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Proposed Revision of the Conventional Method
of Wave-Filter Design

Paul J. Selgin

A modification of the conventional ‘“‘classical’”’ method of electrical filter design is

proposed.

The change consists of the use of new parameters, “frequency numbers”, which

permit the design to be made from specification of peak and cut-off attenuation rather than
idealized cut-off frequency, as in the conventional method.
The method is extended to cover the dissipative, as well as the nondissipative, or lossless

case.

1. Introduction

The so-called conventional method of wave-filter
design is not as powerful nor as flexible as more
recent methods, based on the “lattice” form of filter
section [11;' nevertheless, it still has usefulness be-
cause of its relative simplicity, and is, in fact, used
by practically all designers of equipment to whom
the solution of a filter problem is an occasional
necessity rather than a constant challenge.

Because simplicity is the main virtue of the con-
ventional approach, one is led to ask whether the
ultimate of simplicity and effectiveness has been
reached in this particular domain, or otherwise.
Upon examining the question, one finds that the
conventional method, since its inception (Zobel's
first paper on the subject [2] was published in 1923)
has remained essentially unchanged, the attention
of network specialists having been diverted, by the
work of Cauer [3] and Bode [4], to other methods
of synthesis.

The chief purpose of this paper is to make the
conventional image method better suited to the
solution of practical filter problems, having regard
to the form m which the design data must be formu-
lated. In practice the cut-off frequency as such is
not given, but minimum and maximum attenuations
are given together with the respective frequency
ranges (see fig. 7). The present design method 1is
geared to this formulation of the problem and does
not require assumptions regarding the cut-off fre-
quency value. Also, the method permits the mini-
mizing of reflection losses at the critical frequencies
by removing the arbitrary assumption that the
“nominal” filter impedance must coincide with the
load impedance.

The method is further refined by suitably selecting
the parameters that determine the values to be used
in the elements of each filter section. In the classical
method the cut-off frequency is one such parameter,
the cut-off attenuation another. In the present ap-
proach a single function of frequency, the “frequency
number,” is used throughout, and values of this
function corresponding to the cut-off and peak-
attenuation frequencies are used as the design param-
eters.

1 Figures in brackets indicate the literature references at the end of this paper.

Suitable design curves and tabulations are included.

2. Basic Structures

Space does not permit a full treatment of all filter
types in this article. We will, therefore, limit the
discussion to the three most frequently used types:
high-pass, low-pass, and symmetrical band-pass.

The basic “L” structure, or “half section,” for
these three classes is shown in figure 1, in two equiva-
lent configurations, su*table for the formation of “7™
section and “‘z’’ sections, respectively. The so-called
“T-connected’” configuration will be given particular
attention in the discussion. For each class is given,
along with the two alternative configurations, the
“frequency number”’ that is, the function of fre-
quency that should be used, instead of the frequency
itself, in all computations concerning the filter.

3. Dependence of the Transfer Constant on
the Arms Ratio

The ratio Z,/Z, between the series arm and shunt
arm impedances of the L half section determines the
attenuation and phase shift characteristics of the
image-terminated T or = section obtained by joining
two such half sections. (Conventional filter theory
1s predicated on the existence of image-termination
or ‘“image match’ [5] between the various sections
and to the remainder of the system.) The complex
number a-+78, where « is the attenuation in nepers,
B the phase shift in radians, is, in general, the transfer
constant # of an image-connected 4-pole. According
to this definition, § may be shown to equal the com-
plex ratio of output to input voltage (output to
mput current) of the 4-pole [5, p. 30].

In the following, # will always be associated to a
complete 7" or = section (it makes no difference
which), while Z, and Z, will be the values for the
component half-sections.

The relationship between Z/Z, and 6 is the fol-
lowing:
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Ficure 1. Basic “L’ half-sections.
These expressions and the corresponding families of
curves will be found in any standard textbook on
filters [6].2

The dependence of « and 8 on Z,/Z,. for Z, and Z,
purely reactive, may be summarized in the diagram
of figure 2, which is schematic and not suitable for
purposes of evaluation.

4. Arms Ratio Expressions

From what has been said it is apparent that the
arms ratio Z;/Z, determines the transmission charac-
teristics of the filter section. At the moment we are
interested only in the dissipation-less case; however,
since ultimately dissipation will have to be con-
sidered, it is convenient (in spite of the added alge-
braic difficulty) to derive at the outset the arms ratio

3

2z

FiGgure 2.

2 A set of curves of constant U and V (real and imaginary parts of Z,/7, in the
a, B plane), is given on figure 8
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Ficure 3.

for the case of dissipative structures, differing from
those of figure 1 in that the pure inductances are
replaced by physical coils of given dissipation factor
d=R|wl, approximately constant over the operating
range. The three classes of figure 1 will be con-
sidered in turn.

4.1. High-pass

Consider the first form (for 7" connection). The
equivalent circuit, allowing for dissipation in the coil,
is shown in figure 3. The arms ratio is:

7z I
Zoa o e
]Cw<3 +jwl +ju7’)

—1
P
(,L 0)2 (1 —](l—mz>
(3)

At this point we discard w as the variable denoting
frequency and use instead the frequency number
appropriate for this class of filters, that 1s (fig. 1)
the variable:

(4)

(S

1
n=-—-
w

Equation 3 can be rewritten in terms of n by
noting that for zero dissipation, the infinite attenua-
tion fr equency is given by

n:nm-:T—LC’ (5)
and the lower cut-off frequency (7,/7,=—1 orn=n,)
by

(6)

o < nc

These relations allow (3) to be written as
2R ) a1 o
Alli N <1 ‘
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Since the dissipation factor ¢ (reciprocal of the
coil Q) is always a small number, it is permissible to
neglect d? in the above, provided we do not attempt
to use the resulting expressions in the immediate
neighborhood of the frequency of peak attenuation,
in which case the denominator of (7) becomes in-
finite if d? is neglected. This is not a serious limita-
tion to the design of dissipative filters, since the peak
values of attenuation are never critical, being far in
excess of design limits.

With this simplification, (7) goes into the form:

n_n
% e 8)
R I
nw ©

The same expression goes for the second alternative
form of high-pass filter section, which is in dual
relationship to the first (7).

4.2. Low-Pass

Again consider the 7" connected form (fig. 1).  The
equwllull circuit for dissipative coils appears in
figure 4.

The arms ratio is:

Zs 7wl(]—]([) ) 9)

7,
JolL (1 i L/C/ 2)

Discarding » in favor of the frequency number n, as
before, we let:
n=w’ (10)

Again, in the dissipation-less case we have

T (11)
and at cut-off:
L i
—l=7 ne (12)
Cne

Ficure 4.

so that (9) becomes
1 —f“’—l—([z%— 7(1 —=

2, \n. ) (1 >+12

As in the high-pass case, we may neglect ¢* with
the understanding that the resulting expressions will
not be accurate in the neighborhood of the peak

(13)

attenuation frequency. Hence:
noomn
By N Mgl l—gd——— (14)
2 n I -
ol—— n
N

The dual low-pass form, for = connection, yields the

same value for Z;/7Z,.
4.3. Symmetrical Band-Pass

The impedance of a series resonant arm,

Z:1{+ij+jjrl— !

wlC

may conveniently be written

Z=r(d+3W) (15)
where
_ \/f
=10
(Y
a=t I
(16)
[
W w
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Using this expression for the series combinations
of the band-pass structure (fig. 5), its arms ratio takes
the form:
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Z*r(d%—yﬂ ) [r’(d'+jW’)+r”(d”+jW”):| (17)

Design requirements inherent to the band-pass filter
impose a definite relationship upon the coefficients.
This is best understood by examing the behavior of
the function 7,/7, with frequency in the nondissipa-
tive case.

In the dissipation-less case,

—Zizo when W=0, at o= w,— :

Z, JILC
and
Z:_ o when W’ orW"”=0, at w;,:——l;—A or w!=
7, I

-li; respectively.

‘/'L//O//

In general, the band-pass structure yields two pass-
bands. To make these contiguous, we must meet
the “condition of congruence” [8] that »W and
1/r'W1/r"" W’ vanish at a common frequency.
Since W=0 at w=w, we need

1
.
r/<ﬂ_w_m> Tu(ﬂ_f"_w
w, w!  w
If the filter is to have a symmetrical pass charac-
teristic (on a logarithmic frequency scale),

(18)

iP:&: (19)
W, (Gh)
leading directly to
=" (20)

If we add the condition that each series resonant
arm has the same dissipation factor d, (17) simplifies
to

Ze_ Ty, ivpr
Pl il (21)

T 1
)[d+jW'+d+jW']'
As before, the denominator is to be rationalized and
d? neglected, yielding
2z, r WW'+ W”){ s [ w2+ w”’ _i:l}.
.Z_p_ r/ Wf/ I/‘T’I/ 1 —}‘]d u/ / W/'// (W"/ _J[_ ‘[/1,7//) W/
(22)

We now define the frequency number for the sym-
metrical band-pass case as

©_90Y_py

wy W

n= (23)

for a generic value of frequency; hence the value:

’ 2 "
w wy w [OF)
Wy o W W,

for either frequency of peak attenuation, by (19), and
the value:
2_(&”_ @0 )2
B wo CO:’

for either cut-off frequency (again because of sym-
metry).

Equation 22 may now be rewritten in terms of the
above values of n m place of W, W', W”. By using
the identities:

’
w, Wp
W=\ =7
Wy @,

(25)

W= \'ﬁ
W'+ W*=Jan. ¥4
WW"=n—n,

W’ W"=nn_+2(n+n.)

(26)

we find:

Z‘“*L@glﬂ%[ww—l]}
n

B (n—n.)Vn.+4

Zy
(27)

We have not yet imposed the condition that Z,/Z,
must equal—1 (for d=0) at the cut-off frequencies,
corresponding to n=mn,. There is no ambiguity on
this point, because the other possible value that
7|7, might take at the cut-off frequencies, which
is zero, actually occurs at the midband frequency,
wy, the cut-off frequency common to two pass-bands,
which merge into one by virtue of the ‘“‘congruence”
condition.
The cut-off relation is

1T Neyn.,+4
—1=_ PVl
r n,—n,

(28)

and the arms ratio becomes:

non

Z, n, ne jd nn,+2m+n,) :l

S le g dh ) R R e ; 29

ZIJ l—i{ VN (n—n,w)\’nm+4 ( )
n

©

5. Determination of the Section Numbers
and of the Cut-Off Frequency

The real part of the ratio Z;/Z, is independent of
dand 1s given by the same expression for all three
cases (8), (14), (29):

noon
ZN_(Z _Xi_n. me
Be <Z>-<Z—p>d=o_Xp._ _i}

1
n

(30)

©

where n is the “frequency number’” appropriate to
each case in turn.
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We may now substitute this value in eq 2 and
thereby obtain expressions suitable for the construc-
tion of universal sets of curves of attenuation and
phase shift, valid for all the filter sections shown in
figure 1. To avoid imaginary arguments, three dis-
tinct cases (corresponding to the three ranges of fig. 2)
will be considered:

(1):
X,
a:O,B#O,O>YL>~1, n<ne< 1Ny,
“p
(transmitted frequency range)
- 7(:
i I bo
B=2 sin \/ X, 2 sin ne g (31)
noon,
(2): ’
a#0,8=0, ‘\‘:s<(),nc<nw<n—»
“*p
i , [N
a=2 sinh™! \/“t":2 sinh™! D)
Xy Mo o
noon,
(3):
a#0,8=+m ‘\\;f<—1,nc<n<nm
===
e
a=2 cosh™! \/‘\:‘5:2 cosh™! e
X, Ne Mg
noon,

Note that in all cases n_ >n., The value of « or
B is seen to depend on two ratios, n./n and n./n.
For a given ratio n,/n_, « or § may be plotted against

the ratio n./n,, which we will call the section number
and designate by N:
T,

N=2e

n

(34)

©

If more than one section is used in a filter, a dif-
ferent value of N will generally be used for each sec-
tion. As a rule there will be one section having
N=0 (the “prototype” of the literature) and one
section having 0.6<N<0.7: the latter is usually
divided into two half sections which serve as termi-
nations for the filter.

Another purpose of the attenuation plots (fig. 6)
is the determination of the cut-off frequency (or
frequencies). This is generally treated as a known
requirement of the filter, but actually it is not.
What 1s required of a filter may be summarized in
figure 7, which is drawn for the high-pass case.
Two frequencies and two values of attenuation are
assigned: the pass band is assigned by a ‘“‘boundary”
value of frequency, f,, and a value of permissible
attenuation, a; the attenuation band, by a boundary
frequency f, and a required attenuation, A. The
theoretical cut-off frequency generally lies some-
where between the two boundaries. To determine
its exact location, the section number for the entire
filter must be tentatively established. Suppose for
example a three-section high-pass filter were to be
based on the requirements of figure 7. Let us
tentatively make:

N=0

N=0.5 for section 2

for section 1

N=0.7 for section 3

Adding the attenuations plotted on figure 6 for
the above values of N over a range of values of
ne/n, we find that the over-all attenuation goes
through the value 55 db (the value of A, required

ne/n.  These plots may be used to select values of | attenuation) when n./n has the value 0.74. We may
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Frcure 6.

Plot of a against n./n for various values of n./n « .
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therefore impose the condition n=n, for n./n=0.74,
thus causing the attenuation to be exactly equal to

A at the “boundary frequency” f, (fig. 7). Hence
we write:

ne -

=074, (36)

from which recalling the equivalence n=1/w* for
high-pass filters:

1
e=Jf. ——==20.9 kc; n,
f J0.74

=5.8%10"° (37)

_ 1
(2 7fe)?

The selection of the section number may be based
on several criteria. If the problem is given in the
terms of figure 7, the designer will attempt to secure
the necessary minimum attenuation A (in the
example 55 db) with the least number of sections.
Charts that permit the automatic selection of the
optimum section number, and give at the same time
the value n./n,, for filters of three sections or less,
have been published by the writer [7] on the basis
of this criterion.

Another possible consideration affecting the selec-
tion of the section number is the phase-shift over the
transmitted band. It may be desirable to have the
phase shift vary as linearly as possible with the
frequency, to eliminate phase distortion. Gener-
ally speaking, a certain amount of “cut and try”
is unavoidable when designing a filter by the con-
ventional method. The labor involved may be
minimized, however, by a favorable choice of param-
eters, which justifies the present treatment.

6. Determination of the Maximum Permis-
sible Dissipation Factor

Given the values of N=n.n_ for the different
sections, we may now determine for each value of n
(that is, for each frequency), Z,/7, in the dissipative
case (d#0) using one of the three equations (8),
(14) and (29) (fig. 10 may conveniently be used in
place of eq. 29). From the values of 7,/7,, using
eq 2 or an appropriate chart (fig. 8), the true values
of a and B, may be obtained.

It is not necessary, as a rule, to obtain these values
for more than one or two values of frequency. A
check on the attenuation at the edge of the trans-
mitted band (frequency f,, fig. 7) is usually sufficient,
since this is the critical value: the attenuation due
to losses 1s always less toward the center of the pass-
band (in the case of figure 7, toward infinite fre-
quency) than at the edges.

As an illustration, let us determine the maximum

TasLe 1. Sample computation of dissipation factor

High-pass filter (fig. 7): ns/Ma=(falfs)?=0.612

ne/na=0.74 (eq 36) (38)
Ny/Me=Mnb/Na . Na/N _0i|270 828
¥/Ne=nb/Na . Ma/ =55y =0.
——— = = —|
Section 1| Section 2 | Section 3| Over-all |
Section number N=n./n o —2 0 0.5 0.7
. , e N |
Rationy/ne == - 7-=0.828N 0 | 0.414 0.58
Zs
Real part of 7, for n=mn,:
Mo bne - —0.705 | —0.5
= —ns/ne (eq 8) 0. 828 0.705 0.59
Assuming d=0.01
Imaginary part of 2 for n=mn,:
ginary [ 7 =n,:
-
= —d ———— . 0082 ) . 01407
V d e (eq 8) 0. 00828 0.012 1 0.01405
Attenuation a, db: (from chart, 0.2 0.25 1 0.25 0.7
g. 8)
Phase shift B, degrees (from | 131 114 |96 341
chart, fig. 8) E
|
Assuming d=0.02
. - - _
14 0.01656 | 0.024 0. 0281
0.32 0.46 0.48 1. 26
131 114 95.5 340.5
Assuming d=0.0.5
Vv 0.0414 0.06 0.0702 ‘
a 0.96 1.15 1.20 | 3.31
B8 130 113.5 95 ‘ 339.5

The over-all attenuation values thus obtained for several
values of d may now be plotted to find, by interpolation, the
value of d consistent with the maximum required attenuation
at f, (3db). This is carried out in figure 9, giving as a result
d=0.046 as the maximum allowable dissipation factor, corre-
sponding to a “@Q” of about 22.
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Ficure 9. [Interpolation for maximum dissipation factor.

I
El
1

allowable dissipation (minimum ) for the filter of
figure 7, using the values of N already selected.

Equation 8 1s used to find Z;/7Z, (hence « and B)
for each of the three sections of the filter, at the
boundary frequency f, (fig. 7) and assuming for d
(dissipation factor) a series of arbitrary values.
Then by interpolation (fig. 9) one may arrive at a
ralue of d just low enough to secure the desired
maximum attenuation « (fig. 7) at f,. The transi-
tion from Z,/7Z, as computed from eq 8, to a and
B, is best accomplished by means of charts, such as
that of figure 8. 1In this chart, as in table 1, the
notation Z,/Z,=U-7V is used. The computation
may be conveniently carried out in tabular form,
as shown in table 1.

Attenuation and phaseshift in term of U and V, components of Z|Z .
For U>—0.5, 0<B8<90% for U<0.5, 90°<B<180°.

Midseries and Midshunt Impedances

Having determined the frequency numbers n,. (for
the filter) and n_ (for each filter section) as well as
the maximum allowable dissipation factor, the de-
signer still has the problem of “image matching” the
filter sections to each other and to the terminations
between which the filter is to be inserted. We must,
therefore, reexamine the basic filter structures of
figure 1 from the standpoint of their image imped-
ances.

In this discussion the L structure, or half-section,
has been taken as the basic constituent of the filter.
Such a structure has two distinet image impedances:
that is, those impedance values which, connected to
the input and output of the L network, match, or
simulate over the entire frequency range, the input
and output impedances of the network, respectively
(fig. 11). In filter terminology, the image imped-
ance on the side of the series arm (to the left of fig.
11) is called “mid-series impedance”, 7, the other
image impedance is the “mid-shunt impedance”; 7.
The essential difference between the two types of L
structures shown in figure 1 under the headings “for
connection in 777 and “for connection in 7", 1s this:
In the first type, the midseries impedance is inde-
pendent of the resonant frequency of the L-C' arm,
so that, if such L structures are connected together
into 7" sections, these can be designed to match
one another at all frequencies in spite of having
different peak attenuation frequencies.

On the other hand, the second type of L structure
has midshunt impedance independent of the L-C
arm resonance, and must therefore be paired off
into 7 sections before assembling into a matching
filter.
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To obtain V multiply ordinates by d (dissipation factor) and by U (real part of Z:/Zy).
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zosg ZE’ Zp ‘Z_op Zop
— —>

Ficure 11.

To avoid confusion, let us limit our discussion to
the first, or T-connected, type of L structure. The
midseries impedance of these will now be obtained,
for the nondissipative case.

The midseries impedance is the characteristic im-
pedance of the 7 (fig. 12). Accordingly, if 7, and
7 are the open and shortcircuited impedances of

the 7', respectively, we have for the mid-series
impedance:
ZOS o \’/ Zac Zsc
<Z+/> Z—}— 7/ B
A 4—

—ZS\/ 14y

(39)

We have already obtained an expression for the
arms ratio in the nondissipative case, for all three

See eq 45.

*—\ N\

s

Ficure 12.

classes of filters:

We may now substitute this

obtaining:

7 "

and band-pass filters.
ture, we have (fig. 3 and eq 4):

Zs:_r7 = J \(}1’

wC

486

expression

(30)

into 39,

(40)

We must now differentiate between high-, Tow-
For the basic high-pass struc-

(41)
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nw (114/’ (4 )

hence combining

. [L’ / noo ‘
Zu——i /5 a1 (43)

Let us now define:

(high-pass) Iu’(,:\/(ﬂ,y (44)

and write the mid-series impedance in the form:
I :
Z03 J]lo '\ n, 1. (40)

A plot of Zy against the frequency number n is
shown diagrammatically in figure 13. For n<x,
(transmitted band) the radical must be assigned the
positive imaginary value to fit the physical facts:
then the midseries impedance is a positive real, with
maximum value R, for n=0, which corresponds in
all cases to the zero phase-shift or “midband” fre-

quency. Hence R,=+/L’/C is the midband impedance.

It will be noted that Zy does not depend upon
n., hence 1s not affected by the peak attenuation
frequency. High-pass sections differing in the loca-
tion of the attenuation peak may therefore be image
“matched” to one another within the same filter,
provided they share the same values of 7, (cut-off
frequency number) and £,. The above plot applies
to all three classes of filters except for the sign of the
imaginary part; eq 45 also applies, except that R,
has different values in terms of the circuit elements.
For low-pass filters (see fig. 4 and eq 40):

/ 1
Zu=joL |2
N,

n.

’ (46)

which can be written

. [L [n
Zo=] \/@— Jnﬁ—l, (47)

which, if we let

JE- a

becomes

Zow=3R, \/§—1. (49)

In this case also the midseries impedance becomes a
positive real in the range n<n,, provided we assign
a negative imaginary value to the radical. Outside
this frequency range the impedance is a positive
reactance, whose dependence on 7 is the same as in
the case of high-pass filters, except for sign (fig. 13).

Finally, for symmetrical band-pass filters (fig. 5,
eq 40)

Rog , Xog
Rog Xos __--
,,”’ LOW - PASS AND HIGH RANGE OF
5 BAND - PASS
7
/
! n
"\ g
“\ HIGH PASS AND LOW RANGE OF
. Vs BAND-PASS

Ficure 13.

==t g =

The midseries impedance will have the same form
as in the high-pass and low-pass cases, provided:

11
r=Ryy|——— (51)
ne N,
in which case:
et Roy [T 1.
AR

Ry, as before, is the midband impedance. The mid-
series impedance follows the plot of figure 13 for
n>n,; the sign of 4/n in eq 49 is positive if the fre-
quency is above the transmitted band (Z,, inductive),
and negative if below.

In conclusion, we have found that in all three cases
(high, low, and band-pass) the midseries impedance
is the same function of the frequency number; in
each case it is, therefore, invariant throughout the
filter, whatever the location of the attenuation peaks
in the individual sections. This permits the filter to
be image-connected throughout; which is the assump-
tion upon which the entire “conventional” filter
theory is predicated. Of course, this is only true
provided R, the midband impedance, and 7., the
cut-off frequency number, are constant throughout
the filter. This is ensured by determining these two
parameters first and selecting element values so that
eq 44, 48 and 51, for high, low and band-pass filters,
respectively, are satisfied.

We have discussed the determination of n. but
not that of R, This is based on the terminating
impedance of the filter. Always assuming that the
“T-connected” type of structure is used, and there-
fore, that the midseries impedance is invariant from
section to section, we could put together the filter
(a three-section filter, for example) as indicated in
figure 14. Each L half-section is shown separate: in
practice, adjoining arms are “lumped’” together.

This arrangement would offer to the outside
terminations the same impedance (the midseries im-
pedance) that recurs at each internal junction. If
the terminations are equal resistances, which we
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assume to be the case, considerable ‘“mismatching”
would result, as indicated by the plot of figure 13;
the midseries impedance plot is actually an arc of
circle within the transmitted range when frequency,
rather than n, is taken as the abscissa.

8. Terminating Half-sections

A significant improvement may result if we connect
the filter as shown in figure 15. One of the sections,
suitably selected, is “split’” into its component half-
sections and these are used to “terminate” the filter.
The filter now presents to its terminations (source
and load) not the midseries, but the midshunt im-
pedance of the terminating section.

The frequency dependence of the maidshunt im-
pedance must now be examined. This will show how
the terminating section should be selected and how
the parameter Ry, equal to the midband value of
both the midshunt and the midseries impedances,
should be assigned with reference to the outside
terminations.

Zs Zg

[ A% — A \

e

FIiGure 16.

The midshunt impedance Z;, is the characteristic
mpedance of the = seetion of figure 16. We have,
therefore:
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Ficure 17. Plots of 7y,/R¢ against n/n..
Using eq 30, 45, and 52, we may write:
L
Zop= 4 jRy ——= (53)
LA
N,

The midshunt impedance, like the midseries, is
real in the transmission range (n<n.) and takes the
value R, at midband (r=0). Its frequency-
dependence, however, may vary from section to
section according to the value of n_,. Plots of Z,,
against n/n, in the transmitted band are given in
figure 17. These show that for N=n,n_,=0.7, or
thereabouts, Z;, is substantially constant over a
large part of the transmitted band. This is the
value of N that should be used in designing the
terminating section.

9. Determination of R,

The use of properly designed terminating sections
reduces, but does not eliminate, reflection losses due
to mismatching at the terminations [1, p. 352ff].
These losses can be evaluated, but if the designer
merely has to meet some such requirement as that
shown in figure 7, this is not necessary. If the filter
is designed to match its terminations exactly at
f=f» at this frequency there will be no added loss
due to mismatching. Above and below this fre-
quency there may be some added loss, but attenua-
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tion falls off toward midband more rapidly than
would be required to offset the increasing reflection
loss.

The high-pass filter previously chosen as example,
and based upon the requirements of figure 7, in-
cludes a section for which N=0.7 (section 3).
Choosing this as the terminating section, we go to
the plots of figure 17. The abscissa corresponding

to f=1, 1s (eq 38, table 1):

ny

—=(.828.

Te

Hence, in order to avoid mismatching, we must
have, if Ry 1s the terminating resistance:

ZUS e I{Ty

at the point where the curve for N=0.7 crosses the
abscissa n/n,=0.828.

But at this point:

A
Zos__0.98!
7. —0-985,

hence, we must make:

I
Ry=-—2_=1.015 Rx.
70.985 ’
The difference between the optimum value of R,
and that of R, is generally small, so that R, 1s often
taken equal to Rz, But this simplification 1s not
always permissible if accuracy is desired.

10. Computation of Filter Elements

From the design parameters n, and £, common to
all the sections of a filter, and N=n,n,, varying
from section to section, plus, in the case of sym-
metrical band-pass filters, the midband angular fre-
quency wp, all the filter element values may be
obtained by straightforward computation. Table 2
gives the expressions for all element values of the
three “basic” structures of the “7-connected” type,
in terms of the parameters used throughout this
discussion, and with reference to equations appearing
elsewhere in the discussion. Because of the dual
relationship between ““7-connected” “‘r-connected”
filters, it is easy to obtain the equivalent m-connected
expressions: as always in a dual circuit relationship,
capacitance is replaced by inductance, resistance by
conductance, series by parallel, and vice-versa
[1, p. 246ff].

The so-called “prototype’ sections are considered
here as limiting cases of the “basic” section, for
N=0. In high- and low-pass sections, the element
values are obtained in this limiting case by simply
making N=0 in the expressions for the basic section.
One of the elements drops out, as indicated by the
fact that the capacitor ¢’ in the high-pass section
becomes infinite and the inductor L’ in the low-pass
section goes to zero. In the band-pass case, it is not

)

convenient to let N go to zero, as indeterminate ex-
pressions will result. Separate expressions for the
prototype elements, which can be obtained quite
simply by going back to basic considerations, are
given.

Finally, it should be noted that the series arms of
adjoining sections are combined into a single arm of
the assembled filter. Thus, the series inductances
add in the low-pass case and the series capacitances
go together according to the usual rules in the high-
pass case. In band-pass filters, it is convenient to
add together values of r=/L/C for adjoining sec-
tions. This will give the value of » for the “com-
bined” series arm. As for the resonant frequency,
this is the same for all series arms, hence also for
their combinations.

11. Conclusion

Comparison with conventional method. 'The princi-
pal difference between the method outlined here and
the “classical” method lies in the choice of the
design parameters for the simply derived filter
section. In the classical method these are: f,
cut-off  frequency, and m derivation factor. In
the modified method they are: n. value of the
frequency number at cut-off, and n_, value of the
frequency number at the frequency of peak attenu-
ation. Why is this an advantage? Because the
frequency number 1s that particular variable that
permits the use of a single function, or a single family
of curves, to express the attenuation and phase-shift
characteristics of all filter sections (low, high, and
band-pass) over the frequency spectrum. With the
aid of these universal curves or the corresponding
functions it is simple to relate the design parameters,
as used in the present method, with performance.
If any other set of parameters is used, an inter-
mediate step is required.

When using the classical method the designer is
required to choose values of f, and m based upon his
general knowledge of filter characteristics.  When
the problem is an academic one f, is usually given,
but this is not the case in practice, the requirements
of the filter being summarized in some form similar
to figure 7. After /. and m have been selected,
formulas are given for obtaining /., the peak attenu-
ation frequency; on the basis of this and f, the filter
performance can be checked, to see whether or not
the choice of f, and m was correct in the first place.
With the present method the choice of parameters
and the verification of performance are one and the
same. The parameters are selected by means of the
universal charts, which show attenuation and phase-
shift at the various frequencies.

An additional improvement made possible by the
present method is the computation of “minimum .”
The new parameters greatly simplify the analysis of
dissipative filter sections. Formulas given m classi-
cal texts for the dissipative value of Z;/Z, in the
band-pass case, for example, are much more compli-
ated than eq 29 and do not permit the drawing of a
single family of curves as in figure 10.
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Tasre 2. Computation of element values
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