B. A. Report, 1896;- x = o.ooi to x = 5.100, interval o.ooi, 9 decimal

places.

IK*) (9.211).

B. A. Report, 1893; x = o.ooi to x =
5.100, interval o.ooi, 9 decimal

places.

Gray and Mathews, Table V, x = o.oi to x =
5.10, interval o.oi, 9 decimal

places.

I n (x) (9.211).

B. A. Report, 1889, PP- 28-32; integral values of n from o to n, x = 0.2

to x = 6.0, interval
o&amp;gt;2,

12 decimal places. These tables are reproduced in

Gray and Mathews, Table VI.

Jahnke and Emde, Table XXIV; same ranges, to 4 places.

Jo(xVi) =X-iY,
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Aldis, Proc. Roy. Soc. London, 66, 142, 1900; x = o.i to x =
6.0, interval

o.i, 21 decimal places.

Jahnke and Emde, Tables XV and XVI, same range, to 4 places.

Gray and Mathews, Table IV; x = 0.2 to x =
6.0, interval 0.2, 9 decimal

places.

Y Q(xVi) (9.104) Denoted NQ (xVi&amp;gt;)
in table.

Hl(xVi), H[(xVi).

Jahnke and Emde, Tables XVII and XVIII; x = 0.2 to x =
6.0, interval

0.2, 4-7 figures.

(9.212).

-
ffj(&)

= AM*),

Aldis, Proc. Roy. Soc. London, 64, 219-223, 1899; x = o.i to x = 12.0,

interval o.i, 21 decimal places.

Jahnke and Emde, Table XIV; same, to 4 places.

iH\(ix), -Hl(ix) (9.107).

Jahnke and Emde, Table XIII; x = 0.12 to # =
6.0, interval 0.2, 4 figures.

her*, her *,

bei x, bei x,

B. A. Report, 1912; x = o.i to x = 10.0, interval o.i, 9 decimal places.

Jahnke and Emde, Table XX; x = 0.5 to x = 6.0, interval 0.5, and x =
8,

10, 15, 20, 4 decimal places.

ker*, ker *,
_

kei x, kei #,

B. A. Report, 1915; x = o.i to x =
10.0, interval o.i, 7-10 decimal places.

ber2 x + bei2 x,

ber /2 x + bei 2
s,

ber x bei # - bei x ber #, and the corresponding ker and kei

ber x ber x + bei x bei x, functions.

B. A. Report, 1916; x = 0.2 to x =
10.0, interval 0.2, decimal places.

Cn (*) ,
C n (x) , log C(*) , log C nW , (9.261) .

(*), (*), log EnW, logE nfr),

B. A. Report, 1916; integral values of n from o to 10, x = i.i to x = I.Q,

interval o.i, 7 decimal places.
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Table I of Jahnke and Emde gives these two functions to 3 decimal places

for x = 0.2 to x =
8.0, interval 0.2, and x = 8.0 to x =

12.0, interval i.o.

RoOtS Of JQ(X) = O.

Airey, Phil. Mag. 36, p. 241, 1918: First 40 roots (p) with corresponding
values of /i(p), 7 decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.

Roots of Ji(x) = o.

Gray and Mathews, Table III, first 50 roots, with corresponding values

of JQ(X), 1 6 decimal places.

Airey, Phil. Mag. 36, p. 241: First 40 roots (r) with corresponding values

of Jo(r), 7 decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.

Roots of Jn (x)
= o.

B. A. Report, 1917, first 10 roots, to 6 figures, for the following integral

values of : o-io, 15, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000.

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral

values of n 0-9.

Roots of:

(log 2 - y)Jn (x) + Yn (x)
= o. Denoted Yn(x) = o in table.

Airey: Proc. London Phys. Soc. 23, p. 219, 1910-11. First 40 roots for

n = o, i, 2, 5 decimal places.

Jahnke and Emde, Table X, first 4 roots for n =
o, i. E decimal places.

Roots of:

Denoted NQ(X) and Ni(x) in tables.

Fi(a?)
= o.

Airey: 1. c. First 10 roots, 5 decimal places.

Roots of:

Jo(x) (log 2 - y)J (x) + - Y (x)
= o. Denoted JQ (x) YQ (x)

= o.

Ji(x) + (log 2 - y)Ji(x) + --
YI(X) = o. Denoted Ji(x) + YI(X) = o.

J (x)
- 2 (log 2 - y)J (x) + - Y Q (x)

= o. Denoted J (x)
- 2Y (x)

= o.
2

ioJQ (x) =t (log 2 - y)J (x) + YQ (x)
= o. Denoted ioJQ (x) Y (x)

= o.
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Airey, 1. c. First TO roots, 5 decimal places.

Roots of-

Airey, 1. c. First 10 roots: n =
o, 4 decimal places, n =

i, 2, 3, 3 decimal

places.

Jahnke and Emde, Table XXV, first 5 roots for n =
o, 3 for n =

i, 2 for

w = 2: 4 figures.

Airey, 1. c. gives roots of some other equations involving Bessel s functions

connected with the vibration of circular plates.

Roots of:

Jv(x)Yv (x)
= Jv(kx)Yv(kx).

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for

V =
O, 1/2, I, 3/2, 2, 5/2: & =

1.2, I.S, 2.0.

Table XXVIII, first root, multiplied by (
-

i) for k =
i, 1.2, 1.5, 2-11,

19, 39, oo : v same as above.

Table XXIX, first 4 roots, multiplied by (k
-

i) for certain irrational values

of k, and p =
o, i.



X. NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS

BY F. R. MOULTON, PH.D.,

Professor of Astronomy, University of Chicago;

Research Associate of the Carnegie Institution of Washington.

INTRODUCTION

Differential equations are usually first encountered in the final chapter of

a book on integral calculus. The methods which are there given for solving

them are essentially the same as those employed in the calculus. Similar methods

are used in the first special work on the subject. That is, numerous types of

differential equations are given in which the variables can be separated by
suitable devices; little or nothing is said about the existence of solutions of

other types, or about methods of finding the solutions. The false impression

is often left that only exceptionally can differential equations be solved. What
ever satisfaction there may be in learning that some problems in geometry and

physics lead to standard forms of differential equations is more than counter

balanced by the discovery that most practical problems do not lead to such

forms.

10.01 The point of view adopted here and the methods which are developed

can be best understood by considering first some simpler and better known

mathematical theories. Suppose

i. F(x) = xn + aix
n~ l + + fln-i* + an = o

is a polynomial equation in x having real coefficients a\, a^, . . .
,
a n . If n is

i, 2, 3, or 4 the values of x which satisfy the equation can be expressed as explicit

functions of the coefficients. If n is greater than 4, formulas for the solution

can not in general be written down. Nevertheless, it is possible to prove that n

solutions exist and that at least one of them is real if n is odd. If the coefficients

are given numbers, there are straightforward, though somewhat laborious,

methods of finding the solutions. That is, even though general formulas for

the solutions are not known, yet it is possible both to prove the existence of the

solutions and also to find them in any special numerical case.

10.02 Consider as another illustration the definite integral

i. 7-
/}(*)&amp;lt;**,i/a

where f(x) is continuous for a ^x ^b. If F(x) is such a function that

dF ,, .-
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then I = F(b) - F(a). But suppose no F(x) can be found satisfying (2). It

is nevertheless possible to prove that the integral 7 exists, and if the value of

(x) is given for every value of x in the interval a ^ x ^ b, it is possible to find the

numerical value of 7 with any desired degree of approximation. That is, it is

not necessary that the primitive of the integrand of a definite integral be known

in order to prove the existence of the integral, or even to find its value in any

particular example.

10.03 The facts are analogous in the case of differential equations. Those

having numerical coefficients and prescribed initial conditions can be solved

regardless of whether or not their variables can be separated. They need to

satisfy only mild conditions which are always fulfilled in physical problems.

It is with a sense of relief that one finds he can solve, numerically, any particular

problem which can be expressed in terms of differential equations.

10.04 This chapter will contain an account of a method of solving ordinary

differential equations which is applicable to a broad class including all those

which arise in physical problems. A large amount of experience has shown that

the method is very convenient in practice. It must be understood that there is

for it an underlying logical basis, involving refinements of modern analysis,

which fully justifies the procedure. In other words, it can be proved that the

process is capable of furnishing the solution with any desired degree of accuracy.

The proofs of these facts belong to the domain of pure analysis and will not be

given here.

10.10 Simpson s Method of Computing Definite Integrals. The method of

solving differential equations which will be given later involves the computation

of definite integrals by a special process which will be developed in this and the

following sections.

Let / be the variable of inte

gration, and consider the definite

integral

i. F =
ff(t)dt.Ja

This integral can be interpreted

as the area between the /-axis and

the curve y =
/(/) and bounded

by the ordinates t = a and t = b,

figure i.

Let to = a, tn = b,yt
=

/(/;), and Q
divide the interval a ^ / ^ b up into

n equal parts, each of length h =

a
FIG. i

_ a)/n. Then an approximate value of F is

2. FQ =
h(yi + y2 + . . . +yn).

This is the sum of rectangles whose ordinates, figure i, are yi, yi, . . .
, yn .

10.11 A more nearly exact value can be obtained for the first two intervals,

for example, by putting a curve of the second degree through the three points
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yQ) yi, yz ,
and finding the area between the /-axis and this curve and bounded

by the ordinates to and fe. The equation of the curve is

where the coefficients a
, 0i, and 2 are determined by the conditions that y

shall equal y , y\, and y% at / equal to /
, /i and /2 respectively; or

{yo

=
00,

y\
= 0o + 01 (/i /o) + 02 (/i to)

2
.

It follows from these equations and /2
-

t\
=

/i /o
= h that

0o =
yo&amp;gt;

i

/^ yd/ is approximately

/&quot;/ r~ n r

/ = /
*

Uo + fli(/
-

/o) + 2 (/
-

/o)
2 U/ = 2h \ao + fliA + -

Jto L J L 3

which becomes as a consequence of (3)

h

3

10.12 The value of the integral over the next two intervals, or from ^ to /4,

can be computed in the same way. If n is even, the approximate value of the

integral from to to tn is therefore

F=-r +2+ +2+ + +~i
3

This formula, which is due to Simpson, gives results which are usually remarkably
accurate considering the simplicity of the arithmetical operations.

10.13 If a curve of the third degree had been passed through the four points

yo, ^ij &amp;gt;
2, and ys, the integral corresponding to (4), but over the first three

intervals, would have been found to be

*h r
I = TT LVo + 3?i + 33&amp;gt;2 +m

10.20 Digression on Difference Functions. For later work it will be necessary

to have some properties of the successive differences of the values of a function

for equally spaced values of its argument.

As before, let
y&amp;gt;

be the value of /(*) for t = fc. Then let
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i?i
=

yi
-

y ,

Ai} 2
= yz- yi,

yn
-

y

These are the first differences of the values of the function y for successive values

of /. All the successive intervals for t are supposed to be equal.

10.21 In a similar way the second differences are defined by

10.22 In a similar way third differences are defined by

A3;y3
=

and obviously the process can be repeated as many times as may be desired.

10.23 The table of successive differences can be formed conveniently from the

tabular values of the function and can be arranged in a table as follows:

TABLE I

In this table the numbers in each column are subtracted from those

immediately below them and the remainders are placed in the next column to

the right on the same line as the minuends. Variations from this precise arrange

ment could be, and indeed often have been, adopted.

10.24 A very important advantage of a table of differences is that it is almost

sure to reveal any errors that may have been committed in computing the yt-.

If a single y&amp;lt;

has an error e, it follows from 10.20 that the first difference Ai) ,-

will contain the error +e and Aiy,-+i will contain the error -e. But the second

differences A2v, A2yj+i, and A2^+2 will contain the respective errors +e, -2,
+. Similarly, the third differences Asy,-, A3y,-+i, A3y t-+2 ,

and A3yt+3 will contain

the respective errors +e, -36, +36, -e. An error in a single yi affects j + i

differences of order j, and the coefficients of the error are the binomial coeffi

cients with alternating signs. The algebraic sums of the errors in the affected
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numbers in the various difference columns are zero. Now in such functions

as ordinarily occur in practice the numerical values of the differences, if the

intervals are not too great, decrease with rapidity and run smoothly. If an

error is present, however, the differences of higher order become very irregular.

10.25 As an illustration, consider the function y = sin t for t equal to 10,

15, The following table gives the function and its successive differ

ences, expressed in terms of units of the fourth decimal: 1

TABLE II

Suppose, however, that an error of two units had been made in determining

the sine of 45 and that 7073 had been taken 4 in place of 7071. Then the part

of the table adjacent to this number would have been the following:

TABLE III

The irregularity in the numbers of the last column shows the existence of an

error, and, in fact, indicates its location. In the third differences four numbers

1 Often it is not necessary to carry along the decimal and zeros to the left of the first

significant figure.
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will be affected by an error in the value of the function. The erroneous numbers

in the last column are clearly the second, third, fourth, and fifth. .The algebraic

sum of these four numbers equals the sum of the four correct numbers, or -18.

Their average is 4.5. Hence the central numbers are probably 5 and 4.

Since the errors in these numbers are -36 and +36, it follows that e is probably

+ 2. The errors in the second and fifth numbers are +e and -e respectively.

On making these corrections and working back to the first column, it is found

that 7073 should be replaced by 7071.

10.30 Computation of Definite Integrals by Use of Difference Functions.

Suppose the values of /(/) are known for t = / n_2 ,
/ n_i, /, and tn+i. Suppose

it is desired to find the integral

In - f ffo dt.I.

The coefficients b Q , bi, &2 ,
and bs of the polynomial can be determined, as above,

so that the function

2. y = bo + bi(t tn) + b%(t t n)
2 + b$(t t n)

3

shall take the same values as/(/) for / = / n_2 ,
/n_i, /, and tn+i.

With this approximation to the function /(/), the integral becomes (since

^n+l
- tn = h)

S*tn+i

3. / = I ^0 + bi(t tn) + b%(t tn)
2 + b^(t /n)

3
] dt

Jtn

7r/i
I

7) li

I
h h*

T
/ 731f

2
] f

3
f

4
l

The coefficients 6
, bi, b2 ,

and b3 will now be expressed in terms of y n+\,

A2) n+i, and Aa^n+i. It follows from (2) that

Then it follows from the rules for determining the difference functions that

f

5. ^j

f
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It follows from the last equations of these four sets of equations that

o
= yn+i

-

- A2;yn+i,

Therefore the integral (3) becomes

9- In =
h\ yn+1 Ai^n+i A2yn+i

-
As^n+l - .... I.

|_
2 12 24

The coefficients of the higher order terms A 4 )&amp;gt;n+i
and A$y n+i are and

720
i

48
respectively.

10.31 Obviously, if it were desired, the integral from /n_2 to / n _i, or over any
other part of this interval, could be computed by the same methods. For example,
the integral from tn-\ to / is

/_!= ff(t)dt,
Jtn-l

= h\ y^i -
^Ai;y

n+1 + ^A2;yn+i + ^As^n+i
+ .....

NUMERICAL ILLUSTRATIONS

10.32 Consider first the application of Simpson s method. Suppose it is required
to find

rss r
~|55

7 = I sin t dt = -
\

cos / =
0.3327.

Jzs&quot; L J2s

On applying 10.12 with the numbers taken from Table I, it is found that

e

I\ = [.4226 + 2.0000 + 1.1472 + 2.5712 + 1.4142 + 3.0640 + .8191],
v5

which becomes, on reducing 5 to radians,

7i = 0.3327,

agreeing to four places with the correct result.

10.33 On applying 10.11 (4) and omitting alternate entries in Table II, it is

found that
/ 45 IO

7 = I sin tdt = [.4226 + 2.2944 + .7071] = 0.1992,
t/2s 3

which is also correct to four places. These formulas could hardly be surpassed
in ease and convenience of application.
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10.34 Now consider the application of 10.30 (9). As it stands it furnishes the

integral over the single interval / to tn+\. If it is desired to find the integral

from / to tn+m, the formula for doing so is obviously the sum of m formulas

such as (9), the value of the subscript going from n + i to n + m + i, or

i (yn+i

On applying this formula to the numbers of Table I, it is found that

/ =
/ sin / dt = 5[(-5 + -573^ + .6428 + .7071 + .7660 + .8191)
/25

- -
(.0774 + .0736 + .0692 + .0643 + .0589 + .0531)

+ (.0032 + .0038 + .0044 -f- .0049 + .0054 + .0058)

-f
--

(.0006 + .0006 -f .0006 + .0005 + .0005 -f .0004)]

= 0.3327,

agreeing to four places with the exact value. When a table of differences is at

hand covering the desired range this method involves the simplest numerical

operations. It must be noted, however, that some of the required differences

necessitate a knowledge of the value of the function for earlier values of the

argument than the lower limit of the integral.

10.40 Reduced Form of the Differential Equations. Differential equations

which arise from physical problems usually involve second derivatives. For

example, the differential equation satisfied by the motion of a vibrating tuning

fork has the form
tfx

= -kx,

where k is a constant depending on the tuning fork.

10.41 The differential equations for the motion of a body subject to gravity

and a retardation which is proportional to its velocity are

d-x dx~ C
dt&amp;gt;

dy~ c it-^

where c is a constant depending on the resisting medium and the mass and shape

of the body, while g is the acceleration of gravity.
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10.42 The differential equations for the motion of a body moving subject to

the law of gravitation are

d?x_ _ x_

dt*

~

r*

d?

10.43 These examples illustrate sufficiently the types of differential equations

which arise in practical problems. The number of the equations depends on

the problem and may be small or great. In the problem of three bodies there

are nine equations. The equations are usually not independent as is illustrated

in 10.42, where each equation involves all three variables x, y, and z through r.

On the other hand, equations 10.41 are mutually independent for the first does

not involve y or its derivatives and the second does not involve x or its deriva

tives. The right members may involve x, y, and z as is the case in 10.42, or

they may involve the first derivatives, as is the case in 10.41, or they may
involve both the coordinates and their first derivatives. In some problems

they also involve the independent variable /.

10.44 Hence physical problems usually lead to differential equations which are

included in the form

dx dy

d2
y

dt2

dx dy

where / and g are functions of the indicated arguments. Of course, the number

of equations may be greater than two.

10.45 If we let

,
dx

f dy
yf A/ L.~

dt
y ~

dt

equations 10.44 can be written in the form

f dx

dy
dt

dy

dt
y, *

, y &amp;lt;
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2, y =
#3, y =

#4, equations 10.45 are10.46 If we let x = xly x

included in the form

dxi-
=/lOl, Xt, - ,Xn ,t),

, ,Xn ,t).

This is the final standard form to which it will be supposed the differential

equations are reduced.

10.50 Definition of a Solution of Differential Equations. For simplicity in

writing, suppose the differential equations are two in number and write them in

the form

I.

where / and g are known functions of their arguments. Suppose x =
a, y = b

at t = o. Then

/*.
2. \

(y-

is the solution of (i) satisfying these initial conditions if
&amp;lt;j&amp;gt;

and
\fs

are

such functions that

&amp;lt;K)
=

,

the last two equations being satisfied for all o^ /^ J
1

,
where T is a positive con

stant, the largest value of t for which the solution is determined. It is not neces

sary that
(/&amp;gt;

and
\[s

be given by any formulas it is sufficient that they have

the properties defined by (3). Solutions always exist, though it will not be

proved here, iff and g are continuous functions of t and have derivatives with respect

to both x and y.

10.51 Geometrical Interpretation of a Solution of Differential Equations.

Geometricaf interpretations of definite integrals have been of great value not

only in leading to an understanding of their real meaning but also in suggesting
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practical means of obtaining their numerical values. The same things are true

in the case of differential equations.

For simplicity in the geometrical representation, consider a single equation

-/(,,
where x = a at / = o. Suppose the solution is

2. X = 0(0,

Equation (2) defines a curve whose coordinates are x and t. Suppose it is repre
sented by figure 2. The value of the tangent to the curve at every point on it

is given by equation (i), for there

is. corresponding to each point, a

pair of values of x and / which gives

-rr, the value of the tangent, when

substituted in the right member of

equation (i).

Consider the initial point on the

curve, viz. x =
a, t = o. The tan

gent at this point is /(a, o). The
. j. &quot;~L curve lies close to the tangent for a
1 z short distance from the initial point.

FlG. 2 TT rHence an approximate value of x

at / = fa, fa being small, is the ordinate of the point where the tangent at a

intersects the line t = fa, or

xi =
f(a, o)fa.

The tangent at x\, fa is defined by (i), and a new step in the solution can be made
in the same way. Obviously the process can be continued as long as x and t

have values for which the right member of (i) is defined. And the same process

can be applied when there are any number of equations. While the steps of this

process can be taken so short that it will give the solution with any desired

degree of accuracy, it is not the most convenient process that may be employed.
It is the one, however, which makes clearest to the intuitions the nature of the

solution.

10.6 Outline of the Method of Solution. Consider equations 10.50 (i) and their

solution (2). The problem is to find functions and \J/ having the properties

(2). If we integrate the last two equations of 10.50 (3) we shall have

i.

f
Jo

The difficulty arises from the fact that
&amp;lt;/&amp;gt;

and
\j/

are not known in advance and

the integrals on the right can not be formed. Since
&amp;lt;/&amp;gt;

and
\[/

are Jhe solution

values of x and y, we may replace them by the latter in order to preserve the

original notation, and we have
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= a + //(*, y, /) dt,
Jo

2.

If x and y do not change rapidly in numerical value, then/(#, y, t) and g(x, y, t)

will not in general change rapidly, and a first approximation to the values of x

and y satisfying equations (2) is

f/(a,M)
Jo

g(a, b, t) dt,

at least for values of / near zero. Since a and b are constants, the integrands in

(3) are known and the integrals can be computed. If the primitives can not be

found the integrals can be computed by the methods of 10.1 or 10.3.

After a first approximation has been found a second approximation is given by
r ri

I rf j\ J /

I x-z
= a + I j(Xi, y\, t) at,

r,

5-2
= b + \ g(x,, y,, t) dt.

. Jo

The integrands are again known functions of t because x\ and y^ were determined

as functions of t by equations (3). Consequently #2 and y^ can be computed.
The process can evidently be repeated as many times as is desired. The nth

approximation is

( r
\Xn

= a + I f(xn-i, yn-i, t} dt,
Jo

\ _ b+ f y
.

I Jo

There is no difficulty in carrying out the process, but the question arises whether

it converges to the solution. The answer, first established by Picard, is that,

as n increases, xn and yn tend toward the solution for all values of / for which all

the approximations belong to those values of x, y, and t for which / and g have

the properties of continuity with respect to t and differentiability with respect

to x and y. If, for example, / = and the value of xn tends towards zero

for / = r, then the solution can not be extended beyond / = T.

It is found in practice that the longer the interval over which the integration

is extended in the successive approximations, the greater the number of approxi

mations which must be made in order to obtain a given degree of accuracy. In

fact, it is preferable to take first a relatively short interval and to find the solution

over this interval with the required accuracy, and then to continue from the end

values of this interval over a new interval. This is what is done in actual work.

The details of the most convenient methods of doing it will be explained in the

succeeding sections.
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10.7 The Step-by-Step Construction of the Solution. Suppose the differential

equations are

with the initial conditions x =
a, y = b at t = o. It is more difficult to start a

solution than it is to continue one after the first few steps have been made. There

fore, it will be supposed in this section that the solution is well under way, and

it will be shown how to continue it. Then the method of starting a solution will

be explained in the next section, and the whole process will be illustrated

numerically in the following one.

Suppose the values of x and y have been found for &amp;gt;&,&,...., tn . Let

them be respectively Xi, yi\ x, y 2 ,
. . .; xn , yn ,

care being taken not to confuse

the subscripts with those used in section 10.6 in a different sense. Suppose the

intervals /2 /i, / 3
- tz ,

. . .
,

tn tn-\ are all equal to h and that it is desired

to find the values of x and y at tn+i, where tn+\ tn = h.

It follows from this notation and equations (2) of 10.6 that the desired

quantities are

(*tn+i
Xn+ l

= Xn+
/ f(x,y,t)dt,Jtn

2.

&amp;lt;j

= yn + ( I (x, y, f) dt.

The values of x and y in the integrands are of course unknown. They can be

found by successive approximations, and if the interval is short, as is supposed,

the necessary approximations will be few in number.

A fortunate circumstance makes it possible to reduce the number of approxi

mations. The values of x and y are known at / = tn ,
tn-\, /n-2, . . . From these

values it is possible to determine in advance, by extrapolation, very close approxi

mations to x and y for t = tn+\. The corresponding values of / and g can be

computed because these functions are given in terms of x, y, and t. They are

also given for / = tnt tn-\, Consequently, curves for / and g agreeing

with their values at t = tn+ i, tn ,
/n-i, .... can be constructed and the integrals

(2) can be computed by the methods of 10.1 and 10.3.

The method of extrapolating values of xn+ i and yn+\ must be given. Since

the method is the same for both, consider only the former. Since, by hypothesis,

x is known for t = tn ,
tn-i, tn-i, .... the values of xn , Ai*, A2#n, and

A 3#n are known. If the interval h is not too large the value of A 3xn+ i is very

nearly equal to A 3#n . As an approximation A 3^n+i may be taken equal to A 3#n ,

or perhaps a closer value may be determined from the way the third differences
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A 3*n-3, A3#n-2, A s#n_i, and A 3xn vary. For example, in Table II it is easy to see

that A 3 sin 75 is almost certainly -3. It follows from 10.20, 1, 2 that

A 2.rn+1

[
xn-\-\

= Z\i#n_|-i -f- xn .

After the adopted value of A^+i has been written in its column the successive

entries to the left can be written down by simple additions to the respec

tive numbers on the line of tn . For example, it is found from Table II that

A2 sin 75 = -72, Ai sin 75 = 262, sin 75 = 9659. This is, indeed, the correct

value of sin 75 to four places.

Now having extrapolated approximate values of Xn+i and yn+\ it remains to

compute / and g for x = #n+i, y = yn+i, t = tn+i- The next step is to pass curves

through the values of / and g for t = tn+i, tn ,
tn-i, .... and to compute the inte

grals (2). This is the precise problem that was solved in 10.30, the only difference

being that in that section the integrand was designated by y. On applying

equation 10.30 (9) to the computation of the integrals (2), the latter give

lA./.+.-^+.-iA^,
7 r- I A I A I=

y.
2 12 24

where

gn+\
= g(Xn+l, yn+

The right members of (4) are known and therefore Xn+i and yn+\ are

determined.

It will be recalled that/n+i and gn+ i were computed from extrapolated values

of xn+i and yn+i, and hence are subject to some error. They should now be re

computed with the values of x n+i and yn+\ furnished by (4). Then more nearly

correct values of the entire right members of (4) are at hand and the values of

xn+i and yn+i should be corrected if necessary. If the interval h is small it will

not generally be necessary to correct Xn+i and yn+i- But if they require correc

tions, then new values of fn+\ and gn+ \ should be computed. In practice it is

advisable to take the interval h so small that one correction to /n+i and gn+i is

sufficient.

After xn+i and yn+ i have been obtained, values of x and y at /n+2 can be found

in precisely the same manner, and the process can be continued to t = /n+ 3 , tn+t,

.... If the higher differences become large and irregular it is advisable to

interpolate values at the mid-intervals of the last two steps and to continue with

an interval half as great. On the other hand, if the higher differences become

very small it is advisable to proceed with an interval twice as great as that used

in the earlier part of the computation.
The foregoing, expressed in words, seems rather complicated. As a matter of

fact, it goes very simply in practice, as will be shown in section 10.9.
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10.8 The Start of the Construction of the Solution. Suppose the differential

equations are again

=/(*,**),

with the initial conditions x =
a, y = b at / = o. Only the initial values of x and

y are known. But it follows from (i) that the rates of change of x and y at / = o

are/ (a, b, o) and g (a, b
, o) respectively. Consequently, first approximations to

values of x and y at / = t\ = h are

( Xi (V = a + hf(a, b, o),
2. i /

Now it follows from (i) that the rates of change of x and y at # =
Xi, y =

yi,

t = ti are approximately f(xi
(l
\ yi

(l
\ /i) and g(#i

(1)
, y\

l

\ /i). These rates will be

different from those at the beginning, and the average rates of change for the

first interval will be nearly the average of the rates at the beginning and at the

end of the interval. Therefore closer approximations than those given in (2) to

the values of x and y at / = ti are

3- / ^i(2) = a + %h [/(a, 6, o)

1 &amp;gt;

i
(2) = b + %h[g(a,b, o)

The process could be repeated on the first interval, but it is not advisable when
the interval is taken as short as it should be:

The rates of change at the beginning of the second interval are approximately

f(xi
(2\ yi

(2
\ ti) and g(xi

(2
\ y^\ ti) respectively. Consequently, first approxima

tions to the values of x and y at t = t2 ,
where /2

-
ti
=

h, are

4-

With these values of x and y approximate values of/2 and g2 are computed. Since

/o, go; /i, gi are known, it follows that Ai/2 , Aig2 ;
A 2/2 ,

and A 2g2 are also known.

Hence equations (4) of 10.7, for n + i =
2, can be used, with the exception of

the last terms in the right members, for the computation of x2 and y2 .

At this stage of work x =
a, y Q

=
b; Xi, y\\ xz , y 2 are known, the first pair

exactly and the last two pairs with considerable approximation. After /2 and g2

have been computed, Xi and yi can be corrected by 10.31 for n = i. Then ap

proximate values of x3 and y 3 can be extrapolated by the method explained in

the preceding section, after which approximate values of /3 and g3 can be com

puted. With these values and the corresponding difference functions, x 2 and y2

can be corrected by using 10.31. Then after correcting all the corresponding

differences of all the functions, the solution is fully started and proceeds by the

method given in the preceding section.

10.9 Numerical Illustration. In this section a numerical problem will be treated

which will illustrate both the steps which must be taken and also the method of
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arranging the work. A convenient arrangement of the computation which pre
serves a complete record of all the numerical work is very important.

Suppose the differential equation is

d,

(

* - o, ^ = i at * - o.

The problem of the motion of a simple pendulum takes this form when expressed
in suitable variables. This problem is chosen here because it has an actual physi
cal interpretation, because it can be integrated otherwise so as to express / in

terms of x, and because it will illustrate sufficiently the processes which have

been explained.

Equation (i) will first be integrated so as to express / in terms of x.

On multiplying both sides of (i) by 2
j-

and integrating, it is found that the

integral which satisfies the initial conditions is

On separating the variables this equation gives

r*_dx_=
J Vl - X2

i - K2*22

)

Suppose K2 &amp;lt; i and that the upper limit x does not exceed unity. Then

i i 9 3 5

Vi - K-#2 2 8 1 6

where the right member is a converging series. On substituting (4) into (3) and

integrating, it is found that

5. / - sin&quot;
1 x + iC-sVi - x2 + sin&quot;

1

*&amp;gt;

2 + |[-.rVr^^ -
f.v(i

- a-
2
)

3

When # = i this integral becomes

_ TT|

o.
2\_ \2] V2-4/ \2-4-6

...i.

Equation (5) gives / for any value of x between i and +i. But the problem
is to determine x in terms of /. Of course, if a table is constructed giving / for

many values of x, it may be used inversely to obtain the value of x corresponding

to any value of /. The labor involved is very great. When K2
is given numerically

it is simpler to compute the integral (3) by the method of 10.1 or 10.3.

In mathematical terms, t is an elliptical integral of x of the first kind, and the

inverse function, that is, x as a function of
/,

is the sine-amplitude function, which

has the real period ^T.
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Suppose K2 = - and let y = Then equation (i) is equivalent to the
2 (It

two equations

(dx =
&quot;V

\dt
7&amp;gt;

7

It--****
which are of the form 10.50 (i), where

i*-
2

and =
o, y = i at 2 = o.

The first step is to determine the interval which is to be used in the start of

the solution. No general rule can be given. The larger / and g the smaller

must the interval be taken. A fairly good rule is in general to take h so small

that hf and hg shall not be greater than 1000 times the permissible error in the

results. In the present instance we may take h = o.i.

First approximations to x and ya,tt = o.i are found from the initial conditions

and equations 10.8 (2) to be

i
= o H i = o.iooo,

10

= I -] 0=1 .0000.
IO

It follows from (8) and these values of x\ and y^ that

7(*i(1)
,:Vi

(Vi) = i.oooo,
IO.

-0.1490.

Hence the more nearly correct values of Xi and y lt which are given by 10.8 (3), are

(2) = o + - -
[l.OOOO + I.OOOO] = O.IOOO,

&amp;lt;

o-i r _,= i H LO.OOOO 0.1490] =
0.9925.

Since in this particular problem x = fy dt, it is not necessary to compute
both / and g by the exact process explained in section 10.8, for after y has been

determined x is given by the integral. It follows from (7), (8), (10), and (n)
that a first approximation to the value of y at t = t2

= 0.2 is

12. } 2
fl) =

.0025
-

.1490
=

.9776.

With the values of y at o, .1, .2 given by the initial conditions and in equations

(9) and (12), the first trial y-table is constructed as follows:
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First Trial
&amp;gt;

-Table

237

Since y = f it now follows from the first equations of di) and 10.7 (4) for n = i

that an approximate value of xz is

) = o.iooo + ~
I .9776 + -

.0149 +
^.0074]

=
-

=
.1986.

With this value of x2 it is found from the second of (8) that g
=

.2901. Then

the first trial g-table constructed from the values of g at / = o, o.i, 0.2, is:

First Trial g-Table

Then the second equation of 10.7 (4) gives for n = i the more nearly correct

value of yz ,

14. .9925 + -^ ^-.
-.2901 + .1411

-
j~2

.oo7
9j

- .- .9705.

This value of yz should replace the last entry in the first trial ;y-table. When,

this is done it is found that Ai} 2
= -.0220, A2

&amp;gt;

2
= -.0145. Then the first equa

tion of 10.7 (4) gives

15
= .1000 +

-^
.9705 .0220 + ^ -0145 =

-i983-

The computation is now well started although Xi, &amp;gt;
i,
xz ,

and yz are still subject

to slight errors. The values of Xi and y\ can be corrected by applying 10.31 for

n = i . It is necessary first to compute a more nearly correct value of g by using

the value of xz given in (15). The result is g2
= -.2896, Aig,

= -.1406,

A 2g2
= +.0084. Then the second equation of 10.7 (4) gives

16. yz
= .9925 + -^ -.2896 +

^
.1406

-
-^

.0084 =
.9705,

agreeing with (14). This value of y z is therefore essentially correct. An applica

tion of 10.31 then gives .

17- Xi = .0000 +
I
.9705 + - .0220

; 1- ~
.0145

= 997 &amp;gt;
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after which it is found that g l
= -.1486, A^ = -.1486. Now the first trial y-table

can be corrected by using the value of y z given in (14). The result is:

Second Trial ^-Table

In order to correct x2 and y 2 by the same method, which is the most convenient

one to follow, it is necessary first to obtain approximate values of g3 and y 3 . The
trial g-table can be corrected by computing g with the values of x given by (17)

and (15). Then the line for g3 can be extrapolated. The results are:

Second Trial g-Table

Then the second equation of 10.7 (4) gives for n =
2,

18. } 3
=

.9705 + 71 |
-4230 + -

.1334 .0076 =
.

12
9348.

When this is added to the second trial y-table, it is found that

19. y-3
=

.9348, Aj&amp;gt;
3
= -.0357, A 2;y 3

= -.0137, A 3;V3
= +.0008.

Now xz and y2 can be corrected by applying 10.31 to these numbers and those

in the last line of the second trial -table. The results are

20.

x2
= .0997 ^

1^.

9348 + .0357
-

.0137 + .0008 =
.

24
=

.1980,

y2
= .9925 + ^ |

-.4230 +
|
.1334 + ^ -0076J

=
.9705.

The preliminary work is finished and x and y have been determined for t = o,

.1, and .2 with an error of probably not more than one unit in the last place. As
the process is read over it may seem somewhat complicated, but this is largely

because on the printed page preliminary values of the unknown quantities can

not be erased and replaced by more nearly correct ones. As a matter of fact, the
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first steps are very simple and can be carried out in practice in a few minutes if

the chosen time-interval is not too great.

The problem now reduces to simple routine. There are an stable, a y-table

(which in this problem serves also as an /-table), a g-table, and a schedule for

computing g. It is advisable to use large sheets so that all the computations

except the schedule for computing g can be kept side by side on the same sheet.

The process consists of six steps: (i) Extrapolate a value of g n+ x and its

differences in the g-table; (2) compute y n+\ by the second equation of 10.7 (4);

(3) enter the result in the y-table and write down the differences; (4) use these

results to compute xn+ i by the first equation of 10.7 (4) ; (5) with this value of

xn+ i compute gn+i by the g-computation schedule; and (6) correct the extrapolated

value of gn+i in the g-table.

Usually the correction to gn+i will not be great enough to require a sensible

correction to yn+ i. But if a correction is required, it should, of course, be made.

It follows from the integration formulas 10.7 (4) and the way that the difference

functions are formed that an error e in gn+i produces the error f/ze in yn+1} and

the corresponding error in xn+i is
-jr-

h2
e.

04
It is never advisable to use so large

a value of h that the error in xn+ i is appreciable. On the other hand, if the differ

ences in the g-table and the y-table become so small that the second differences

are insensible the interval may be doubled.

The following tables show the results of the computations in this problem
reduced from five to four places.

Final *-Table
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Final ^-Table

Final e-Schedule
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Final g-Table

Final g-Schedule Continued
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As has been remarked, large sheets should be used so that the x, y, and g-tables
can be put side by side on one sheet. Then the /-column need be written but once

for these three tables. The g-schedule, which is of a different type, should be on

a separate sheet.

The differential equation (i) has an integral which becomes for K? = -
2

, dx
and - =

y.

21. y* + 2-x2 --x* =
i,

and which may be used to check the computation because it must be satisfied at

every step. It is found on trial that (21) is satisfied to within one unit in the

fourth place by the results given in the foregoing tables for every value of /.

The value of t for which x = i and y = o is given by (6). When K? = | it is

found that T =
1.8541. It is found from the final #-table by interpolation based

on first and second differences that x rises to its maximum unity for almost exactly

this value of /; and, similarly, that y vanishes for this value of t.
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INTRODUCTION TO THE TABLES OF ELLIPTIC
FUNCTIONS

By SIR GEORGE GREENHILL

In the integral calculus, I
- = and more generally, /

J V* J P + QVX
where M, N, P, Q are rational algebraical functions of x, can always be expressed

by the elementary functions of analysis, the algebraical, circular, logarithmic or

hyperbolic, so long as the degree of A&quot; does not exceed the second. But when

X is of the third or fourth degree, new functions are required, called elliptic

functions, because encountered first in the attempt at the rectification of an

ellipse by means of an integral.

To express an elliptic integral numerically, when required in an actual

question of geometry, mechanics, or physics and electricity, the integral must

be normalised to a standard form invented by Legendre before the Tables can

be employed; and these Tables of the Elliptic Functions have been calculated

as an extension of the usual tables of the logarithmic and circular functions of

trigonometry. The reduction to a standard form of any assigned elliptic integral

that arises is carried out in the procedure described in detail in a treatise on the

elliptic functions.

11.1. Legendre s Standard Elliptic Integral of the First Kind (E. I. I) is

p d(f&amp;gt;
C* dx

F(t&amp;gt;

= I == =
/

= rr =
,J vi K2 sin2

q&amp;gt;

J o V (i x HI K.X)

defining &amp;lt;/&amp;gt;

as the amplitude of u, to the modulus K, with the notation,

(f&amp;gt;

= am u

x = sin
&amp;lt;t&amp;gt;

= sin am u

abbreviated by Gudermann to,

x = sn u

cos
(f&amp;gt;

= en u

A
(/&amp;gt;

= V(i - K2 sm2 0) = A am u = dn u,

and sn u, en u, dn u are the three elliptic functions. Their differentiations are,

d&amp;lt;t&amp;gt; AJL _da.mu_ A _

du
245
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d cos &amp;lt;f&amp;gt; d en u
- = sin

&amp;lt;p

A&amp;lt;f&amp;gt; or ,
= sn u dn u

du du

ddnu
= - K2 sin cp cos 9 or ^

= K2 sn w en

11.11. The complete integral over the quadrant, o
&amp;lt;&amp;lt;/&amp;gt;&amp;lt; ,

o &amp;lt; x
&amp;lt;i,

defines

the (quarter) period, K,

K = F - = C**d$_
2 J A(

making
sn K = i

en K = o

dn K = K .

K is the comodulus to K, K2 + /c
2 =

i, and the coperiod, K , is,

r

J

11.12.

sn2 u + en2 u = i
.

en2 u + K2 sn2 w = i

dn2 u K2 en2 w = /c
2

.

sn o =
o, en o = dn, o = i.

sn 7 =
i, en K =

o, dn K = K. .

.

11.13. Legendre has calculated for every degree of 6, the modular angle,

K = sin 6, the value of
F&amp;lt;j&amp;gt;

for every degree in the quadrant of the amplitude 0,

and tabulated them in his Table IX, Fonctions elliptiques, t. II, 90 x 90 = 8100

entries.

But in this new arrangement of the Table, we take u =
F&amp;lt;/&amp;gt;

as the independent
variable of equal steps, and divide it into 90 degrees of a quadrant K, putting

r

90

As in the ordinary trigonometrical tables, the degrees of r run down the left of

the page from o to 45, and rise up again on the right from 45 to 90. Then
columns II, III, X, XI are the equivalent of Legendre s Table of F(p and

&amp;lt;,

but rearranged so that
F(j&amp;gt; proceeds by equal increments i in r, and the incre

ments in
&amp;lt;/&amp;gt;

are unequal, whereas Legendre took equal increments of giving

unequal increments in u =
Fcf&amp;gt;.

The reason of this rearrangement was the great advance made in elliptic

function theory when Abel pointed out that
F&amp;lt;/&amp;gt;

was of the nature of an inverse

function, as it would be in a degenerate circular integral with zero modular

angle. On Abel s recommendation, the notation is reversed, and
&amp;lt;/&amp;gt;

is to be
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considered a function of u, denoted already by c/&amp;gt;

= am w, instead of looking
at u, in Legendre s manner, as a function, Fcf), of

&amp;lt;/&amp;gt;. Jacobi adopted the idea

in his Fundamenta nova, and employs the elliptic functions

sin
c/&amp;gt;

= sin am u, cos
&amp;lt;/&amp;gt;

= cos am u, Ac/)
= A am u,

single-valued, uniform, periodic functions of the argument u, with (quarter)

period K, as
&amp;lt;p grows from o to JTT. Gudermann abbreviated this notation to

the one employed usually today.

11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc,

but in the expression of the time in the pendulum motion of finite oscillation,

unrestricted to the small invisible motion of elementary treatment.

The compound pendulum, as of a clock, is replaced by its two equivalent

particles, one at in the centre of suspension, and the other at the centre of

oscillation, P; the particles are adjusted so as to have the same total weight as

the pendulum, the same centre of gravity at G, and the same moment of inertia

about G or 0; the two particles, if rigidly connected, are then the kinetic equiva

lent of the compound pendulum and move in the same way in the same field of

force (Maxwell, Matter and Motion, CXXI).

Putting OP =
I, called the simple equivalent pendulum length, and P starting

from rest at B, in Figure i, the parti

cle P will move in the circular arc

BAB f

a,s if sliding down a smooth curve
;

and P will acquire the same velocity

as if it fell vertically KP = ND; this

is all the dynamical theory required.

(velocity of P)
2 = 2g-KP,

(velocity of N)
2= 2g-ND-sm

2AOP

and with AD =
h, AN =

y, ND
= h -

y, AE =
2l, NE= 2l- y,

where Y is a cubic in y. Then / is given

by an elliptic integral of the form FIG. i

/ This integral is normalised to Legendre s standard form of his

vF
E. I. I by putting y = h sin2

c/&amp;gt;, making AOQ =
c/&amp;gt;,

h - y = h cos2
c/&amp;gt;,

2 / - y = 2l (i
- K2 sin2

c/&amp;gt;),

2l AE
K is called the modulus, AEB the modular angle which Legendre denoted

by 0; \/(i
- K2 sin2 $) he denoted by A0.
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With g
= In2

,
and reckoning the time t from A, this makes

X0
dd)
- = F(p,
Z\&amp;lt;p

in Legendre s notation. Then the angle $ is called the amplitude of nt, to be

denoted am nt, the particle P starting up from A at time / = o; and with u =
nt,

Velocity of P = n-AB-cu u = VBP-PB ,
with an oscillation beat of T seconds

in u = eK, e = 2t/T.

11.21. The numerical values of sn, en, dn, tn (u, K) are taken from a table

to modulus K = sin (modular angle, 6) by means of the functions Dr, Ar, Br,

Cr, in columns V, VI, VII, VIII, by the quotients,

sn eK =

en eK =

dneK C

tn eK =

u = eK.

These D, A, B, C are the Theta Functions of Jacobi, normalised, defined by

, , Uu . , Hu

B(r) =A(9o-r) C(r) = D(9o -
r).

They were calculated from the Fourier series of angles proceeding by multiples

of r, and powers of q as coefficients, defined by

q =
&amp;lt;T*k

Qu = i - 2q cos 2r + 2^ cos 4^ - 2q
g cos 6r + . . . .

Hu =
2q* sin r if sin 3^ + i&amp;lt;f*

sin 5^ . . . .

11.3. The Elliptic Integral of the Second Kind (E. I. II) arose first historically

in the rectification of the ellipse, hence the name. With BOP =
&amp;lt;j&amp;gt;

in Figure 2,

the minor eccentric angle of P, and 5 the arc BP from B to P at x = a sin
&amp;lt;/&amp;gt;,

y = b cos 0,
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~~ = vV cos2
&amp;lt;t&amp;gt;

+ b2 sin2 =
aA(&amp;lt;/&amp;gt;, /c),

to the modulus K, the eccentricity of the ellipse.

Then s = a
E(j&amp;gt;,

whereJ^A0 d&amp;lt;t&amp;gt;

is denoted by Ecj)

in Legendre s notation of his standard E. I. II;

it is tabulated in his Table IX alongside of
F&amp;lt;J&amp;gt;

for every degree of the modular angle 6, and to

every degree in the quadrant of the amplitude &amp;lt;/&amp;gt;.

But it is not possible to make the inversion

and express &amp;lt;/&amp;gt;

as a single-valued function of
&amp;lt;/&amp;gt;.

FIG. 2

11.31. The E. I. II, E&amp;lt;j&amp;gt;,
arises also in the expression of the time, t, in the oscil

lation of a particle, P, on the arc of a parabola, as
F&amp;lt;/&amp;gt;

was required on the arc

of a circle. Starting from B along the parabola
BAB

, Figure 3, and with AO =
k, OB =

b,

BOQ = 0, AN = y = h cos2
0, NP = x = b cos

&amp;lt;/&amp;gt;

and with OS = 2h = b tan a, O.4 = SB
= b sec a, the parabola cutting the horizontal

at B at an angle a, the modular angle, BRA B
is a semi-ellipse, with focus at S, and eccen

tricity AC = sin a..

(Velocity of P) = [^] + {3*

=
(b

2 cos2
&amp;lt;/&amp;gt;
+ 4^

2 sin2 cos2
0)

= a2
(i
- sin2 a sin2 0) cos2

f

-^-J
= igy = 2gh cos2

&amp;lt;p

= F2 cos2
0,

if V denotes the velocity of P at A
,
and OA = a. Then with s the elliptic arc BR,

and so the point ^? moves round the ellipse with constant velocity V, and ac

companies the point P on the same vertical, oscillating on the parabola from B
to B .

In the analogous case of the circular pendulum, the time / would be given

by the arc of an Elastica, in Kirchhoff s Kinetic Analogue, and this can be placed

as a bow on Figure i, with the cord along AE and vertex at B.

Legendre has shown also how in the oscillation of R on the semi-ellipse BRB
in a gravity field the time t is expressible by elliptic integrals, two of the first

and two of the second kind, to complementary modulus (Fonctions elliptiques,

i, p- 183 ).
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11.32. In these tables, E(p is replaced by the columns IV, IX, of E(r) and

G(r) = E(go -
r), denned, in Jacobi s notation, by

E(r) = zn eK =
E(f&amp;gt;

- eE

G(r) = zn (i e)K, r =
goe.

E
This is the periodic part of

E&amp;lt;t&amp;gt;

after the secular term eE = u has been setA
aside, E denoting the complete E. I. II,

E = Ew =- /
7r

A(/&amp;gt; -d&amp;lt;t&amp;gt;.

The function zn u, or Zu in Jacobi s notation, or E(r) in our notation, is

calculated from the series,

This completes the explanation of the twelve columns of the tables.

11.4. The Double Periodicity of the Elliptic Functions.

This can be visualised in pendulum motion if gravity is supposed reversed

suddenly at B (Figure i) the end of a swing; as if by the addition of a weight
to bring the centre of gravity above O, or by the movement of a weight, as in the

metronome. The point P then oscillates on the arc BEB
,
and beats the elliptic

function to the complementary modulus K
,
as if in imaginary time, to imaginary

argument nti = fK i: and it reaches P on AX produced, where tan AEP
= tan AEB-cn. (nt i, K), or tan EAP = tan EAB- en (nt

f

,
K ); or with nt =

v,

DR = DB-cn (iv, K }, DR ^ DB-cn (v, K ), with DR-DR = DB\ EP f

crossing
DB in R .

en (iv, K) =

dn (iv, K)

cn (v, K )

i sn (v, K
]

cn (v, K )

dn (v, K }

en (v, K ) sn (K
f -

v, K }

where K denotes the complementary (quarter) period to comodulus

If m, m are any integers, positive or negative, including o,

sn (u + 4mK + 2m iK )
= sn u

en [u + 4mK + 2m (K + iK }~]
= en u

dn (u + 2mK + qm iK )
= dn u

11.41. The Addition Theorem of the Elliptic Functions.

sn (u v) = sn v cn

cn

i - /c
2 sn2 sn2 v

p ^ Sn u dn &quot; sn

i - /c sn w sn2 v

dn
(z&amp;gt; u) = n M n v T sn M cn u sn p cn

i - K2 sn2 M sn2 v
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11.42. Coamplitude Formulas, with v = K,

sn (K -
u) =

-j

= sn (K + u)

dn (
- u) = = dn (K + )

tn (
- u) = -

i
tn (K + )

= - -
tn M AC tn u

11.43. Legendre s Addition Formula for his E. I. II,

E(f&amp;gt;

=
fA4&amp;gt;-d(j)

= fdrfu-du, (p
= fdnu-du = am u.

E(j) + E\l/
- Ecr = K2 sin &amp;lt; sin ^ sin

&amp;lt;T, \f/
= am v, &amp;lt;7

= am (v + u)

or, in Jacobi s notation,

znu + znv zn (u + v)
= K2 sn u sn z&amp;gt; sn (v -}- u),

the secular part cancelling.

Another form of the Addition Theorem for Legendre s E. I. II,

_, ,
- 2 K2 sin \I/ cos \1/ A^ sin2

c/&amp;gt;

,&amp;gt;

Eff - Ed - 2E\b = -
, 9 1 -or ,

6 = am (v
-

u)
i - K2 sin2 sin2

\f/

or, in Jacobi s notation,
2 K2 sn v en ?; dn z&amp;gt; sn2 w

zn (v + u) + zn
(z&amp;gt;

-
u)

- 2 zn v = -

11.5. The Elliptic Integral of the Third Kind (E. I. Ill) is given by the next

integration with respect to
,
and introduces Jacobi s Theta Function, Qu,

defined by,
d log Qu- = Zu = zn u

du

Qu r
7^- = exp. I zn u-du.
Qo J

Integrating then with respect to u,
C 2 K2 sn v en v dn *&amp;gt; sn2 w .

log 9 (v + u)
-

log Q (v
-

u)
- 2uznv =

o i
--

i
&quot;&quot;

&quot;w
Jo i - /c

2 sn2 u sn2
*&amp;gt;

and this integral is Jacobi s standard form of the E. I. Ill, and is denoted by
- 2 II (u, v) ; thus,

-P,.
. . r/c2 sn v en v dn o sn2 w .

, ,
6 (v u)

II (, v)
= -

^
--

5
- d = w znz; + log ^-7 r-

J i - k2 sn2 w sn2 v Q (v + u)

Jacobi s Eta Function, Hz;, is denned by

and then
f/ log Hi) en B dn v

- + znv, denoted by zs v;
dv
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SO that

cnv dnv,
du

sn v cn v an v -n , x
: u - - + H (u, v)snv

i Q(v-u]

~
2 ( + w)

This gives Legendre s standard E. I. Ill,

M dd&amp;gt;

+ w sin&quot;
1

(p ZX(p

where we put n = K2 sn2
v = -

/c
2 sin2 ^,

...-2
/ AC

2
\ .

^
cos2

i^A
2^ cn2

z; dn2
v

M. =
1 1 ~r I vI T M) =

.
=

^ 1

\ H / sin w sn v

the normalising multiplier, M.
The E. I. Ill arises in the dynamics of the gyroscope, top, spherical pendulum,

and in Poinsot s herpolhode. It can be visualized in the solid angle of a slant

cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the mag
netic potential of the circular base.

11.51. We arrive here at the definitions of the functions in the tables. Jacobi s

Qu and Hw are normalised by the divisors 60 and ELK, and with r = goe,

QeK HeK
D(r) denotes -pr^r, A (r) denotes

while B(r) = A(go -
r), C(r) = D(go -

r), and B(o) = A(go) = D(o) = C(go)

=
i, C(o) = D(go) = 4=VK
Then in the former definitions,

A(r) A (go)
7^7-4

=
j^, (

sn u = VK sn eK
D(r) D(go)

B(r) B(o)

C(f) C(o) _ dneK
D(r) D(o)

(

Then, with 14
= eK, v = fK, r =

goe, s = gof,

= 0), zn(i-f)K = E (go
-

s)
= G (s).
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The Jacobian multiplication relations of his theta functions can then be

rewritten

D(r + s)D(r - s)
= D2rD2s - tan2 6A z

rA*s,

A(r + s)A(r - s)
= A*rD*s - D2rA 2

s,

B(r + s)B(r - s)
= B2rB2

s - A 2rA 2
s.

But unfortunately for the physical applications the number 5 proves usually

to be imaginary or complex, and Jacobi s expression is useless; Legendre calls

this the circular form of the E. I. Ill, the logarithmic or hyperbolic form corre

sponding to real s. However, the complete E. I. Ill between the limits o
j&amp;gt;

&amp;lt; JTT,

or o &amp;lt;u &amp;lt;K, o&amp;lt;e&amp;lt;i,
can always be expressed by the E. I. I and II, as Legendre

pointed out.

11.6. The standard forms are given above to which an elliptic integral must be

reduced when the result is required in a numerical form taken from the Tables.

But in a practical problem the integral arises in a general algebraical form, and

theory shows that the result can always be made, by a suitable substitution, to

depend on three differential elements, of the I, II, III kind,

*
Vs

* -

where S is a cubic in the variable s which may be written, when resolved into

three factors,

S = 4 S - Si S - SfS S3

in the sequence a&amp;gt;Si&amp;gt;s2 &amp;gt;S3&amp;gt; oc, and normalised to a standard form of

zero degree these differential elements are

2 denoting the value of 5 when s =
&amp;lt;r.

The relative positions of 5 and cr in the intervals of the sequence require

preliminary consideration before introducing the Elliptic Functions and their

notation.
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11.7. For the E. I. I and its representation in a tabular form with

Sl
-

K rv*
t/ 51, S3

- s3 ds -
S3 ds

Vs / - V -

and utilizing the inverse notation, then in the first interval of the sequence,

OC&amp;gt;5&amp;gt;5i

eK =
S - S3

= dn- 1

S - S3

-
ss ds

Vs

indicating the substitutions,

52 52 5i
- 53 5 - 52

= sin2 = sn2
eK, = sin2

\f/
= sn2

(i
-

e)K.
S - S3 S -

In the next interval S is negative, and the comodulus K is required.

/S!
= sn = cn

5

5i
- 53

is positive again in the next interval, and the modulus is K.

_ m_ fl -^_ f
_

5 ~ S S ~ s

- s

sVsi - 53 ds _ S - 53 _j
v
~ - dnV~f 53

indicating the substitutions,

5l 52

Si S

= dn2
(i
-

e)K,
- - = sin2 = sn2 eK

, 5 = 52 sin2
(/&amp;gt;
+ 53 cos2

&amp;lt;/&amp;gt;.
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S is negative again in the last interval, and the modulus K .

-

V- S V S2
- S V S2 - S * Si

- S3
- J2

-

= r
J_co V-

dn
_

11.8. For the notation of the E. I. II and the various reductions, take the

treatment given in the Trans. Am. Math. Soc., 1907, vol. 8, p. 450. The Jacobian

Zeta Function and the Er, Gr of the Tables, are defined by the standard integral

/5_gi-,s_ ds^ = C*^ .d$ =
E(i&amp;gt;=

f dn2
(eK) d(eK) = E am eK = eH + zn eK,

Jh Vs\ - s3 VS J J

or,

F ff ~~ S* -^= = dn2
(fK )-d(fK )

= E am/X = fH
J S2 Vsi - SS V - S Jo

where zn is Jacobi s Zeta Function, and H, H the complete E. I. II to modulus

K, K
,
denned by,

H =
A(c&amp;gt;, K) ^0 = dn2

(eK)-d(eK)

H f = A(0, K ) d&amp;lt;t&amp;gt;

=
/Jdn

2
(fK }-d(fK }.

The function zn w is derived by logarithmic differentiation of

d log 6w . ,

znu = - or concisely,
rfw

9w = exp. Jznu-du,

and a function zs w is derived similarly from

d log Huzsu = -
du

d log Gw 6? log sn u

du du

en w dn u
= znu -\

---
sn u

For the incomplete E. I. II in the regions,

and

sn2 eK = - or
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/*
5

9 ?1 ds / 52\o 9 A/9 ?o

= _ d _ e)H + zs^f
5 5i ^5 /^

2
S2 5 A/5 53

A/5l 53 VS

/j f*
5 52 #5

2
I 5i

-

v^^ VS~ J 5&quot;=

/5
53 ^5 _ A 2

-

A/9, - ^ A/9
~
J $ ~

Vs

~^ds= (i -e)(K-H)

the integrals being oo at the upper limit, 5 = oo
,
or at the lower limit, 5

where e = o and zs eK = oo .

So also,

Cm s s - 52 Vsi - 53 . /**
S
2 5i 5 ^5 eH + zn eX&quot;

I = as = I
- =

Js, 51 5 53 A/5 J S3
&amp;gt;

s VSi 53 VS (i e)/7 zn eK

r* / f*
I S Si \/Si 53 , I 52 J

J 5 - 53 A/9 / -VAT!

f-J S -
- 53 V5i - 53

53

5 53

-e)(H - K *K) - zn

^ -H) -zn eK

VS J \Ai - 53 VS (i
- e\ (K -H)+zn eK

Similarly, for the variable cr in the regions

negative, and
5iX7&amp;gt;52&amp;gt;53 &amp;gt;&amp;lt;7&amp;gt;

or
5i
- 52 Si- ff

Sl
- ff f(K - H r

)
- znfK

- 53 -co, cr 5!
-

(7

do-C (T-s2 do- =
A3

- (7

^ &quot;^ J si- (T

/q-
- 53 do- Cs2

-

v^r^ v~^z
~
J si-

si- (T

-
Q&quot; si

- 53
G

(i
- f)(H -

s2 5i

cr V5i 53

o- V&quot;^2

CT A/5i S;

- (T do
(i-MK -H^+zs/K

K* riLz^v^j^. r
J 5i

- (7 A/ - S /

f52
-

J^T o- v-s

^0-

^CT

52 - (7

5!-53 V-S
C 53 a do-

.

5l
- 53 V - 2/

these last three integrals being infinite at the upper limit, cr = 5i, or lower limit

cr = oo
?
where / =

o, zs fK = oo .

Putting e = i or / = i any of these forms will give the complete E. I. II,

noticing that zn K and zs Kr
are zero.
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11.9. In dealing practically with an E. I. Ill it is advisable to study it first

in the algebraical form of Weierstrass,

JVSds
(s
- ff)VS

where S = 4-5 si-s sz-s 53, 2 the same function of a, and begin by ex

amining the sequence of the quantities s, a, s^ sz, 53

Then in the region
5&amp;gt;Sl&amp;gt;52 &amp;gt;

put

, x ss ds
s - a = -L-^- (i

- K2 sn2 u sn2
z&amp;gt;),2

VS = V^i -
3 ($2

- s3) sn i) en z; dn
z&amp;gt;, making

/iVS
rf5 / /c

2 sn^ cnfl dn ^ sn2 w .
-p.-, N--= - /

-
9
- du=lL(u,v).

^ - & VS J x - K sn u sn v

But in the region,

(i K2 sn2 u sn2
^),

bll~ V

making,
en v dn v ,

sl/ti

cuvdnvAvs_^ = r =ni = n(w,,)

7 (7 - S VS J I - K Sn W Sn v

In a dynamical application the sequence is usually

sn

or

making S negative, and the E. I. Ill is then called circular; the parameter v

is then imaginary, and the expression by the Theta function is illusory.

The complete E. I. Ill, however, was shown by Legendre to be tractable

and falls into four classes, lettered (/ ) O ), p. 138, (* ), (* ), PP- J
33&amp;gt;

J34 (Fonc-

tions elliptiques, I).

sn2 /* = *-

cn2 /^
r = -

J
5i
-

&amp;lt;r 53

5i
- 53



258 MATHEMATICAL FORMLILE AND ELLIPTIC FUNCTIONS

= B(fK )
-

^)

+ 5 =
JTT.

D.

-
&amp;lt;r

- (T

- C



TABLES OF ELLIPTIC FUNCTIONS
BY COL. R. L. HIPPISLEY



260 ELLIPTIC FUNCTION
K = 1.5737921309, K - 3.831742000, E = 1.5678090740, E = 1.012663506,

SMITHSONIAN TABLES



TABLE 6 = 6

^=0.000476569916867, 60 0.9990468602, H(K) =0.2955029021
261

SMITHSONIAN TABLES



262 ELLIPTIC FUNCTION

K = 1.5828428043, K = 3.153385252, E = 1.5588871966, E . 1.040114396,

SMITHSONIAN TABLES



TABLE 9 = 10

q = 0.00191359459017, 00 = 0.9961728108, HK = 0.418305976553
263

SMITHSONIAN TABLES



264
= 1.5981420021, K 2.7680631454, E

ELLIPTIC FUNCTION
1 .5141504939, E = 1 . 076405113,

SMITHSONIAN TABLES











TABLE = 16

q =
. 004333420509983, 00=0. 9913331597, HK =

. 5131518035
265

SMITHSONIAN TABLES



266 ELLIPTIC FUNCTIO
K = 1 . 6200258991, K = 2 5045500790, E = 1 5237992053, E = 1 . 118377738

SMITHSONIAN TABLES



TABLE 6 = 20

q = 007774680416442, 60=0. 9844506465, HK =
. 5939185400

267

SMITHSONIAN TABLES



268 ELLIPTIC FUNCTION
K = 1 . 6489952185, K = 2 . 3087867982, E = 1 . 4981149284, E = 1 . 1638279645,

SMITHSONIAN TABLES



TABLE - 25

? = 0. 012294560527181, 00=0. 975410924642, HK = 0. 666076159327
269

SMITHSONIAN TABLES



270 ELLIPTIC FUNCTION
K = 1. 6857503548, K = 2 . 1565156475, E = 1. 4674622093 E = 1. 211056028,

SMITHSONIAN TABLES



TABLE 9 = 30

q = 0. 017972387008967, 90=0. 9640554346, HK = 0. 7325237222
271

SMITHSONIAN TABLES



272 ELLIPTIC FUNCTION
K = 1.7312451757, K = 2.0347153122, E = 1.4322909693, E = 1.2586796248,

SMITHSONIAN TABLES



TABLE 9 - 35

q = 0. 024915062523981, 60 = 0. 9501706456, HK = 0. 7950876364
273

SMITHSONIAN TABLES



274 ELLIPTIC FUNCTION
K = 1. 7867691349, K - 1. 9355810960, E = 1. 3931402485, E = 1 . 3055390943,

SMITHSONIAN TABLES



TABLE 6 = 40

q = 0.033265256695577, 00 = 0. 9334719356, HK - 0. 8550825245
275

SMITHSONIAN TABLES



270
K = K

ELLIPTIC FUNCTION
1. 8540746773, E = E = 1. 3506438810,

SMITHSONIAN TABLES



TABLE = 45

= 6-^=0. 04321391826377, 90 = 0. 9136791382, HK = 0. 9135791382
277

SMITHSONIAN TABLES



278 ELLIPTIC FUNCTION

K = 1. 9355810960, K = 1. 7867691349, E = 1. 3055390943, E = 1. 3931402485,

SMITHSONIAN TABLES



TABLE e = 60

q = 0. 055019933698829, 60= 0. 8899784604, HK = 0. 9715669451

279

SMITHSONIAN TABLES



280 ELLIPTIC FUNCTION
K = 2.0347153122, K = 1.7312451757, E = 1.2586796248, E = 1.4322909693,

SMITHSONIAN TABLES











TABLE 6 = 55

q = 0. 069042299609032, 90=0. 8619608462, HK = 1. 0300875730

281

SMITHSONIAN TABLES



282 ELLIPTIC FUNCTION
K = 2. 1565156475, K = 1. 6857503548, E = 1. 211056028, E = 1.4674622093,

SMITHSONIAN TABLES



TABLE 6 = 60

q = 0. 085795733702195, 00=0. 8285168980, HK = 1. 0903895588
283

SMITHSONIAN TABLES



284 ELLIPTIC FUNCTION
K = 2. 3087867982, K = 1. 6489952185, E = 1. 1638279645, E = 1. 4981149284,

SMITHSONIAN TABLES



TABLE 6 = 65

q = 0. 106054020185994, 60=0. 7881449667, HK = 1. 1541701350
285

SMITHSONIAN TABLES



286 ELLIPTIC FUNCTION
K = 2. 5045500790, K = 1. 6200258991, E = 1. 1183777380, E = 1. 5237992053,

SMITHSONIAN TABLES



TABLE = 70

q = 0. 131061824499858, 00 = 0. 7384664407, HK = 1. 2240462555
287

SMITHSONIAN TABLES



288 ELLIPTIC FUNCTION
K = 2. 7680631454 = KV3, K = 1. 5981420021, E = 1. 076405113, E = 1. 5441504969,

SMITHSONIAN TABLES



TABLE = 75

q = 0. 163033534821580, 60 = 0. 6753457533, HK 1.3046678096

SMITHSONIAN TABLES



2QO ELLIPTIC FUNCTION
K = 3. 1533852519, K = 1. 5828428043, E = 1. 0401143957, E = 1. 5588871966,

SMITHSONIAN TABLES



TABLE e = 80

q = 0. 206609755200965, 00=0. 590423578356, HK = 1. 406061468420
291

SMITHSONIAN TABLES



292 ELLIPTIC FUNCTION

K = 3. 2553029421, K = 1. 5805409339, E = 1. 033789462, E = 1. 5611417453,

SMITHSONIAN TABLES



TABLE 9 = 81

q = 0. 217548949699726,

2Q3
60 = 0. 5693797108, HK = 1. 4306906219

SMITHSONIAN TABLES



2Q4 ELLIPTIC FUNCTION
K = 3. 3698680267, K = 1. 5784865777, E = 1. 027843620, E = 1. 5629622295,

SMITHSONIAN TABLES



TABLE 6 = 82

q = 0. 229567159881194, 60=0. 5464169465, HK = 1. 4575481002
295

SMITHSONIAN TABLES



296 ELLIPTIC FUNCTION
K = 3. 5004224992, K = 1. 5766779816, E = 1. 022312588, E = 1. 5649475630,

SMITHSONIAN TABLES











TABLE B = 83

q = 0. 242912974306665, 00 = 0. 5211317465, HK = 1. 4872214813
297

SMITHSONIAN TABLES



298 ELLIPTIC FUNCTION
3. 6518559695, K = 1. 5751136078, E = 1. 017236918, E = 1. 5664967878,

SMITHSONIAN TABLES



TABLE 6 = 84

q = 0. 257940195766337, 00 = 0. 4929628191, HK = 1 5205617314

299

SMITHSONIAN TABLES



300 ELLIPTIC FUNCTION
K = 3. 8317419998, K = 1. 5737921309, E = 1. 0126635062, E = 1. 5678090740,

SMITHSONIAN TABLES



TABLE = 85

q = 0.275179804873563, 60 = 0. 4610905222, HK = 1. 5588714533
301

SMITHSONIAN TABLES



302
K = 4. 0527581695, K = 1. 5727124350, E

ELLIPTIC FUNCTION
1. 0086479569, E = 1. 5688837196,

SMITHSONIAN TABLES



TABLE 6 = 86

q = 0. 295488385558687, 90= 0. 4242361430, HK = 1. 6043008048

303

SMITHSONIAN TABLES



304 ELLIPTIC FUNCTION
K = 4.3386539760, K = 1.5718736105, E = 1.0052585872, E = 1.5697201504,

SMITHSONIAN TABLES



TABLE, = 87

q = 0. 320400337134867, 60 = 0. 3802048484, HK = 1. 6608093163
305

SMITHSONIAN TABLES



306 ELLIPTIC FUNCTION
K = 4. 7427172653, K = 1. 5712749524, E = 1. 0025840855, E = 1. 5703179199,

SMITHSONIAN TABLES



TABLE = 88

q = 0. 353165648296037, 60=0. 3246110213, HK = 1. 7370861537
307

SMITHSONIAN TABLES



308 ELLIPTIC FUNCTION
K = 5. 4349098296, K = 1. 5709159581, E = 1. 0007515777, E = 1. 5706767091,

SMITHSONIAN TABLES



TABLE B = 89

q = 0. 403309306338378, 00 = 0. 2457332317, HK = 1. 8599580878
309

SMITHSONIAN TABLES
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Absolute convergence 109

Addition formulas, Elliptic Functions 250

Algebraic equations 2

Algebraic identities i

Alternating series no
Archimedes, spiral of 52

Area of polygon 36
Arithmetical progressions 26

Asymptotes to plane curves 40

Axial vector 95

B

Ber and Bei functions 204

Bernoullian numbers 25

polynomial 140

Bessel functions 196

addition formula 199

multiplication formula 199

references 213

Bessel-Clifford differential equation . . 205

Beta functions 132

Binomial coefficients 19

Binormal 59

Biquadratic equations 10

Bromwich s expansion theorem 212

Cassinoid 53

Catenary 52

Cauchy s test 109

Center of curvature, plane curves 39

surfaces 56

Change of variables in multiple inte

grals 17

Characteristic of surface 56

Chord of curvature, plane curves 39

Circle of curvature 39

Circular functions, see Trigonometry

Cissoid 53

Clairaut s differential equation 166

Coefficients, binomial 19

Combinations 17

Comparison test 109

PAGE

Complementary function 167

Concavity and convexity of plane
curves 38, 42

Conchoid 53
Conditional convergence 109
Confluent hypergeometric function 185
Conical coordinates 104

Consistency of linear equations 15

Convergence of binomial series 117

tests for infinite series 109
Covariant property 17

Cubic equations 9
Curl 93

Curvature, plane curves 38

space curves 58

Curves, plane 36

space 57

Curvilinear coordinates 99
Curvilinear coordinates, surfaces of

revolution 106

Cycloid 51

Cylindrical coordinates 32, 102

Cylinder functions, see Bessel functions 197

d Alembert s Test 109

Definite integrals, computation by dif

ference functions 225

Simpson s method 221

expressed as infinite series 134

de Moivre s theorem 66

Derivatives 155

of definite integrals 156

of implicit functions 161

Descartes rule of signs 5

Determinants 1 1

Difference functions 222

Differential equations 162

numerical solution 220

Differentiation of determinants. . . 13

Discriminant of biquadratic equa

tion ii

Divergence 93

Double periodicity of elliptic functions 250
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Ellipse 46

Ellipsoidal coordinates 102

Elliptic cylinder coordinates 104

Elliptic integrals, first kind 245

second kind 248

third kind 251

Elliptic integral expansions 135, 195

Envelope 40

Envelope of surfaces 56

Epicycloid 52

Equations, algebraic 2

transcendental, roots of 84

Equiangular spiral 53

Eta functions 251

Euler s constant 27

summation formula 25

transformation formula 113

theorem for homogeneous functions. 157

Eulerian angles 32

Evolute 39

Exact differential equations 163, 177

Expansion of determinants 13

Expansion theorem, Bromw.ich s 212

Heaviside s. . 212

PAGE

Homogeneous differential equations

162, 166, 177

Homogeneous linear equations 15

Horner s method 7

FHospitaPs rule 145

Hyperbola 48

Hyperbolic functions 71

spiral 52

Hypergeometric differential equation 209

series 209

Hypergeometric function, confluent. . . 185

Hypocycloid 52

Identities, algebraic i

Implicit functions, derivatives of 161

Indeterminate forms 145

Indicial equation 1 74

Infinite products 130

series 109

Integrating factors 163

Interpolation formula, Newton s 22

Intrinsic equation of plane curves. ... 44

Involute of plane curves 39

Finite differences and sums

Finite products of circular functions .

Finite series, special

Fourier s series

Fresnel s integrals

Functional determinants. . .

20

84
26

136

i34

16

Jacobian 16

K

Ker and Kei functions 205

Kummer s transformation 114

Gamma function

Gauss s II function ....

theorem

Geometrical progressions.

Gradient of vector

Graeffe s method

Green s theorem

Gregory s series

Gudermannian . .

H
Harmonical progressions

Harmonics, zonal

Heaviside s operational methods.

expansion theorem

Helical coordinates

Hessian. .

133

95

26

93

8

95

122

76

26

191

210

212

106

16

Lagrange s theorem 112

Laplace s integrals 193

Latus rectum, ellipse 48

hyperbola 49

parabola 46

Leclert s transformation 115

Legendre s equation 191

Leibnitz s theorem 157

Lemniscate 53

Limiting values of products 152

sums IS 1

Linear equations 15

Linear vector function 96

Lituus 53

Logarithmic spiral 53

M
Maclaurin s theorem 112

Markoff s transformation formula 113



INDEX 313

PAGE

Maxima and minima 152

Mehler s integrals 193

Minor of determinant 14

Multinomial theorem 120

Multiplication of determinants 12

Multiple roots of algebraic equations. . 5

N

Neoid 53

Neumann s expansion, zonal har

monics 194

Newton s interpolation formula 22

method for roots of equations 7

theorem on roots of algebraic equa
tions 2

Normal to plane curves 36

Numbers, Bernoulli s 140

Euler s 141

Numerical series 140

Numerical solution of differential equa
tions 220

Oblate spheroidal coordinates 107

Operational methods 210

Orthogonal curvilinear coordinates 100

II function, Gauss s 133

Parabola 45
Parabolic coordinates 107

Parabolic cylinder coordinates 105

Parabolic spiral 53

Parallelepipedon, volume of 92
Partial fractions 20

Particular integral 167

Pedal curves 40

Pendulum 247

Permutations and combinations 17

Plane 53

Plane curves 36

polar coordinates 41

Plane geometry 34
Points of inflexion 39, 42

Polar coordinates 32, 101

Plane curves 41

Polar subtangent 37

subnormal 37

normal .&quot;.... 37

tangent 37

Polar vector 95

PAGE

Polynomial 2

Bernoullian 25
series n 9

Principal normal to space curves 58

Products, finite of circular functions. . 84

limiting values of 152
of two series no

Progressions 26

Prolate spheroidal coordinates 107

Quadratic equations 9

Quadriplanar coordinates 33

R

Raabe s test 109
Radius of curvature, plane curves. . . 38, 42

space curves 58
surfaces 55

Radius of torsion 59

Reciprocal determinants 14

Resolution into partial fractions 20

Reversion of series 116

Rodrigues formula 193

Roots of algebraic equations 2

transcendental equations 84

Rot 93

Routh s rule. . 6

Scalar product 91

Schlomilch s expansion, Bessel func

tions 201

Series, finite, circular functions 81

infinite 109

special finite 26

numerical 140

of Bessel functions 201

hypergeometric 209

of zonal harmonics 194

Simpson s method 221

Singular points 41

Skew determinants 14

Skew-symmetrical determinants 15

Solid geometry 53

Space curves 57

Spherical polar coordinates 101

Spherical triangles 78

Spheroidal coordinates 107

Spiral of Archimedes 5 2

Stirling s formula 28



INDEX

PAGE

Stokes s theorem 95

Sturm s theorem 6

Subnormal 36

Subtangent 36

Sums, limiting values of 151

Summation formula, Euler s 25

Surfaces 55

Symbolic form of infinite series 112

Symbolic methods in differential equa
tions 173

Symmetrical determinants 14

Symmetric functions of roots of

algebraic equations 2

Tables, binomial coefficients 20

hyperbolic functions 72

trigonometric functions 62

Tangent to plane curves 36

Taylor s theorem in
Theta function 248, 251

Toroidal coordinates 108

Tractrix 53

Transcendental equations, roots of. ... 84

Transformation of coordinates 29

determinants. . . 12

PAGE

equations 4
infinite series 113

Triangles, solution of plane 77

spherical 78

Trigonometry 61

Trilinear coordinates 33
Trochoid 51

U

Uniform convergence no
Unit vector 92

Variation of parameters 180

Vectors, axial 95

polar 95

functions, linear 96

Vector product 91

W
Witch of Agnesi 53

Zeta function 255

Zonal harmonics 191
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