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ABSTRACT

A model of the dynamics of a long trailing-wire antenna

towed behind an orbiting aircraft was developed and then an

investigation was made of several candidate schemes to

control the wire's steady-stdLe bihape and oscillations due

to wind gradients. A computer simulation was developed

using the classic vibrating chain with free/fixed boundary

conditions superimposed upon the wire's steady-state shape

and tension distribution. Several forms of restorative and

dissipative forces were considered in the analysis. The

validity of the superposition approach was demonstrated for

a wide operating range. A control law was developed which

modulated the towplane orbit radius and demonstrated a

potential for a 50 percent or better reduction in all

oscillations. A second scheme using a controllable drogue

at the trailing end of the wire was investigated. The

controllable drogue had a limited success in oscillation

reduction, but was found useful in tailoring the steady-

state shape of the wire.
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I. INTRODUCTION

There are a number of current and proposed uses for long

cables or wires towed behind ships and aircraft. As

examples, antisubmarine warfare ships tow long cables with

acoustic equipment attached along the cable length for the

purposes of isolating the equipment from the ship's noise

sources, for penetrating temperature and salinity layers

beneath the ocean surface and for providing a long baseline

for passive acoustic ranging. A precise knowledge of the

real time cable shape is required to determine the time

dependent location of the sensors attached to the cable.

Payne discusses the need for a knowledge of the cable shape

during ship maneuvers and provides a bibliography of work

done to model the dynamics of towed arrays. [Ref. 1]

Several classes of aircraft trail long communications

antennas required for low frequency/long distance

communications. One interesting proposed application is to

use a long cable towed from an orbiting cargo airplane to

provide pinpoint airborne delivery of cargo. It will be

seen later that this is possible due to the shape that the

wire/cargo combination obtains when the towplane is in a

steady-state orbit. [Ref. 2:p. 856] All of these

applications share the same basic physics which are adapted

and modified to study the individual case. Wire
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oscillations and subsequent wire failures are problems

common to many towed wire applications. It is the intent of

this paper to focus upon the case of a cable and drogue

system towed behind an airplane flying a circular orbit.

Irvine and Caughey [Ref. 3] provide an in-depth analysis

of the vibrations of a cable which is fixed at both ends.

This work is good background for the development of the

governing equations of the towed wire. Anderson [Ref. 4]

extends this work and analyzes the effects of the fluid and

wire structure upcn the vibrations. Skop and Choo [Ref. 2]

provide an in-depth study of the equilibrium configuration

of a cable towed behind a towplane flying a circular orbit

as well as a discussion of the multi-valued nature of the

governing equations. Anderson's student, Russell, continued

this Wý .Lr. h•n h. 'issertaticn [Ref. S". Matteis [Ref. 6]

analyzed the dynamics of a sailplane while attached to the

towplane. Matteis' discussion provides insight into the

development of a model of the drogue on the end of t!hc ;ir.

The work mentioned above emphasizes the analytical

solutions. The first thorough numerical model of the

steady-state solution of the towed wire problem was provided

by Huang [Ref. 7]. This report does an excellent job of

outlining the algebraic and partial differential equations

required to develop a computer simulation of the wire in a

steady-state orbit but lacks a complete description of the

numerical schemes employed. There is no documentation for
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the software. Huang's paper was the basis upon which the

static computer simulation in this dissertation was based.

Crist [Ref. 8] developed the first computer simulation of

the dynamics of the towed wire. The formulation of the

problem and the numerical scheme limits the model of the

wire to very long, lumped mass grid segments. The

application of Crist's program has typically been limited to

the analysis of wire dynamics during the reeling-in and

reeling-out process. Fidelity has been a problem when

applying the program to the analysis of the dynamics of the

extended wire, for this reason, this dissertation emphasizes

the orbiting phase of flight following reel-out. Finally,

Lawton [Ref. 9] outlined a series of experiments performed

onboard an EC-130 TACAMO airplane. Additionally, he made

the suggestion of using the towplane as a trailing wire

control device and documented deficiencies in the tension

measurement equipment. This paper was the starting point

for much of the wire control work done in this dissertation.

The most current and pressing application of the study

of towed cables and drogues is the TACAMO. For this reason,

the TACAMO configuration and physical parameters were chosen

for use in this dissertation. Where possible, the modeling

was kept as general as possible to allow application of the

developed techniques to other problems.
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II. BACKGROUND

The problem of understanding the dynamics of a very long

cable towed behind an aircraft has plagued the United States

Navy for decades. A very long wire, on the order of 15,000

to 25,000 feet, is towed in a circular orbit behind the

TACAMO strategic communications aircraft for use as a Very

Low Frequency (VLF) antenna. A hollow, cone shaped drogue,

with a weighted nose, is attached to the end of the wire for

the advertised purpose of providing aerodynamic

stabilization during the reel-out and reel-in process. The

first TACAMO platforms were modified C-130 aircraft

designated the EC-130. In 1971 the wire was changed from a

0.21 inch to a 0.16 inch diameter wire in order to reduce

wire weight, drag and tension at the towplane. The change

caused wild oscillations in tension and wire shape resulting

in another switch to a stronger cable. In 1987 the EC-130

was replaced by the E-6A, a Boeing 707 variant. The

oscillations experienced by the E-6A were more severe and

several different wires and drogues were flight tested in an

attempt to reduce the oscillations to an acceptable level.

The success of this trial and error effort has been limited.

Oscillations in the trailing wire antenna result in

three critical problems. First, the oscillations can cause

contact between the wire and the towplane's horizontal tail.
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The wire exits the towplane at a point in the lower fuselage

approximately 45 feet forward of the tip of the towplane

tail. During the oscillations the wire transcribes the

approximate shape of a cone and as it rotates it often rubs

the horizontal tail and flight control surfaces. There are

three hazards associated with wire/aircraft contact. Most

seriously, there is a possibility of fouling flight control

surfaces. Next, abrasion of the aircraft structure leads to

reliability and maintenance concerns. Lastly, abrasion of

the wire leads to wire failure with the associated financial

costs and the incumbent surface hazards from 20,000 feet of

falling wire.

The second problem is that the oscillations in wire

tension often result in exceeding the failure strength of

the wire. This too causes the wire to part and fall to the

surface. There are currently two types of wire in use. The

older wire consists of 15 smaller steel wires wrapped in a

single copper band in candy stripe fashion. This wire is

commonly known as iX15 due to its structure. The newer wire

consists of 3 sets of wires wrapped in a 0.1582 inch

diameter braid at approximately a 1.87 inch pitch. Each set

consists of 6 wires symmetrically set around a seventh wire,

all in a copper matrix. This wire is known as 3X7 wire.

The old wire fails at approximately 2500 pounds of tension

and the new wire at approximately 3000 pounds. The new wire
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would be preferred due to its higher strength, however, the

observed oscillations while using it arte more severe.

The third problem caused by the oscillations is the

significant degradation in the TACAMO's ability to perform

its mission caused by the oscillations. Verticality is

defined as the altitude of the towplane less the altitude of

the drogue divided by the length of the wire. Thus a 100

percent verticality requires the wire to be perfectly

vertical below the towplane. Since the wire is an antenna,

transmission efficiency is a function of the trailing wire's

shape. Verticality is a direct measure of the wire's

ability to act as an antenna. As t s verticality decreases

below 60 percent or 70 percent, the transmitted power is

drastically reduced. Oscillations that result in low

verticality during portions of the cycle are evidenced by

large oscillations in the voltage at the power amplifier and

the signal received at test ground stations. The TACAMO is

flown in a circular orbit with a bank angle on the order of

20 degrees to 40 degrees. In this orbit, the wire assumes

the approximate shape of a helix with a smaller radius at

the drogue than at the towplane. The wire typically makes ½

to a full turn in the helix shape from top to bottom.

Flight test data shows that the oscillations occur at a

frequency equal to the orbit rate of the towplane. The

period is thus on the order of 100 to 200 seconds.

Furthermore, the system requires from 2 to 30 minutes to
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transmit a message and approximately 20 minutes to set up an

orbit and trail the wire. It is thus crucial that the

verticality be controlled over long periods of time. A

short burst while the wire is at high verticality is not

possible. Given that the average observed verticality is

already in the range where transmission efficiency drops

off, any oscillation in the verticality results in

unacceptable variations in transmission efficiency.

To date, modifications to the wire and drogue

configurations have been developed using flight-test based

experiment. This has proven to be costly and subsequently

has limited the number of options that have been explored.

A cost effective means to better understand the dynamics and

to explore various alternatives has long been required.

A good model of the time dependent motion of the wire

was crucial to the understanding of the dynamics of a long

wire trailed behind a towplane. The complexity of the

system dictated the use of a digital simulation since the

system could not be described in closed form. To be of use,

the model had to allow for arbitrary forcing function inputs

to be applied to the wire and it had to have provisions for

tracking the locations and force histories for chose:n points

along the wire and allow other quantities to be easily added

and tracked within the same program. Finally, the model's

numerical program had to be both efficient and simple in

order to allow candidate wire/drogue/towplane modifications

7



to be rapidly coded, added to the simulation and tested. It

was the task of this dissertation to develop an adequate

model of the dynamics of a very long wire towed in a

circular orbit behind a towplane. As was mentioned earlier,

the model was then used to explore several likely candidate

ideas for control of the wire's oscillations. The models

were written using the architecture and parameters specific

to the TACAMO system. This was done because this is the

most current and pressing application of the simulation.

Most model analysis was performed using textbook derived

aerodynamic coefficients for the current TACAMO 3X7 wire and

drogue. Other physical parameters such as dimensions,

weight, center of gravity of the drogue, etc. were measured

using flight-worthy hardware. Note that the requirement

that the numerical models be rapidly reconfigurable implies

that they will be of use on other long towed wire problems.

Where possible, the models were left in the most general

form to facilitate changes.

The modeling of the wire dynamics was attacked in two

steps. First, a program was developed which completely

described the geometry and forces of the wire during steady-

state, unforced conditions. Next, the oscillation

mechanisms were modeled individually and superimposed upon

the initial, steady-state solution. With the model of the

wire dynamics in hand, the possibility of controlling the

oscillations using the towplane to provide the control

8



inputs at the top of the wire was explored with good

results. The next logical step was to attempt to control

the oscillations using force feedback provided by a

maneuvering drogue at the bottom of the wire. This

technique had limited success for control of the

oscillations, but proved useful in maximizing the mean

verticality.

9



III. STEADY-STATE MODEL

A. FORMULATION OF THE WIRE EQUATIONS

The steady-state model was fundamental to the trailing

wire simulation. The steady-state solution provided the

wire geometry and tension necessary as the initial condition

of the dynamic model, as well as the solution upon which the

dynamic small displacement analysis was superimposed. The

static model developed here was based upon the 1969 Naval

Air Development Center (NADC) static model governing

equations [Ref. 7:pp. 6 -10]. An understanding of the static

model was crucial to grasping the dynamic model, and so much

of the NADC development of the equations was repeated and

elaborated upon here. The numerical implementation used in

this version of the static model relied upon second order

accurate central differencing techniques. The derivation of

the static solution began by first assuming that the wire

was broken into a number of segments of uniform length equal

to AS. Second, it was assumed that shear forces were

negligible and that only the tension forces were significant

in the steady-state condition. Third, it was assumed that

the wire was flying in a still, steady airmass with no

winds. Lastly, as was mentioned above, the wire was in a

steady-state condition with a constant circular orbit.

Armed with these assumptions, a model manageable in both

10



analytical and numerical complexity was developed. Figure

3.1 is a graphical representation of the cylindrical

coordinate system that was used for the static model. The

system was modified slightly for the dynamic model.

z V

- K

0 R

ZII

Figure 3.1: Cylindrical Coordinate System for Static Model

Figure 3.2 depicts the balance of forces upon a segment

of the wire. Applying Newton's second law, the ordinary

differential equation describing the balance of forces on an

incremental section of the wire was written. This ordinary

differential equation is provided as equation (3.1). Note

that each term in equation (3.1) contains AS. AS was thus

canceled from the entire expression.
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AST

n

T W=F
n-1 g

T tension at upper gddpolnt
n

AS =grid segment length T =tenuion at lower gridpolnt
n-i

/LmaIjlnertlel force on wire segment VV-=win vector

F =total aerodynemlc force
W = F =welght of the wire segment

9

Figure 3.2: Summation of Forces Upon the Wire

d 1- S ý S 1 S n A A r - - ~ - ( 3 .1 )

is- AS AS AS dt AS

Next, each term of equation (3.1) was considered

individually, starting with the change in tension over the

length of the segment as shown in equation (3.2). In

equation (3.3), esn was defined as the unit vector tangent

to the wire at each gridpoint. Next, define ITnl-Tn and ('

as the derivative with respect to S. Substituting equation

(3.3) into equation (3.2) resulted in expression (3.4).

Applying the product rule to equation (3.4) resulted in

equation (3.5).

12



( T,- IdI e~n (3.2)dn dS

-- dSR dR dS (3.3)

~-- -- j[TfR'eR + TROqee + TfZ'K] (3.4)

(-i)-

e sn-• e R-.•-•ee +-•-•el:(3.3)

.(TnRO)e +(TnRO _•s-ee (3.5)

+(Tz')l e+( dSze.

Figure 3.3 is a sketch that illustrated the effects of

AO and its influence upon the unit tangent vectors eK, eR

and e*" Examining Figure 3.3, equation (3.6) was written.

Equation (3.6) was substituted into the equation for

(dT/dS)n, (3.5), resulting in (3.7). Equation (3.7) was

then simplified to obtain equation (3.8).
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,~e. =-A&(eR

eAe =Aee.

Figure 3.3: Effects of AB in Cylindrical Coordinates

(d e-= 0 a 1 ways

-Te Ole,(3.6)
dS-d -%= -O'• 36

=(T.) I e (TRIO) -7",+(0)'-e

dS nJ (rR)' (3.7)

-(TRO'Oý R+(TZ"Y K

(d n (3.8)

+ (TRO )'+ TR'O Te09 + (TZ I'),

In the next step, the grid structure depicted in Figure

3.4 was examined and used to write the central difference

14



approximation of equation (3.8). Two versions of the

approximation were eventually required as will be explained

at the end of this section. These are provided as equations

(3.9) and (3.10). Several of the first derivative with

respect to S terms were left in equation (3.10). The reason

for not expanding these particular derivatives in terms of

central difference approximations will be seen when the

equations are written in their final forms at the end of

this section.

Rn-,1 Rn n+1
o D -,-,0 I,0 -0 - ,,

R T T R
n-2 n--- n+1 n-,-2

Figure 3.4: Central Difference Gridpoint Scheme for Change in
Tension
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Tn -1 ý2 22-dSn- A S

T,.__(Rn.-R.) T_(R_ n-R.-
A S A S 2 JR 0 "-le2 RR +AAS 2  2AS

SRn-1+Rn)( en.-1n 20~ Rn+Rn-)(On-en-) (3.9)AS 2 2 AS
AST.+Tnj(RRV0o -o .I( _ _ _ _ --I zo2. zn-1 On+1- i

22AS 2AS

T i R' i- TnIR ZnZ-
-•n. 7 2 A - -• 2 AS

AS eK

dS AS

( ) - _

T IZR -T• ~
• ÷-I nJ+! n- n--

AS

Equations (3.9) and (3.10) were the central difference

approximations of the first term in equation (3.1).

Eventually, central difference approximations were

substituted for all of the terms of equation (3.1). The

three orthogonal components of this vector equation were

then solved as a coupled set.

16



Equations (3.9) and (3.10) included four unknowns (Rn,

On, Zn and TO) in three components(eR, eo, ez). A fourth

compatibility equation was required to complete the problem

statement. Compatibility was established in two separate

ways. In the first case, compatibility was established

using the assumption that the wire was essentially

inextensible with the result that the distance between each

gridpoint remained invariant. The equation in rectangul--

coordinates was initially stated as in (3.11).

A S2 =(XnXnl)2 +(y - y_1)2 +(ZnZnl)2 (3.11)

Equation (3.11) was converted to cylindrical coordinates

in equation (3.12). Expanding (3.12) and simplifying led to

(3.13). Solving (3.13) for Zn left (3.14) which was the

final form of the first compatibility relation.

AS 2 =(Rcc~ s6-Rn-,cosn-R 2 +(Rsinn-Rn-,sinen-12 (3.12)

SS2 2+ sl2 ssc s n-n ) + Zn-In1)2 ( 3.13 )

Z =Zn.1 ±,&aS2 -R'-R,_• 1 2 Rna._lco S((n-(),,, ( 3.14 )

The compatibility equation in (3.14) had the distinct

advantage that it required knowledge of only the previous

gridpoint as well as the R and 0 at the current gridpoint to

calculate Zn+*. It had the disadvantage that it was not

17



very accurate in the general case where the curvature of the

wire may account for a lessening of the direct length

between gridpoints. This relatiGn had utility for one time

calculations to obtain the first internal gridpoints. The

inaccuracies accrued in a single grid segment were small and

the need to start the computations at the boundary greatly

override their magnitude. The negative case of the ± term

in equation (3.14) was excluded since the final steady-state

solution was monotonically increasing in Z from the drogue

to the towplane.

The second formulation of the compatibility equation

made use of the definition of the unit tangent vector

provided in equation (3.3). The expression is rewritten in

(3.15) with the indices as required for this application.

Equation (3.16) is the central difference approximation of

(3.15). The central difference approximation in (3.16) was

second order accurate and more precise than equation (3.14)

but required the two previous gridpoint locations as a

start.

Rn. I +Rn• Z/ 1
n,-./

2 2R 2 (3.15)

R' +( nRfl.. + z f= 1
S2

Rn-I _ n- 1 R 2 ! +Rn I-e + Z1, _ - (3.16

2A•S4A S 2AS =1
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For the steady-state, no-wind solution, the radial and

vertical coordinates of each gridpoint were constant. * was

defined as the orbit rate of the airplane. The velocity at

gridpoint n was written as a vector cross product, in

equation (3.17). For the case of constant Rn and Zn,

equation (3.18) was written at each gridpoint. Finally, for

steady-state conditions where no wind was allowed, =

resulting in equation (3.19).

(3.17)

-= - (3.18)
V._ R,,~~

Ve (3.19)

The magnitude of the relative velocity at each

gridpoint, a term needed later in the derivation, was

expressed by equation (3.20).

Fr -_1 ý= ý 11(3.20)

The central difference approximation of the unit vector,

tangent to the wire at each gridpoint was also required

later in the derivation. Applying a second order accurate

central difference approximation to equation (3.3) resulted

in equation (3.21).
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Rl-Rn- + 2Az 62Asni-n-1 n (zZ.2+ (3.21)

It was desirable to resolve the Vreln vector into

components normal and axial to the wire at each control

point. This was done to facilitate the application of the

characteristic aerodynamic coefficients for a cylindrical

wire as outlined by Hoerner [Ref.10: pp.3.11-3.12,4.5].

Defining Vrelparn as the component of Vrein parallel to the

wire, equatioci (3.22) was written by noting that the

magnitude of Vrelparn was equal to the dot product of Vreln

and the wire unit tangent vector and it was coincident with

the unit tangent vector. The dot product was expanded using

(3.19) and (3.21) and then simplified to the form of (3.23).

Veparn=e Tn -e (3.22)

--Rn2  (3.23)
Vrelparn=(rein s 2-' nn+1 2AS

Defining Vrelpern as the component of Vrein perpendicular

to the flow, (3.24) was written by noting that Vrelpern was

the orthogonal component of Vreln remaining after Vrelpern

was developed. Equations (3.19), (3.21) and (3.23) were

substituted into (3.24) to derive (3.25) and (3.25) was

simplified to get (3.26).
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V, rPe=., in-(7,. • en (3.24)

Vreipern=RRn eoRn. -O-R(3-R.-5-

V Re[R~ ((n~ 1 On 1)(Rn~ 1 -Rn-1) eR +

Re 4AS 2  e

The magnitude of Vreloern, used in several of the later

relationships and shown in equation (3.27), was obtained

from (3.26).

2(( _ 2 _nJ 2 R 4(0,"+-0_6 )

IV=...,,q I =Roll R, . +n1 n-1 .& S4 -) n n-1
16AS 4  16AS 4  (3.27)

-- 2 -(O -,1 -n-2 I+? Rn2On~l -On-1) 2(Zn+-Zn-1) 2  I

4AS 2  16AS 4

Applying the definition of esn given in equation (3.21)

and noting that I en-- =1, it was possible to factor (3.28)

from each term and then apply the substitution for I enI to

obtain equation (3.29).

R2 (0 - 2

n , n1 n-1_ (3.28)
4 AS

2
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V I=R,_-1)2 
(3.29)

relpezn4 AS2

The Hoerner model defined a friction dominated

coefficient, Cf, which was a measure of the force component

along the direction of the relative velocity and was defined

using the relative velocity as provided above. In addition,

a second coefficient, CD, was defined. This term was

dominated by the significant separation drag associated with

the bluff shape of the cylinder-like wire. CD was a measure

of the aerodynamic force normal to the cylinder and in the

direction of the velocity component normal to the cylinder.

The force was defined in terms of the normal component of

velocity vice the full relative velocity. CD was a measure

of what would be called lift in the classic sense as well as

form and separation drag, while Cf was a measure of the skin

friction drag and was always oriented in the direction of

the relative flow. Both coefficients used the diameter of

the cylinder as the characteristic length, however, as

mentioned above, the Cf coefficient used the full relative

velocity to define the coefficient and the CD coefficient

used only that portion of the relative velocity normal to

the wire. A third coefficient will be introduced later,

which will account for the possibility of a sideforce

perpendicular to the wire and the steady-state eR, eR plane.
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Using both of these coefficients (CD and Cf), the total

aerodynamic force upon a segment of the wire was

characterized as in equation (3.30). Note that this is not

a magnitude but a true force vector. Substituting equations

(3.26) and (3.29) into (3.30) resulted in (3.31). Finally,

rearranging (3.31) provided equation (3.32).

D C (3.30)
1 nIVrein I V1 jm D C'1

A2 2

Fan_ ti PmCD Sn)2 i-n(en'l -en-') -Sn~nl -en-1)(Rn' -Sn-i)--

AS 2 R1.4AS2 (Rn)4AS 2  4eSR
2ASD )2AS

2 n'I- t()2-e

4 4 AS2 4A2

(3.31)

Ff= 1 heDCR 6eco 1- in e n (). The rm ning terAS 2 ~~n 4 AS2  4 AS 2

232

+2~ P .LR O2[C 1+C A- 2  R,(en- 1O ...)n2 V
2~Lnr 4AS 4A

(3.32)

Equation (3.32) was the finite difference approximation

of the second term in equation (3.1). The remaining terms

were derivable in a straight forward manner. The right hand
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side of equation (3.1) was the inertial term of the wire

segment. For the static case, the inertial force was due

solely to the centrifugal force. Further, the force was

constant at each wire segment and dependent solely upon the

tangential component of velocity, radial position and mass.

Defining p--mass per unit length and noting that in steady-

state the tangential component of velocity at each gridpoint

was equal to the magnitude of Vreln as in equation (3.20)

allowed equation (3.33) to be stated.

Fln =_ =-:p62R,-Fe (3.33)
AS Rn

The final term in equation (3.1) was the contribution

due to the weight of the wire segment. The equation was

again in terms of per unit length and g was defined as the

acceleration due to gravity resulting in equation (3.34).

-g e (3.34)

All of the components of equation (3.1) were thus

formulated. It was then possible to substitute these

components into (3.1), to derive a single vector equation.

This equation consisted of three orthogonal vector

components which could be solved simultaneously. Performing

the substitution and using (3.9) vice (3.10) allowed

equations (3.35) to (3.37) to be immediately written. The
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compatibility relation, equation (3.17), was rewritten in

(3.38) for convenience.

T, _I(R~.. -R,,) - Tol(.R,, ý 1+7 j 2

2 ~ ~~ 2A S____ ___

A 4 k2)L SA2 4)

(3.35)

7ý- _I(Rn- 1 +Rn)(On. 1 -Os) _I T (Rn+Rn-1)(O)n-O)n 1)
2 2

2A S2

+(Tý I + 7i )(R,ý.i R,,i)(O)n+l~ 1

2 2 -+
A,&S2

1 fCI )2R R 0 2R'-6n1)

2 flAI4A & S 4AS 2 S2

(3.37)

2 2~ n+izi)2(3)
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Using (3.35) to (3.37) with the AS compatibility

equation in the form of equation (3.14) for the first

internal gridpoint and (3.38) for all subsequent gridpoints,

there existed four finite difference equations in the four

unknowns Rn, On, Zn and Tn. The task was then to devise a

numerical scheme to solve these coupled finite difference

equations along the entire wire. The logical choice was to

iteratively solve for Rn+l, 0 n+l, Tn+½ and Zn+1 using the

four equations and knowledge of the location and tensions of

the previous two gridpoints. Examination of the three

equations above, as well as (3.38), indicated that there

were numerous formulations of the equations that would allow

the Tn+½, Rn+I, On+1 and Zn+1 to be explicitly or implicitly

broken out from the equations. Gerald and Wheatley

explained that a sufficient condition for convergence of

coupled equations using the iterative technique was that the

sum of the partial derivatives with respect to each variable

had to be less than one for each equation [Ref ii:pp.142-

143]. Note that this was a sufficient and not a necessary

condition, which was fortuitous since there were no

formulations found which fit this requirement. This led to

a trial and error search through the various formulations.

Upon examining (3.35) through (3.37) and (3.38), an obvious

candidate was to solve (3.35) for Rn+1, (3.36) for Tn+½,

(3.37) for Zn+ 1 and (3.38) for 8 n+1 as in equations (3.39) to

(3.42). This set of equations had the obvious advantage of
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being entirely explicit. Examination of this equation set

is representative of the problems with convergence

instability encountered in the other combinations which were

attempted. The difficulty with this set lies in equation

(3.40). Note that both the terms in the denominator of the

multiplicative factor were small and when their sum was

inverted, the multiplicative factor became very large, on

the order of around 500 for a typical scenario at the bottom

of the wire grid. This meant that small errors in the

variables within the bracketed sections were greatly

amplified. This amplification drove the set of equations

unstable for most scenarios.

,)S2 2 4 AS 2  4,AS 2

2 S2 2 2 21 S 221
~~+ J~o -o R4 __eRAS2  1 2 )4 2A S

~~-pDCLRn)2 R 2(022 1 2 1)2 R4082 , 1 -,+,--n1)R 2

2 4AS 2  4AS 2

(3.39)
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T' 2AS2

n-2 (R.+1 +R.,)(en 1 -en) + (R,,+ 1 - Rn-1)(en-1 Je-2. - 2s_

[4

2AS 2  8AS 2

P-.,ARoo )2 kc ÷cý 1- -n S2 12 (n-) jS4AS 4AS 2

(3.40)

z 'I2,1 T - R_ 2

-1-~+lPnDCJROnR 71-
AS 2 4 4AS 2

T Zn +T i(Zn-on

,&S2
+"1PnDCýRne6 )R 1- Rn On+1-n--)4S (O~- n-)-:AS +Vg]

2r 4AS2  4AS2

(3.41)

on.:On_,l + -' I4 A S2 -(Rn,, -R_ 1 )2 -(Zr. 1 -Zn_1 )2  (3.42)
Rn

The problem of iterative convergence was solved by

changing the set of convergence variables. Equations (3.35)

through (3.37) were rewritten using equation (3.10) vice

(3.9) in equations (3.43) through (3.45). Then a new set

of convergence variables were defined as in equation (3.46)

where the n+½ index was used for illustration.
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(7ý.ijR._ 1 T,-.lR')(T 2 +~g T ~2
2 n -21 2 n 2J)R4 "n~l 2An-

CI A- )2 1- S )=-.0

24 AS2  4~ AS2

(3.43)

T,(Rn., +Rn )o -T ~I Rn+Rn-1 )of

A&S2

_I+T-_+R~l-R-)e~ 4e-1

~PAR,6 -1 F+ 4 AS 2  4 AS 2

(3.44)

2p~C(I~)R1 4AS 2  4~ 4AS 2  )
(3.45)

A 1=Tý_R.=,- R,. ASR
n2- -2 2I (

B1 , =Tl(R 12*1+R12n, T R12.1 +R en-*1Ol1~ (3.46)-T 1 e/ =Tn.~22j 2 X A S

22 2'
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Equations (3.47) through (3.49) were developed by

substituting (3.46) into (3.47) through (3.49).

A + eIR n~1 l-(1 2
÷=A" 2 S

2 2AS

-p,2DC4R6 )1 n'. - n-1- ) n -l)(Rn-- n-R- 1 ) )1-6 2 Rn] AS
2 4AS 2 Ic )4AS 2  )

(3.47)

B7ýi _Ii +T* T- 1)(Rni -Rn-)(Bnl On1 )

2 2 8AS 2

)2~ ~ e C Rn(8n1°.nj1 -en_1)•
-PARn)[CF+ 1- ARS2S2 ) AS4 4S

(3.48)

C+I =C, 1+n+- n--c_

2 2

-) R 4AS 2 ) ( -@n-1)(Zn'1-Zn-14AS2

(3.49)

Equations (3.47) through (3.49) were the iterative

equations in their implemented form. Equation (3.50)

illustrated the relationship of the variables defined in

(3.46) to the unit tangent vector and allowed a simple

solution for Tn+1 given An+½, Bn+½ and Cn+½ in equation

(3.51). A central difference approximation of the primed

derivatives with respect to S listed in equation (3.46)
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allowed for the iterative equation variables to be used to

solve for Rn+11, On+l and Zn+1 in equations (3.52) through

(3.54) which were then used along with Tn+½ in the next

iteration.

A 2 +B2 1 +2 =

-2.1 2 -2 -2 -2 (3.50)

TR . Aig/ 1 2+,2 .1+c' 12=, (3.51)
n 22 2 -

A _AS
Rn÷I=Rn+ 2 (3.52)

2

B__1 2AS

B. 2-

8n- = 6n + (3.53)

2

Z.+1 =Zn+ 2 (3.54)
2

Equations (3.47) through (3.49), (3.52) through (3.54)

and (3.51) are solved iteratively at each internal

gridpoint. As mentioned above, and as seen in the
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equations, a solution at the two previous gridpoints are

required in order to solve the current gridpoint. This is

only a problem when first starting the algorithm at the

bottom of the wire. The first internal gridpoint was solved

by defining the boundary condition of this coupled set of

equations in terms of moment and force equilibrium at the

drogue attachment point.

B. FORMULATION OF THE DROGUE EQUATIONS

Figure 3.5 is a depiction of the forces and moments upon

the drogue in the vertical plane. Using this diagram, the

moments around the nose of the drogue were summed. The nose

was chosen as a reference point since it allowed elimination

of the tension term and enabled the resulting equation to be

solved without knowledge of the next gridpoint. The moment

summation is provided in equation (3.553 where LD and DD

were the lift and drag of the drogue, MACD was the moment

around the aerodynamic center, aD was the angle of attack of

the drogue, WD was the drogue weight and cg and ac were the

center of gravity and aerodynamic center of the drogue

respectively.

E M,=-LD ac cos(aD)+WD cg cos(a)+MACD=O (3.55)

It was assumed that the drogue coefficient of drag, CDD,

and moment coefficient, CKACD, were approximately constant

and that the drogue lift curve slope, CLAD, conformed to the
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MC W DVreI

Figure 3.5: Forces and Moments Upon the Drogue in Vertical
Plane

model in equation (3.56). Expanding the components of

equation (3.55) resulted in (3.57) to (3.59), where n

equaled the drogue gridpoint number, SD was the drogue

maximum cross sectional area and LEND was the length of the

drogue as seen in Figure 3.5. Substituting these relations

into equation (3.55) resulted in equation (3.61), a solvable

transcendental relation in aD.

CZ.=0 a 0 2

3(3.56)
CL. Z =CL.r ¾ D=}
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qn= -1 P V2.1= _Ip,2 Rn 0)2 (3.57)

2 2

LD=CLaDa~qnSD (3.58)

DD:CDDaDqnSD (3.59)

MACO=CACDq ASLEND (3.60)

-CIODaqnSD ac COSaD-CD~qnSD ac sinaD+WD cg cosaD+CKAqflSD LEND=O

(3.61)

A very similar technique was applied in the horizontal

plane to determine the drogue sideslip angle, PD. Figure

3.6 is a depiction of the forces and moments upon the drogue

in the horizontal plane. The summation of forces in the

horizontal plane about the nose of the drogue was written in

equation (3.62) by examining Figure 3.6 and noting that FID

was the centrifugal force upon the drogue mass and that ASFD

was the aerodynamic side force due to PD' Making similar

substitutions as were made in the summation of forces in the

vertical plane and again noting that n was the drogue

gridpoint number. resulted in equation (3.63). ASFD and FID

were required later, where ASFD was as defined in equation

(3.64) and FID as in (3.65).
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MC F, D cgVreI

Figure 3.6: Forces and Moments Upon the Drogue in the

Horizontal Plane

SMLE=FD-ASFD÷MACD (3.62)

'ýD 6 2D RCg COSPD-CIlIDqflSD ac COS PD+CKACvqflSILENDO0
g

(3.63)

ASFD=CL.DPoqnSt (3.64)
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FZD WD2R, (3.65)

g

The horizontal components of the forces upon the drogue

in their vector form were rewritten in equation (3.66) by

re-examining Figure 3.6 and remembering that the drogue was

in a steady-state orbit. For static force equilibrium, the

tension magnitude at the drogue had to equal the magnitude

of the vector sum of all of the forces listed in (3.66).

The tension at gridpoint 1 was thus as written in equation

(3.67). Only the tension magnitude as in equation (3.68)

was required.

LD-*LfeR.

WD---W WD•K (3.66)

ASFD--ASFD-eR

S~(3.67)

T, -='(FID-ASFLJ eR-DDeO+(LD- WD) eK (.7

T, =V(FxD-ASFR) I +DD2 +(LD- WD) 2  (3 .68)

It was assumed that the forces upon the first wire

segment were small compared to the forces upon the drogue.

Later analysis showed that the forces upon the first segment

of the wire were at least an order of magnitude less than

those acting upon the drogue. It was thus said that T1 =T 2.
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A further requirement of static equilibrium was that the T1

tension had to be directed in the reciprocal direction to

the resultant vector at the drogue. This in turn defined

the unit tangent vector of the first segment of the wire and

together with the assumption that the wire forces on the

first segment were small relative to the drogue forces and

the two gridpoint AS constraint of equation (3.14), the

gridpoint 2 positions were written in equation (3.69). At

this point, given a guess at the location of the drogue, the

location of the second gridpoint, as well as the tension at

both points were determined.

R2 -R - FrD ASFD) AS

62=6 +RA2 (3.69)

Z2 =Z1 +/AS 2 -n- 2R2 +2RR, 1COS(6n-6n-1 )

Atmospheric density was required for each gridpoint.

The computer code, to be described later, permits the use of

either standard atmosphere or radiosonde data in the form of

input data files indexed at 1,000 feet intervals. The Zn

value at each point was rounded up to the next higher 1,000

feet interval and the density was assigned from the

radiosonde data table. The standard atmosphere model used

is presented in equation (3.70).
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T,,=a z,,-[-., -

p 1 =0.0023769 lbf sec'
f 0ft' (3.70)

a=-0.0035662 
O
ft

ft ibf
R=53 f lbr

T1 =518.69 OR

The input conditions for the towplane will be bank angle

(degrees) and airspeed (equivalent, knots) when determining

aircraft steady-state orbit radius (feet) and rate

(rad/sec). The derivation of these quantities was begun by

converting aircraft airspeed from knots to ft/sec and then

converting from equivalent airspeed, VEAS, to true airspeed,

Vtrue as in equation (3.71), where PSL was the atmospheric

density at sea level. Next, the aircraft bank angle, 4, was

converted from degrees to radians, the aircraft

acceleration, nac, was calculated, and all of this was used

to calculate the towplane orbit radius, Rn and the orbit

rate, 6 in equation (3.72).

v __ f_ _=v~ar 6076. 1
sec 3600

VCrue= VA - VS (3.71)

8SL
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n~= I~u12
R true

g a''n - (3.72)

Vtue

Rn=n

C. THE SHOOTING PROBLEM

Finally, all the components were available that were

necessary to solve the steady-state wire position and

tension distribution given a guess at the drogue location.

The last task was to develop the iterative scheme needed to

find the correct drogue location. Shooting the boundary

condition was the technique chosen. An initial estimate was

made of the correct drogue location. The algorithm

described above was then used to propagate a solution to the

top of the wire where the position of the top gridpoint was

compared to the known location of the towplane (radial

position and the vertical position). A simple approach to

the update was used. The update to the bottom position was

based upon a fraction of the miss distance at the top. The

fraction used had the appearance of an update "gain". Z1

and R1 were updated each time the boundary condition was
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shot. The update equations are presented in (3.86) with the

gains represented as g, and g2 and where z1new and Rlnew were

the updated drogue position estimates, Ziold and Riold were

the last drogue position estimates, ALTTP was the towplane

altitude, RADTP was the towplane radial position during the

steady-state orbit and Ztopnew and Rtopnew were the latest

position coordinates of the top gridpoint position as

calculated on the last boundary condition shot.

Zinew= Zi old+ g1(AL TTP- Ztopne,)

Ranew= Rol d+ g 2(RADTP-RtOpne,)

(3.73)

The process of shooting the boundary condition became

more sensitive as the bottom point approached the origin.

For this reason, tailored, or adaptive, gains were used in

the update equations which were made as large as possible to

facilitate quick convergence. Care had to be taken,

however, to ensure that the gains did not cause the updates

to be so large that they never converged. The gains in the

more sensitive radial positions, where the drogue was close

to the origin, were thus necessarily small, while those

farther out were larger. The best gains were developed

through experimentation with the algorithm. Note that

occasionally, for towplane angles of bank above forty

degrees and below five degrees and in the vicinity of the

jump phenomenon (to be explained later), the gains, as

currently implemented, may fail to converge. The program
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then suggests corrections to be made to the gain values.

Very small gain values would ensure convergence in all

relatable conditions but would unnecessarily slow the

convergence process for the majority of cases. The tradeoff

between the need to occasionally change the gains and the

run time saved for the majority of cases was deemed

appropriate.

The steady-state model, with the 3X7 wire, the standard

TACAMO drogue, the textbook derived aerodynamic coefficients

[Ref. 10:pp. 3-18,4-5] and making the sideforce coefficient

(to be explained in Section E of this chapter) an operator

input, is provided in Appendix A. The details of

implementation and of the numerical techniques are explained

within the program code. A number of outputs are available

from the program. As examples, the angle of attack of the

wire at each grid segment, drogue and aircraft flight

parameters, as well as position and tension data for each

gridpoint are available. The inputs and outputs are fully

documented within the code. The outputs are conditioned to

facilitate input into the dynamic model program as well as

various plotting routines.

The static model algorithm may be summarized as follows:

* The process begins by guessing at the drogue location.

* Equations (3.61) and (3.63) are then solved iteratively
for aD and PD'

* (3.58) and (3.59) provide Lp and DD and (3.68) provides
Tl+½. Note that Ti=T2=T,+. in equation (3.68) and all
subsequent tension calculations are shifted forward ½
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of an index.

* (3.69) defines R2 , 02 and Z2 and T2 +½=Tj+½.

* (3.47) through (3.49) and (3.51) to (3.54) are solved
iteratively for the Rn, On, Zn and Tn+h at each
subsequent gridpoint.

* When the upper gridpoint, N, is reached, its RN and ZN
positions are compared to the position of the towplane
and a fraction of the difference between the two is
used to update the drogue position for the next shot to
the upper boundary condition.

* The position and tension values are used to derive
several off-line quantities of interest described
within the program.

Convergence is quite fast for a typical run, taking 10 to 45

seconds on a 486 DX 33 MHZ microcomputer.

D. VALIDATION, VERIFICATION AND ANALYSIS

The code was validated by several techniques. First,

the program was run using the aerodynamic coefficients and

physical parameters used to generate the plots in the 1969

NADC report. [Ref. 7] These coefficients and parameters are

listed below in (3.74).

WIRE: CD=l.0 3  Ct=0.022 D=0.21 inches

L g=0. 1095 1f---

DROGUE: CD=O.6 CLD=2 .0 ac=2.31 feet cg=1.34 feet
WD=100.0 lbf SD=3 . 6 8 feet 2

(3.74)

The benchmark flight profile of 200 KTAS and 29,000 feet

and a wire length of 33,800 feet used for the NADC report

was run at various bank angles/turn radii. In keeping with

the assumptions of the steady-state model, a constant bank
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angle, circular orbit was assumed. Figures 3.7 and 3.8 are

plots of the NADC data with the NPS model's towplane/drogue

separation and towpoint tension data overlaid [Ref. 7:p.

23]. The plots showed extremely close correlation. Figure

3.9 is a plot of the raaial coordinate versus the location

along the wire's length as calculated using the NADC and the

NPS models starting from the same drogue locations. Again,

the models were very close. The program was then modified

to allow for the cases of a massless wire and drogue and for

zero aerodynamic coefficients on the wire and drogue. When

the simulation was run at a very low towplane angle of bank,

the massless wire and drogue trailed straight back from the

towplane. When simulated with zeroed aerodynamic

coefficients, the wire fell straight down from the aircraft.

Plots pf these simulations are not provided since they

merely show straight lines and add nothing to the

understanding of the outcome. Finally, the static model, as

a subset of the dynamic model, was compared to actual TACAMO

flight test data. The outcome of this comparison will be

discussed following the development of the dynamic model.
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COMPARISON OF NADC AND NPS VERTICAL SEPARATION CALCULATIONS
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281- +

26F

24 -
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2- 0a g

18 EC-130 TACAIO System

towplane airepead-200 KTAS
towplane altitude- 29,000 feet

16- constant towplane bank anqle

and turn 

jadius
wire length-33,800 feet

12 
6

8 9 to 11 12 13 14 15 16

Towpiane Turn Radiu (X 1000 ft)

Figure 3.7: Comparison of NADC and NPS Vertical Separation
Calculations
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COMPARISON OF NADC AND NPS TENSION CALCULATIONS
3200
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2800-

S2600
C o NPS SIMULA7ION

+ NADC SIMUrLAT7ON

S2400°

EC-130 TACAIO System
towplane airspeed-200 KTAS
towplane altitude- 29,000 feet
constant towplane bank anqle

and turn radius

20M wire length-33,800 feet

89 10 11 1 2 13 14 Is16

Towplane Turn Radiu (X 1000 ft)

Figure 3.8: Comparison of NADC and NPS Towpoint Tension

Calculations
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COMPARISON OF NADC AND NPS RADIAL COORDINATE CALCULATIONS

12000

-' TOWI.JE
A END/

u+ NADC SIMULATION

I - NPS SIMULATION6 6000

4000 EC-130 TACAIO Systeu

OGU towplane airspeed-200 KTASS/ •,•.towplane altitude- 29,000 feet
DROGUE constant towplane bank angle

END and turn radius

200 0 . . , 
w ire leng th- 33 ,800 fee t

0 0.5 1 I.5 3 3.5

length along wire (feet) X104

Figure 3.9: Comparison of NADC and NPS Radial Coordinate

Calculations

Figures 3.10 to 3.13 are plots of Rn, On' Zn and Tn

versus the distance along the wire for a representative run

of the static model. A plot of the true angle of attack

along the wire at the same conditions is provided for

information in Figure 3.14. The origin of the horizontal

axis represents the drogue position. The 3X7 wire with a

zero sideforce coefficient was used with the standard TACAMO

drogue and the towplane was at 18,325 feet altitude, 156

KEAS and a bank angle of 34 degrees. The 3X7 wire and the

standard drogue parameters are provided in (3.75). Note
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that the slopes of the Rn, On, Zn and Tn plots were fairly

constant from one gridpoint to the next and thus the second

and higher derivatives were small. As seen in equaticns

(3.8), (3.9), (3.24) and (3.25), the derivatives in this

chapter were approximated using a central difference

technique. Gerald and Wheatley show that for the first

derivative approximations used in this chapter, the

truncation error was as shown in equation (3.76). [Ref.

ll:p. 284) The resulting errors for each of the central

difference approximations were calculated at each gridpoint

for the conditions of Figures 3.10 through 3.14 and then

averaged over each gridpoint. The resulting average

truncation errors as a percentage of the calculated

derivatives are shown in equation (3.77).

WIRE: CD=1.0 2 Ct=0.022 D=0.1582 inches
lbf

pg=O. 062 ft
DROGUE: CDD=0. 4 1 CLD= 2 .0 ac=1.95 feet cg=1.15 feet

WD=81. 9 5 lbj S,=3.14 feet 2

(3.75)

I AS2 -;AS 4 v

fo truncation error=sF, + f 0 +... (3.76)
6 120
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RADIAL COORDINATE OF POSITION OF WIRE
7000

TOWPLANE

&1000 
E N D

/
5000

4000 7 /

//

/

3000 T-6A TCA System
3X7 Wire
"tovplane airspeed-156 KEAS
towplane altitude-18,325 feet
constant towplane bank angle-34'
constant towplans turn radius-6469 feet

2000 // wire length-20,290 feet

DRUGUE 
x

END

00.5 11.5 2 15
ditance alog wire (feet X10,

Figure s 10. Radial Coordinate of Position of Wire
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THETA COORDINATE OF POSMION OF WVIRE

4.5 rOWPLANE
END

4

3.5

3

2-5
_ //

/"2! /

1.5 - 8-6A TACAXO System
3X7 Wire
toaiplane airspeed-156 KZAS
towplane altitude-lO,325 feet

DROGUE / constant towplane bank angle-34*
END constant towplane turn radiua-6469 feet
0.5 w•vire length?2C,290 feet

0.5 //
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ditnce along v¶TC (feet) d

Figure 3.11: 8 Coordinate of Position of Wire
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x10' VERTICAL COORDINATE OF POSITION OF WIRE
2

1.8PLANE
END

1.6

1.4

A

N
1.2

11-EA TACA40 System
3X7 Wire
towplane airspeed-156 KEAS
towplane altitude-18,325 feet
constant towplane bank anqle-34*
constant torplane turn radius-6469 feet
wire lenqth-20,290 feet

DROGUE
END

0.6
0 0.5 1 1.5 2 2.5

distance along wire (feet) 01

Figure 3.12: Vertical Coordinate of Position of Wire
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TENSION ALONG WIRE
900

TO7WPLANE
END

700-

600-

5300

1400 7
v /

S• ~/i
//

/

/0/ -GA TACAIMO System

/. 3X7 Wire

// towplane airspeed-156 UAS
.00towplane altitude-1,325 feet

constant towplane bank angle-34*
constant towplane turn radiuI-6469 feet

/ viwe length-20,290 feet
100 0RO~tUF

END

0
0 0.5 1 1.522.

distance along v¶re (feet) 11M

Figure 3.13: Tension Along Wire
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TRUE ANGLE OF ATTACK OF WIRE

DROGUEEND

-6A TACAMO Syst.
3X7 Wire
tovplane airspeed-156 KZAS

70 towplane altitude-18,325 feet
constant towplane bank angl-34
constant touplan. turn radiua-6469 feet
wire length-20,290 feet

60-

50

40 -

30-

20 TOWPL.ANE

END

0 0.5 1 1.5 25

distance along wire (&-ct) UDO'

Figure 3.14: True Angle of Attack of the Wire

The independence of the static model from the choice of

the grid was established by running the model using 200 grid

segments and again using 400 segments and then comparing the

results. The Rn, On, Zn and Tn values were compared and

found to be virtually identical. Figure 3.15 is a sample of

the results where the 200 and 400 grid segment R coordinate

values are plotted as a function of distance along the wire.

The plots overlay, differing only by a portion of the upper

boundary condition convergence criterion. The static model

was thus grid independent as desired.
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COMPARISON OF RADIAL LOCATION OF WIRE FOR DIFFERENT GRIDS

"TO'W P0LANE
END

- 200 GRIDPOINTS

900D -

- 400 GRIDPOINTS

70W -

5000

4000
EC-130 TACPJ4O System

towplafl@ airspood-200 KTAS
3000 towplans altitude- 29,000 feet

constant towplane bank angle
DROGUE and turn radius

,0W END wire lenqth-33,800 feet

0 0.5 1 1.5 2 25 3 3.5

length along wire (feet) X10,

Figure 3.15: Comparison of Radial Location of Wire for
Different Grids

The derivation of the static model assumed that the

shear forces upon the wire were negligible when compared to

the tension forces. The shear forces were dominated by the

perpendicular component of the aerodynamic force. Figure

3.14 showed that the angle of attack was greatest at the

bottom of the wire near the drogue and Figure 3.13 showed

that the tension was least at the drogue gridpoint, leading

to the largest ratio of shear forces to tension. The ratio

of the shear forces to tension at the drogue were calculated

to be less than 6% for the conditions of Figure 3.13. This
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value decreased drastically along the wire as the angle of

attack decreased to half and the tension increased to over

ten times the value at the drogue.

Figure 3.16 is a plot of the verticality versus the

towplane angle of bank for the 3X7 wire with a zero

sideforce coefficient, standard drogue and flight conditions

of 18,325 feet altitude, 156 KEAS and a wire length of

20,290 feet. The towplane flight path varied from level

flight to a circular radius of 3100 feet at 50 degrees angle

of bank. This plot was interesting in that it highlighted

the "jump" phenomenon where, in a certain range of angles of

bank, there were drastic changes in verticality and even

multiple values of verticality. In Figure 3.16, the

verticality changed over 20% between multiple solutions.

The dashed-line fairing denotes a verticality solution that

could not be obtained due to an apparent local solution

instability. Analysis of the balance between the weight of

each wire segment and the aerodynamic force and the tension,

provided a physical explanation for this phenomenon and a

comparison of the high and low verticality cases provided

much support for the following hypothesis.

The analysis of the jump phenomenon began by remembering

the definition of the aerodynamic coefficients for the wire.

The model indicated that the classical lift for the wire was

essentially zero whenever the wire was oriented vertically

and, for the steady-state condition, whenever the wire was

55



VERCALITY VERSUS ANGLE OF BANK

90,
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Figure 3.16: Verticality Versus Angle of Bank

oriented in the e., ee plane. The lift was, in general,

finite for orientations between these two extremes. As a

two-dimensional analogy, where the wire was oriented in the

ee, ez plane and was in a steady-state orbit, the lift

varied from zero at a zero true angle of attack, grew to a

maximum as the true angle of attack was increased and then

decreased again to zero as the true angle of attack

approached 90 degrees. Concurrently, as the wire varied

from 0 degrees to 90 degrees true angle of attack under

steady-state assumptions, the orientation of the wire with

the vertical ez vector changed approximately from
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perpendicular to tangential. That is, the ez component of

the unit tangent vector changed from a magnitude of

approximately ez=0 to ez=l. As this occurred, the tension

vector, which was aligned with the unit tangent vector,

varied from an orientation which was approximately

orthogonal to an orientation that was parallel to the weight

vector. Noting in Figure 3.13 that the tension was

typically monotonically increasing from the drogue to the

towplane, the change in tension over the grid segment was

always positive, and thus any positive, ez component of the

unit tangent vector resulted in the change in tension

supporting the weight of the wire segment. Figure 3.14

showed that the angle of attack was also positive along the

wire and so the lift which was produced also aided in

balancing the weight term. Thus, the weight term was

balanced by the vertical component of the tension change

over each grid segment which varied from approximately zero

to a maximum and by the lift of the grid segment which

varied from approximately zero, through some range of values

and then back to zero. Knowing that the wire could produce

the same amount of lift at more than one angle of attack, it

seemed not only possible, but likely, that a range of flight

conditions existed where at least two orientations of the

wire resulted in a balancing of the weight term. One

orientation required a high inclination on the wire where

the lift was small while the vertical component of the
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tension provided much of the vertical force necessary to

balance the weight and another orientation required a lower

inclination where the lift was higher and the vertical

component of the change in tension was small. Note also

that as the lift increased, the tangential component of the

lift tended to decrease the change in tension over the grid

segment due to the segment weight. It thus also seemed

likely that the low verticality case would have a lower

towpoint tension than the high verticality case.

Figures 3.17 through 3.21 are plots of Rn, On, Zn, Tn

and an for the same configuration and flight conditions used

to develop Figure 3.16. The plots were for bank angles of

10 degrees, 20 degrees, 40 degrees, 50 degrees and for two

multiple solutions at a bank angle of 35 degrees. Figure

3.22 is a plot of the towpoint tension versus the bank angle

for the same conditions. Figure 3.21 provided graphic

support for the previous explanation of the jump phenomenon.

The angle of attack in the low verticality case was small

and reasonably constant along the wire length, but once in

the high verticality region, the angle of attack

dramatically increased, particularly in the lower part of

the wire. The change in tension was thus contributing much

more in the lower part of the wire to the support of the

weight vector in the high verticality case. Figure 3.19

showed that the slope of the wire in the ez coordinate

direction was decidedly higher in the bottom half of the
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wire in the higher verticality multiple solution than the

low verticality multiple solution. Something dramatic

happened in the lower half of the wire which caused this.

The answer came from Figure 3.17. As can be seen, the

radial coordinate of the wire in the low verticality case

was reasonably constant and approached the towplane

coordinate all along the wire length. This meant that each

gridpoint's dynamic pressure was high, since in the steady-

state condition it was proportional to R.2 and thus the

magnitudes of the aerodynamic forces were high. The wire

was then able to generate the lift forces necessary to

counter the weight term without the use of the vertical

component of the change in tension available in the high

verticality case. The opposite was true in the high

verticality case where in the lower portions of the wire,

the radial coordinate became very small, the dynamic

pressure reduced proportional to Rn2 and the lift generating

capability of the wire decreased dramatically. The wire had

to be at the high verticality solution to allow the change

in tension to counter the weight because the aerodynamic

forces achievable with the dynamic pressure available were

not large enough. Furthermore, as long as the radial

position was close to the center of the orbit, the dynamic

pressure was so small that the wire could not produce enough

force to move itself out of the low radial/high verticality

position. This was critical since it indicated that control
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of the radial position was crucial to the prevention of a

transition from the high to the low verticality solutions.

XdO RADIAL COORDINATE OF POSION OF WIRE
2.5 1

to

B-6A TACAMO System
3X7 Wire
towplane airspeed-156 KEAS
towplane altitude-18,325 feet
constant towplane bank angle as shown
wire length-20,290 feet

STOWPLANE
END

35 . -

60o 0.5 1 1.5 2 i5S

distance along wire (feet) -aO'

Figure 3.17: Radial Coordinate of Position of Wire for
Various Bank Angles
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THETA COORDINATE OF POSION OF WIRE

6 Z-6A TACAIO System 50

317 Wire Z
towplane airspeed-1S6 [ZAS
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Figure 3.18: 0 Coordinate of Position of Wire for Various
Bank Angles

61



X10, VERTICAL COORDINATE OF POSITION OF WIRE
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Figure 3.19." Vertical Coordinate of Position of Wire for
Various Bank Angles
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TENSION ALONG WIRE
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Figure 3.20: Tension Along Wire for Various Bank Angles
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TRUE ANGLE OF ATTACK OF WIRE
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Figure 3.21: The a Along the Wire for Various Bank Angles
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TOWPOINT TENSION VERSUS ANGLE OF BANK
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Figure 3.22: Towpoint Tension Versus Angle of Bank
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As further support of the explanation of the jump

phenomenon, decreasing th& wire's drag coefficienL and/or

increasing the wire's density a sufficient amount would

result in the disappearance of the jump phenomenon. Figure

3.23 is a repeat of the verticality variation with towplane

bank angle (Figure 3.16) but this time modified to include

conditions of wire drag, CD=0. 2 and for a wire mass density

of p=0. 5 . Note that for all reasonable bank angles, the

jump phenomenon and multiple solutions were gone. The

radial positions of the bottom segments of the wire were

thus crucial to the maintenance of the wire in the high

verticality geometry and the jump phenomenon existed because

of the interplay between the aerodynamic lift and the

vertical component of the tension as they balanced the

weight of the wire. As a final note, Figure 3.22 showed a

sharp increase in tension as the wire transitioned from the

low verticality to the high verticality solution as

hypothesized earlier in the discussion.

E. SIDEFORCE MODEL

When trailing the 3X7 wire in straight and level flight

and looking back from the aircraft at the wire, the wire

distinctly trails off to the right. As mentioned earlier,

the 3X7 wire is made of three sets of seven wires in a

copper matrix. The three sets are twisted at a pitch of

1.87 inches. The twisting causes three spiraling grooves in
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VERTICATY VERSUS ANGLE OF BANK FOR VARIOUS CONFIGURATIONS
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Figure 3.23: Verticality Versus Angle of Bank for Various

Wire Configurations

the wire surface. It was hypothesized that the grooves

entrain the flow and cause it to swirl around the wire

surface. A cross flow then produces a sideforce due to

asymmetric vortex shedding. Since axial flow is required

for the swirl and normal flow to generate the side force,

the effect is not exhibited at zero and ninety degrees of

angle of attack and is a maximum at some value in between.

(Ref. 12) As an approximation, a coefficient of side force,

Cfside, was proposed which varied sinusoidally from zero at

an angle of attack of zero to the maximum value at 45
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degrees and again zero by ninety degrees of angle of attack.

Fside was defined as the force due to this sideforce effect

and an was defined as the true angle of attack of the wire

segment. The relation for an was most easily derived by

looking at the definition of the dot product between the

relative velocity and the unit tangent vector at the given

gridpoint. This was done in equation (3.78). The central

difference approximation of the definition of the unit

tangent vector at gridpoint n is repeated in (3.79). Note

that this vector was already normalized. A normalized

version of the relative velocity was also required and is

provided in equation (3.80). This expression was very

simple due to the steady-state condition. Substituting the

above two expressions into the dot product resulted in

(3.81) and since both the relations substituted above were

already normalized, equation (3.82) was written.

enesn=- -•-Iein He9s I- cosa (3.78)

se2n 2AS ) 0-2AS z S K6 (3.2)

__.,__ (Rne . (3.80)
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,e4n'esn= 20-) (3.81)

Vrelin l= z (3.82)

IVr.inI

Equation (3.78) was solved for a, the central difference

approximation in (3.81) was substituted into the left hand

side of (3.78) and (3.82) substituted into (3.78) to obtain

(3.83). Using with the an value and the definition of

Cfside, an expression for the change in sideforce over an

increment of wire was written as in equation (3.83) where AS

was canceled from both sides. Substituting for an from

equation (3.83) resulted in equation (3.85). Equation

(3.85) provided a radial force component which was pointed

inward toward the center of the orbit for a positive

coefficient and was in the same form as the components of

the forces added together in equation (3.1). Since (3.85)

was in terms of the radial component alone, it was added

directly to equation (3.35), the central difference

approximation of the orthogonal radial component of equation

(3.1). A new expression for An.,, similar to equation

(3.47) was then written as in equation (3.86).

an=aco R•n 4 1
0-n-1) (3.83)
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aFSid AS=-sin(2ot,)Cf, _p V,.1,,DAS (3.84)
as ) ne2

craid, f ZI.-n.3  )CDR. 1 2-j-~ (3.85)(as n- sin AS Cffide. 2fJLfVe

A 1=A2 +R[ -2 2- Rn-
n-2 n2 2 2AS

4AS 2  A 4A n

+si Z'1-z ni) -!nR6 2 ] AS
',AS ) sd 2 Pn

(3.86)

The above analysis was required to model the sideforce

in a class of wires. An experimentally derived knowledge of

the sideforce coefficient is required to apply this model.

In the absence of a known sideforce or a valid coefficient,

it is best to make the sideforce coefficient zero which

causes the equations to revert to the form of the original

equation which neglected sideforces. This is the approach

used for all later analysis. The model is provided to allow

the flexibility necessary to implement sideforce effects for

trailing wires for which the coefficient has been
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determined. The most general case is thus preserved for

later application.
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IV. DYNAMIC MODEL

A. FORMULATION OF THE DYNAMIC MODEL EQUATIONS

The dynamic model was developed under the assumption

that all displacements from the steady-state equilibrium

condition were small. The static model was used as the

definition of the initial condition and the dynamics, which

were modeled as a classical "dangling chain', were

superimposed upon this solution. The towplane was assumed

to be flying a constant circular orbit. It was assumed that

the dangling chain model was the source of all significant

wire dynamics. Wire torsion, stretching and bending

effects, as well as the effects of towplane pitch bank and

yaw transients were ignored. The validity of these

assumptions is discussed at the end of this chapter. The

dangling chain displacement calculations were then validated

by comparison with analytical solutions. Finally, the

complete model was compared to actual flight test data as an

end-to-end validity check. It will be seen that this

procedure validated the application of superposition of

small displacement vibrations upon the steady-state solution

for the problem of a long cable suspended from a towplane in

a circular orbit.

Figure 4.1 is a graphical representation of the

algorithm used in the dynamic model development. A
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classical dangling chain, with one end fixed and one free

boundary with a dead weight attached was first developed.

Once this classical problem was developed, pseudo-damping

was applied to the model. The term pseudo-damping was

chosen because the restorative and dissipative forces were

not related linearly to velocity but had an effect similar

to damping. Two forms of pseudo-damping were hypothesized

and modeled. The first was due to the drag caused by the

lateral oscillatory motion. The second was due to the

change in the angle of attack of the gridpoint segments in

the displaced condition. At this point, superposition onto

the steady-state model was performed. The superimposed

geometry was required to establish the pseudo-damping and

vice-versa and so the process had to be performed

iteratively. Following the superposition process, a number

of quantities, such as the tension oscillation value, were

calculated off-line from the model algorithm. At various

points within the process, the forcing function was applied.

The forcing function was based upon the pattern of the winds

along the entire length of the wire.

The governing partial differential equation of the

dangling chain with one end fixed and one free boundary

condition and with a concentrated mass on the free end of

the chain was derived in Appendix B. This equation was

derived assuming that the equilibrium distribution was the

vertically hanging chain. The equation was modified to
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Figure 4.1: Dynamic Model Algorithm

calculate the displacements from the steady-state

distribution in equation (4.1). A time independent tension

distribution, T(S), derived from the steady-state soluLion

vice a fully time dependent T(S,t) was used. An analysis of

the validity of this assumption will be presented in the

validation and verification section of this chapter. Note

that the independent variable, v(S,t), which was the
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displacement due to the dangling chain vibration, was

referenced from the top, at the towplane, to the bottom, at

the drogue. This was opposite to the steady-state model and

was the convention for the entire dynamic model development.

The expression was developed assuming that the displacements

were "small" and defined as being perpendicular to the wire

equilibrium position. The validity of this assumption of

"small" displacements will also be discussed in the

validation and verification section of this chapter. Note

again that S was the distance along the wire length. Q(S,t)

was defined as an arbitrary forcing function, which was

perpendicular to the wire at any point and was in terms of

force per unit length at time t. The origin of the forcing

function is discussed in detail in Appendix C. As indicated

in (4.1) it was further assumed that the initial condition

corresponded to the wire being located at the steady-state

no-wind position, defined as f(S). Further, the initial

displacement rate was assumed to be zero. It will be seen

later, that this assumption led to a short starting

transient at the beginning of the dynamic model simulation.

Two separate, orthoconal solutions to equation (4.1) were

required to model the two-dimensional displacement of each

point around the equilibrium position. The AS compatibility

condition for the first internal gridpoint and the

definition of the unit tangent vector for all subsequent

gridpoints were then used to make the solution into a three-
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dimensional model using the R, 0 and Z coordinates described

in the steady-state wire analysis. The procedure is fully

discussed la'-r when the superposition formulas are

developed.

1 a2TS, t) =•(t a 2TS" ys t) +QS" t)S

B.C. i0, t=0 v(L, t) -Bounded
ýL)a L, t)S, Q t)=m a2L' t) (4.1)as at2

av
I. c. (S, O)=f(S) -(S.O)=O

As in the steady-state problem, the partial differential

equation in (4.1) was approximated using a second order

accurate central difference scheme. The central difference

approximation of the time derivative component of equation

(4.1) was written as in equation (4.2) by first defining n

as the spatial gridpoint number inaexed from the top of the

wire at the towplane down to the drogue at the bottom, m as

the time step index and T(n)=Tn=the steady-state tension

distribution. The central difference approximation of the

derivative of v with respect to S was written, as in

equation (4.3) by referring to Figure 4.2 and again choosing

AS as the spatial distance between the gridpoints. Again, S

was the distance along the wire length. The process was

then repeated for the derivative with respect to S of the

product of T(S) and the derivative of v with respect to S as

shown in (4.4) and the result simplified in (4.5). [Ref. 14]
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Figure 4.2: Central Difference Gridpoint Scheme for Dynamic
Model Spatial Dimension
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The central difference apprxeimation shown in equation

(4.5) was taken about the half step. This technique '.. the

distinct advantage of requiring only three gridpoint

positions and allowed the use of the average of the tension

at each gridpoint at the half step tension gridpoint. This

in turn facilitated the solving of the first internal

gridpoints explicitly without resorting to the use of

iteration. As is seen later, the form of the boundary

conditions then make the entire process explicit.

Substituting equations (4.2) and (4.5) into (4.1)

resulted in the finite difference approximation of the

entire wire dynamics expression presented in equation (4.6).

The forcing function, Qn,m, with the indices at n,m was used

since the entire central difference scheme was taken about

the point n,m. Since Tn was a constant over time, the

expression was explicit in the variable vn,m+1. It was then

possible to envision a fully explicit marching scheme

requiring only knowledge of the two end gridpoints and the

two previous time step solutions. This is graphically

depicted in Figure 4.3. Equation (4.7) resulted when vn,m+1

was broken out from equation (4.6).

(4.6)
A t2 S2,
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Figure 4.3: Dangling Chain Time and Space Grid
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Examining the boundary conditions, the wire at the top

was pinned and thus vjm equaled 0 and for this physical

system, the solution had to be bounded. Neither of these

boundary conditions aided in determining vn,m+l at the

bottom of the wire. Examination of equation (4.7) showed

that in order to determine Vn,m+l Vn+lm was required. The

solution of this dilemma was derived by application of the

third boundary condition listed in (4.1). This boundary

condition ensured force equilibrium at the drogue gridpoint,

n=N, and was written in a central difference form in

equation (4.8).
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VN-lrn-VNi Wrn D( VN,.+ VNp.+VN.,-i (4.8)
2AS ) m g, At 2

Equation (4.8) described the balance between the tension

and forcing function forces and the lateral acceleration of

the drogue (remember that all motion was defined as lateral

in the dangling chain problem). It was next assumed that

the forces upon the drogue were much greater than the forces

on the last bit of the wire. Later analysis showed that the

forces differ by approximately two orders of magnitude.

Based upon this assumption, it was possible to visualize

that at the drogue attachment point, the wire slope was

nearly a constant since the shape of the wire was determined

by the drogue forces and not the distributed wire forces.

This condition was approximated by defining an N+1 point

beyond the drogue and equating the central difference

approximations of the slope at the half step before and

after the drogue as in equation (4.9).

VN -VNi ,m - VNi MVNm (4.9)
AS AS

Under the assumption that the forces on the drogue were

much greater than the wire, it was seen that TN=TN_1=TN_•.

Finally, solving (4.9) for VN+Im and substituting this

result into (4.8), replacing TN in (4.8) with Tn_. and

solving for vN,m+1 resulted in (4.10). (4.10) was the

solution of VN,M+1 in terms of previously known quantities.

Note that this equation showed that the updated displacement
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was larger for a bigger tension value and smaller for a

lighter drogue which corresponded with physical intuition.

vm m Nm v -v (4.10)

Now to summarize, the marching scheme is started from

the steady-state condition so that the two previous time

step position sets are known. The boundary ccndition of

vl,m and equation (4.10) are used to provide the endpoints.

Equation (4.7) is used to get the internal gridpoints. For

the purposes of bookkeeping, the two orthogonal components

of displacement were defined as Xn,m and Yn,m vice the

generic vn,m chosen for the development above.

B. FORCING FUNCTION DEVELOPMENT

In applying the wind as a forcing function to the wire

dynamics problem, it was important to first note that under

the assumption of a steady-state angle of bank turn, the

towplane moved with the airmass, and so the forcing function

due to the wind was in fact zero at the towplane. The

drifting towplane, in a constant angle of bank orbit, is

depicted in Figure 4.4. The required apparent forcing wind

was then derived by adding the negative of the wind vector

at altitude to the winds at each gridpoint including the

towplane end gridpoint.

With the apparent forcing wind defined, an arbitrary

reference system was set up such that the to, plane was
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drift

AT TOWPLANE

Figure 4.4: Towplane Drift Due to Wind During Steady State
Turn

aligned with the heading of 000 at time zero. This was

possible because the correlation between the defined

cylindrical coordinate system and the compass direction was

completely arbitrary. The convention chosen for the

definition of the wind heading was that the wind direction

was the heading from which the wind came from vice the

actual direction that the wind vector pointed. This was the

normal aeronautical definition used in the flight test data

that will be discussed later. Equation (4.1), the governing

equation of the dangling chain model, was derived assuming

that all displacements, as well as the forcing function,

Qn,m, were perpendicular to the chain. Qn,m was thus defined

as perpendicular to the wire tangent vector. The forcing

function was derived from the apparent forcing wind. Since
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the forcing function was defined perpendicular to the wire,

only that component of the apparent forcing wind

perpendicular to the wire was used to calculate the forcing

function. The orientation of the apparent forcing wind with

the wire varied harmonically as the wire orbited within the

airmass. The calculations were performed for each

orthogonal component of the oscillation and so one

harmonically varying wind induced forcing component was

described using a sine function while the second was

described using a cosine function. Two adjustments in

phasing were required to the harmonic functions. As

mentioned above, the apparent forcing wind was resolved into

components perpendicular to the wire. These calculations

were performed for the case where the gridpoint e0 vector

was oriented along the 000 heading described earlier 4n Lhis

paragraph and assuming that the apparent forcing wind was

coming from the 000 direction. The first phase correction

was the 0 coordinate at each gridpoint to account for the

fact that for every gridpoint except the towplane's, the

wire shape had to rotate through the 0 angle for e0 to be

aligned with the 000 heading. The second phase correction

acrcounted for the wind heading at each gridpoint being in

general, different from 000. Finally, the aerodynamic

coefficients of the wire were used to convert the forcing

wind into a force vector, which was the true forcing

function desired. The forcing function equations were
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developed in detail in Appendix C. Wind data may be

contrived or radiosonde derived flight test data may be

used. The simulation programs allow for winds to be defined

internally to the program or imported as data files.

C. SUPERPOSITION

The next task was to derive the algorithm used to

superimpose Xnm and Yn,m, the orthogonal components of the

dangling chain oscillation, onto the steady-state solution.

The development of the superposition equation for the Xn,m

component of the oscillation was begun by arbitrarily

defining the Xn,m displacements as being in the eR' ee plane

and thus orthogonal to the eK vector. Next, the governing

equation for the dangling chain oscillations presented in

(4.1) was derived assuming that the displacements were

perpendicular to the chain. The Xn,m, Yn,m orthogonal

components of the dangling chain displacements were thus

orthogonal to the unit tangent vector at each gridpoint.

The cross product of the eK vector and the unit tangent

vector in cylindrical coordinates then defined the direction

of the Xn,m component of displacement in the cylindrical

coordinate system used for the superimposed model. The Yn,m

component of displacement was orthogonal to the unit tangent

vector and to the Xn,m displacement. The direction of the

Yn,m displacement in cylindrical coordinates was then

derived using the cross product of the vector in the

direction of the Xn,m displacement and the unit tangent
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vector at each gridpoint. The eR and e8 components of the

displacements were added to the Rn and On coordinates of the

steady-state gridpoint locations to derive the time

dependent superimposed locations RSnm and OSn,m. The time

dependent, superimposed ZSnm location was calculated using

the compatibility equation in the form of (3.14) for the

first internal gridpoint and (3.16) for all subsequent

gridpoints. The superposition equations were derived in

detail in Appendix D.

D. PSEUDO-DAMPING

As implemented up to this point, the modeled

oscillations tended to be larger than expected when compared

to experimental data. What was needed was to identify a

"damping-like" set of restorative and/or dissipative forces.

The term "damping-like" was chosen because the hypothesized

forms of the pseudo-damping involved both restorative and

dissipative forces and none of the contributions were

directly proportional to rate. Two forms of the pseudo-

damping were modeled. Both were defined as D' since their

effects were additive and made up the total pseudo-damping

term. The first was due to the increment in drag caused by

the lateral oscillation rate. In keeping with the small

displacement assumptions, it was assumed that the lateral

oscillations remained perpendicular to the steady-state

positions of the wire and thus this dissipative force

remained perpendicular also. It was thus always orthogonal
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to the steady-state wire shape and opposite in direction to

the lateral velocity of the wire gridpoints. This was

because the lateral oscillations were also calculated based

upon the assumption that they remained orthogonal to the

steady-state wire. Equation (4.11) was the contribution to

the total pseudo-damping of the lateral oscillation rate.

The unprimed D is the wire diameter. Equation (4.12) was

the central difference approximation describing the

displacement rate from the equilibrium position and (4.13)

was the central difference approximation of (4.11).

Dl=(CD+7tCi)D 1 a) (4.11)

av V (4.12)
at 2At

22A t 2 2A t )

Note that vn,m+1 was required to calculate D'n,m. D'n,m

was also required in the calculation of Vnm+1 and so there

was a requirement to iterate at each gridpoint for the new

position in time. In implementation, the equations

converged in two to three iterations and this requirement

did not slow the process excessively. This pseudo-damping
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force dominated when the rate was highest, which usually

occurred as the wire was swinging through equilibrium.

The next task was to examine the restorative force due

to the change in angle of attack of the wire in the

displaced condition. On the average, as the wire moved

above equilibrium, the angle of attack reduced and

conversely, on the average, as the wire moved below the

equilibrium position, the average angle of attack increased.

For this reason, the effect of angle of attack changes

during oscillations was, on the average, restorative. There

will of course be times when the angle of attack is less

when above equilibrium and vice versa. The change in the

angle of attack from equilibrium to the displaced position

was the key. As in the steady-state model, an was defined

as the steady-state angle of attack and aSn,m was defined as

the displaced angle of attack. The finite difference

approximation of an is repeated in equation (4.14) but this

time the inverted grid coordinate system used in the dynamic

model was applicable. aSnm was defined in (4.15) and the

difference between the two angles was defined as Aan,m in

(4.16).

an=aco Rn8 'j (4.14)
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caSnm=aCc o RS{ ,rn n+1, M) (4.15)

Aanm•.,-IaSn,, (4.16)

Figure 3.14 showed that for typical TACAMO flight

conditions, the high verticality wire distribution had an

an,m that varied from about 30 degrees to 60 degrees for the

great majority of the wire length. Knowing the approximate

value of the angle of attack, it was possible to compare the

relative magnitudes of the Cf and CD drag due to Aan,m, both

of which varied with sin(Aan). Note that for an on the

order of 30 degrees to 60 degrees Vrelpern and V. compared to

approximately a factor of two and CD and Cf differed by a

factor of 20 to 50. Examining equation (4.17) showed that

the effect due to CD greatly dominated the effect of Cf and

thus the Cf effects were neglected. The CD drag was already

defined perpendicular to the wire. The relative

perpendicular velocity, Vrelpern, was developed in the

steady-state model section as equation (3.29). The change

in the relative perpendicular velocity in the displaced

geometry, AVreipern,m, was defined in equation (4.18) and

finally, D'n,m was written as in equation (4.19).
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D.ý =(_IP_,,D2

2i~( Pn /,2 ipernD) Cf (4.17)

()terms same order of magni tude
CD, and Cf, orders different

A Vreipern m= VreipernSlfl(Adn,m) (4.18)

Dn.M=CDD-1 PýA Vrelpern m)KA Vrelpern,m)I (4.19)

The force derived above and presented in equation (4.19)

was resolved into components that were applied to the Xn,m

and Yn,m calculations by examining Figure 4.5. The

coordinate transformation was written by noting that CD drag

was already perpendicular to the steady-state wire position

and so under the small displacement assumptions, use was

made of the steady-state geometry. The transformation

equations are provided in equations (4.20) and (4.21). All

of the calculations for the pseudo-drag due to angle of

attack changes were in terms of time step m and so this

force was calculated explicitly at time M+'L without

resorting to an iterative scheme.
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Figure 4.5: Dynamic Model Displaced Angle of Attack Geometry

VDx m n".Dn- (4.20)

Dr, .= Dn~(4.21)

ýXnm+n

E. TENSION OSCILLATION

As mentioned at the beginning of this chapter and shown

in Figure 4.1, the tension oscillation was modeled

separately from the dangling chain calculations discussed in

sections A through D. The dangling chain model assumed a

constant tension distribution provided by the steady-state

solution. The tension oscillation estimations were not used
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in the dangling chain calculations. As will be seen in the

following pages, the estimate of the tension oscillation

magnitude at the towplane required the axial wavespeed in

order to calculate the time required for a tension variation

along the wire length to propagate to the towplane

attachment point. At the beginning of this chapter, it was

assumed that axial waves did not contribute to the wire

dynamics and that the tension distribution was constant.

Since the axial wavespeed was used only in the off-line

tension calculations and not the dangling chain calculation

for wire displacement, this assumption was not violated.

In modeling the tension oscillation, four sources were

hypothesized. The first source was due to the acceleration

of the drogue. A fourth order accurate, five gridpoint

scheme was used to calculate the acceleration of the drogue.

The drogue acceleration finite difference approximation is

provided in equation (4.22) and the contribution of the

drogue to the tension variation, defined as ATn,m, is in

equation (4.23).

acce2l= -RS2°00m 2+I6RS200°,m -3 ORS,0'.m+I 6 RS2°O°m-j -RS 2 00,m- 2 2+

R 2C00, &2S200.M-.2 + 16 a .00. 200,M-1 R200,. 200,m

At
2

16RS2 oo0m1-oS2oo,m-l-RS 2 oo m-2oS 20 0 ,m-2 ) 2

At 2
S-ZS• 00,m. 2 + 16ZS0 Zmo,÷1-3OZ0O Z0m+ 1 6 ZS 2oo,mi -ZS 2oo,,_2'

I, ~At 2 )
(4.22)
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A TnM, (..)accelD (4.23)

The drogue force was applied at the very end of the

wire; however, as mentioned above, the tension oscillation

at the towplane was the quantity of interest. A finite

amount of time was required for the tension oscillation that

occurred at a given gridpoint to propagate and take effect

at the towplane. This amount of time was calculated knowing

the wave speed of the wire medium. The wave speed was

defined via the classical axial wave equation, written in

(4.24), where cl was the wavespeed, E was Young's modulus

and p was the rod density. p was then written in terms of p

in (4.25) and the definition of cl written in terms of the

wire parameters in (4.26).

cj-ý (4.24)c- E

g (4.25)

C12=E (4.26)

IA

The time required for a tension disturbance at a given

gridpoint n to propagate to the towplp-,: was defined as
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tdelay and developed in (4.27). Substituting (4.24) into

(4.27) resulted in (4.28). Next, Am, the time delay in

terms of the nearest program time step, was calculated in

(4.29). Finally, substituting (4.28) into (4.29) resulted

in (4.30). Am was the value required by the program in that

it determined how many time steps in the future a

contribution to the tension oscillation at a given gridpoint

had to be applied at the towplane. [Ref. 15]

tdelay- (4.27)
Cl

nAS FL}•
tdelay- DA S F E (4.28)

D Tg(4.30)

Am=NIN7{ 2

At each wire section, as the wire oscillated and changed

shape, the angle with the relative wind changed. Since the

Cf drag was defined in the direction of the relative wind,

the oscillations causea a change in the component of Cf drag
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tangential to the wire and thus changed the tension value.

This was the second contribution to the tension oscillation.

A formulation of this contribution is presented in equation

(4.31) where an was as defined in equation (4.14) but Aan,m

was modified slightly from the definition of equation

(4.16). The modification was necessary since the ATn,m

contributed from the Cf was not affected by whether the

superimposed angle of attack was positive or negative. The

modified relation is presented in equation (4.32).

S )2•A (4.31)
Arn"m= 2 p4Sn6) . SCfCOS(an)Aan,m

Aanm=(an-iaSn,m) (4.32)

The third source of the tension oscillation was due to

the variation in the orientation of the CD drag in the

displaced geometry. In all the previous discussions, the CD

drag was assumed to be perpendicular to the steady-state

position of the wire. In the disturbed state, a component

of the CD drag was, in general, tangential to the steady-

state tangent vector. This force variation was accounted

for in equation (4.33).

A Tnm= pVelDPDASCDsin(a-aSn, ) (4.33)

The fourth and final contributor to the tension

oscillation was due to the variation in the tangential
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component of the forcing function as the grid segments

changed orientation with the wind during orbit. Since this

contribution was related to the tangential wind veloci.ty,

which was small compared to the orbit velocity over most of

the wire and was defined in terms of the small Cf

aerodynamic force coefficient, this contribution was small

and it was reasonable to define its value based completely

upon the steady-state geometry. A simple model was

constructed by recognizing that, based upon the steady-state

geometry, the force oscillation varied sinusoidally at a

frequency equal to the orbit rate and that the maximum value

was readily defined in terms of the steady-state geometry.

A phase adjustment was made to account for the wire position

relative to the wind direction at each gridpoint. This

procedure was identical to the algorithm used in the forcing

function calculation. The relation is provided in equation

(4.34). A modified expression was required at the drogue

and is provided in equation (4.36) where 0'n was as defined

in (4.35).

ATm= ipnT..DASsi~an)Cfsin(6 t_-6) (4.34)

5(4.35)
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Av( P;SDo'Dslf .t) (4.36)A T"n,: A -S •CDSin(6 t-O,,)

F. VALIDATION, VERIFICATION AND ANALYSIS

A Von Neumann's stability analysis was performed for the

dangling chain problem. The homogeneous form of the

dangling chain partial differential equation was provided in

equation (4.37). For the stability analysis, a constant

tension value was assumed and so the equation was rewritten

in (4.38). A new variable, A, was defined as A2=At 2c 2 /AS 2

and the central difference approximation of (4.38) written

as in (4.39).

p(2VS t)_-a yst
at2  asVT as (

22__S, t)=T t) (4.38)
at2  aS2

vn+1_2Vn+Vn-l_ /= ___C

As2 [vj 1+-2vj+vj_1 ] (4.39)

In keeping with the usual Von Neumann's stability

analysis procedure, it was assumed that the error function

solved the original partial differential equation and that

it took the form of equation (4.40). Substituting (4.40)

into (4.39) resulted in (4.41) and simplifying provided
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(4.42). Applying Euler's identity to (4.42) and multiplying

through by eaAt and rearranging, resulted in (4.43).

e(S, t)=eateimxs (4.40)

eixxlea(t÷ t)_ 2 eat +ea(t-A t)] =
X2 eat ei1t(s+A)_2 ei'ms+ei•(s-As)I (4.41)

[eaA• -2 +e-aA t]=[ei'm&s-2 +eixmAs (4.42)

e 2at - eaA [2 +c 2( -2+2cos(inmAS$)]+1=0 (4.43)

Note that in general for (4.43) to be true, the roots of

14.43) had to be complex conjugates. This was required

because for roots r, and r 2 , the product of r, and r 2

equaled 1 which in turn required either rl-=/r 2 or the norm

of r=l and rl=r 2* [Ref. 14]. Application of the quadratic

formula and the knowledge that the roots were complex led to

the conclusion that b2 -4ac<l and thus (4.44) was written.

Rearranging (4.44) and applying the double angle formula

resulted in (4.55).

-2 '2 +X2(-2+2cos(i rmAS) 2 (4.44)
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-- 2 !ý-2sin2(7r irAS)•o (4.45)

Since the center part of the inequality in (4.45) was

limited to 0 to -2, the right hand side inequality was

discarded and rearranging resulted in (4.46). The worst

case occurred when the denominator of the right hand side of

equation (4.46) was equal to one. Substituting one into the

right hand side of (4.46) and for the definition of I in the

left hand side, produced (4.47), the final result. [Ref. 16:

pp. 71-77]

2!g 1i m (4.46)
sin2( A1• )(. )

A t2 TA t2 Ts1(4.47)
AS 2 P

A 200 segment grid pattern was chosen with a At=O.1

second. The most restrictive case was with a wire of the

smallest reasonable length and the largest expected tension

for this wire length. As shown in (4.48), the criterion was

met under these extreme conditions.

(0 1)2(1000) =0.92!1 (4.48)
(75 )2( 0.062107)

Rewriting equation (4.47) by moving T and p to the right

hand side resulted in At 2 AS2-p/T. An analysis of this

equation provided a physical insight into the stability
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criterion. In words, this criterion indicated that as the

mass of the wire decreased while the tension increased, the

At had to decrease in order to retain numerical stability.

This made sense when using the analogy of a guitar string.

The smaller strings are used to generate higher notes at

higher frequencies and as the tension is increased while

tuning, the plucked string also renders a higher frequency

sound. The discretized model of the string must then sample

more often to adequately model the higher frequency.

The dynamic model was implemented in the program TAC29

which is included in Appendix E. As with the static model,

TAC29 was written using the parameters applicable to the 3X7

wire and the normal mission drogue. The program requires a

number of files which are generated by TAC17. The only

operator inputs are the number of time steps required and

whether the anti-yoyo subroutines are to be used. The anti-

yoyo algorithm will be discussed in Chapter V. As

implemented, the program uses the 200 segment spatial grid

and the tenth of a second time step size -elected above.

The program runs at about 1¼ real time on a 486 33 MHZ

computer. As explained in the static model section, the

program may use either standard atmosphere or externally

provided atmospheric data. Wind data is provided by

external files. The details of implementation and of the

numerical techniques are explained within the program code.

Examples of program outputs include Xnm and Yn,m
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displacement snapshots and time plots of verticality,

towpoint tension, drogue position and the wire position 45

feet aft of the towpoint.

Validation of the dangling chain portion of the model

was performed by comparing the program displacement

calculations to the analytical solution of the dangling

chain without a concentrated mass on the end of the wire.

The homogeneous response of the dangling chain model with

the concentrated mass removed and the restorative and

dissipative forces deleted was ciiecked when the initial

condition was in the shape of an eigenvector. The resulting

oscillation repeated the eigenvector shape at the

eigenfrequency, thus validating the simulation. The details

of the procedure are discussed after the development of the

dangling chain problem in Appendix B.

Figure 4.6 shows snapshot plots of one of the orthogonal

components of the displacement value for the superimposed

problem with the drogue attached and with pseudo-damping.

The ten plots are evenly spaced over a single orbit period.

The 3X7 wire with a zero sideforce coefficient was used with

the standard TACAMO drogue and the towplane at 18,325 feet,

156 KEAS and 34 degrees angle of bank. A moderate apparent

forcing wind was used. The plots had, at most, three slope

reversals and the changes were fairly gentle noting the

relative magnitudes of the two scales.
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Selected Snaphot of Displacement of Wire From Equdibnrin

E-6A TACAO System
3X7 Wire
tovplane airer-ed-156 KEAS t-:39. -

towplane altitude-lS,325 feet
1000 constant towplane bank angle-34e

wire length-20,290 feet 
sec

.t-S1.3 sec

'00-
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•• t-300 sec
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Figure 4.6: Selec,.ed Snapshots of Displacement of Wire From

r Iuilibrium

's seen in equations (4.1) and (4.6), the first and

second partial derivatives used in the dangling chain

simulation were approximated using a central differe-Acing

t-chnique. Gerald md Wheatley show that for the first

derivative approximation, the truncation error was as shown

in equation (3.76) and for the second derivative, as shown

in equation (4.49). [Ref 11: p. 284] The resulting error

for the central difference approximations of the dangling

chain derivatives were calculated at each gridpoint fo- the

t=263.8 second curve of Figure 4.6 and then averaged over
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each gridpoint. The resulting average truncation errors 's

a percentage of the calculated derivatives are shown in

equation (4.50).

f/ truncationerror= A +_t2 f÷vAtfv,. (4.49)

( a2V) 001

as J -0.1%

A check of the choice of both the spatial and the time

grid was performed as in Chapter III for the static model.

The dynamic model was run using a 0.1 second time step and a

200 point spatial grid and then using a 0.05 second time

step and a 400 point spatial grid. The time histories were

then compared. As an example, Figure 4.7 is a plot of the

verticality time histories for the two runs. The plots

overlay, thus validating the choice of spatial and time

grids.

As expressed at the beginning of this chapter, mention

had to be made of the validity of the use of the steady-

state tension distribution vice the fully time dependent

tension distribution in the dangling chain displacement

calculations. The fully time dependent tension value was

defined at each g:idpoint as in equation (4.51).

Substituting (4.51) for T(S) in equation (4.1) and expanding
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Figure 4.7: Verticality Time Histories Using Different Grids

the derivative with respect to S resulted in equation

(4.52). Equation (4.53) is each term of (4.52) written

Paparafely with its order of magnitude. The order of

magnitude was calculated by averaging the absolute value of

each term along the entire wire length at a single point in

time for a representative test case. Figure 4.8 is a plot

of each term at each gridpoint along the wire at one point

in time for the same test case. Terms 3 and 5 are the AT

terms which were truncated when it was decided to use the

constant T(S) distribution vice the fully time dependent

T(S,t) term. As shown in (4.53), these terms were
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significantly smaller than the ones which were retained.

Terms 3 and 5 were barely distinguishable from the S axis in

Figure 4.8. The use of T(S) vice T(S,t) greatly simplified

the simulation code and based upon the size of the truncated

terms, the approximation was warranted.

T(S, t) =T(S) +AT(S) (4.51)

at2  as
.v(S , t) a2 V(S , t) +

Sat2 TST)aS2 (4.52)

as as as )(S' t)

Term 1: • a2ViS, t) 0(0.0025)

Term 2: 7) S, t) GO.O0055)
aS2

Term 3: A (S) a2,S, t) (3O. 000015) (4.53)
as2

Term 4: a a1výst) O. 0021)
cis as

Term 5: - A71s)als t) GO.00023)
as as

The development of the dynamic model assumed that the

towplane flew a constant, circular orbit and thus the

effects of towplane pitch, bank and yaw transients were

ignored. This assumption was made because on days when the

winds were calm at all altitudes along the wire and the crew

was flying a normal mission profile, the wire maintained a

constant shape without oscillations in verticality or

104



SNAPSHOT OF VIBRATING STRING TERMS ALONG WIRE
0.015

0.01"

.05 - -. 2 ,

--------------- 

-

)-0.005 CURVES 3 AND 5
' REPRESENT THE

1 TRUNCATED TERNS

• -0.01

S-0.015

-0.02 E -6A TACA4O System
3X7 Wire
tovplane airspeed-156 KEAS
t.wplane altitude-18,325 feet

-0.025 constant towplane bank angle-34*
wire lenqtho20,290 feet

0 0.5 I 1.5 2_

position alonR wire (feet) X1 O1

Figure 4.8: Snapshot of Vibrating String Terms Along Wire

towpoint tension. Thus, normal aircraft maneuvering

transients do not induce significant oscillations in the

wire.

The development of the dynamic model also assumed that

wire bending, torsion and stretching effects did not

contribute to the wire oscillations. Beer and Johnston

define the end-of-beam deflection of a cantilevered beam

with a distributed load as in equation (4.54) [Ref. 1 3 :p.

598] where, in the case of the wire, the distributed load

was the wire weight. The maximum cantilevered wire segment

that could support its own weight with at most a 10 percent
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deflection was calculated in equation (4.56) to be 3.2 feet

by applying equation (4.54) and using the 3X7 wire

parameters as listed in (4.55) and assuming a maximum

deflection of 10 percent of the wire length. The

discretized wire problem used wire segment lengths of

approximately one to two orders of magnitude more than this

length. Since the wire was unable to support its own

weight, it was reasonable to assume that the wire bending

forces did not contribute significantly to the oscillations.

8= (4.54)8EI

pg=0.005176 ibf
in

E=12o0 X106 ibf (4.55)
in2

I=3.075 X 10-1 in4

8=0.1 L

_ 8 _ 1 (4.56)L=( 0 9 ) =3.2 ft

The axial wavespeed within the 3X7 wire solid mass was

calculated as shown in equation (4.57) where p, the wire

density, was derived from pg in (4.55). The axial wavespeed

was 11,000 ft/sec. for a 20,000 feet wire, tension waves

would then propagate the wire length in approximately two

seconds. This was approximately two orders of magnitude

less than the period of the experimentally determined wire
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dynamics. It was thus reasonable to assume that tension

waves would dissipate before contributing to the wire

oscillations and their effects were neglected. Similarly,

for G=4.6 X 106 lbf/in2 for the new 3X7 wire, the torsional

wavespeed was calculated using equation (4.58) to be 6800

ft/sec. For a 20,000 feet wire, the torsion waves would

then propagate the wire length in approximately 3 seconds.

Additionally, the drogue on the end of the wire is

axisymmetric, allowing torsion disturbances to merely cause

a rotation of the drogue on the free end. It was thus

assumed that the torsion waves would result in a rotation of

the drogue and would dissipate before contributing to the

wire dynamics.

c,-- 14.57)

C (4.58)

The dynamic model was run using a wind profile of zero

at the bottom, increasing linearly to a maximum at the

towplane, all from a constant bearing. The simulation was

run for magnitudes of the wind vector at the towplane from

zero to 100 knots. The resulting verticality oscillations

reached a steady oscillation magnitude for oscillations less

than approximately 20%. For oscillation magnitudes above
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20%, the verticality history often diverged in magnitude and

the envelope of verticality oscillations diverged away from

the steady-state verticality, indicating a break down of the

assumptions of the model.

An analysis of the cause of the divergence of the model

was begun by non-dimensionalizing the vibrating string

governing partial differential equation. Dividing equation

(4.1) through by p and then multiplying each term by T2 /L

where T equaled characteristic time and L equaled

characteristic length resulted in a non-dimensionalized

equation. Given an appropriate choice of L, the "largeness"

or "smallness" of displacement was then based upon its

fraction of L. The best choice for L was the total wire

length for two reasons. First, the wire was described by

only two dimensions, its length and diameter. The diameter

was on the order of 0.1 inch and was obviously not the

correct choice to characterize the dynamics of a wire on the

order of four miles in length. This left the length of the

wire as the choice for characteristic length. The second

reason was derived from examination of Figure 4.6 which is a

plot of the wire displacements in the Xnm direction of each

point along the wire at ten different points in time. These

snapshots of wire displacement showed at most two slope

reversals over the entire wire length. The shape of these

oscillations were then characterized on a scale approaching

the length of the wire. If a second set of waves, of much
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smaller scale, were shown in the plots then a smaller

characteristic length would have been implied. As discussed

above, verticality oscillations above approximately 20%

resulted in divergence of the model, which was based upon

the assumption that the displacements from the steady-state

solution were small. For a 20% verticality oscillation the

maximum displacement from the steady-state location was

approximately 5% of the characteristic length. Thus, for

the scenarios tested, the assumption of small displacements

from steady-state breaks down for Xnm or Yn,m displacements

of greater than 5% of the length of the wire resulting in

verticality oscillations of approximately 20%.

The dynamic model was also run using a wind profile of

zero along the entire wire length except at the three

gridpoints located half-way along the wire. The simulation

was run for magnitudes of wind from zero to 200 knots. The

verticality oscillation magnitude and the magnitude of the

oscillations in the radial position at the drogue after the

initial start up transient period had passed were recorded

for each simulation. The time history of the drogue radial

position was also recorded. Figure (4.9) is a plot of the

time history of the radial position of the drogue for wind

magnitudes of 10 knots to 180 knots. The model diverged at

200 knots of wind. Note the symmetry of the oscillations

about the steady-state drogue position for all but the very

large wind inputs. Figure (4.10) is a plot of the
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displacement of the mean value of the radial oscillation of

the drogue from the steady-state drogue position. The

application of superposition required that the mean

oscillation value remain close to the steady-state value.

Figure (4.10) showed that as the oscillation magnitude

approached the region where divergence occurred, the mean

radius began to depart from the steady-state value. For

verticality oscillations of less than 20%, the mean radius

shifted from the steady-state value less than 0.5%. For all

conditions tested, the superposition of the dangling chain

vibrations upon the steady-state model was valid and

resulted in a non-divergent simulation for verticality

oscillations of less than 20%.
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Figure 4.9: Time History of Drogue Radial Position for
Various Wind Profiles
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Figure 4.10: Drogue Mean Radius Shift Versus VerticalityI
Oscillation Magnitude

As a final check of the fidelity of the static and

dynamic models, the simulation output was compared to flight

test data taken 1 June 1991 during TACAMO flight number 27-

05 under the same flight and atmospheric conditions. In

Figure 4.11, the solid line is a plot of the simulated

verticality time history and the stars are flight test data

taken for a towplane airspeed of 156 KEAS, an altitude of

18,325 feet and a bank angle of 34 degrees. Keeping in mind

that the textbook derived aerodynamic coefficients were

used, the difference between the modeled and the
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experimentally measured verticality was approximately 5%.

More importantly for this comparison, the magnitude of the

oscillation, frequency and phasing were very close. The

spike at the bottom of the simulation plot was caused by the

effect of the pseudo-damping due to the change in wire angle

of attack. The model shows very good fidelity when compared

to TACAMO flight test data despite the use of rough,

textbook derived aerodynamic coefficients.
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Figure 4.11: Comparison of Flight Test and Modeled
Verticality Measurements
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V. CONTROL OF WIRE OSCILLATIONS

A. ANTI-YOYO

Anti-yoyo maneuvers receive their name froitt their stated

goal of eliminating the verticality oscillations using the

aircraft as a wire control device. As will be seen later,

flight test derived data indicate that changes in the

aircraft bank angle can have significant effects upon the

wire oscillations. At the slow speed, high angle of bank

conditions required for qood wire verticality, the TACAMO

airplane cannot be safely maneuvered in pitch or yaw. Small

inputs in bank angle around the steady-state condition are

the only safe inputs at the aircraft. The determination of

a satisfactory anti-yoyo bank angle schedule has been

limited by the lack of a mathematically founded and rigorous

definition of the phenomenon.

The key to understanding the anti-yoyo maneuver was to

think of the winds along the length of the wire in terms of

a forcing function applied to the dangling chain partial

differential equations outlined in Appendix B. In this

context, the goal of the anti-yoyo maneuver was stated as

the mitigation of the forcing function along the wire. The

problem was broken into two parts, first, the definition of

the anti-yoyo maneuver once an anti-yoyo drift vector was

chosen and second, the choice of the "best" drift vector.
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The derivation was most clearly presented by beginning with

the lefinition of the maneuver once a drift vector was

chosen.

The anti-yoyo analysis was begun by remembering that the

apparent forcing wind was defined in Chapter IV as the sum

of the wind vector at the current altitude and the negative

of the wind vector at the towplane altitude. Reduction of

this apparent forcing wind at various gridpoint altitudes

resulted in the component of the apparent forcing wind

perpendicular to the wire being reduced and this in turn

meant that the aerodynamic force, which was the true forcing

function, was also mitigated. The apparent center of orbit

was controlled (caused to drift) by modulating the bank

angle, which in turn reduced this apparent forcing wind at

the desired gridpoints. The bank angle of the towplane was

varied around the steady-state value such that the apparent

center of orbit of the chosen gridpoint translated exactly

at the same rate and in the same direction as the component

of the apparent forcing wind vector which was to be

eliminated (Ref. 9:p.17-20].

A little thought concerning the effect that the bank

angle modulation had to have on the apparent center of orbit

led to the conclusion that the desired results could only

exactly be derived by sinusoidally varying the bank angle at

the orbit rate around the steady-state value. As shown in

Figure 5.1, the sinusoidal bank angle modulation was phased
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such that the bank angle was a maximum when the towplane was

heading in the direction of the component of the apparent

forcing wind to be eliminated, a minimum when headed in the

opposite direction and equal to the steady-state bank angle

when perpendicular to the eliminated wind.

d AT GRIDPOINT

component of
apparent a _b

M ý -

forcing
wind

to be eliminated 2R(n)

C

Figure 5.1: Anti-Yoyo Orbit Changes at a Given Gridpoint

The production of the required drift vector actually

required the tailoring of the orbit radius of the towplane

vice the bank angle. The bank angle modulation scheme was

chosen in order to emphasize the effects of the anti-yoyo

scheme upon the towplane. The analysis thus assumed that a

bank angle input immediately translated into a change in the

instantaneous orbit radius. The bank angle modulation of

the aircraft required a lateral control input. The aircraft
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bank angle response to a roll command was similar to a first

order system with an approximate time constant of r=l

second. The frequency of the roll input was equal to the

orbit rate and was on the order of 6=0.05 radians/second.

The phase shift involved in developing a bank angle by

lateral control was estimated as Aphase=-tan-1(-6)=

-tan- 1 (0.05) or Aphase=-2. 9 degrees, a value that was small

enough to neglect. The effect of modulating the

instantaneous center of orbit was thus considered as

equivalent to modulation by lateral control command. Three

other assumptions were made. First, it was assumed that the

required bank angle modulation was small, on the order of

one or two degrees. It will be seen later in this chapter

that the required bank angle modulation was less than three

degrees for a typical scenario. Second, the period of time

between when the anti-yoyo maneuver was begun and when the

desired drift vector was fully established along the entire

wire was ignored. This assumption will be addressed when

the experimental flight test data is presented later in this

chapter. Finally, the sinusoidally varying towplane radius

provided a harmonic input at the top of the wire. It was

assumed that this input did not contribute to the wire

oscillations. The validity of this last assumption was

established in Appendix F.

The key to deriving the maximum bank angle change

required to eliminate the desired component of the forcing
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function at a given gridpoint was contained in Figure 5.1.

The change in the orbit radius between the two sides of the

orbit split by the component vector divided by the orbit

rate was required to equal the magnitude of the rate of the

component of the apparent forcing wind to be eliminated.

Figure 5.2 and equation (5.1) reiterated this point.

component :,

apparent translation
forcing
wind

to be eliminated

Figure 5.2: Translation of the Apparent Center of Orbit of
the Towplane

translation = speed of center
orbit period of orbit

= magnitude of component of (5.1)
apparent forcing wind

vector eliminated

Equations (5.2) and (5.3) were a repeat of the

definition of the true airspeed of the towplane and the

orbit rate. Equation (5.4) was an expression for the
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instantaneous radius of orbit of the towplane, Rl,m, given

the true airspeed and the instantaneous bank angle, 0(t).

VFAS
V7'= r - (5.2)4Pal t

VT (5.3)
Ri

R i ' n- (5 .4 )

c (ýo s( t)) -I_

Figure 5.3 is a depiction of the model used to develop

the integral that definecA the diameter of a half orbit

transcribed by the towplane flying an anti-yoyo profile with

varying bank angle. q was defined as a dummy variable of

integration and RAD as the radius of the half orbit. A

differential segment of RAD was found as in equation (5.5)

and the entire diameter was defined as in equation (5.6).

RimdTqsin --dRAD (5.5)
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~1

Figure 5.3: Calculation of the Radius of a Tailored Half

Orbit

2 RAD=t Rjsinq • (5.6)

Equation (5.8) was written by substituting equation

(5.4) into (5.6) and noting the definition of 0 in equation

(5.7) where Onom was the steady-state or nominal bank angle

and Ovarmax was the naximum bank angle change (the desired

value).

= nom-(Ov rmaxsi nl (5.7)
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2 RAD=/ ' sinyj d(

9(Co S(0nom-'varmaxS ifnil))

The single equation (5.8) was in terms of two unknown

variables, RAD and Ovarmax" One of the variables had to be

eliminated. In order to meet the requirement that the

translation rate equal the component of the apparent forcing

wind to be eliminated, in turn required that the 2 RAD value

equal twice the radius of the original, unmodulated orbit

plus the translation value for the half orbit over which the

integral was performed. It was assumed that the half orbit

translation values were equal for both sides of the drift

vector. The assumption that the half orbit translation

values were equal on both sides of the drift vector was

possible because the change in the time required to complete

the half orbits on either side of the drift vector, from the

constant bank angle orbit, was less than four percent per

degree. Thus, for small bank angle modulations, on the

order of one or two degrees, the assumption was valid. The

resulting formulation is provided in equation (5.9) where

was used due to the assumption of small bank angles made

above. Substituting equation (5.9) into equation (5.8)

resulted in equation (5.10), which was the desired

formulation with a single equation in terms of the single

unknown Ovarmax"
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+VWYO (5.9)2 RAD=2R+ 2

O R1 2 dtl (5.10)

2 R CS(=no'vrm&xsiflh))

As was apparent in equation (5.10), the desired value,

Ovarmax, was not easily solved explicitly, and so the

integral equation was best solved numerically. The integral

was solved with the Newton-Cotes method using a polynomial

of order two. A 20 point grid was employed over the 0 to n

integration interval. An estimate of the error was as given

in (5.12) where h was one half of the integration step

interval and fiV(n) was the fourth derivative of the

integrand over each interval. For the smoothly varying

sinusoidal function within the integral, the method was

quite accurate. [Ref. 11:pp. 286-287] for a typical

scenario, the maximum error was less than 10-6%.
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residue=-2 R- VWYO 7C

20

+ ] 1

g1s (2n-1)ir)

+ 140

g ( C ( no v rm x f( (2n-l)r 12_-1

gj(COS(40noiJ16varmaxsifn()) 120

Error = -L0 5 fi (n) (5.12)

The code used in the Ovarmax calculation was checked for

programming errors by comparing the program output with a

solution to the same integral equation calculated off-line

from the simulation using the resident program in the HP-

48SX hand held computer.

The effect of the anti-yoyo maneuver upon the model was

included into the simulation by adding the negative of the

canceled component of the apparent forcing wind to all the

forcing wind vectors. The rest of the simulation was thus

unaffected. The required Ovarmax and phasing requirements

were then calculated off-line. This was very efficient

computationally. This technique ignored the variation in
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orbit radius and orbit rate caused by the bank angle

modulation. As was mentioned earlier, it was shown in

Appendix F that the effects of thp radius and orbit rate

changes at the towplane caused by the bank angle

modulations, could be neglected.

The simulation began with the towplane on a heading of

000 and so for a left hand orbit the required anti-yoyo

angle of bank variation was as in equation (5.13) where DWYO

was the direction from which the component of the apparent

forcing wind to be canceled pointed and Ovarm was the time

dependent angle of bank variation at time step m. Note that

the technique of adding the negative of the drift vector to

be canceled highlighted the fact that the anti-yoyo

maneuver was only effective at canceling a single vector.

This vector could have been the apparent forcing wind at one

of the gridpoints or some other selected vector.

*varM=$varmaxCOS(O AT m-(2•n-DWYO)) (5.13)

The phasing of the angle of bank variation was checked

using a simple wind and anti-yoyo drift vector combination

for which the correct phasing was easily determined. The

tested wind profile was a constant 30 knot wind from 270

degrees at all altitudes of 15,000 feet and above and a zero

velocity wind for all altitudes below. The apparent forcing

wind was thus zero for all altitudes above 15,000 feet since

this section of the wire and the aircraft were drifting
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along this vector and the rest of the wire, below 15,000

feet was subjected to an apparent forcing wind which was the

reciprocal of the wind vector. This apparent forcing wind

vector was chosen for elimination and was the anti-yoyo

drift vector. As mentioned earlier, the towplane heading

was 000 at time zero and thus at h of the orbit period the

towplane flight path vector and the desired anti-yoyo drift

vector were collinear and thus the angle of bank variation

should have been a minimum. This was exactly as developed

by the model and thus the anti-yoyo phasing was validated by

this test case. One note on semantics is in order. As

defined here, the angle of bank variation was positive for

an increasing angle of bank and negative for a decreasing

angle of bank. This convention was irrespective of the

direction of turn and thus for a left turn with a negative

angle of bank, a positive angle of bank variation required

increasing the angle of bank to a more negative value.

There now existed a numerical method for defining and

describing the effects of an anti-yoyo maneuver optimized

around a single chosen drift vector. The second and final

task was to determine the appropriate scheme for finding the

drift vector around which to implement the resulting

maneuver. One logical choice was to select the total

apparent forcing wind vector at one of the gridpoints along

the length of the wire. Again, since only a single vector

could be canceled, this in general resulted in the complete
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elimination of the apparent forcing wind at a single

gridpoint and of some portion of the apparent forcing wind

at other gridpoints. Additionally, for extreme wind shear

situations, it was entirely possible that the forcing

function would be increased at some gridpoints. For this

reason, the choice of the correct gridpoint and thus the

drift vector, was crucial. Results varied widely based upon

this choice.

The choice of a drift vector was analyzed using several

wind profiles typical of the normal TACAMO operating areas.

The first profile was a linearly increasing wind starting at

15 knots at the surface and increasing at 2.5 knots per

thousand feet of altitude and coming from a 270 degree

bearing. The second profile was also a linearly increasing

wind with the same magnitude at each altitude but rotating

from a heading of 225 degrees at the surface at 5 degrees

per thousand feet. [Ref. 17] The third profile consisted of

the winds present during the flight test cited in Chapter

III and were similar to profile two with some irregularities

expected of real wind profiles. Two other, less likely wind

profiles were examined. The fourth profile consisted of a

30 knot wind from a heading of 270 degrees at altitudes

above 15,000 feet and zero elsewhere. The fifth and final

profile included a 40 knot wind layer from 270 degrees at

altitudes of 11,000 to 14,000 feet and zero at all other

altitudes.
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The winds were defined at 1000 feet intervals and the

steady-state model was used to determine which gridpoints

were affected by which wind vector. As a typical flight

scenario, a towplane airspeed of 156 KEAS, an altitude of

18,325 feet and a bank ai~gle of 34 degrees were chosen. A

wire length of 20,290 feet and the textbook derived

aerodynamic coefficients were used. The sideforce

coefficient was set to zero. Figure 5.4 is a plot of the

wind direction for all jive profiles and Figure 5.5 is a

plot of the windspeed at each gridpoint for profiles one

through three.

WIND DIRECTION VERSUS GRIDPOINT
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Figure 5.4: Wind Direction Versus Gridpoint
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Figure 5.5: Wind Velocity Versus Gridpoint
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Figure 5.6 is a plot of the verticality oscillation

magnitude that resulted when each of the apparent forcing

wind vectors that correspond to one or more gridpoints on

the wire were selected for wind profiles one through three.

Each wind vector, which applied to a thousand feet layer of

altitude, affected a number of gridpoints and so thirteen

steps are shown, corresponding to the 12,030 feet between

the drogue and the towplane.

VERTICALIT-Y OSCILLATON MAGNITLDE VERSUS GRIDPOINT SELECTON

0.35±

0.3 E-6A TACAMO System3X7 Wire

towplane airspeed.156 KEAS
tovplane altitude.18,325 feet
wire lenqth-20,290 feet

WIND MODELS 1-3
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Figure 5.6: Verticality Oscillation Magnitude Versus
Gridpoint Selection

A second technique for choosing the component of the

apparent forcing wind to be canceled was proposed and was
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proven to be quite successful. In this technique, the

apparent forcing winds at all of the gridpoints were

averaged and this average value was used as the anti-yoyo

drift vector. This rule was proven to provide approximately

a 50% or better reduction of the oscillations in all but one

of the tested scenarios.

Table 5.1 contains the uncontrolled verticality

oscillation magnitude for each of the wind profiles

described above, the smallest oscillation value obtained by

checking all of the apparent forcing winds as anti-yoyo

drift vectors and finally, the verticality oscillation

magnitude that resulted during the use of the average

apparent forcing wind as the anti-yoyo drift vector. Note

the consistent results of the averaging rule for all but

profile four.

TABLE 5.1: VERTICALITY OSCILLATIONS FOR VARIOUS ANTI-YOYO
LAWS

Wind Profile Uncontrolled Gridpoint Averaged
(%) Selection (%) Apparent

Forcing Wind
(%)

I 10.6 2.6 5.3

II 31.5 7.2 7.2

III 18.0 6.3 6.7

IV 18.0 10.9 9.2

V 13.5 13.4 10.8

Wind profiles four and five were chosen as remote but

possible examples of extreme shearing conditions. Profile
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four might be encountered if the pilot of the towplane opted

to fly in a jet stream while the wire was trailed into still

iir. The averaging scheme worked quite well in this

scenario. Profile five is highly improbable, requiring an

extremely large shear over a small altitude band. This

scenario was included as the one wind profile tested during

which the averaging scheme and in fact the anti-yoyo process

in general had limited effect. The averaging scheme and the

anti-yoyo maneuver still helped but not to the extremes of

the other wind profiles. The reason for this phenomenon was

that the large shear and subsequent shear reversal caused

significant forces to be applied over a small part of the

wire. Attempting to reverse the effect by using part of the

apparent forcing wind vector in this layer resulted in a new

apparent forcing wind being induced over the remainder of

the wire. The balance of the wire, which previously had no

apparent forcing wind, was much longer than the part within

the layer and so even small anti-yoyo inputs eliminated any

gain in the reduction of the apparent forcing wind within

the shear altitude band. The averaging scheme reduced the

oscillation by around 25% in the case of wind scenario five

but this was not as dramatic as the 50% or better reductions

when considering wind profiles one through four; however,

this scenario was presented as an extreme case and will be a

rarity in flight.
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Implementation of the averaging anti-yoyo scheme

requires use of the static model to determine the static

altitude of each gridpoint and the measurement of the wind

vector at each altitude. The apparent forcing winds are

then averaged and the 4 varmax and phasing calculations

performed. The result is a schedule of angle of bank

variations versus heading which may be implemented using an

autopilot.

The utility of the anti-yoyo scheme for verticality

oscillation reductions was validated by flight test data.

Flight test experiments were made using various combinations

of anti-yoyo maneuver angle of bank magnitudes and phasing.

During these tests, one was performed which correlated

closely to the anti-yoyo maneuver called for by the

averaging scheme. In both cases the angle of bank variation

led the verticality oscillation by around 10 seconds. That

is, when the verticality was around a maximum, the angle of

bank became more negative, reaching its peak about 10

seconds before the verticality oscillation. The averaging

scheme called for an angle of bank variation maximum of 1.5

degrees. The flight test was flown by hand and the maximum

bank angle changes exceeded this amount at times by 1 degree

or 2 degrees, however, the excursions were in both

directions around the perfect si. isoid inputs and so the

effect over an entire orbit period was to make the drift

vector close to the vector called for by the anti-yoyo

133



program. Examination of the beacon derived space

positioning data showed that the drift vector of the

towplane remained about in the some direction of

approximately 150 degrees but was reduced in magnitude to

around 15 feet/second. This corresponded to a drift vector

of 150 degrees at 15 feet/second. The averaging scheme

called for a drift vector of 141 degrees at 22 feet/second

and so the two schemes were approximately the same.

Furthermore, despite the rough approximation of the

sinusoidal angle of bank inputs, the space positioning data

showed a smooth track over the ground which indicated that

the angle of bank excursions averaged out to generate the

desired ground track. The ground track, after all, was the

desired quantity since it was the motion over the ground

which generated the desired drift vector. Figure 5.7 is a

comparison of the modeled verticality oscillation and the

flight test experimental measurements. The test was

performed for the TACAMO system with the 3X7 wire and the

standard drogue with the towplane at an altitude of 18,325

feet, an airspeed of 156 KEAS and with an average bank angle

of 34 degrees. The anti-yoyo maneuver was begun at time 450

seconds. The textbook derived wire aerodynamic coefficients

listed in equation (3.75) were used. The modeled

verticality oscillations compared to within approximately 5%

with the experimental data.

134



FLIGHT TEST AND MODEILE VERTICAUTY
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Figure 5.7: Flight Test and NPS Modeled Verticality

Oscillations With and Without Anti-yoyo

The TACAMO NATOPS manual [Ref. 18:p. 111-7-59] describes

a version of the anti-yoyo maneuver. This maneuver has had

limited success in verticality oscillation reduction and in

fact has often increased the oscillation magnitude. Since

this version of the maneuver is flown by hand, it is not

flown as a sinusoidal bank variation but in four sections

where the maximum variation is used in the 90 degree

quadrant centered on the tension oscillation peak, the

minimum, 180 degrees later and the nominal, steady-state

bank angle, in the other two quadrants. The magnitude is
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determined by using 1 degree for each 100 pounds of tension

oscillation up to a maximum of 6 degrees. Lawton documented

significant errors in the tension measurement system ranging

from 3% to 40% as well as "flat spots" in the oscillation

measurement which call into question the phase of the

measured tension oscillations [Ref. 9:pp. 23-24, EI-E7].

Comparison of the dynamic model tension oscillations with

the experimental flight test data exhibits differences in

magnitude and phase on the order of the measurement errors

documented by Lawton. The previous discussion highlighted

that the magnitude as well as the phase of the anti-yoyo

maneuver are critical to success. With too small of a

magnitude of the bank angle variation, the full benefit of

the maneuver is not achieved, but more importantly, as the

magnitude is increased beyond the optimum value, a forcing

function is induced by the resulting motion of the airplane

that is in the opposite direction to the forcing function

that the anti-yoyo maneuver was meant to cancel. Typical

anti-yoyo maneuvers require from a fraction to several

degrees of bank angle variation and so an error in the

tension value of as little as 100 pounds can have a

significant impact upon the success of the anti-yoyo

maneuver. The published procedure has been limited by this

dependence upon the unreliable tension measurement.

Application of the averaging anti-yoyo maneuver to wind

profiles one through five indicated that the phase
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relationship between the tension and the anti-yoyo bank

change is often inconsistent with the NATOPS rule. No

consistent correlation was noted in the phasing between the

tension and the required bank angle modulation. This

inconsistent phase requirement explains the concurrently

inconsistent results of the anti-yoyo rule locked in phase

to the tension oscillation. As an example, Figure 5.8 is

the time history of the tension for wind profile two.

Figure 5.9 is the time history of the angle of bank

variation. Note that they are approximately 90 degrees out

of phase.
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Figure 5.8: Time History of Tension at Towpoint

138



ANGLE OF BANK VARIATION DURING ANTI-YOYO
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Figure 5.9: Time History of Angle of Bank Variation During
Anti-yoyo

B. FLYING DROGUE

The anti-yoyo scheme used the towplane at the top of the

wire to control much of the wire oscillations. An alternate

approach for controlling the verticality oscillations that

was considered involved the use of a flying drogue at the

lower end of the towed cable. The development of the flying

drogue closely paralleled the previous model development in

that a separate steady-state and dynamic model was

139



constructed. Two static and three dynamic control schemes

were implemented and evaluated.

The static model had to be developed first. The first

static model of the flying drogue was the most general.

This model allowed the operator to select a steady-state

bank angle and angle of attack within the aerodynamic limits

of the flying drogue. The second model took a more narrow

approach, implementing a possible candidate for the "best"

choice of drogue bank angle and angle of attack. The

development of both approaches shared many common

calculationr and so the two models were derived in parallel.

To start, it was assumed that the flying drogue was

attached such that there was no moment at the wire

attachment point. That is, the drogue was stable with or

without the tow. It was desired to develop the equations to

get T1 , R2 , 02f Z2 and T2 given the position at gridpoint 1.

As was done in the static and dynamic modeling, it was

assumed that the aerodynamic and inertial forces upon the

first segment of the wire were small relative to the drogue

forces. Applying this assumption, it was immediately

written that TI=T2 . The angle of bank of the drogue was

defined as OD and use was made of the definitions of the

drogue related variables provided during the steady-state

drogue model development in Chapter III. Next, in

accordance with the definition of the steady-state

condition, the drogue drag vector was always aligned along

140



the ee coordinate direction, the lift vector and weight

vector were always aligned along the eK coordinate direction

and the drogue inertial vector was always aligned along the

eR coordinate direction. The drag vector and the drag

magnitude are presented in equations (5.14) and (5.15), the

lift vector in equation (5.16), the lift vector magnitude in

equation (5.17), the inertial vector in (5.18) and the

weight vector in (5.19). Finally, a total resultant force

vector upon the drogue is presented in equation (5.20).

Note that the only unknowns in these equations were CDD, CLD

and OD" CLD and OD remained as operator inputs in the most

general static flying drogue case and CDD will be derived

from CLD.

DDcD q SD e- (5.14)

DD=CDD q SD (5.15)

LD=-LDsini'iR-LcosDO eK (5.16)

LD=CD q SD (5.17)

TZ=LD Rý - (5.18)
g
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WD=wo K (.1 9)

Fresuleat•=a-LDsin,-D+-- Rl)--DDO-(WD+-LDCOSCO) (5.20)

It was apparent upon examining Figure 5.10 that the

tension at gridpoint one was equal and opposite to the

resultant force vector upon the drogue. Equation (5.21) was

thus written.

T,

w

WDD

SIDE VIEW

L D

FROM BEHIND

Figure 5.10: Steady State Forces Upon the Flying Drogue
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I 2
Fres,.iant -Tj=i (-LDsin4o÷+ W0 62R (5.21)

Remembering that TI=T2 and that the forces upon the

first segment of wire were negligible compared to the

drogue, the two gridpoint AS requirement led to the

calculation of R2 , 02 and Z2 . The relations are presented

as equations (5.22) through (5.24).

62=(I+ DDIS (5.22)

fLDS i+±D6 RI AS (5.23)
R2 =Ri-

2 (5.24)Z2= Zi F,& S2-R2 -R + 2 RR2C OS(02-81)( . )

Equations (5.14) through (5.24) provided the basis from

which the most general version of the steady-state flying

drogue model was developed. This model left an infinite

number of bank angles and coefficients of lift from which to

choose. A simple approach was needed for eliminating some

of these possibilities. First, it was reasonable to assume

that the maximum downward force and the least drag would
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provide the best verticality. A version of the steady-state

model was thus derived that made use of the special case

where CLD/CDD was a maximum for the flying drogue. Next,

it was reasonable to assume that verticality would benefit

from a minimum of side forces upon the wire, so the bank

angle was adjusted to just balance the inertial forces upon

the drogue. Applying the assumptions above, equations

(5.25) through (5.27) were written. Under the same

assumptions as the more general case, equations (5.28)

through (5.33) were also written.

"(DDxCDV (5.25)

FI-OW RLV sinl- (5.26)
g

*D as { WD 62 :R1 (5.27)
g LD)

Fresuilcal=( -LDsinD+ • 1 D6 ee (WD+LDcos(D)eK (5.28)
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T, =o D+(W Lco s4)2 (5.29)

T1T2 (5.30)

e26 •0 D DV-AS (5.31)

R2 =R1  (5.32)

= (25.-R2-R ÷2R2 co 2-0) (5.33)

It was desirable to implement both the general case, to

allow the operator the maximum degree of freedom for

experimentation, as well as the maximum LD/DD special case.

The missing ingredients were the flying drogue aerodynamic

coefficients and physical measurements. The requirements of

a flying autonomous drone towed behind an airplane were

similar in concept to those of a Remotely Piloted Vehicle

(RPV). An RPV was selected that approximately fit the

requirements of weight, size and configuration. The flying

drogue was thus based upon the general design of the EXDRONE

or SYMDEC 4 RPV with the engine removed. The details of the

design were outlined in Appendix G.

Three versions of the flying drogue dynamic model were

written to investigate three different control schemes. In

the first scheme, the drogue was maneuvered to provide an

145



input to the wire perpendicular, or lateral, to the unit

tangent vector of the wire at the final grid segment. In

the second scheme, the drogue provided the input tangential

to the wire. This was thus an input of pure tension. In

the third case, the two inputs were combined and were tried

together.

Appendix G outlines the design of the flying drogue and

the development of the relations for the maximum force that

the flying drogue could generate in the orthogonal Xnm and

Yn,m directions. For the purpose of investigating the

utility of the lateral input scheme described above, it was

assumed that any force up to these maximum values could be

applied.

The goal of the lateral control scheme was to eliminate

displacements from the equilibrium position. Knowing this,

the best control laws were based upon displacement, rate of

displacement and acceleration of displacement from the

steady-state position. Unfortunately, the implementation of

such a control law was not practical due to the difficulty

of measuring displacement from the steady-state position

relative to the towplane position; however, control laws

based upon these quantities provided the best possible

control of the oscillations and as such provided an idea as

to the feasibility of lateral force control.

The lateral force control schemes were tested using a

towplane flight profile of 18,325 feet, 156 KEAS, an angle
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of bank of 34 degrees and the textbook derived aerodynamic

coefficients with the sideforce coefficient set equal to

zero. The best reduction of verticality oscillation,

tension oscillation and oscillations at the point 45 feet

aft of the towplane resulted when using the displacement

rule. Given the maximum force inputs defined in Appendix G,

the control scheme was best described as linear displacement

feedback with saturation. The simulations were repeated for

the case of a steady-state drogue bank angle of -15 degrees

and with both CLD=O and 0.25, for a drogue bank angle of +15

degrees with CLD=0. 2 5 and for the CLD/CDD--max case described

earlier. The lift vector produced by the CLD was pointed

downward to enhance verticality. This will be the

convention for the rest of this chapter. The anti-yoyo

maneuver was selected for each simulation. Table 5.2

tabulates the steady-state verticality as well as the

oscillation magnitudes in verticality, the radial coordinate

45 feet aft of the towplane and in tension. The results

were somewhat disappointing.
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Table 5.2: STEADY-STATE VERTICALITY AND VERTICALITY
OSCILLATION MAGNITUDE FOR VARIOUS DROGUE FLIGHT CONDITIONS

Tow- -150 -150 +1is CLD/CDD= anti-
plane max yoyo
angle only
of bank

0LD 0.25 0.25 N/A N/A

Steady- 59.002% 60.008% 60.067% 60.165% 55.005%
State
Vert.

Vert. 6.7% 6.3% 6.55% 6.9% 8.7%
Osc.

R(45 3.85 ft 3.85 ft 3.9 ft 4.05 ft 4.6 ft
ft)

Tension 215 lbs 220 lbs 222 lbs 226 lbs 247 lbs
Osc.

X input ±40 lbs ±39 lbs ±36 lbs ±32 lbs N/A

Y input ±35 lbs ±36 lbs ±33 lbs ±29 lbs N/A

The best results were for the -15 degrees drogue angle

of bank and the CLD=0. 2 5. Remember that the lift was a

negative lift vector and so the bank angle of -15 degrees

caused the vector to pull the drogue to the outside of the

orbit and into a region where the dynamic pressure was

higher. This meant that the drogue was able to produce more

force at control saturation and thus the effect of the

control was slightly better. The maximum force used as an

input to the Xn,m and Yn,m dangiing chain calculations were

also included in Table 5.2. All forces reached saturation

for at least 'A of the time. Also, note that the downward

lift and greater dynamic pressure produced a better mean

verticality. This increase in steady-state verticality will
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be addressed at the end of this chapter as a separate topic.

The result was a slight decrease in the verticality

oscillations from 8.7% to 6.3% and an increase in steady-

state verticality from 55% to 60%. This reduction in the

verticality oscillation did not warrant the construction of

such a sophisticated drogue. Additionally, since the -15

degrees and 0.25 control scheme pulled the drogue away from

the center of the orbit, it tended to force the drogue

closer to a situation where it could transition from the

high to the low verticality distribution in flight regimes

where these multiple solutions existed as discussed at the

end of Chapter III. Table 5.2 was based upon a unit gain of

input force versus displacement. A range of values were

tried for this gain with no added success. The unit gain

provided as good or better results than any other. The

lateral control scheme was thus excluded as a valid control

scheme.

Appendix G outlines the maximum force that the flying

drogue could produce in the direction tangential to the

wire. For the purpose of investigating the utility of the

longitudinal input scheme, it was assumed that any force up

to this maximum value could be produced in the direction of

a tension increase and that the longitudinal force could be

applied in the direction that resulted in a tension decrease

up to the point where the tension equaled zero. In practice

this limit was not reached since under the conditions
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tested, the drogue was unable to produce enough force to

cancel the steady-state tension at the drogue attachment

point.

In the case of the tangential control scheme, the choice

of which variable to base the control law upon was not as

apparent as in the lateral control law case; however, Figure

3.14 shows that the wire is nearly vertical near the drogue

location and so it was logical to choose the variation in

altitude from the equilibrium case. Unlike the lateral

control scheme test case, this choice could be

approximately, but quite practically, implemented by

observing the mean altitude of the drogue and applying the

tension force proportional to the deviation from this

observed value. The chosen law was thus best described as

linear displacement feedback with saturation. Rate and

acceleration control, also based upon drogue altitude, were

tried with less successful results. A range of gains were

attempted; however, the unit gain value provided as good or

better results than any of the others.

Table 5.3 provides the steady-state verticality and the

magnitude of the oscillations in verticality, the radial

coordinate of the point 45 feet aft of the towplane and the

tension and finally the maximum control forces applied in

tension for the same cases previously discussed for the

lateral control law. For the same reasons as the lateral

control law, the best results were derived using the angle
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of bank of -15 degrees, CLD=0. 2 5 case. The results were

very close to those discussed in the lateral control case

with the best results being a reduction in the verticality

oscillations from 8.7% to 6.3% and an increase in steady-

state verticality from 55% to 60.8%. Again, the issue of

the use of the drogue to increase steady-state verticality

will be discussed at the end of this chapter. The

tangential control law did not reduce the oscillations

sufficiently to warrant the expense and complexity of the

implementation of the tangential control law flying drogue.

Table 5.3: STEADY-STATE VERTICALITY AND VERTICALITY
OSCILLATION MAGNITUDE FOR VARIOUS DROGUE FLIGHT CONDITIONS

Tow- -15* -15* +150 CLD/CDD= anti-
plane max yoyo
angle only
of bank

CLD 0 0.25 0.25 _ N/A N/A

Steady- 58.80% 60.61% 60.44% 60.71% 55.01%
State
Vert.

Vert. 6.6% 6.3% 6.6% 6.6% 8.7%
Osc. I

R(45 4.2 ft 4.25 ft 4.3 ft 4.25 ft 4.6 ft
ft)

Tension 158 lbs 172 lbs 158 lbs 142 lbs 247 lbs
Osc.

AT ±64 lbs ±65 lbs ±56 lbs ±47 lbs N/A

The lateral and the longitudinal/tension control schemes

were combined by noting that the lateral force input had two

perpendicular components which were in turn orthogonal to

the tension/tangential force. The two schemes were thus
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combined without modification. Table 5.4 provided the

results for the combined schemes under the same conditions

as Table 5.2 and 5.3. Using both schemes, the minimum

oscillation in verticality was actually a very slight amount

better at an angle of bank of 15 degrees and CLDý_0.25 and

also during the CLD/CDD--max condition, however the tension

oscillation was significantly less for the case of an angle

of bank of -15 degrees and CLD"20.25, leading to the same

choice as in the two previous cases of the best control

scheme. As before, the reduction in verticality oscillation

magnitude was around 2% and the combined law was thus deemed

of minimal value. Again, a range of control gains were

attempted with no measurable improvement.

Table 5.4: STEADY-STATE VERTICALITY AND VERTICALITY
OSCILLATION MAGNITUDE FOR VARIOUS DROGUE FLIGHT CONDITIONS

Tow- -150 -150 +150 CLD/CDD, anti-
plane max yoyo
angle only
of bank

CLD 0.25 0.25 N/A N/A

Steady- 59.00% 60.08% 60.01% 60.16% 55.005%
State
Vert .

Vert. 6.7% 6.6% 6.55% 6.7% 8.7%
Osc.

R(45 3.85 ft 4.35 ft 3.9 ft 4.1 ft 4.6 ft
ft)

Tension] 210 lbs 142 lbs 220 lbs 162 lbs 247 lbs
Osc.

X input ±40 lbs ±32 lbs ±36 lbs ±32 lbs N/A

Y input ±37 lbs ±29 lbs ±33 lbs ±29 lbs N/A

AT ±47 lbs ±47 lbs ±35 lbs ±31 lbs N/A
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The combined law was written assuming the maximum forces

for both the lateral and longitudinal schemes could be

generated simultaneously. In general, this will not be

possible and the actual results would be even less promising

than those found in Table 5.4. Finally, as in the pure

lateral and longitudinal control scheme cases, the chosen

control law required moving the drogue outward radially. As

before, this was an undesirable situation.

The attempt of using a controllable drogue at the bottom

of the wire showed that the steady-state verticality of the

wire could be significantly affected by the choice of a

steady-state drogue lift coefficient and bank angle. As a

final application of the new drogue, the bottom control

force was used to enhance the steady-state vezticality.

This was then combined with the anti-yoyo law to determine

the effect of this steady-state verticality enhancement

scheme operating at the bottom and the towplane driven anti-

yoyo law at the top. The previously developed steady-state

controllable drogue program and the flying drogue dynamic

program with the lateral and longitudinal control forces set

to zero were used for the investigation and so no new

software was required. To provide a fair comparison of the

use of the steady-state forces with the normal TACAMO

drogue, the weight of the flying drogue was changed to equal

that of the normal TACAMO drogue. The differences in

verticality were then due to the difference of configuration
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between the cone and the flying drogue and the selection of

the drogue bank angle and the drogue coefficient of lift.

Table 5.5 shows the steady-state verticality and the

oscillation magnitude for a range of bank angles and CLD's.

The towplane conditions and wire parameters were the same

used to develop Tables 5.2 through 5.4. Note that the best

steady-state verticality was achieved using a maximum CLD

and a bank angle of -20 degrees. The steady-state

verticality of the new drogue was 61.35% while the steady-

state verticality of the cone was only 55.01%. This was an

improvement of over 6%. Also note that the verticality

oscillation was down to 6.35% from 8.2% for the cone. This

was mostly a consequence of the higher flying drogue steady-

state verticality and in a small part due to the added

damping of the flying drogue.

Table 5.5: STEADY-STATE VERTICALITY AND VERTICALITY
OSCILLATION FOR A NUMBER OF DROGUECONFIGURATIONS

10 l IFmIiZICLD =0.5 Jc__=0.75

-700 57.55%, 7% 58.83%, 6.3% 59.68%, 6%

-500 57.89%, 7% 60.17%, 6.2% 61.19%, 6.1%

-300 57.94%, 7.1% 59.91%, 6.6% 61.34%, 6.2%

-200 58.09%, 7.3% 59.98%, 6.8% 61.35%, 6.4%

-150 58.12%, 7.3% 60.01%, 6.8% 61.23%, 6.6%

00 58.18%, 7.4% 59.77%, 7% 60.85%, 6.8%

150 58.00%, 7.3% 59.41%, 7% 60.23%, 7.1%

300 57.72%, 7.4% 58.90%, 7.3% 59.67%, 7.1%

500 57.26%, 7.7% 58.16%, 7.5% 58.74%, 7.5%

700 56.62%, 7.8% 57.32%, 7.8% 57.6%, 7.6%
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The new drogue simulation was applied to wire lengths of

15,000 feet and 25,000 which were near the maximum and

minimum wire lengths for the TACAMO system. The towplane

altitude and bank angles were adjusted to reflect typical

TACAMO parameters for these wire lengths. For the 15,000

feet wire length, the altitude was 18,325 feet and the bank

angle was 40 degrees. For the 25,000 feet wire length, the

altitude was 20,000 feet and the bank angle was 34 degrees.

The new drogue resulted in a 4% mean verticality increase

and a 2% reduction in verticality oscillations for the

25,000 feet wire length and a 6% increase in mean

verticality and a 2% reduction in verticality oscillation

for the 20,000 feet wire length. For the scenarios tested,

the new drogue produced a 4% to 6% increase in the steady-

state verticality and a 2% reduction in the verticality

oscillations.
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VI. CONCLUSIONS AND RECOMOENDATIONS

The technique of superimposing the dynamics of the

classical dangling chain to the steady-state solution of the

long wire towed behind an aircraft has been validated for a

wide range of forcing functions and flight conditions. The

code was checked against a number of analytical solutions

and the final results show excellent correlation to flight

test derived data for the special case of the E-6A TACAMO

system. It is recommended that the models be considered for

application to ongoing aircraft and ship trailing wire

programs including the TACAMO program. It is further

recommended that for the special case of the TACAMO program,

the ongoing measurements of wind tunnel derived coefficients

for both the wire and drogue be completed and added to the

models to provide even closer correlation to the actual

flight hardware dynamics.

The anti-yoyo maneuver formulated in this dissertation

shows excellent potential for reducing oscillations of the

trailing wire towed behind an orbiting aircraft by 50

percent. It is suggested that this anti-yoyo scheme be

considered for addition during any future towplane autopilot

upgrades including the E-6A airplane. The flying drogue

shows promise for increasing the steady-state -erticality of

the wire on the order of four to six percent but is limited
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in its ability to actively control wire oscillations. For

systems using the cone shaped drogue, it is recommended that

a new drogue be designed which increases the steady-state

verticality.
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APPENDIX A

STATIC MODEL CODE

PROGRAM TAC17
C THIS PROGRAM IS AN ITERATIVE SOLUTION TO THE STEADY
C STATE TACAMO WIRE PROBLEM.
C THE COEFFICIENTS AND DIMENSIONS REFLECT THE NEW 3X7 RATTAIL
C WIRE.

C DECLARE AND DIMENSION VARIABLES.
C
C SCALAAS FIRST.
C
C Al, BI, Cl, A2, B2, C2 ARE THE TENSION TIMES THE SLOPE AT
C THE HALF STEP POINTS USED IN THE ITERATIVE SOLUTION.

REAL Al,Bl,Cl
REAL A2,B2,C2

C A22, B22, C22 ARE PLACEHOLDERS USED DURING THE ITERATIONS.
REAL A22,B22,C22

C A2A2, B2B2, C2C2 ARE SUMMERS USED IN AVERAGING.
REAL A2A2,B2B2,C2C2

C AC IS THE AERODYNAMIC CENTER OF THE DROGUE MEASURED FROM THE LE.
REAL AC

C ALFAL IS THE DROGUE ANGLE OF ATTACK.
REAL ALFAD

C ALTTP IS THE TOWPLANE ALTITUDE IN FEET.
REAL ALTTP

C ASFD IS THE AERODYNAMIC SIDEFORCE OF THE DROGUE DUE TO THE
C SIDESLIP ANGLE BETA.

REAL ASFD
C BETA IS THE SIDESLIP ANGLE OF THE DROGUE.

REAL BETA
C CDD IS THE CD FOR THE DROGUE.

REAL CDD
C CD IS THE WIRE DRAG COEFFICIENT.

REAL CD
C CF IS THE WIRE SKIN FRICTION COEFFICIENT.

REAL CF
C CFSIDE IS THE SIDEFORCE COEFFICIENT FOR THE WIRE DUE TO THE
C "MAGNUS EFFECT" PHENOMENON.

REAL CFSIDE
C CG IS THE CENTER OF GRAVITY OF THE DROGUE, MEASURED AFT OF THE
C TIP.

REAL CG
C CLALD IS THE LIFT COEFFICIENT CURVE SLOPE FOR THE DROGUE.

REAL CLALD
C CLALDM IS THE MAXIMUM LIFT CURVE SLOPE FOR THE DROGUE.

REAL CLALDM
C CMACD IS THE COEFFICIENT OF MOMENT AROUND THE AERODYNAMIC
C CENTER FOR THE DROGUE.

REAL CMACD
C D IS THE WIRE DIAMETER.

REAL D
C DELTAS IS THE INCREMENT OF WIRE LENGTH AT THE N'TH GRIDPOINT.
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REAL DELTAS
C G IS THE ACCELERATION DUE TO GRAVITY.

REAL G
C LEND IS THE LENGTH OF THE DROGUE.

REAL LEND
C LD IS THE LIFT PRODUCED BY THE DROGUE.

REAL LD
C MHU IS THE MASS OF THE WIRE PER UNIT LENGTH.

REAL MHU
C PHI IS THE ANGLE OF BL.NK OF THE TOWPLANE.

REAL PHI
C Q IS THE LOCAL DYNAMIC PRESSURE.

REAL Q
C RADTP IS THE ORBIT RA)IUS OF THE TOWPLANE.

REAL RADTP
C RHO IS THE LOCAL AIR DENSITY.

REAL RHO
C RNEW IS A PLACEHOLDER FOR R(1) WHILE AN UPDATE IS CALCULATED
C ON THE OUTER LOOP.

REAL RNEW
C STUFF1,2,3,4,5,6 ARE DUMMY VARIABLES FOR INTERIM CALCULATIONS.

REAL STUFF1, S" 'IFF2, STUFF3, STUFF4, STUFF5, STUFF6
C THEDOT IS THE -RBIT RATE IN RADIANS PER SECOND.

REAL THEDOT
C RR IS A CONSTANT USED TO START THE RADIAL COORDINATE
C CALCULATIONS AT THE DROGUE.

REAL RR
C SD IS THE MAXIMUM CROSS SECTIONAL AREA OF THE DROGUE.

REAL SD
C THTH IS A CONSTANT USED TO START THE THETA COORDINATE
C CALCULATIONS AT THE DROGUE.

REAL THTH
C VEAS IS THE TOWPLANE EQUIVALENT AIRSPEED.

REAL VEAS
C VTRUE IS THE TOWPLANE TRUE AIRSPEED.

REAL VTRUE
C WD IS THE WEIGHT OF THE DROGUE.

REAL WD
C ZNEW IS A PLACEHOLDER FOR Z(1) WHILE AN UPDATE IS
C CALCULATED ON THE OUTER LOOP.

REAL ZNEW
C
C NOW INTEGERS.
C
C N IS THE MAIN LOOP GRIDPOINT COUNTER.

INTEGER N
C COUNT AND COUNT1 ARE COUNTERS USED DURING AN AVERAGING PROCESS.

INTEGER COUNT, COUNT1
C INDEX CORRELATES THE GRIDPOINT ALTITUDE WITH THE INDEX OF THE
C CORRECT DENSITY VALUE.

INTEGER INDEX
C TICK COUNTS THE NUMBER OF OUTER LOOPS PERFORMED TO CONVERGENCE.

INTEGER TICK
C
C FINALLY ARRAYS.
C
C DENSITY(S) IS THE DENSITY MEASURED AT 1000 FEET INTERVALS.

REAL DENSTY(30)
C R(N) IS THE GRIDPOINT RADIAL POSITION IN FEET.

REAL R(200)
C T(N) IS THE GRIDPOINT TENSION. THE ACTUAL GRIDPOINT LOCATION
C IS AT N-i/".
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REAL T(200)
C THETA(N) IS THE GRIDPOINT ANGULAR POSITION IN FEET.

REAL THETA(200)
C Z(N) IS THE GRIDPOINT HEIGHT IN FEET.

REAL Z(200)

C SHAKE HANDS WITH THE OPERATOR.
WRITE(6,*),
WRITE(6,*p'
WRITE(6,*p-
WRITE (6, *)' NAVAL POSTGRADUATE SCHOOL
WRITE(6,*). CLASS OF 1992
WRITE(6,*)'
WRITE(6,*)'
WRITE(6,*), > >
WRITE(6,*) '*/

WRITE(6,*) *

WRITE(6,*p *

WRITE(6,*) '

WRITE (6, * )
WRITE(6,*) '
WRITE(6,*p * *<
WRITE(6,*)'
WRITE(6,*)' TAC17 Is THE STEADY STEADY STATE SOLUTION TO THE'
WRITE(6,*)' TACAMO WIRE PROBLEM.
WRITE(6,*)*
PAUSE

C OPEN THE DATA FILES.
C

OPEN (UNIT=11,FILE=*DATAOI.MAT')
OPEN (UNIT=12,FILE='DATAO2.MAT')
OPEN (UNIT=13,FILE='DATAO3.MAT')
OPEN (UNIT=l!,FILE='DATA04.MAT')
OPEN (tTNIT=15,FILE='DATAO5.MAT-)
OPEN (UNIT=16,FILE='DATA06.MAT')
OPEN (UNIT=17,FILE='DATAO7.MAT')
OPEN (UNIT=18,FILE='DATAO8.HAT')
OPEN (UNIT=19,FILE=*DATAO9.MAT')
OPEN (UNIT=20,F.LLE='DATAOO.MAT')

C FORMAT THE DATA FILES.
C DATAO1.MAT IS UNFORMATTED.
C
1 FORMAT(F12.6)
2 FORMAT(F5.1)

C INITIALIZE CONSTANTS.
C
C DROGUE CONSTANTS.
C

AC=23.5/12.0
CG=13 .80/12.0
CDDO0.41
CMACD=-.03
CLALDM=2 .0
LEND=31.71/12.0
SD=3. 14 159
WD=81.95

C
C GENERAL CONSTANTS.
C
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G=32.174
PI=3.1415926535879
COUNT=1
TICK=l

C
C WIRE CONSTANTS.
C

CD=1.03
CF=0.022
WRITE(6,*)'INPUT THE SIDEFORCE COEFF FOR WIRE='
READ(5,*)CFSIDE
D=0.1582/12
DELTAS=101.96
MHU=0.062107/G

C
C RR AND THTH ARE CONSTANTS USED TO START THE CALCULATIONS
C AT THE DROGUE.
C

RR=1.0
THTH=0.001

C
C READ THE DENSITY DATA FILE.
C

OPEN (31,FILE='DENSTY.MATV,STATUS=0OLD',FORM='FORMATTED',
ACCESS=ISEQUENTIAL ,RECL=5)

5 READ (31,2,END=6)DE;STY
GOTO 5

6 CLOSE(31)

C CALCULATE THE RADIUS OF THE TOWPLANE FLIGHT PATH AND THE THEDOT.
C THE PROGRAM WILL WORK AT ALL AIRSPEEDS AND ALTITUDES OF
C INTEREST AND FOR BANK ANGLES OF BETWEEN 5 AND 50 DEGREES. FOR
C BANK ANGLES ABOVE 45 DEGREES, AND AT TIMES AROUND THE LOCATION
C OF THE JUMP PHENOMENON, A SMALL ADJUSTMENT TO THE PROGRAM
C MAY BE REQUIRED. DOCUMENTATION WILL PRINT ON THE SCREEN IF
C THIS SITUATION OCCURS THAT WILL EXPLAIN HOW TO MAKR THE
C ADJUSTMENT.
C

WRITE(6,*)'INPUT AIRCRAFT KEAS, ALT IN FT, BANK ANGLE IN DEG'
C

READ(5,*) VEAS,ALTTP,PHI
C
C CONVERT KNOTS TO FEET PER SECOND.
C

VEAS=VEAS*6C76.1/3600.0
C
C CONVERT TO RADIANS.
C

PHI=PHI*2.0*PI/360.0
C
C LOCAL GRIDPOINT DENSITY. A FILE OF MEASURED DATA MAY BE USED
C OR STANDARD ATMOSPHERE DATA MAY BE CALCULATED. COMMENT OUT THE
C METHOD NOT CHOSEN.
C

INDEX=INT(ALTTP/1000.0)+1
RHO=DENSTY(INDEX)*0.0023769/1013.0

C
C RHO=0.0023769*(((518.69-0.0035662*ALTTP)/518.69)**
C ((-1.0)*(1.0/(-0.0035662*53.3))+1.0))
C
C RHO=0.002378*(1-0.006875*Z(N)/1000.0)**4.256
C
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C TRUE AIRSPEED FROM EQUIVALENT AIRSPEED.
C

VTRUE=VEAS/SQRT(RHO/0.0023769)
C
C CALCULATE TOWPLANE ORBIT RADIUS.
C

RADTP=VTRUE**2/(G*SQRT(1/(COS(PHI))**2-1))
C
C ORBIT RATE CALCULATION.
C

THEDOT=VTRUE/RADTP

C THE INITIAL POSITION AT GRIDPOINT 1.
C THIS IS AN INITIAL GUESS AT THE BOTTOM POSITION. THIS VALUE IS
C ITERATED TO MATCH THE BOUNDARY CONDITION POSITION AT THE
C TOWPLANE. THESE VALUES MAY ALSO BE ADJUSTED TO FORCE THE
C MULTIPLE SOLUTIONS. TO FORCE MULTIPLE SOLUTIONS THE INITIAL
C POSITION MAY BE CHOSEN AT OR OUTSIDE THE TOWPLANE RADIUS OF
C ORBIT.
C

THETA(1)=0.0
IF (PHI .GT. 32.0*2.0*PI/360.0) THEN
Z(1)=0.3*ALTTP

C Z(1)=0.4*ALTTP
k(1)=0.2*RADTP

C R(1)=1.6*RADTP
ELSE
Z(1)=0.6*ALTTP

C Z(1)=0.2*ALTTP
R(1)=0.6*RADTP

C R(1)=1.2*RADTP
ENDIF

20 CONTINUE
C
C AT THE DROGUE.
C
C GUESS AT THE POSITION USING THE FORCING FACTORS.
C

R(2)=R(1)+RR
THETA(2)=THE%(1)+THTH
Z(2)=Z(1)+SQRT(DELTAS**2-R(2)**2-R(1)**2+
2*R(2)*R(1)*COS(THETA(2)-THETA(1)))

C
C DENSITY AT GRIDPOINT 1. AGAIN, CHOOSE TABLE LOOKUP
C OR STANDARD ATMOSPHERE.
C

INDEX=INT(Z(1)/1000.0)+1
RHO=DENSTY(INDEX)*0.0023769/1013.0

C
C RHO=0.0023769*(((518.69-0.0035662*Z(1))/518.69)**
C ((-1.0)*(1.0/(-0.0035662*53.3))+1.0))
C
C RHO=0.002378*(1-0.006875*Z(N)/1000.0)**4.256
C
C LOCAL DYNAMIC PRESSURE.
C

Q=0.5*RHO*(R(1)*THEDOT)**2
C
C CALCULATE THE AOA AND SIDESLIP ANGLE OF THE DROGUE BY CALCU-
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C LATING THE MOMENT EQUATION RESIDUES AND CHOOSING THE AOA AND
C SIDESLIP ANGLE AT WHICH THE RESIDUE COMES CLOSEST TO VANISHING.
C ONE DEGREE INCREMENTS ARE CONSIDERED SUFFICIENT.
C
C INITIALIZE THE RESIDUE HOLDERS SINCE THEY ARE REUSED AT EACH
C NEW BOUNDARY SHOT.
C

STUFF2=1000.0
STUFF5=1000.0

C
C LOOP THROUGH EACH ANGLE FROM 0 TO 90 DEGREES.
C NEGLECT ALL OTHER ANGLES THROUGH PHYSICAL REASONING.
C

DO 50 N=1,90
C
C USE INDEX TO GET ANGLE IN RADIANS.
C

ALFAD=N*2.0*PI/360.0
BETA=ALFAD

C
C CALCULATE THE LIFT CURVE SLOPE AT THIS ANGLE.
C

CLALD=CLALDM*(PI-2.0*ALFAD)/PI
C NOW THE RESIDUES AT THIS ANGLE.
C
C FOR THE ANGLE OF ATTACK.
C

STUFF1=-CLALD*ALFAD*Q*SD*AC*COS(ALFAD)-CDD*Q*SD*AC*SIN(ALFAD)+
WD*CG*COS(ALFAD)+CMACD*Q*SD*LEND

C
C FOR THE SIDESLIP ANGLE.
C

STUFF4=WD*THEDOT**2*R(1)*CG*COS(BETA)/G-CLALD*BETA*Q*SD*AC*
COS(BETA)+CMACD*Q*SD

C
C SAVE RESIDUE AND ANGLE IF IT IS LESS THAN THE LAST.
C
C FOR THE ANGLE OF ATTACK.
C

IF (ABS(STUFFI) .LT. ABS(STUFF2)) THEN
STUFF2=STUFF1
STUFF3=ALFAD
ENDIF

C
C FOR THE SIDESLIP ANGLE.
C
c ELIMINATE THE POSSIBILITY OF MULTIPLE SOLUTIONS BEYOND 45
C DEGREES.
C

IF (BETA .GT. PI/4.0) THEN
GOTO 50
ENDIF
IF (ABS(STUFF4) .LT. ABS(STUFF5)) THEN
STUFF5=STUFF4
STUFF6=BETA
ENDIF

50 CONTINUE
C
C SELECT THE MINIMUM RESIDUE ANGLE OF ATTACK AS THE DESIRED VALUE.
C

ALFAD=STUFF3
BETA=STUFF6

163



C
C CALCULATE THE LIFT FORCE OF THE DROGUE DEFINED PERPENDICULAR TO
C THE RELATIVE FLOW AND CALCULATE THE LIFT AND SIDEFORCE OF THE
C DROGUE.
C

CLALD=CLALDM*(PI-2.0*ALFAD)/PI
LD=CLALD*ALFAD*Q*SD
CLALD=CLALDM*(PI-2.0*BETA)/PI
ASFD=CLALD*BETA*Q*SD

C
C CALCULATE THE DRAG FORCE OF THE DROGUE DEFINED PARALLEL TO
C THE RELATIVE FLOW.
C

DD=CDD*Q*SD

C NOW GET TENSION AT 1 AND POSITION AT 2 BY ASSUMING THE
C AERODYNMIC AND INERTIAL FORCES ON THE FIRST SEGMENT OF WIRE
C ARE SMALL COMPARED TO THE DROGUE FORCES.
C
C THE TENSION AT GRIDPOINT 1 MUST BALANCE THE VECTOR SUM OF THE
C FORCES UPON THE DROGUE IN ORDER TO SATISFY STATIC EQUILIBRIUM.
C

STUFF1=WD*THEDOT**2*R(1)/G
T(1)=SQRT((STUFFl-ASFD)**2+DD**2+(LD-WD)**2)

C
C ASSUME THAT THE FORCES ON THE FIRST SEGMENT OF THE WIRE ARE
C SMALL COMPARED TO THE FORCES ON THE DROGUE.
C

T(2)=T(1)
C
C THE RESULTANT FORCE MUST ALSO BE IN THE RECIPROCAL DIRECTION
C TO MAINTAIN STATIC EQUILIBRIUM.
C

R(2)=R(1)-(STUFFl-ASFD)*DELTAS/T(1)
THETA(2)=THETA(1)+DD*DELTAS/(T(1)*((R(1)+R(2))/2))

C
C USE THE TWO POINT SEGMENT LENGTH CONSTRAINT TO GET THE Z AT
C GRIDPOINT 2.
C

Z(2)=Z(1)+SQRT(DELTAS**2-R(2)**2-R(1)**2+
2*R(2)*R(1)*COS(THETA(2)-THETA(1)))

C

C ITERATE TO THE TOP.
C
C MAKE INITIAL GUESSES AT THE ITERATION VALUES FOR GRIDPOINT TWO.
C

Al=T(1)*(R(2)-R(1))/DELTAS
Bl=T(1)*(R(2)+R(1))*(THETA(2)-THETA(1))/(2*DELTAS)
Cl=T(1)*(Z(2)-Z(1))/DELTAS

C
DO 3500 N=3,200

C
C GUESS AT NEXT POINT. USE THE THREE POINT UNIT TANGENT VECTOR
C CONSTRAINT TO GET THE Z AT GRIDPOINT N.
C

R(N)=R(N-I)+R(N-1)-R(N-2)
THETA(N)=THETA(N-1)+THETA(N-1)-THETA(N-2)
Z(N)=4*DELTAS**2-(R(N)-R(N-2))**2-R(N-1)**2*
(THETA(N)-THETA(N-2))**2

C
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C PROTECT AGAINST A NEGATIVE RADICAND DURING THE ITERATIONS.
C

IF (Z(N) .LT. 0.0) THEN
Z (N) =0. 000001
ELSE
ENDIF
Z(N)=Z(N-2)+SQRT(Z(N))

C
T(N)=T(N-1)+MHU*DELTAS*G/ (R(N-1) *(THETA(N-1 )-THETA(N-2) )/DELTAS)

C THE INNER LOOP FOR MOVING FROM ONE GRID POINT TO THE NEXT.
C
C INITIALIZE COUNTERS FOR LATER USE.
C

COUNT=l
COUNT 1= 1

C
C INITIALIZE SUMMERS FOR USE IN AVERAGING LATER.
C

A2A2=0.0
B2B2=0 .0
C2C2=0 .0

C
1000 CONTINUE
C
C CALCULATE DENSITY.
C

INDEX=INT(Z(N) /1000.0)+1
R.HO=DENSTY( INDEX) *0.0023769/1013.0

C
C RHO=0.0023769*(((518.69-0.0035662*z(N))/518.69)**
C ((-1.0)*(1.0/(-0.0035662*53.3) )+1.0))
C
C RJHO=0.002378*( 1-0.006875*Z(N)/1000.0)**4.256
C
C INCREMENT COUNTER.
C

COUNT=COUNT+ 1
C
C NOW THE ITERATIONS.
C

STUFF1=SQPr(1-(R(N-1)**2*(THETA(N)-THETA(N-2))**2)/
:(4*DELTAS**2))
STUFF2C . 5*RHO*D*CD* (R(N-1 )*THEDOT) **2*STUFF1*
:R(N-1)*(THETA(N)-THETA(N-2))*(R(N)-R(N-2))/(4*DELTAS**2)
STUFF3=((T(N)+T(N-1))/2)*R(N-1)*(THETA(N)-THETA(N-2))**2/
:(4*DELTAS**2)
STUFF4=SIN( (Z(N)-Z(N-2) )/DELTAS)*CFSIDE*0.5*RHO*D*
:(R(N-1)*THEDOT)**2

A2=A1+(STUFF3-STUFF2+STUFF4-MHU*THEDOT**2*R(N-1) )*DELTAS

CI
STUFF1=SQRT(1-(R(N-1)**2*(THETA(N)-THETA(N-2) )**2)/
:(4*DELTAS**2))
STUFF4=(T(N)+T(N-1))*(R(N)-R(N-2))*(THETA(N)-THETA(N-2))/
:(8*DELTAS**2)
STUFF5=(R(N-1)**2*(THETA(N)-THETA(N-2) )**2)/
:(4*DELTAS**2)-l
82=Bl-(STUFF4+0. 5*RHO*D*(R(N-1 )*THEDOT)**2*
:(-CF+CD*STUFF1*STUFF5) )*DELTAS

C
STUFF1=SQRT(1-(R(N-1)**2*(THETA(N)-THETA(N-2) )**2)I
:(4*DELTAS**2))
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STUFF2=0 .5*RHO*D*CD* (R(N-1 ) THEDOT)**2*STTJFF1*
R(N-1)*(THETA(N)-THETA(N-2) )*(Z(N)-Z(N-2) )/(4*DELTAS**2)
C2=Cl+( -STUFF2+MHU*G) *DELTAS

C
T(N) =SQRT(A2**2+B2**2+C2**2)
R(N)=R(N-1 )+A2*DELTAS/T(N)
THETA(N)=THETA(N-1)+B2*2*DELTAS/(T(N)*(R(N)+R(N-1)))
Z (N)=Z (N-1)+C2*DELTAS/T(N)

C
C HERE, AGAIN APPLY A LITTLE TRICK. FOR 8088 SYSTEMS AND
C ON VERY RARE OCASSIONS FOR 16 BIT SYSTEMS, THE PROGRAM TENDS TO
C ENTER A LIMIT CYCLE LIKE BEHAVIOR IN TENSION AFTER 100-200
C ITERATIONS WHICH CYCLES EVERY 2-3 STEPS.
C IT IS SOLVED BY SIMPLY AVERAGING THE VALUES OVER 20
C STEPS ANY TIME 400 ITERATIONS ARE EXCEEDED. THIS SIMPLE
C SOLUTION HAS BEEN FOUND TO WORK FOR ALL CASES CHECKED.
C AGAIN, USING THE 16 BIT 486 TYPE M4ACHINE TO RUN THE SOFTWARE
C PRETTY MUCH PRECLUDES THE PROBLEM EXCEPT IN THE RAREST OF
C CIRCUMSTANCES.
C

IF (COUNT .LT. 400) THEN
GOTO 1200
ELSEIF (COUNTi .LT. 21) THEN
COUNT1=COUNT1+1
A2A2 =A2A2 +A2
B2B2=B2B2+B2
C2c2=C2C2+C2
GO TO 1200
ELSE
A2=A2A2/20. 0
B2=B2B2/2 0.0
C2=C2C2/2 0.0
GOTO 3000
END IF

1200 CONTINUE
C
C COMPARE TO THE CONVERGENCE CRITERIA.
C

IF (ABS((A2-A22)1A2) .GT. 0.0001) THEN
GOTO 2000
ELSEIF (ABS((B2-B22)/B2) .GT. 0.0001) THEN
GOTO 2000
ELSEIF (ABS((C2-C22)/C2) .GT. 0.0001)THEN
GOTO 2000
ELSE
GOTO 3000
ENDIF

C
2000 CONTINUE

A22=A2
B22=B2
C22=C2
GOTO 1000

C
3000 CONTINUE
C
C MOVE THE ITERATION VALUES FORWARD ONE TIME STEP.
C

Al =A2
B1=B2
Cl=C2

C
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C UPDATE THE POSITION VALUES AND THE TENSION USING ALL THE
C LATEST INFORMATION.
C

T(N)=SQRT(A2**2+B2**2+C2**2)
R(N)=R(N-1)+A2*DELTAS/T(N)
THETA(N)=THETA(N-1)+B2*2*DELTAS/(T(N)*(R(N)+R(N-1)))
Z(N)=Z(N-1)+C2*DELTAS/T(N)

C
C RESET THE SUMMERS FOR THE NEXT LOOP.
C

A2A2=0.0
B2B2=0.0
C2C2=0.0

3500 CONTINUE
C

C MATCH THE BOUNDARY CONDITION AT THE TOP. THAT IS, MATCH THE
C TOP POSITION OF THE WIRE TO THAT OF THE TAIL OF THE TOWPLANE.
C THE ERROR AT THE TOP IS INTERPOLATED AND USED AS A FACTOR TO
C ADJUST THE BOTTOM POINT. ON OCCASSION, THE MULTIPLICATIVE
C FACTORS BELOW MUST BE ADJUSTED TO ENSURE CONVERGENCE OF THE
C BOUNDARY CONDITION SHOOTING ROUTINE. WHEN THIS IS REQUIRED,
C THE PROGRAM PROVIDES GUIDANCE ON HOW TO PERFnRM THE ADJUSTMENTS.
C
C MATCH THE Z AT EACH CHOSEN RADIUS.
C

IF (ABS(Z(200)-ALTTP) .GT. 50.0) THEN
C

IF (R(1) .LT. 700.0) THEN
ZNEW=Z(1)+0.1*(ALTTP-Z(200))
GOTO 3550
ELSEIF (R(1) .LT. 1000.0) THEN
ZNEW=Z(l)+0.2*(ALTTP-Z(200))
GOTO 3550
ELSEIF (R(1) .LT. 1700.0) THEN
ZNEW=Z(1)+0.25*(ALTTP-Z(200))
GOTO 3550
ELSE
ZNEW=Z(1)+0.3*(ALTTP-Z(200))
ENDIF

C
3550 CONTINUE
C
C NOW ADJUST TO A NEW RADIUS.
C

Z(1)=ZNEW
RNEW=R(1)
GOTO 3600

C
ELSEIF (ABS(R(200)-RADTP) .GT. 10.0) THEN

C
IF (R(1) .LT. 800.0) THEN
RNEW=R(1)+0.07*(RADTP-R(200))
GOTO 3560
ELSEIF (R(1) .LT. 1000.0) THEN
RNEW=R(1)+0.15*(RADTP-R(200))
GOTO 3560
ELSEIF (R(1) .LT. 2000.0) THEN
RNEW=R(1)+0.15*(RADTP-R(200))
GOTO 3560
ELSE
RNEW=R(1)+0.3*(RADTP-R(200))

167



ENDIF
C
3560 CONTINUE
C

R(1)=RNEW
ZNEW=Z(1)
GOTO 3600
ELSE
GOTO 3700
ENDIF

C
3600 CONTINUE
C

R(1)=RNEW
Z(1)=ZNEW

C
3640 CONTINUE
C
C PRINT SOME OUTPUTS USEFUL IN KEEPING UP WITH HOW THE BOUNDARY
C CONDITION SHOOTING ITERATIONS ARE PROGRESSING.
C

WRITE(6,*) 'R(1),Z(1)=',R(1),Z(1)
WRITE(6,*) *R(200),Z(200),T(200)=',R(200),Z(200),T(200)
WRITE(6,*) 'RADTP,ALTTP=',RADTP,ALTTP
WRITE(6,*)'*************************'

C
C JUST BOOKKEEPING HERE FOR THE NEXT LOOP.
C

DO 3650 N=2,200
R(N)=0.0
THETA(N)=0.0
Z(N)=0.0
T(N)=0.0

C
3650 CONTINUE

TICK=TICK+1
C
C CHECK TO SEE IF THE UPDATE MULTIPLIERS ABOVE HAVE PLACED THE
C BOUNDARY SHOOTING PROCESS INTO AN "INFINITE LOOP" AND IF SO
C STOP THE PROCESS AND TELL THE OPERATOR HOW TO FIX THE PROBLEM.
C

IF (TICK .GT. 400) THEN
WRITE(6,*)'YOU HAVE EXCEEDED 400 ATTEMPTS TO SHOOT THE BOUNDARY'
WRITE(6,*)'CONDITION AT THE TOP. TO MAKE THE PROGRAM RUN
WRITE(6,*)'CORRECTLY YOU MUST ADJUST THE MULTIPLIER'
WRITE(6,*)'COEFFICIENTS IN THE PROGRAM BETWEEN LINES 3500 AND'
WRITE(6,*)'3560. NOTE THE PRINTOUT OF R(1) AND Z(1) ABOVE AS'
WRITE(6,*)'THEY FLOP BACK AND FORTH ON EITHER SIDE OF THE '
WRITE(6,*)'CORRECT VALUE. FIRST TRY TO HALVE THE COEFFICIENT'
WRITE(6,*)'ASSOCIATED WITH THE P(1) VALUES YOU SEE (NOTE THE'
WRITE(6,*)-R(1) .LT. STATEMENT). IF YOU ARE STILL NOT '
WRITE(6,*P'CONVERGING, TPY THE Z(1) COEFFICIENT. YOU WILL HAVE'
WRITE(6,*)'TO RE-COMPILE AFTER EACH FIX. I RECOMMEND THAT'
WRITE(6,*)'YOU WRITE DOWN THE ORIGINAL VALUES AND RETURN THEM'
WRITE(6,*)'WHEN YOU ARE DONE. THESE MULTIPLIERS GIVE YOU THE'
WRITE(6,*)'QUICKEST CONVERGENCE FOR THE MAJORITY OF CASES OF'
WRITE(6,*)'INTEREST.'

C
GOTO 6000
ELSE
ENDIF

C
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GOTO 20

3700 CONTINUE
WRITE(6,*p'NUMBER OF OUTER LOOPS=',TICK

C WRITE OUTPUT TO THE THREE DATA FILES.
C FIRST, CONVERT SOME BACK TO MORE RECOGNIZABLE FORMS.
C

* ~VEAS=VEAS*3600 .0/6076.0
PHI=PHI*360.0/ (2. 0*PI)

C
C NOW, WRITE SOME OF THE CONSTANTS TO FILES.
C

WRITE(11,*) 'TOWPLANE KEAS=',VEAS,*KTS'
WRITE(11,*) ITOWPLANE ALTITUDE= ,ALTTP,IFEET,
WRITE(11,*) 'TOWPLANE BANK ANGLE=I,PHI,'DEGREES'
WRITE(11,*) 'TOWPLANE ORBIT RADIUS=',RADTP,IFEET'
WRITE(11,*) 'TOWPLANE ORBIT RATE=',THEDOT,'RAD/SEC'
WRITE(11,*) 'DROGUE ANGLE OF ATTACK=I,ALFAD,'RAD'
WRITE(11,*) 'DROGUE SIDESLIP ANGLE=',BETA,*RAD'
WRITE(11,*) 'DROGUE ORBIT RADIUS=',R(l),*FEET'
WRITE(11,*) 'DROGUE AIRSPEED=',THEDOT*R(1), 'FT/SEC'
WRITE(11,*) WVERTICALITY=.,(ALTTP-Z(1))/(200.0*DELTAS)
WRITE(11,*) 'DROGUE/TOWPLANE SEPARATION=*,ALTTP-Z(1),'FEET'
WRITE(16,1) THEDOT
WRITE (17, 1) CLALD*ALFAD
WRITE(19,1) VTRUE
WRITE(20,1) PHi*2.O*PI/360.O

C
C WRITE THE POSITION AND TENSION TO DATA FILES.
C

DO 4000 1=1,200
WRITE(12,1) R(I)
WRITE(13,1) THETA(I)
WRITE(14,1) Z(I)
WRITE(15,1) T(I)

4000 CONTINUE

C BUILD A FILE THAT CONTAINS THE ANGLE OF ATTACK OF EACH WIRE
C GRIDPOINT. NOTE THAT THIS DOES NOT INCUDE THE FIRST OR LAST
C POINTS.
C

DO 5000 I=2,199
STUFF1=ACOS(R(I)*(THETA(I+1)-THETA(I-1))/(2*DELTAS))
STUFF1=STUFF1*360/ (2*PI)
WRITE( 18, 1)STUFF1

5000 CONTINUE

C THESE FILES CONTAIN THE REYNOLDS NUMBER AND TRUE AIRSPEED AT
C EACH GRIDPOINT.
C

OPEN (UNIT=70,FILE='VTRUE.MAT-)
OPEN (UNIT=71,FILE=IRE.MATI)
DO 5100 I=1,200
INDEX=INT(Z(I) /1000.0)+1
RHO=-DENSTY(INDEX) *0.0023769/1013 .0

C RHO=0.002378*( 1-0.006875*Z(N) /1000 .0)**4.256
C RHO=0.0023769*(((518.69-0.0035662*Z(N))I518.69)**
C ((-1.0)*(1.0/(-0.0035662*53.3) )+1.0))

VTRUE=R( I) *THEDOT
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STUFF1=RHO*VTRUE*D/ .00000038
WRITE(70, 1)VTRUE
WRITE(71, 1)STUFF1

5100 CONTINUE
CLOSE(70)
CLOSE(71)

WRITE(6,*p'
WRITE(6,*P'RUN COMPLETE3II-
WRITE(6,*)*
WRITE(6,*)'THE OUTPUT IS INCLUDED IN THE FOLLOWING:'
WRITE(6,*P'DATA01.14AT CONTAINS MISCELLANOUS VALUES OF INTEREST.'
WRITE(6,*)'DATAO2.MAT CONTAINS EACH GRIDPOINT RADIAL COORD.-
WRITE(6,*).DATAO3.KAT CONTAINS EACH GRIDPOINT THETA COORD.'
WRITE(6,*)*DATAO4.MAT CONTAINS EACH GRIDPOINT Z COORD.,
WRITE(6,*)*DATAO5.MAT CONTAINS EACH GRIDPOINT TENSION VALUE.'
WRITE(6,*).DATAO6.M4AT, DATA07.MAT AND DATAOO.AAT CONTAIN VALUES'
WRITE(6,*).REQUIRED BY THE DYNAMIC SOLUTION PROGRAM.'
WRITE(6,*)'DATA08.MAT CONTAINS THE TRUE ANGLE OF ATTACK OF*
WRITE(6,*p'GRIDPOINTS 2 THROUGH 199. VTRUE MHAT CONTAINS THE'
WRITE(6,*)'TRUE AIRSPEED AT EACH GRIDPOINT AND RE.MAT CONTAINS'
WRITE(6,*)'THE REYNOLDS NUMBER AT EACH GRIDPOINT.,

6000 CONTINUE
END
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APPEFJIX B

DANGLING CHAIN MODEL DEVELOPMENT

The derivation of the classical dangling chain problem

was performed for the case of a vertically hanging chain.

The classical dangling chain problem was later modified to

include a mass at the end of the chaii. and then for use in

the case of the wire towed behind an orbiting aircraft. In

this initial, classical model, the influences of the

circular orbit, including the aerodynamic effects and

steady-state model tension distribution were ignored. The

purpose of studying the classical model was to provide an

insight into the physical properties and the equations

required for the towed wire and to provide analytical

solutions with which to validate the portion of computer

code developed in Chapter IV.

Examining Figure B.1, the coordinate system origin was

at the free end of the wire at x=O with the fixed upper end

a x=L. The displacement from equilibrium was defined as

v(x,t). Note that the spatial dip-4ance along the classical

dangling chain was defined as x vice the S used in Chapter

IV. This was done to distinguish clearl, between the

classical dangling chain equations and the equations for the

towed wire.
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x=O I concenlrated mass

Figure B.1: Dangling Chain Model

A time independent tension distribution, T(x), was

defined for the dangling chain. T(x) could be any arbitrary

distribution but was time independent in the classical

problem. The validity of the use of the time independent

T(x) vice the fully time dependent T(x,t) for the case of

the towed cable was addressed in Chapter IV. Later in this

appendix, a specific tension distribution will be defined

for use in the solution of the classical equations. p was

defined as the mass per unit length of chain and the

displacements from equilibrium, v(x,t), were assumed

"small". The validity of this assumption was addressed in

Chapter IV for the case of the towed cable. The net lateral

force on an element of hanging chain is given by equation
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(B.1). The net lateral force in (B.1) was equilibrated by

the inertial reaction to provide the initial form of the

hanging chain equation of motion in (B.2).

[TX av•X,x t) , 8 71x ay(X,a t) )dx]-[7x a Vx'a t) aj = •( ay(X,a t) dx

(B.1)

a2x t ) dx= ax (B.2)
1A a t 2 C X 7 ax )

The arbitrary forcing function, Q(x,t), was defined,

which was perpendicular to the wire at any point and was in

terms of force per unit length at time t. The origin of

this forcing function for the towed wire case will be

discussed in detail in Appendix C. In equation (B.3),

Q(x,t) was added directly as a term to equation (B.2) above.

Note that since dx was included in each term, it was

eliminated from the expression.

2V(Xt) =a av~x, t)\+•x, t) (B.3)

at 2  ax ax )

Volterra and Zachmanoglou outline the boundary

conditions for the classical dangling chain or vibrating

string problem with one fixed and one free boundary

condition [Ref 19:pp.418-420]. 1 Assuming that the chain

begins at rest and for the equilibrium shape (vertically

1 Volterra and Zachmanoglou also defined as a boundary

condition that the partial derivative with respect to x had to
vanish at the free end. This was incorrect as will be shown later
in this appendix.
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hanging), the formulation of the classical dangling chain

problem was written as in equation (B.4)

IL a2 ____tY C VX'at 2  ax( ax ) +Qxt)
B.C. i(L, t)=0 XO, t)-Bounded (B.4)

I . x, 0)=0 F(,0=

The classical dangling chain boundary conditions were

then modified slightly to account for the presence of the

drogue at the bottom of the wire. Remembering that the

displacements for the dangling chain were defined lateral to

the wire, the lateral component of the tension distribution

when added to the forcing function at the drogue, had to

balance the acceleration of the drogue. Thus a third

boundary condition was immediately written. The modified

governing equation with initial and boundary conditions is

provided in equation (B.5) where WD was the weight of the

drogue.

2v(x' t) =•a•a Výx' t) + x, t)
at 2  8x ax

B.C. i(L, t)=O výO, t)--Bounded
o)- _ o -W a2 _ _° _, t) (B.5)

ax g dc2

I.C. •x, 0)-=-0 -0 t(x, =

Next, the classical problem was modified for use in the

towed wire problem. The coordinate system was reversed with

the upper gridpoint at S=O and the lower gridpoint at S=L.

Note that both the classical problem and the towed wire

problem used a wire length of L. As mentioned above, the
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spatial distance along the wire was re-defined as S vice x

and the initial condition was defined as the steady-state

wire position, f(S) vice a zero displacement. The tension,

T(S), was the steady-state model tension distribution. The

reformulated problem statement is presented in equation

(B.6).

R a2St) =a 7t

B.C at 2  as ( as t))+ 5
B. C. 10, t)=O vL, t)-Bounded

a ).•D•t w L, t) (B.6)
g at 2

I.C 1ý' 0 = ~s)av (,0) =0

In the towed wire problem, two separate, orthogonal

solutions to equation (B.6) were required to model the two-

dimensional displacement of each point around the

equilibrium position. The AS compatibility condition for

the first internal gridpoint and the definition of the unit

tangent vector for all subsequent gridpoints were then used

to make the solution into a three-dimensional model. The

procedure is fully discussed in Appendix D when the

superposition formulas are developed.

The classical dangling chain problem both with and

without a concentrated mass at the end was solved

analytically to provide physical insight into the problem of

the trailing wire antenna. The case where the concentrated

mass was not present was solved by beginning with the

definition of the dangling chain provided in (B.4). As
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mentioned earlier, a specific tension distribution was

chosen for solving the classical problem. A uniform tension

distribution was assumed of the form T(x)=pgx. Limiting the

analysis to the homogeneous solution allowed the forcing

function, Q(x,t), to equal zero. Substituting for T(x) in

equation (B.4), eliminating Q(x,t) and canceling p from both

sides resulted in equation (B.7). Equation (B.7) was solved

using the technique of separation of variables.

v2 a xaV8 (B.7)
at 2 g- -8x)

Assuming a solution of the form of equation (B.8), and

substituting into (B.7) resulted in (B.9), where the

exponential terms were canceled from both sides. Applying

the chain rule to the right hand side of (B.9) and

simplifying, resulted in (B.10), which was beginning to take

the form of Bessel's equation.

V(x, t) = TX)e 1 W (B.8)

-Kw e2 e 9'Xgj(x•(tIx)ei~ (B.9)

xd• 2 +W2 g =0 (B.10)dx2 dx g

Defining k 2=0 2 /g, a change of variable was performed in

terms of z=2kx½ by first, expanding each derivative in

(B.10) in terms of z. For example, the term dV/dx was
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expanded in (B.11) and the substitution for z was made to

get the middle term in (B.10). The process was repeated for

the second derivative term, substituted into (B.10) and the

entire equation multiplied through by x/k 2 to obtain (B.12)

which was in the form of Bessel's equation. The solution of

this form of Bessel's equation was in terms of Bessel

functions of the first and second kind of order zero and the

solution was written as in (B.13) where z was replaced by

its definition and thus V was again in terms of x.

dV dV dz (B.11)
dx dz dx

Z2 d2--- V +ZdV+z2V=O (B.12)
dz2  dz

V~x)=A-To(2G (a X+BYO(2(L)ý X (B.13)

Now, it was a property of Ym(Z) that it approaches w as

z approaches zero and thus by assuming that only bounded

solutions were physically possible in this case, it could be

seen that B had to equal zero. For the first boundary

condition to be satisfied, wn in (B.14) had to take on only

those values such that the Bessel function had a zero

crossing. The zero crossings may be derived via table look

up or any number of standard software packages. There were

an infinite set of these crossings corresponding to the
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infinite set of eigenvalues. The three lowest eigenvalues

are shown in (B.15) for a sample wire length of L=20,290

feet. The eigenvector was derived by substituting the

eigenvalue, on, into (B.14) and plotting V(x). The

homogeneous solution consisted of a mixture of this infinite

set of eigenvectors.

Kx =Am7 2 wný g)(.4

2.40483ý 32.2 =0.0479006 sec-1
2 L

5.52008ý 32.2 =0.109952 sec-1  (B.15)
2 L

S8.65373 =32.2 =0 .172369 sec _1

2 L

Next, the dangling chain problem was solved for the case

where a concentrated mass was present at the end of the

chain or wire as shown in equation (B.5). The concentrated

mass corresponded to the drogue at the bottom and was of

mass WD/g. The concentrated mass was reexpressed as an

equivalent length of chain with density p per unit length as

in equation (B.16). The tension variation was adjusted for

the influence of the concentrated mass as in equation

(B. 17).

efJWD (B.16)
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fox Ox-sL

Applying the same procedure outlined in the development

of equations (B.7) through (B.10), the governing

differential equation in (B.17) was re-expressed in terms of

the modified tension equation in (B.18) Note that in this

case, equation (B.18) did not apply to the portion of the

chain beyond the original length, L. Applying the

transformation y=x+Leq and dx=dy resulted in (B.19).

Stating the boundary conditions in terms of the variable y

resulted in equation (B.20).

d dVA] CA)
2

dx[+Leq) dx j gx)= (B.18)
for O<x<L

dry dy I2 g

f orLeq< Y• L + Leq

WY)o at Y:L+Lq

V=O at y=L+L 
(B.20)

dy g

The general solution of equation (B.19) is as shown in

equation (B.21) with the requirement that the boundary

conditions of (B.20) must be met. Unlike the previous

problem without the concentrated mass, the boundary

conditions do not allow the elimination of the Y0 term.

179



KY) =AJO(2w()\ 7 +BY ( 2 con>Jzg) (B.21)

The requirement of concurrent satisfaction of the

boundary conditions in (B.20) and the general solution of

(B.21) allowed the eigenvalue problem to be stated as shown

in equation (B.22).

I~_ a J0(a) Yi(a)_- Ia Yd)ýj=10
J-2 2 (

2 L+L (B.22)
where L=w-

g
Le

and a=2a eq

The characteristic equation of the coupled

transcendental functions presented in (B.22) was solved to

obtain the first three eigenvalues as shown in equation

(B.23) for a test case of 20,280 feet of wire, a drogue of

81.95 pounds and the 3X7 wire. The equivalent length, Leq,

of the drogue for this case was 1319 feet which changed the

first few modal frequencies on the order of two percent.

(0=0.047 sec-1

2=0.11l sec-1  (B.23)

W3=0.181 sec-$

As mentioned earlier, Volterra and Zachmanoglou defined

a third boundary condition on the dangling chain problem as

shown in equation (B.24). Careful examination of this
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condition showed it to be incorrect. Equation (B.25) was

the analytical solution for the dangling chain as derived

earlier in this appendix.

VIL, t)=O, v(O, t)--Bounded, a•o, t)= 0  (B.24)' ax

V•x) =AJO(2 w ) (B.25)

For (B.24) to be true, dJ 0 (O)/dx=O had to be true.

Defining z as in equation (B.26) and applying the chain rule

to find the derivative of (B.25) with respect to x resulted

in (B.27). Performing the derivatives and substituting

(B.26) into the result provided (B.28). In the limit, as x

approached 0, (B.28) approached dJ 0 (O)/dx=0/0 requiring

L'Hospital's rule.

z=2(c (B.26)
gg

dV~x) =A dJ°() =A dJ°(z) dz (B.27)
dx dx dz dx
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J, 2 cW)xVC) (B.28)

dx

Multiplying (B.28) by z/z and applying L'Hospital's rule

as well as the identity in equation (B.29) [Ref. 20:p. 3]

resulted in equation (B.30). Equation (B.30) resulted in

(B.31) and showed that the slope at the end of the wire was

not zero but in fact finite. [Ref. 15]

d z•(z)=z•(z) (B.29)
dz

d - g

d [2cx]

dxx

for z=x=O

dJ0(O) =0  (B.31)
dx

The classical, analytical solution for the dangling

chain did not account for a number of factors germane to the

trailing wire antenna problem. The assumption of a linear

tension distribution based upon the mass of the chain was in

error as seen when compared to the static model tension

distribution in Chapter III. Additionally, the classical

dangling chain did not include a dissipation mechanism such

as might be due to viscous damping or aerodynamic
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influences. Finally, the real problem was three-dimensional

in nature and could not be adequately modeled by the

classical formulation. Despite these shortcomings, the

classical problem was invaluable for providing insight into

the physics of the problem and the form of the equations to

use. These insights were applied several times in Chapter

IV.

The dangling chain portion of the dynamic model was

validated by modifying the code to simulate the case of the

dangling chain without the concentrated mass on the end of

the wire. Equation (B.14) indicated that for an arbitrary

initial wire shape, solving the analytical, homogeneous

solution would require the combination of some number of the

infinite set of eigenvectors corresponding to the infinite

set of eigenvalues, wn" Comparison of the computer

simulation homogeneous response to the analytical

homogeneous solutions would then be a very tedious task.

Due to the principle of orthogonality, a much simpler

alternative existed whereby the initial gridpoint

distribution was selected to be in the exact shape of an

eigenvector [Ref. 15]. When then allowed to oscillate, a

good numerical approximation was expected to repeat the same

eigenvector shape at the frequency on, the eigenvalue or

eigenfrequency. This was the technique chosen.

Equation (B.15) contains the first three eigenvalues for

a wire length of 20,290 feet. The first two eigenfunctions
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are plotted in Figure B.2. The solid line eigenvector shape

in Figure B.2 wds used as the initial wire distribution.

Figure B.3 was the time history of the displacement of the

free end gridpoint. Figure B.3 shows that the free end

gridpoint oscillated with a period equal to 131 seconds

which was the same as the period of ol, the first

eigenfrequency. The process was repeated for 02 and the

dashed line eigenfunction of Figure B.2. Figure B.4 is the

resulting time history of the free end gridpoint. The

period of 57 seconds corresponded to the period of the

eigenfrequency. Both Figures B.3 and B.4 show that the

homogeneous oscillations continued to oscillate at the

eigenfrequency without the intrusion of harmonics indicating

that the model and the governing equation shared the same

two eigenfrequencies and eigenvectors.
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FIRST TWO DANGLING CHAIN EIGENFUNCTIONS

'Z FREE
7 'END

0.4 first mode

0.2-

SFIXED
I END

second mode
-0.2 "

0 0.5 1 1.5 25

position along wire (feet) x1U'

Figure B.2: First Two Dangling Chain Eigenfunctions
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Figure B.3: Time History of Homogeneous Response of Free End
Gridpoint as Modeled by Simulation
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Figure B.4: Time History of Homogeneous Response of Free End
Gridpoint as Modeled by Simulation
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APPENDIX C

FORCING FUNCTION DEVELOPMENT

In applying the wind as a forcing function to the wire

dynamics problem, it was important to first note that under

the assumption of a steady-state angle of bank turn, the

towplane moved with the airmass, and so the forcing function

due to the wind was in fact zero at the towplane. The

drifting towplane, in a conctant angle of bank orbit, is

depicted in Figure C.l. The required apparent forcing wind

was then derived by adding the negative of the wind vector

at altitude to the winds at each gridpoint including the

towplane end gridpoint.

With the apparent forcing wind defined, an arbitrary

reference system was set up such that the towplane was

aligned with the heading of 000 at time zero. This was

possible because the correlation between the defined

cylindrical coordinate system and the compass direction was

completely arbitrary. The convention chosen for the

definition of the wind heading was that the wind direction

was the heading from which the wind came from vice the

actual direction that the wind vector pointed. This was the

normal aeronautical definition used in the flight test data

that will be discussed later. Equation (4.1), the governing

equation of the dangling chain model, was derived assuming
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AT TOWPLANE

Figure C.1: Towplane Drift Due to Wind During Steady State
Turn

that all displacements, as well as the forcing function,

Qn,m, were perpendicular to the chain. Qn,m was thus defined

as perpendicular to the wire tangent vector. The forcing

function was defined from the apparent forcing wind. Since

the forcing function was defined perpendicular to the wire,

only that component of the apparent forcing wind

perpendicular to the wire was used to calculate the forcing

function. The orientation of the apparent forcing wind with

the wire varied harmonically as the wire orbited within the

airmass. The calculations were performed for each

orthogonal component of the oscillation and so one

harmonically varying wind induced forcing component was

described using a sine function while the second was

described using a cosine function. Two adjustments in
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phasing were required to the harmonic functions. As

mentioned above, the apparent forcing wind was resolved into

components perpendicular to the wire. These calculations

were performed for the case where the gridpoint ee vector

was oriented along the 000 heading described earlier in this

paragraph and assuming that the apparent forcing wind was

coming from the 000 direction. The first phase correction

was the 0 coordinate at each gridpoint to account for the

fact that for every gridpoint except the towplane's, the

wire shape had to rotate through the 0 angle for ee to be

aligned with the 000 heading. The second phase correction

accounted for the wind heading at each gridpoint being in

general, different from 000. Finally, the aerodynamic

coefficients of the wire were used to convert the forcing

wind into a force vector, which was the true forcing

function desired.

0' was defined as the combined phase shift requirement

at the current gridpoint, 0 as the current gridpoint angular

coordinate and Ow as 360 2 wind direction. Next, An and Bn

were defined as the orthogonal components of the maximum

possible perpendicular component of the forcing function, in

pounds force, at each gridpoint. Arbitrarily, An was

assigned to correspond to the radial coordinate direction

and Bn to the 0 coordinate direction. These were the

forces that would exist upon a vertically oriented wire at a

time when the orthogonal component of the apparent forcing

190



wind of interest was at a maximum. Since the wire was

axisymmetric, An=Bn. Next, V0n was defined as the magnitude

of the component of Bn perpendicular to the unit tangent

vector at each gridpoint n and VRn as the corresponding An

component. Finally, note that in keeping with the small

displacement assumptions, the entire forcing function

development made use of the steady-state geometry whenever

possible in order to simplify the final expressionq. The

process was begun by developing the 0 component of the

forcing function. The central difference approximation of

the definition of the unit tangent vector is repeated in

(C.1) and used -o determine the component of the maximum

value of the forcing function resolved along the wire unit

tangent vector in (C.2,.

R-R-i+R 2 n-l n-I e. nl+1 Zn-i (C. 1)
el 2 A S n e 2AS ) +( 2A s)k

- BnR^O-1-O "-1) (C.2 )
Bne8 * esn- 2AS

(C.3) was then the component of the maximum value of the

forcing function perpendicular to the wire. (C.4) was the

central difference approximation of (C.3). Equation (C.5)

was a rearranged version of (C.4) in the form in which it is

used.
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-7n=Bn-Te-(BnTe'EQ.enesn (C. 3)

SnnOfl~ 2AS )X2AS )R 2AS 2AS)

(C.4)

Ve-•=-BnRXO.,÷-e,-1) (Rn÷i-Rn-1)- + B+_B4 RWO,,÷ -On-1) )2 ee

-7en 2A S 2A S R n 2AS (.5B.rA,%.-%,-()) Z,,.•z-Z°_ -__

2AS n- 1 )e

Equation (C.6) was needed because the dynamic model only

required the magnitude of the vector derived in equation

(C.5). The process was repeated for the second orthogonal

component in (C.7) to (C.9). (C.10) was the maximum forcing

function in terms of the apparent forcing wind velocity and

aerodynamic coefficients and (C.11) and (C.12) are the final

form of the forcing function equations.

V.1 2= BJ R4012+l -On1) (R~ -ni ~2(+ (Rnl-n!)2 1+( 2AS 2AS ) 2AS (C.6)

( nR -i"L-n-1) (Zn+I-Z "-1) 2

2AeSe 2AS )
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V AeR- A{ R 2+n )( - )e0 (C.8)

A4 22AS 2AS )K

Vp=A,, _R_+,-Rn-1• )2 + (Ro.•'-Ro-')R +°•e°•/
Va=An 11 2AS 2AS n 2AS + (C.9)

S(R n ÷I- R n-l ) (Z n 'i - Z n. - i) I 22AA
2 2AS ) n1I

1 PnVwPCD+Cf) (C. 10)

T-,ýx)- vans in( t-e0 (C. 11)
whereo'=e-e•

C)= VenCO0 s(Ot- (C. 12)

Equations (C.6), (C.9), (C.10), (C.11) and (C.12)

provided a complete description of the forcing function

caused by the apparent forcing wind at each gridpoint. Wind

data may be contrived or radiosonde derived flight test data

may be used. The simulation programs allow for winds to be

defined internally to the program or imported as data files.
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APPENDIX D

SUPERPOSITION EQUATIONS DEVELOPMENT

The development of the superposition equations was begun

by restating the definition of the unit tangent vector in

equation (D.1) and defining the Xnm component as being

contained in the eR, ee plane, that is, orthogonal to the Z

axis. (D.2) was the normalized components of the unit

tangent vector projected onto the eR, e0 plane. The eR and

ee components of Xn,m were then derived by crossing (D.2)

with the eK vector and then multiplying the resulting

vector, which was still a unit vector, by Xn,m in (D.3).

The final result is in (D.4).

" 5 e 2A- S e 2AS )eK

projection= 2A S , R -2AS (D.2)

2As ) 2As

X'dmrXn,. [projection X TK (D.3)
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. _ __._2_s (D.4)

Rn-i n-I 2' o--n1
2A ) 2As

Yn,m' was derived by noting that Xnm' and Yn,m' are

orthogonal. Equation (D.4) was changed into a unit vector

by dividing by IXn,ml and crossed with the wire unit tangent

vector to get the unit vector along the Yn,m' direction, as

in (D.5). Remember that the cross product of orthogonal

unit vectors is already of unit magnitude and does not

require subsequent normalizationi. Multiplying by Yn,m and

performing the cross product resulted in Yn,m' as in (D.7)

where same is defined in (D.6).

e/n = exr Xesn"m (D.5)

same=ý R2 -en-l ))2 (D.6)

2AS ) 2AS )
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(Rn.:-Rn_, ] Z°..-Zn_-1
y~~mynm[ 2AS ,)( 2AS e-R

same

R 0°._,--0o ,) no.-zn- (D.7
2AS I 2AS e-

same
nI \n- 2 / - R x2

+ (R02S )_ 2AS 1 )
same K

The next step was to add the eR and ee components of

equations (D.4) and (D.7) to the steady-state Rn and On

coordinates at each gridpoint to generate the superimposed
RSn,m and OSn,m coordinates as in (D.8) and (D.9).

Substitutions were made from (D.4), (D.6) and (D.7) to get

(D.10) and (D.11), the final superposition equations in

their implemented form.

RS,, =Rn +x-+ .TR -TR (D.8)

OSnM=en+ e - e e (D.9)

' " 2 AS same +n,. (2AS)2same
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,S e ( iR, AS ne1n'ii -n-{)(Zn' -Z 1-i) (D.'11)()Sn',=n+Xn" Rn2AS samel-Y,ý" (2 A S)2 same

The AS constraint was then used to generate the

superimposed Z coordinate for the first internal gridpoint

as repeated in (D.12) and the central difference

approximation of the unit tangent vector, repeated in

(D.13), was solved for Znm for all subsequent gridpoints.

Zn. Z .I±/4 AS2 -(Rn,,. 1 -R_) 2 -R2(2 -1 nI - 1)2 (D. 12)

In. 1'n -1I) +R2(O-1O- 2' i+i' Z. n-fl 2 (D.13)
2AS n 2AS 2AS -
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APPENDIX E

DYNAMIC MODEL CODE

PROGRAM TAC29
C THIS PROGRAM SOLVES THE DANGLING CHAIN PROBLEM FOR A
C PROVIDED TENSION DISTRIBUfION, INITIAL POSITION AND FORCING
C FUNCTION AND THEN SUPERIMPOSES THE SOLUTION UPON THE WIRE
C STEADY STATE SOLUTION. A CENTRAL DIFFERENCE SCHEME IS USED.
C THIS MODEL DEPARTS FROM THE CLASSIC DANGLING CHAIN IN
C THAT PSEUDO-DAMPING IN THE SENSE OF LATERAL DRAG DUE TO THE
C OSCILLATION IS ACCOUNTED FOR AS WELL AS RESTORATIVE FORCES DUE
C TO THE CHANGE IN THE ANGLE OF ATTACK IN THE DISPLACED STATE.
C THE PROGRAM REQUIRES THE OUTPUT FILES FROM TAC17. ANTI-YOYO
C IS AVAILABLE FOR USE.

C DECLARE AND DIMENSION VARIABLES.
C
C SCALARS FIRST.
C
C ACCD IS THE ACCELERATION OF THE DROGUE AT EACH TIME STEP.

REAL ACCD
C ALFAS IS THE ANGLE OF A'. ACK OF THE SUPERIMPOSED WIRE AT EACH
C GRIDPOINT.

REAL ALFAS
C CD IS THE PERPENDICULAR COEFFICIENT OF DRAG FOR THE WIRE.

REAL CD
C CDD IS THE COEFFICIENT OF DRAG FOR THE DROGUE.

REAL CDD
C CF IS THE COEFFICIENT OF SKIN FRICTION FOR THE WIRE.

REAL CF
C CLD IS THE COEFFICIENT OF LIFT OF THE DROGUE AT THE EQUILIBRIUM
C POSITION.

REAL CLD
C D IS THE DIAMETER OF THE WIRE.

REAL D
C DELM IS THE TIME DELAY IN TERMS OF THE NEAREST NUMBER OF DELTAT
C TIME STEPS FOR PROPAGATION OF TENSION DISTURBANCES FROM
C THE POINT APPLIED TO GRIDPOINT 1.

REAL DELM
C DELTAS IS THE INCREMENT OF WIRE LENGTH AT THE N°TH GRIDPOINT.

REAL DELTAS
C D•'.AT IS THE TIME STEP INCREMENT.

REAL DELTAT
C DPRIM IS THE TOTAL MAGNITUDE OF THE RESTORATIVE FORCE DUE TO
C THE CHANGE IN THE ANGLE OF ATTACK DURING OSCILLATIONS.

REAL DPRIM
C DPRIME IS THE LATERAL "DRAG DAMPING" FORCE DUE TO THE
C OSCILLITORY MOTION.

REAL DPRIME
C DWYO IS THE DIRECTION OF THE AVERAGE APPARENT FORCING WIND.

REAL DWYO
C DWYO1 TS USED TO HOLD DW(P) FOR LATER USE IN ANTI-YOYO PHASING.
C IT IS ONLY REQUIRED WHEN USING THE OPTION OF GRIDPOINT SELECTION
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C FOR ANTI-YOYO.
C REAL DWYO1
C E IS YOUNG'S MODULUS FOR THE WIRE.

REAL E
C G IS THE ACCELERATION DUE TO GRAVITY.

REAL G
C HOLD IS A SUMMER IN AN AVERAGING SCHEME USED TO PREVENT
C LIMIT CYCLE OSCILLATIONS IN THE ITERATIVE DISPLACEMENT
C CALCULATIONS.

REAL HOLD
C MHU IS THE MASS OF THE WIRE PER UNIT LENGTH.

REAL MHU
C PHI IS THE NOMINAL BANK ANGLE OF THE TOWPLANE.

REAL PHI
C PPIVMX IS THE MAXIMUM VALUE OF THE BANK ANGLE VARIATION
C FROM STEADY STATE REQUIRED TO PERFORM THE ANTI-YOYO MANEUVER.

REAL PHIVMX
C RADTP IS THE ORBIT RADIUS OF THE TOWPLANE.

REAL RADTP
C THESE VARIABLES ARE USED AS PLACE KEEPERS FOR THE SUPERIMPOSED
C POSITION INFORMATION OF THE DROGUE OVER THE PREVIOUS TIME
C STEPS.

REAL RS1,RS2,RS3,RS4
REAL THETS1,THETS2,THETS3,THETS4
REAL ZS1,ZS2,ZS3,ZS4

C SD IS THE MAXIMUM CROSS SECTIONAL AREA OF THE DROGUE.
REAL SD

C STUFFI,2,3,4,5,6,7,8 ARE DUMMY VARIABLES USED TO BREAK UP LARGE
C EQUATIONS.

REAL STUFFI, STUFF2, STUFF3, STUFF4
REAL STUFF5, STUFF6, STUFF7, STUFF8

C THEDOT IS THE ORBIT RATE OF THE TOWPLANE.
REAL THEDOT

C VTRUE IS THE TOWPLANE TRUE AIRSPEED.
REAL VTRUE

C VWYO IS THE MAGNITUDE OF THE AVERAGE APPARENT FORCING WIND.
REAL VWYO

C WD IS THE WEIGHT OF THE DROGUE.
REAL WD

C XN AND YN ARE DUMMY VARIABLES USED IN ITERATING FOR THE
C OSCILLITORY DISPLACEMENT.

REAL XN,YN
C YO IS A TOGGLE TO SWITCH BETWEEN THE SELECTION AND DESELECTION
C OF THE ANTI YOYO MANEUVER MODEL.

REAL YO
C
C NOW INTEGERS.
C
C K IS THE NUMBER OF TIME STEPS DESIRED.

INTEGER K
C N IS THE GRIDPOINT INDEX FROM THE TOP TO THE BOTTOM ALONG THE
C WIRE AND IS ALSO USED AS AN INDEX IN SOME CALCULATIONS OUTSIDE
C OF THE MAIN LOOP.

INTEGER N
C M IS THE TIME STEP INDEX.

INTEGER M
C I IS AN INDEX USED FOR VARIOUS PURPOSES THROUGHOUT THE PROGRAM.

INTEGER I
C INDEX IS USED TO MATCH GRIDPOINT POSITIONS WITH THE CORRECT
C WIND MEASUREMENTS.

INTEGER INDEX
C COUNT IS A COUNTER USED TO PREVENT INFINITE LOOPS IN THE MAIN
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C INNER LOOP AS IT TRIES TO MATCH DISPLACEMENT AND PSEUDO-DRAG
C FORCES.

INTEGER COUNT
C P IS AN INDEX USED TO IDENTIFY THE GRIDPOINT THAT YOU WISH TO
C OPTIMIZE THE ANTI-YOYO MANEUVER AROUND.
C INTEGER P
C
C FINALL.Y ARRAYS.
C
C A(N) AND B(N) ARE GEOMETRIC CONSTANTS WHICH ARE USED TO DEFINE
C HOW MUCH FORCING FUNCTION IS APPLIED AT EACH GRIDPOINT GIVEN
C THE WIND VELOCITY AND STEADY STATE WIRE ORIENTATION.

REAL A(200), B(200)
C ALFA(N) IS THE ANGLE OF ATTACK OF THE STEADY STATE WIRE.

REAL ALFA(200)
C DELT(M) IS THE TENSION OSCILLATION AT GRIDPOINT 1.

REAL DELT(10000)
C DENSTY(S) IS A VECTOR OF THE MEASURED DENSITY VALUES AT 1000
C FEET INCREMENTS.

REAL DENSTY(30)
C PHIV(M) IS THE PERTURBATION IN ANGLE OF BANK REQUIRED TO FLY
C THE ANTI-YOYO MANEUVER.

REAL PHIV(10000)
C QX(N,M) IS AN ARBITRARY FORCING FUNCTION APPLIED IN THE X
C DIRECTION. IT MAY VARY ALONG THE WIRE AND IN TIME.

REAL QX(200,3)
C QY(N,M) IS AN ARBITRARY FORCING FUNCTION APPLIED IN THE Y
C DIRECTION. IT MAY VARY ALONG THE WIRE AND IN TIME.

REAL QY(200,3)
C R(N) IS THE RADIAL STEADY STATE POSITION OF THE WIRE BEHIND
C THE AIRPLANE. IT HAS BEEN CONVERTED TO THE TOP DOWN
C COORDINATE SYSTEM.

REAL R(200)
C R1(N) IS USED TO READ IN AND INVERT THE INDICES OF R(N).

REAL R1(200)
C R2(M) IS THE R POSITION OF THE SECOND GRID POINT.

REAL R2(10000)
C R200(M) IS THE R POSITION OF THE DROGUE.

REAL R200(10000)
C RS(N) IS THE SUPERIMPOSED TIME SOLUTION TO THE RADIAL POSITION.

REAL RS(200)
C RHO(N) IS THE ATMOSPHERIC DENSITY AT EACH EQUILIBRIUM GRIDPOINT.

REAL RHO(200)
C T(N) IS AN ARBITRARY TENSION DISTRIBUTION APPLIED TO THE WIRE.
C IT IS ASSUMED CONSTANT OVER TIME. THE TENSION DISTRIBUTION
C IS CALCULATED BY THE STEADY STATE MODEL AND THEN INVERTED
C TO ACCOUNT FOR THE COORDINATE SCHEME USED HERE.

REAL T(200)
C T1(N) IS USED TO READ IN AND INVERT THE INDICES OF T(N).

REAL T1(200)
C THETA(N) IS THE ANGULAR STEADY STATE POSITION OF THE WIRE
C BEHIND THE AIRPLANE. IT HAS BEEN CONVERTED TO THE TOP
C DOWN COORDINATE SYSTEM.

REAL THETA(200)
C THETAl(N) IS USED TO READ IN AND INVERT THE INDICES OF THETA(N).

REAL THETA1(200)
C THETA2(M) IS THE THETA POSITION OF THE SECOND GRIDPOINT.

REAL THETA2(10000)
C THETAS(N) IS THE SUPERIMPOSED TIME SOLUTION TO THE THETA
C COORDINATE.

REAL THETAS(200)
C VRELP(N) IS THE RELATIVE VELOCITY COMPONENT PERPENDICULAR
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C TO THE STEADY STATE WIRE.
REAL VRELP(200)

C VX(N) AND VY(N) ARE GEOMETRIC CONSTANTS FOR EACH GRIDPOINT THAT
C DEFINE HOW MUCH OF THE FORCING FUNCTION ARE PERPENDICULAR
C TO THE WIRE.

REAL VX(200),VY(200)
C VERCLT(M) IS THE VERTICALITY OF THE SUPERIMPOSED WIRE AT EACH
C TIME STEP.

REAL VERCLT(10000)
C VW(N) AND DW(N) ARE THE WIND COMPONENTS AT EACH GRIDPOINT.
C THE WIND DATA IS AVAILABLE AT EACH 1000 FEET INCREMENT. THE
C NEAREST INCREMENT, ROUNDED UP TO THE UPPER VALUE IS USED AT
C EACH GRIDPOINT.

REAL VW(200), DW(200)
C WINDDIR(S) AND WINDSPD(S) ARE THE MEASURED VALUES OF WIND
C DIRECTION AND SPEED AT 1000 FEET INCREMENTS.

REAL WINDIR(30),WINSPD(30)
C X(N,M) IS THE DISPLACEMENT IN THE X DIRECTION FOR EACH GRIDPOINT
C AT EACH TIME STEP.

REAL X(200,3)
C Y(N,M) IS THE DISPLACEMENT IN THE Y DIRECTION FOR EACH GRIDPOINT
C AT EACH TIME STEP.

REAL Y(200,3)
C Z(N) IS THE Z STEADY STATE POSITION OF THE WIRE BEHIND THE
C TOWPLANE. IT HAS BEEN CONVERTED TO THE TOP DOWN COORDINATE
C SYSTEM.

REAL Z(200)
C Z1(N) IS USED TO READ IN AND INVERT THE INDICES OF Z(N).

REAL Z1(200)
C Z2(M) IS THE Z POSITION OF THE SECOND GRIDPOINT.

REAL Z2(10000)
C ZS(N) IS THE SUPERIMPOSED TIME SOLUTION.

REAL ZS(200)

C SHAKE HANDS WITH THE OPERATOR.
C

WRITE(6,*)
WRITE(6,*).
WRITE(6,*),
WRITE(6,*)
WRITE(6,*). NAVAL POSTGRADUATE SCHOOL
WRITE(6,*) CLASS OF 1992
WRITE(6,*)
WRITE(6,*)\
WRITE(6,*) = > >
WRITE(6,*) */

WRITE(6,*)
WRITE(6,*) *

WRITE(6,*) *

WRITE(6,*)*
WRITE(6,*) *

WRITE(6,*)
WRITE(6,*) * *<
WRITE(6,*)
WRITE(6,*). TAC29 IS A DYNAMIC SOLUTION TO THE TACAMO WIRE'
WRITE(6,') PROBLEM. IT REQUIRES OUTPUTS FROM TAC17 WHICH MUST'
WRITE(6,*) BE RUN WITHIN THE SAME ENVIRONMENT PRIOR TO'
WRITE(6,*). RUNNING TAC29.-
WRITE(6,*),
PAUSE

*** * ********** ***************** ******** *********** ******* ***********

C OPEN THE INPUT DATA FILES.
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C
OPEN (1,FILE='DATAO2 .MAT ,STATUS='OLD' ,FORM=*FORMATTED',

:ACCESS=ISEQUENTIAL' ,RECL=12)
OPEN (2,FILE='DATAO3.MAT' ,STATUS='OLD' ,FORM='FORMATTED',

:ACCESS=*SEQUENTIAL' ,RECL=12)
OPEN (3,FILE='DATAO4.MAT' ,STATUS='OLD' ,FORM='FORMATTED',

:ACCESS=' SEQUENTIAL' ,RECL=12)
OPEN (4,FILE='DATAO5.MAT' ,STATUS=*OLD' ,FORlM='FORMATTED',

:ACCESS=ISEQUENTIAL' ,RECL=12)
OPEN (8,FILE='DATA06.M4AT' ,STATUS='OLD' ,FORM='FORMATTED',
:ACCESS='SEQUENTIAL' ,RECL=12)
OPEN (9,FILE='DATA07.MAT' ,STATUS='OLD' ,FORM='FORMATTED',

:ACCESS='SEQUENTIAL' ,RECL=12)
OPEN (40,FILE='WINDIR.MAT' ,STATUS='OLD' ,FORM=IFORMATTEDI,

:ACCESS5 'SEQUENTIAL' ,RECL=5)
OPEN (41,FILE='WINSPD.MAT' ,STATUS=IOLD' ,FORM='FORMATTEDI,

:ACCESS=ISEQUENTIAL' ,RECL=5)
OPEN (42,FILE='DENSTY.MAT' ,STATUS='OLD' ,FORM='FORMATTED',

:ACCESS=ISEQUENTIAL' ,RECL=5)
C
C DEFINE THE INPUT FILE FORMATS.
C
10 FORMAT(F12.6)
11 FORMAT(F5.1)

C INITIALIZE CONSTANTS.
C
C GENERAL CONSTANTS.
C

DELTAT=0. 1
G=32 .174
P1=3. 1415926535879

C
C WIRE CONSTANTS.
C

CD=1 .03
CF=0 .022
D=0.1582/12
MHU=0.062107/G
DELTAS=101 .96
E=12000000 .0*144.0

C
C DROGUE CONSTANTS.
C

CDD=0.41
SD=PI

C INPUT THIS FROM TAC16.
READ(9,10) CLD
CLOSE(9)
WU)=81 .95

C
C INPUT THE NUMBER OF TIME STEPS DESIRED.
C

WRITE(6,*)'INPUT THE NUMBER OF DESIRED TIME STEPS='
WRITE(6,*)'MUST USE AT LEAST 1000 AND LESS THAN 10,000'
READ (5, *) K

C
C DECIDE WHETHER TO ACTIVATE THE ANTI-YOYO MANEUVER MODEL.
C THE MANEUVER MAY BE OPTIMIZED AROUND A CHOSEN GRIDPOINT OR
C USED TO ELIMINATE THE AVERAGE OF THE APPARENT FORCING WIND.
C STATEMENT OUT THE TECHNIQUE NOT USED AS REQUIRED
C THROUGHOUT THE PROGRAM.
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C
WRITE(6,*)'DO YOU WANT TO USE ANTI-YOYO? 1=YES 0=NO'
READ(5,*)YO

C
C THIS PART IS ONLY REQUIRED WHEN IT IS DESIRED TO SELECT THE
C GRIDPOINT TO OPTIMIZE ANTI-YOYO AROUND.
C
C IF (YO .EQ. 1.0) THEN
C WRITE(6,*)'WHICH GRIDPOINT DO YOU WANT TO OPTIMIZE THE'
C WRITE(6,*)'ANTI-YOYO MANEUVERS AROUND? 1-200-
C READ(5,*)P
C ELSE
C ENDIF
C
C ALERT THE OPERATOR TO THE REQUIRED RUN TIME.
C

WRITE(6,*)'
WRITE(6,*)-
WRITE(6,*)'APPROXIMATE RUN TIME ON A 486 33 MHZ DX WILL BE:*
WRITE(6,*)6.25*K/3000.0,' MINUTES'
WRITE(6,*)'YOU WILL SEE A COUNTER INCREMENT EVERY 100 TIME'
WRITE(6,*)*STEPS.'
WRITE(6,*)'

WRITE(6,*)'*TO STOP THE RUN PRESS CTRL AND PAUSE AT THE SAME*'
WRITE(6,*)'* TIME!

WRITE(6,*)'

C DEFINE THE INITIAL POSITION OF THE WIRE. ASSUME IT IS HELD
C AT THIS POSITION FOR AT LEAST TWO TIME STEPS. ALSO,
C INITIALIZE THE INITIAL TWO TIME
C STEPS OF THE FORCING FUNCTION AS 0.0 TO ACT AS PLACE HOLDERS
C FOR THE FORCING FUNCTION MATRIX.
C

DO 100 N=1,200
X(N,1)=0.0
Y(N,1)=0.0
X(N,2)=0.0
Y(N,2)=0.0
QX(N,1)=0.0
QY(N,2)=0.0

100 CONTINUE
C
C INITIALIZE THE IMAGINARY GRIDPOINTS AT THE END.
C

X201=0.0
X202=0.0
Y201=0.0
Y202=0.0

C
C INITIALIZE PLACEHOLDERS FOR POSITION VALUES USED IN THE
C CALCULATIONS OF THE DROGUE'S ACCELERATION. A FIVE TIME STEP
C SCHEME IS USED.
C

RS1=R(200)
RS2=R(200)
RS3=R(200)
RS4=R(200)
THETS1=THETA(200)
THETS2=THETA(200)
THETS3=THETA(200)
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THETS4=THETA(200)
ZS1=Z(200)
ZS2=Z(200)
ZS3-Z(200)
ZS4=Z(200)
ZS(200)=Z(200)

C READ THE TENSION DISTRIBUTION FROM THE INPUT FILE.
C
110 READ(4,10,END=115)T1

GOTO 110
115 CLOSE(4)
C
C READ THE WIRE POSITION FROM THE INPUT FILES.
C
120 READ(1,10,END=125)R1

GOTO 120
125 CLOSE(1)
C
130 READ(2,10,END=135)THETA1

GOTO 130
135 CLOSE(2)
C
140 READ(3,10,END=145)Z1

GOTO 140
145 CLOSE(3)
C
C READ THE ORBIT RATE FROM THE INPUT FILE.
C

READ(8,10)THEDOT
CLOSE(8)

C
C NOTE THAT THE INPUT FILES ARE DEFINED WITH THE BOTTOM OF THE
C WIRE AT GRIDPOINT 1. HERE, THE OPPOSITE APPLIES, AND THE
C GRIDPOINTS MUST BE INVERTED. ALSO, IT IS DESIRABLE TO REDEFINE
C THE TOWPLANE ATTACHMENT POINT AS THETA=0.0.
C

DO 146 N=1,200
R(N)=R1(201-N)
THETA(N)=THETAi(201-N)-THETAI(200)
Z(N)=Z1(201-N)
T(N)=T1(201-N)

146 CONTINUE
C
C THE USER MAY CHOOSE MEASURED DENSITY DATA DEFINED IN AN OUTSIDE
C FILE OR CALCULATE DENSITY BASED UPON THE STANDARD ATMOSPHERE.
C STATEMENT OUT THE TECHNIQUE NOT USED.
C
147 READ(42,11,END=148)DENSTY

GOTO 147
148 CLOSE(42)
C

DO 149 N=1,200
INDEX=INT(Z(N)/1000.0)+1
RHO(N)-DENSTY(INDEX)*0.0023769/1013.0

149 CONTINUE
C
C RHO(N)=0.0023769*(((518.69-0.0035662*z(N))/518.69)**
C ((-1.0)*(1.0/(-0.0035662*53.3))+1.0))
C
C READ THE WIND DATA FROM THE INPUT FILES.
C
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150 READ(40,11,END=152)WINDIR
GoTo 150

152 CLOSE(10)
C
154 READ(41,11,END=155)WINSPD

GCTO 154
155 CLOSE(11)
C
C CONVERT THE 1000 FEET INTERVAL WIND DATA TO GRIDPOINT
C DATA USING THE STEADY STATE Z(N).
C

DO 156 N=1,200
INDEX=INT(Z(N)/1000)+l
VW(N)-WINSPD(INDEX)
DW(N)=WINDIR(INDEX)

156 CONTINUE
C
C THIS SECTION WAS ADDED TO ALLOW AN INVESTIGATION OF THE
C LINEARITY OF THE FULL SUPERIMPOSED SOLUTION.
C
C WRITE(6,*)'INPUT WIND VELOCITY AT TOWPLANE IN KTS'
c READ(5,-)STUFF1
C STUFF1=STUFFl/200.0
C DO 157 N=1,200
C DW(N)=90.0
C VW(N)=STUFF1*(201.0-N)
C157 CONTINUE
C
C CONVERT THE WIND DIRECTION TO RADIANS AND THE WINDSPEED TO
C FEET/SECOND. ALSO, IT IS NECESSARY TO DO SOME
C TRIGONOMETRIC CALCULATIONS WHICH REQUIRE DIVISION 1,-' WIND
C MAGNITUDES. THEREFORE, ELIMINATE ANY CHANCE OF DIVISION BY ZERO
C BY SETTING A "MINIMUM" WINDSPEED OF 0.1 FTISEC.
C

Do 160 N=1,200
DW(N)=DW(N)*2*PI/360.0
VW(N)=VW(N)*6076.0/3600.0
IF (VW(N) EQ. 0.0) THEN
VW(N)=O.l
ELSE
ENDIF

160 CONTINUE
C
C NEXT, REMEMBER THAT THE AIRCRAFT IS DRIFTING AT THE GRIDPOINT
C I WINDSPEED AND DIRECTION AND SO THE FORCING FUNCTION IS
C ZERO AT THE TOP AND ALL SUBSEQUENT GRIDPOINT FORCING FUNCTIONS
C ARE DEFINED TAKING INTO ACCOUNT THE WIND VELOCITY
C RELATIVE TO THE UPPER GRIDPOINTI FIRST, FIND THE RECIPROCAL
C OF THE UPPER GRIDPOINT WIND VECTOR.
C

STUFF1=DW(1)+PI
IF (STUFF1 GT. 2*PI) THEN
STUFF1=STUFFl-2*PI
ELSE
ENDIF

C
C NOW, VECTORALLY ADD THIS RECIPROCAL VECTOR TO ALL THE
C GRIDPOINTS TO GET THE TRUE FORCING FUNCTION. FIRST CONVERT
C THE RECIPROCAL VECTOR TO RECTANGULAR COORDINATES.
C

STUFF2=Vw(l)*COS(STUFFl)
STUFF3=VW(1)*SIN(STUFFl)
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C
C CONVERT EACH GRIDPOINT WIFD TO RECTANGULAR COORDINATES,
C ADD THE RECIPROCAL VECTOR XND CONVERT BACK TO POLAR
C COORDINATES. BE CAREFUL ABOUT THE USE OF ACOS AND THE
C QUADRANT THE COMPONENT IS IN.
C

STUFF7=0.0
STUFF8=0.0
DO 163 N=1,200
STUFF4=VW(N)*COS(DW(N))+STUFF2
STUFF7=STUFF7+STUFF4
STUFF5=VW(N)*SIN(DW(N))+STUFF3
STUFF8=STUFF8+STUFF5
VW(N)=SQRT(STUFF4**2+STUFF5**2)
IF (STUFF5 .GT. 0.0) THEN
IF (STUFF4 .GT. 0.0) THEN
DW(N)=ATAN(STUFF5/STUFF4)
ELSE
DW(N)=PI/2.0+ATAN(-STUFF4/STUFF5)
ENDIF
ELSE
IF (STUFF4 .GE. 0.0) THEN
DW(N)=3.0*PI/2.0+ATAN(STUFF4/(-STUFF5))
ELSE
DW(N)=PI+ATAN(STUFF5/STUFF4)
ENDIF
ENDIF

163 CONTINUE
C
C HERE, THE SUMS OF STUFF4 AND STUFF5 ARE USED TO GET THE
C AVERAGE APPARENT FORCING WIND IN CYLINDRICAL COORDINATES.
C

STUFF7=STUFF7/200.0
STUFF8=STUFF8/200.0
VWYO=SQRT(STUFF7**2+STUFF8**2)
IF (STUFF8 .GT. 0.0) THEN
IF (STUFF7 .GT. 0.0) THEN
DWYO=ATAN(STUFF8/STUFF7)
ELSE
DWYO=PI/2.0+ATAN(-STUFF7/STUFF8)
ENDIF
ELSE
IF (STUFF7 .GE. 0.0) THEN
DWYO=3.0*PI/2.0+ATAN(STUFF7/(-STUFF8))
ELSE
DWYO=PI+ATAN(STUFF8/STUFF7)
ENDIF
ENDIF

C
C SAVE THE DIRECTION OF THE CHOSEN GRIDPOINT FOR USE IN ANTI-YOYO
C PHASE CALCULATIONS.
C
C IF (YO .EQ. 1.0) THEN
C DWYO1=DW(P)
C ELSE
C ENDIF
C
C THE ANTI-YOYO MANEUVER IS MODELED BY ADDING THE RECIPROCAL
C OF THE GRIDPOINT APPARENT FORCING WIND FUNCTION TO BE CANCELED.
C THIS MODELS THE EwrrCT OF SUPERIMPOSING THE MOVEMENT OF THE
C CENTER OF ROTATION OF THE WIRE IN THE SAME DIRECTION AND AT
C THE SAME SPEED AS THE APPARENT WIND FORCING FUNCTION.
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C
C FIRST CHECK TO SEE IF THE USE OF ANTI-YOYO HAS BEEN SELECTED.
C

IF (YO .EQ. 1.0) THEN
C

OPEN (43,FILE='DATAO9.MAT ,STATUS=0OLD ,FORM=*FORMATTEDI,
:ACCESS=ISEQUENTIAL' ,RECL=12)
OPEN (44,FILE=*DATA00.MAT',STATUS='OLDI,FORM=IFORMATTEDI,
:ACCESS=ISEQUENTIAL',RECL=12)

C
READ(43, 10)VTRUE
CLOSE (43)
READ(44, 10)PHI
CLOSE( 44)

C
C DETERMINE THE MAXIMUM AMOUNT THAT THE STEADY STATE BANK MUST BE
C MODULATED TO PERFORM THE ANTI-YOYO MANEUVER.
C
C DETERMINE THE TURN RADIUS OF THE TOWPLANE.
C

RADTP=VTRUE**2/(G*SQRT(1/(COS(PHI))**2-1.0))
C
C USE A SEARCH OF VALUES OF PHIVMX FROM 0 To 5 DEGREES.
C
C INITIALIZE THE RESIDUE HOLDER.
C

STUFF2=1000000 .0
C
C LOOP THROUGH THE VARIOUS PHIVMX VALUES.
C

Do 168 I=1,51
C
C INITIALIZE THE INTEGRATION SUMMER.
C

STUFF3=0 .0
C

PHIVMX=( (I-1)*0.1)*2*PI/360.0
C
C PERFORM THE INTEGRAL OVER 20 SEGMENTS.
C

DO 167 N=1,20
C
C INTEGRATE OVER 0 To 2*PI USING A NEWTON-COTES SCHEME.
C

STUFF4=( (N-1)*PI)/20
STUFF5=VTRUE**2*SIN( STUFF'4)
STUFF6=(G*SQRT( (1/(COS(PHI-PHIVMX*
:SIN(STUFF4))))**2-1.0))
STUFF7=STUFF5 /ST~.!FF
STUFF4=( (2*N-1)*PI)/40
STUFF5=VTRUE**2*SIN( STUFF4)
STUFF6=(G*SQRT( (1/(COS(PHI-PHIVMX*
:SIN(STUFF4))))**2-1.0))
STUFF7=STUFF7+4*STUFF5 /STUFF6
STUFF4=( (N)*PI)/20
STUFF5=VTRUE**2 *SIN (STUFF4)
STUFF6-(G*SQRT( (1/(COS(PHI-PHIVMX*

:SIN(STUFF4))))**2-1.0))
STUFF7=STUFF7+STUFF5 /STUFF6
STUFF3=STUFF3+STUFF7*PI/120 .0
STUFF7=0 .0

167 CONTINUE
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C
C WITH THE INTEGRATION PERFORMED, CALCULATE THE RESIDUE.
C
C STUFF1=-2.O*RADTP-ABS(VW(P) )*PI/(2*THEDOT)+STUFF3
C
C USE THIS PARTICULAR FORM OF STUFFi WHEN USING THE AVERAGE
C APPARENT FORCING WIND TECHNIQUE FOR ANTI-YOYO.
C

STUFF1=-2.0*RADTP-ABS(VWYO)*PI/(2*THEDOT)+STUFF3
C
C SAVE THE PHIVMX WITH THE LOWEST RESIDUE VALUE.
C

IF (ABS(STUFF1) .LT. ABS(STUFF2)) THEN
STUFF2 =STUFF 1
STUFF8=PHIVMX
ELSE
ENDIF

168 CONTINUE
PHIVMX=STUFF8

C
C APPLY ANTI-YOYO TO THE WIRE DYNAMICS BY CALCULATING ITS EFFECTS
C UPON THE FORCING FUNCTION.
C
C STUFF1=DW(P)+PI
C IF (STUFF1 .GT. 2*PI) THEN
C STUFF1=STUFFl-2*PI
C ELSE
C ENDIF
C
C STUFF2=vw(P)*COS(STUFF1)
C STUFF3=VW(P)*ZIN(STUFF1)
C
C THIS VERSION IS USED DURING THE AVERAGE APPARENT FORCING WIND
C ANTI-YOYO TECHNIQUE.
C

STUFF1=DWYO+PI
IF (STUFF1 .GT. 2*PI) THEN
STUFF1=STUFFl-2*PI
ELSE
END IF

C
STUFF2=VWYO*Cos (STUFF 1)
STUFF3=VWYO*SIN(STUFFI)

C
DO 169 N=1,200
STUFF4=VW(N) *COS(DW(N) )+STUFF2
STUFF5=VW(N)*SIN(DW(N) )+STUFF3
VW(N)=SQRT(STUFF4**2+STUFFS**2)
IF (STUFF5 .GT. 0.0) THEN
IF (STUFF4 .GT. 0.0) THEN
DW(N) =ATAN(STUFF5/STUFF4)
ELSE
DW(N)=PI12 . +ATAN( -STUFF4/STUFF5)
ENDIF
ELSE
IF (STUFF4 .GE. 0.0) THEN
DW(N)=3.0*PI/2.0+ATAN(STUFF4/(-STUFF5))
ELSE
DW (N) =PI+ATA ( STUFF5 /STUFF4)
ENDIF
ENDIF

169 CONTINUE

208



C
ELSE
L14DIF

C NOW, CALCULATE THE GEOMETRIC CONSTANTS FOR EACH
C GRIDPOINT THAT DEFINE THE AMOUNT OF THE FORCING FUNCTION THAT
C IS PERPENDICULAR TO THE WIRE AT EACH POINT SINCE ONLY THIS
C COMPONENT OF THE FORCING FUNCTION IS GERMANE TO THE DANGLING
C CHAIN. NEXT, CALCULATE THE MAXIM4UM FORCING FUNCTION VALUE
C AT EACH GRIDPOINT, AND FINALLY, THE STEADY STATE COMPONENT
C OF VELOCITY PERPENDICULAR TO THE WIRE AND THE
C STEADY STATE ANGLE OF ATTACK ARE REQUIRED.
C

DO 170 N=2,199
STUFF1=1-((R(N+1)-R(N-i))/(2*DELTAS))**2
STUFF2=(R(N+1)-R(N-1) )*R(N)*(THETA(N+l)-THETA(N-1) )/
:(4*DELTAS**2)
STUFF3=(R(N+1)-R(N-1))*(Z(N+1)-Z(N-~1))/(4*DELTAS**2)
VX(N)=SQRT(STUFF1**2+STUFF2**2+STUFF3**2)
STUFF1=1-(R(N)*(THETA(N+1)-THETA(N-1))/(2*DELTAS))**2
STUFF3=R(N)*(THETA(N+1)-THETA(N-1))*(Z(N+1)-Z(N-1))/
:(4*DELTAS**2)
VY(N)=SQRT(STUFF2**2+STUFFI**2+STUFF3**2)

C
A(N) =0. 5*RHO(N) *VW(N) **2*D* (CD+CF)
B(N)=A(N)

C
VRELP(N)=R(N)*THEDOT*SQRT(1-R(N)**2*(THETA(N+1)-THETA(N-1))**2
:/(4*DELTAS**2))

C
ALFA(N)=ACOS(R(N)*(-THETA(N+1L)+THETA(N-1) )/(2*DELTAS))

170 CONTINUE
C
C ASSUME THAT THE SLOPES DO NOT CHANGE DRASTICALLY BETWEEN
C THE FIRST AND SECOND AND LAST AND NEXT TO LAST GRIDPOINTS.
C THIS IS BORNE OUT IN APPLICATION OF THIS PROGRAM AND MAKES THE
C HANDLING OF THE TOP AND BOTTOM GRIDPOINTS MUCH EASIER. THE
C ERRORS TURN OUT TO BE MINISCULE AND ONLY AFFECTS TWO OF THE
C N GRIDPOINTS.

VX(1)=VX(2)
VY( 1)=VY(2)
A(1) =0. 5*RHO( 1) *VW (1) **2 *D* (CD+CF)
B( 1)=A( 1)
VX(200)=VX( 199)
VY(200)=VY( 199)
A(200)=0 .5*RHO(200) *VW(200 )**2*SD*CDD/DELTAS
B(200)=A(2 00)

C OPEN SOME OF THE THE OUTPUT DATA FILES.

OPEN (UNIT=30,FILE=*VERCLT.MAT*)
OPEN (UNIT=31,FILE='R2.MAT*)
OPEN (UNIT=32,FILE='THETA2.MAT')
OPEN (UNIT=33,FILE='Z2.MAT*)
OPEN (UNIT=34,FILE='Tl.MAT*)
OPEN (UNIT=35,FILE='PHIV.MAT*)
OPEN (UNIT=36,FILE='R200.MAT')

C
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C
C THE OUTER TIME LOOP.
C
C

DO 2000 M=3,K
C
C THE TOP GRIDPOINT POSITION.
C
C THIS JUST SAYS THAT THE TOP OF THE DANGLING CHAIN IS FIXED.
C

X( 1, 3)=0.0
Y(1,3)=0.0

C
C SINCE THE FIXED UPPER END OF THE DANGLING CHAIN IS DEFINED
C AT POINT 0.0, 0.0, IT IS KNOWN THAT THE SUPERIMPOSED
C POSITION IS MERELY THE STEADY STATE POSITION.
C

RS(1)=R( 1)
THETAS (1) =THETA( 1)
ZS(1)=Z(1)

C
C CA-TCUL-ATE THE FORCING FUNCTION AT THIS TIME STEP.
c

DO 200 I=2,199
QX(I,3)=A(I)-VX(I)*SIN(THEDOT*(M-2)*DELTAT-THETA(I)+2*PI-DW(I))
QY(I,3)=B(I)*VY(I)*COS(THEDOT*(M-2)*DELTAT-THETA(I)+2*PI-DW(I))

200 CONTINUE
I=200
QX( 1,3) =A( 200) *VX( I) *SIN(THEDOT* (M-2 ) DELTAT-THETA( I) +

:2*PI-DW(I))
QY(I,3)=B(200)*VY(I)*COS(THEDOT*(M-2)-DELTAT-THETA(I)+

:2-PI-DW(I))

C MUST CALCULATE ALFAS FOR GRIDPOINT 200 NOW BEFORE THE PROGRAM
C UPDATES THETAS(198) SINCE THIS VALUE IS REQUIRED AT THE LAST
C TIME STEP.
C

IF (M .GT. 3) THEN
STUFF4=ABS(RS(199)*(THETAS(198)-THETAS(200))/(2*DELTAS))
IF (STUFF4 .LT. 0.98) THEN
ALFASI=ACOS(RS(199)*(-THETAS(200)+THETAS(199)l/(2*DELTAS))
ELSE
STUFF5=SQRT((RS(198)-RS(200))**2+(RS(199)*(THETAS(198)-
:THETAS(200) ) )*2+(ZS(198)-ZS(200) )**2)
ALFAS1=ASIN(SQRT((RS(198)-RS(200))**2+(ZS(198)-zs(200))**2)/
:STUFF5)
END IF

C
C RESOLVE AMBIGUITIES IN NEGATIVE ANGLES OF ATTACK.
C

IF (ZS(200)+RS(200) .GT. ZS(198)+RS(198)) THEN
ALFAS1=-ALFAS1
ELSE
END IF
ELSE
ALFAS1=ALFA( 199)
ENDI F

C MARCH TO THE BOTTOM.
C
C ZERO OUT THESE FOR THE FIRST PASS THROUGH THE ITERATIVE
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- LOOP.
C

XN= 0.0
YN= 0.0

C
DO 1000 N=2,199

C
C RESET THE ITERATION COUNTER AND THE DRAG DAMPING.
C

COUNT=0
DPRIME=0.0
HOLD=0.0

C THESE CALCULATIONS -LRE USED TO DETERMINE THE RESTORATIVE
C FORCE DUE TO CHANGE IN ANGLE OF ATTACK AND ARE DEPENDENT
C UPON VALUES CALCULATED IN THE PREVIOUS STEP AND SO THEY CAN BE
C COMPUTED EXTERNAL TO THE LOOP.
C

STUFF4=ABS(RS(N)*(THETAS(N-1)-THETAS(N+1))/(2*DELTAS))
IF (STUFF4 .LT. 0.98) THEN
ALFAS=ACOS(RS(N)*(-THETAS(N+1)+THETASIN-1))/(2*DELTAS))
ELSE
STUFF5=SQRT((RS(N-1)-RS(N+1))**2+(RS(N)*(THETAS(N-1)-

: THETAS(N+1)))**2+(ZS(N-1)-ZS(N+1))**2)
ALFAS=ASIN(SQRT((RS(N-1)-RS(N+1))**2+(ZS(N-1)-ZS(N+1))**2)/

: STUFF5)
ENDIF

C
C RESOLVE AMBIGUITIES FOR NEGATIVE ANGLES OF ATTACK.
C

IF (ZS(N+1)+RS(N+l) .GT. ZS(N-1)+RS(N-1)) THEN
ALFAS=-ALFAS
ELSE
ENDIF

C
DPRIM=CD*D*0 5*RHO(N)*VRELP(N)*SIN(ALFA(N)-ALFAS)*

: ABS(VRELP(N)*SIN(ALFA(N)-ALFAS))
DPRIM2=-ABS(X(N,2))*DPRIM/(SQRT(X(N,2)**2+Y(N,2)**2)+.0001)

C
C THIS IS ADDED AS INSURANCE FOR THE RARE EVENTUALITY OF X AND
C Y APPROACHING ZERO AND THE DPRIM2 BECOMING UNREALISTICALLY
C LARGE. IT HAS NOT OCCURRED TO DATE BUT IT IS WORTH PROTECTING
C AGAINST TO PREVENT FLOATING POINT ERRORS AND THE LOSS IN
C ACCURACY WILL BE MINISCULF SINCE THE NUMBER OF EFFECTED
C POINTS WILL BE SMALL.
C

IF (ABS(DPRIM2) .GT. 0.1) THEN
DPRIM2=0.1*DPRIM2/ABS(DPRIM2)
ELSE
ENDIF

C**********************************, t**********************************

C HERE, CALCULATE THE INCREMENTAL CHANGE IN Sht. CF DRAG
C COMPONENT TANGENTIAL TO THE WIRE TO ACCOUNT, IN PART, FOR
C THE TENSION OSCILLATION. AS THE INCREMENTAL CHANGE IS
C CALCULATED AT EACH POINT IT IS ADDED TO THE TOTAL AT THAT
C TIME STEP. THE TIME FOR THE TENSION CHANGE TO PROPAGATE
C TO THE TOP OF THE WIRE IS ACCOUNTED FOR.
C

DELM=NINT(((N*DELTAS*2.0)/D)*SQRT(MHU/(PI*E*G))/DELTAT)
DELT(M+DELM-1)=DELT(M+DELM-1)-0.5*RHO(N)*(R(N)*THEDOT)**2*
D*DELTAS*CF*COS(ALFA(N))*(ALFA(N)-ABS(ALFAS))

C
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C SIMILARLY, ACCOUNT FOR THE COMPONENT OF CD DRAG
C WHICH BECOMES TANGENTIAL ONCE THE STEADY STATE SLOPE OF THE
C WIRE IS DISTURBED. REMEMBER THAT THE CD DRAG IS DEFINED
C PERPENDICULAR TO THE STEADY STATE POSITIONS, THIS
C RESULTS IN A COMPONENT OF THE CALCULATED DRAG ALONG THE
C DISPLACED TANGENT VECTOR.
C

DELT(M+DELM-I)=DELT(M+DELM-1)-0.5*RHO(N)*VRELP(N)**2*
D*DELTAS*CD*SIN(ALFA(N)-ALFAS)

C
C NOW ACCOUNT FOR THE CONTRIBUTION OF THE FORCING FUNCTION TO THE
C TENSION OSCILLATION.
C

DELT(M+DELM-1)=DELT(M+DELM-1)-0.5*RHO(N)*VW(N)**2*D*DELTAS*
SIN(ALFA(N))*CF*SIN(THEDOT*(M-2)*DELTAT-THETA(N)+2*PI-DW(N))

C THIS IS USED IN THE DAMPING DUE TO THE OSCILLATION RATE AND
C NEED NOT BE CALCULATED INTERNAL TO THE ITERATIVE LOOP.
C

STUFF1=DELTAT**2/MHU

C FINALLY, THE ITERATIVE SOLUTION FOR THE DANGLING CHAIN
C DISPLACEMENT ACCOUNTING FOR THE HYPOTHESIZED FORMS OF
C DAMPING AND RESTORATIVE FORCES.
C
300 CONTINUE
C
C THE DISPLACEMENT CALCULATION.
C

IF (N .EQ. 2) THENSTUFF2=((T(N+I)+T(N))/2)*(X(N+I,2)-X(N,2))-
: ((T(N)+T(N-1))/2)*(X(N,2)-X(N-1,2))

STUFF3=2*X(N,2)-X(N,I)
XN=STUFFI*((STUFF2/DELTAS**2)+QX(N,2)-DPRIME-DPRIM2)+

: STUFF3
ELSEIF (N EQ. 199) THEN
STUFF2=((T(N+I)+T(N))/2)*(X(N+1,2)-X(N,2))-

: ((T(N)+T(N-1))/2)*(X(N,2)-X(N-1,2))

STUFF3=2*X(N,2)-X(N,I)
XN=STUFF1*((STUFF2/DELTAS**2)+QX(N,2)-DPRIME-DPRIM2)+

: STUFF3
ELSE
STUFF2=((T(N+I)+T(N))/2)*(X(N+1,2)-X(N,2))-

: ((T(N)+T(N-1))/2)*(X(N,2)-X(N-1,2))
STUFF3=2*X(N,2)-X(N,1)
XN=STUFF1*((STUFF2/DELTAS**2)+QX(N,2)-DPRIME-DPRIM2)+

: STUFF3
ENDIF

C
C THE OSCILLATORY MOTION DRAG DAMPING FORCE.
C

DPRIME-(CD+CF)*D*0.5*RHO(N)*((XN-X(N,1))/(2*DELTAT))*
: ABS((XN-X(N,1))/(2*DELTAT))

C
C THE CONVERGENCE CRITERIA.
C

IF (ABS(XN-X(N,3)) .GT. 0.01) THEN
X(N,3)=XN

C
C UPDATE THE ITERATION COUNTER.
C

COUNT=COUNT+ 1
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C
C THIS IS INCLUDED AS PROTECTION AGAINST AN INFINITE LOOP. THE
C GRIDPOINT 200 CALCULATIONS ARE SUSCEPTABLE TO LIMIT CYCLE TYPE
C BEHAVIOR DUE TO THE DISCONTINUITY IN THE EFFECTS OF LATERAL
C VELOCITY OSCILLATIONS ON THE GREATER DROGUE SURFACE AREA
C RELATIVE TO THE NEXT TO THE LAST GRIDPOINT. IT IS VERY RARELY
C REQUIRED.
C

IF (COUNT .GT. 50) THEN
HOLD=HOLD+XN
IF (COUNT .GT. 60) THEN
X(N,3)=HOLD/11.0
GOTO 305
ENDIF
ENDIF

C
GOTO 300
ELSE
X(N, 3)=XN
ENDIF

305 CONTINUE

C AGAIN, INITIALIZE THE DRAG DAMPING TERM FOR THE FIRST ITERATIVE
C LOOP IN THE Y DIRECTION OF THE OSCILLATION AND THEN CALCULATE
C THE RESTORATIVE FORCE DUE TO THE CHANGE IN THE ANGLE OF ATTACK.
C

DPRIME=0 .0
COUNT= 0
HOLD=1).0
DPRIM2=-ABS(Y(N,2))*DPRIM/(SQRT(X(N,2)**2+Y(N,2)**2)+.0001)
IF (ABS(DPRIM2) .GT. 0.1) THEN
DPRIM2=0. 1*DPRIM2 lABS (DPRIM2)
ELSE
END!,-

C THE Y COMPONENT LOOP.
C
310 CONTINUE

IF (- .EQ. 2) THEN
STUFF2=((T(N+1)+T(N))/2)*(Y(N+1,2)-Y(N,2))-
:((T(N)+T(N.-1) )/2)-(Y(N,2)-Y(N-1,2) )
STUFF3=2*Y(N,2)-Y(N, 1)
YN=STUFF1* ((STUFF2/DELTAS**2)+QY(N,2)-DPRIME-DPRIM2)+

:STUFF3
ELSEIF (N .EQ. 199) THEN
STUFF2=((T(N+1)+T(N))/2)*(Y(N+1,2)-Y(N,2))-
: ((T(N)+T(N-1) )/2)*(Y(N,2)-Y(N-1,2) )
STUFF3=2*Y(N,2)-Y(N, 1)
YN=STUFF1*( (STUFF2/DELTAS**2)+QY(N,2)-DPRIME-DPRIM2)+

:STUFF3
ELSE
STUFF2=(T(N+1)*(Y(N+2,2)-Y(N,2))-T(N-1)*(Y(N,2)-Y(N-2,2)))
STUFF3=2*Y(N,2)-Y(N, 1)
YN=STUFF1*( (STUFF2/(4*DELTAS**2) )+QY(N,2)-DPRIME-DPRIM2)+
:STUFF3
ENDIF
DPRIME=(CD+CF)*D*0.5*RHO(N)*( (YN-Y(N, 1) )/(2*DELTAT) )*

:ABS((YN-Y(N,1))/(2*DELTAT))
IF (ABS(YN-Y(N,3)) .GT. 0.01) THEN
Y(N,3)=YN

C
COUNT=COUNT+ 1
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C
IF (COUNT .GT. 50) THEN
HOLD=HOLD+YN
IF (COUNT .GT. 60) THEN
Y(N,3)=HOLD/11.0
GOTO 315
ENDIF
ENDIF

C
GOTO 310
ELSE
Y(N,3)=YN
ENDIF

315 CONTINUE

C CALCULATE THE SUPERIMPOSED SOLUTIONS.
C

STUFF2=((R(N+1)-R(N-1))/(2*DELTAS))**2
STUFF3=(R(N)*(THETA(N+1)-THETA(N-1))/(2*DELTAS))**2
STUFF1=SQRT(STUFF2+STUFF3)

C
C GIVE UP A LITTLE ACCURACY IN THE VERTICAL OR NEAR VERTICAL
C CASE TO INSURE THAT THE PROGRAM DOES NOT CAUSE DIVISION BY
C ZERO IN THE NEXT FEW CALCULATIONS.
C

IF (STUFF1 .LT. 1.0) THEN
STUFF1=1.0
ELSE
ENDIF

C
RS(N)=R(N)+X(N,3)*R(N)*(THETA(N+1)-THETA(N-1))/(2*DELTAS*STUFF1)

: +Y(N,3)*(R(N+1)-R(N-1))*(Z(N+1)-Z(N-1))/((2*DELTAS)**2*STUFF1)
THETAS(N)=THETA(N)+X(N,3)*(R(N+1)-R(N-1))/(R(N)*2*DELTAS*STUFF1)

: -Y(N,3)*(THETA(N+1)-THETA(N-I))*(Z(N+I)-Z(N-1))/
: ((2*DELTAS)**2*STUFF1)

C
C USE THE DELTAS CONSTRAINT FOR THE FIRST INTERNAL GRIDPOINT AND
C THE CENTRAL DIFFERENCE APPROXIMATION OF THE DEFINITION OF THE
C UNIT TANGENT FOR ALL OTHER GRIDPOINTS.
C

IF (N .EQ. 2) THEN
C

STUFF4-DELTAS**2-RS(N)**2-RS(N-i)**2+
2*RS(N)*RS(N-1)*COS(THETAS(N)-THETAS(N-1))

C
C THE NEXT BIT IS ADDED TO INSURE THAT IN THE NEAR VERTICAL CASE
C THE PROGRAM DOES NOT ALLOW THE WIRE SECTION TO BECOME LONGER
C THAN DELTAS.
C

IF (STUFF4 .GT. DELTAS**2) THEN
STUFF4-DELTAS**2
ELSE
ENDIF

C
C WHEN THE DELTAS CONSTRAINT IS USED TO CALCULATE THE DISPLACED
C Z (N), MUST CHECK FOR THE CASE WHERE THE INERTIALLY REFERENCED
C SLOPE OF THE WIRE BECOMES NEGATIVE.
C

IF (STUFF4 .GE. 0.0) THEN
ZS(N)=ZS(N-1)-SQRT(STUFF4)
ELSE
ZS(N)=ZS(N-1)+SQRT(-STUFF4)
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ENDIF
C

ELSE
C

STUFF4=4*DELTAS**2-(RS(N)-RS(N-2))**2-RS(N-1)**2*
(THETAS(N)-THETAS(N-2))**2

C
IF (STUFF4 .GT. 4*DELTAS**2) THEN
STUFF4=4*DELTAS**2
ELSE
ENDIF

C
IF (STUFF4 .GE. 0.0) THEN
ZS(N)=ZS(N-2)-SQRT(STUFF4)
ELSE
ZS(N)=ZS(N-2)+SQRT(-STUFF4)
ENDIF

C
ENDIF

C
1000 CONTINUE

C MATCH THE BOTTOM DANGLING CHAINBOUNDARY CONDITION.
C FOR THE PURPOSES OF THE DRAG DAMPING AND THE RESTORATIVE FORCE
C DUE TO CHANGES IN ANGLE OF ATTACK CALCULATIONS, ASSUME
C THAT THE SLOPE CHANGES LITTLE FROM THE NEXT TO THE LAST TO
C TO THE LAST GRIDPOINT. THEREFORE, CAN USE THE PREVIOUS STEP
C GRIDPOINTS LESS ONE IN THE USUAL CALCULATIONS ABOVE. THE ERROR
C DUE TO THIS APPROXIMATION IS SMALL SINCE IT INVOLVES CHANGES
C IN SLOPE OVER A SINGLE GRIDPOINT AND GREATLY SIMPLIFIES THE
C CALCULATIONS. THE MAJOR DIFFERENCE BETWEEN THE LAST TWO STEPS
C IS ACCOUNTED FOR BY USING DROGUE VICE WIRE CONSTANTS.
C IGNORE THE CHANGE IN ANGLE OF ATTACK DUE TO THE MOMENT
C BOUNDARY CONDITION IN THE DISPLACED STATE. VARIOUS ANGLES
C WERE TESTED AND IT WAS FOUND THAT THEY ONLY VERY SLIGHTLY
C AFFECT THE GRID POSITION BEYOND ABOUT 5 FROM THE END. THE
C COMPUTATIONS REQUIRED WOULD SLOW THE PROGRAM AND ARE NOT
C CONSIDERED WORTH THE BULKY CODE THAT WOULD BE REQUIRED. THE
C TEST CASES BRACKETED THE REASONABLE LIMITS OF ERROR TO
C AROUND A TENTH OF A PERCENT OF TOTAL VERTICALITY CHANGE.
C

DPRIM=CLD*SD*0.5*RHO(N)*(VRELP(199)*SIN(ALFA(199)-ALFAS1))**2
: /DELTAS

DPRIM2=-X(199,2)*DPRIM/(SQRT(X(199,2)**2+Y(199,2)**2)+.0001)
IF (ABS(DPRIM2) .GT. 10.0) THEN
DPRIM2=10.0*DPRIM2/ABS(DPRIM2)
ELSE
ENDIF
N=200
DPRIME=0.0
COUNT=0
HOLD=0.0
STUFF1=DELTAT**2*G/WD

1100 CONTINUE
STUFF2=T(200)*(X(199,2)-X(200,2))
STUFF3=2*X(200,2)-X(200,1)
XN=STUFF1*((STUFF2/DELTAS)+QX(200,2)-DPRIME-DPRIM2)+

: STUFF3
DPRIME=CDD*SD*0.5*RHO(N)*((XN-X(200,1))/(2*DELTAT))*

: ABS((XN-X(200,1))/(2*DELTAT))/10.0
C
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IF (A2BS(XN-X(200,3)) .GT. 0.1) THEN
X(200,3)=xN

C
COUNT=COUNT+ 1

C
IF (COUNT .GT. 50) THEN
HOLD=HOLD+XN
IF (COUNT .GT. 70) THEN
X(200.,3)=HOLD/2 1.0
GOTO 1105
ENDIF
END IF

C
GOTO 1100
ELSE
X(200, 3)=XN
ENDIF

C
1105 CONTINUE

DPRIME=0 .0
COUNT=0
HOLD= 0.0
DPRIM2=-Y(199,2)*DPRIM/(SQRT(X(199,2)**2+Y(199,2)**2)+.0001)

C
STUFF 1=DELTAT**2*G/WD

1200 CONTINUE
STUFF2=T(200)*(Y(199,2)-Y(200,2))
STUFF3=2*Y(200,2)-Y(200, 1)
YN=STUFF1* ((STUFF2/DELTAS )+QY( 200,2) -DPRIME-DPRIM2) +
:STUFF3
DPRIME=CDD*SD*0.5*RHO(N)*((YN-Y(200,1))/(2*DELTAT))*
:ABS((YN-Y(200,1))/(2*DELTAT))/DELTAS
IF (ABS(YN-Y(200,3)) .GT. 0.1) THEN
Y(2 00, 3)=YN

COUNT=COU'NT+ 1
C

IF (COUNT .GT. 50) THEN
HOLD=HOLD+YN
IF (COUNT .GT. 70) THEN
Y(200,3)~=HOLD/21 .0
GOTO 1205
ENDIF
ENDIF

C
GOTO 1200
ELSE
Y(200,3)s-YN
ENDIF

1205 CONTINUE

C CALCULATE THE GRIDPOINT 200 SUPERIMPOSED SOLUTIONS.
C SINCE IT IS ASSUMED THAT THE LIFT IS CONSTANT ON THE DROGUE
C IT M4UST ALSO BE ASSUMED THAT THE SLOPE AT THE LAST GRIDPOINT
C IS ALSO REASONABLY CONSTANT TO ALLOW THE MOMENT EQUILIBRIUM
C BOUNDARY CONDITION TO BE APPROXIMATELY MET.
C

RS(200)=RS(199)+(RS(199)-RS(198))
THETAS(200)=THETAS(199)+(THETAS(199)-THETAS(198))
Zst200)=ZS(199)+(ZS(199)-ZS(198))

C
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STUFF4=DELTAS**2-RS(200)**2-RS(199)**2+
2*RS(200)*RS(199)*COS(THETAS(200)-THETAS(199))

C
C AS IN THE CASE OF THE OTHER GRIDPOINTS, AGAIN MUST ENSURE
C THAT THE WIRE IS NOT ALLOWED TO GROW BEYOND THE DELTAS LENGTH
C IN THE VERTICAL AND NEAR VERTICAL CASES.
C

IF (STUFF4 .GT. DELTAS**2) THEN
STUFF4=DELTAS**2
ELSE
ENDIF

C
C ACCOUNT FOR THE NEGATIVE SLOPE CASE.
C

IF (STUFF4 .GE. 0.0) THEN
ZS(200)=ZS(199)-SQRT(STUFF4)
ELSE
ZS(200)=ZS(199)+SQRT(-STUFF4)
ENDIF

C HERE, ACCOUNT FOR THE FORCE REQUIRED TO ACCELERATE THE
C DROGUE THROUGH ITS SWINGS ACROSS THE SKY. ACCOUNT
C FOP THE VARIATION IN TENSION IN THE WIRE AT GRIDPOINT 1.
C ALSO ALLOW FOR THE PROPAGATION TIME FOR THE
C FORCE ALONG THE WIRE FROM BOTTOM TO TOP.
C
C FIRST THE INERTIAL ACCELERATION OF THE DROGUE.
C

STUFF1=(-RS(200)+16*RS4-30*RS3+16*RS2-RSI)/(12*DELTAT**2)
STUFF2=(-RS(200)*THETAS(200)+16*RS4*THETS4-30*RS3*THETS3
+16*RS2*THETS2-RS1*THETS1)/(12*DELTAT**2)
STUFF3=(-ZS(200)+16*ZS4-30*ZS3+16*ZS2-ZS1)/(12*DELTAT**2)
ACCD=SQRT(STUFF1**2+STUFF2**2+STUFF3**2)
IF (ABS((Z(1)-Z(200))/(200.0*DELTAS)) .LT. 0.45) THEN
ACCD=0.0
ELSE
ENDIF

C
C NOW THE PROPAGATION TIME AND INCREMENT OF TENSION.
C

DELM=NINT((200.0*DELTAS*2.0/D)*SQRT(MHU/(PI*E*G))/DELTAT)
C DELT(M+DELM-2)=DELT(M+DELM-2)+(WD/G)*ACCD
C
C THE WIND CAUSES AN INCREMENT IN TENSION JUST AS IT DOES FOR
C ANY OF THE WIRE SEGMENTS.
C

DELT(M+DELM-1)=DELT(M+DELM-1)+0.5*RHO(200)*VW(200)**2*SD*
: CDD*SIN(THEDOT*(M-2)*DELTAT-THETA(200)+2*PI-DW(200))

C LASTLY, UPDATE THE DROGUE POSITION PLACE HOLDERS USED TO
C CALCULATE THE VALUE OF ACCELERATION.
C

RS1=RS2
THETS1=THETS2
ZSI=ZS2
RS2=RS3
THETS2=THETS3
ZS2=ZS3
RS3=RS4
THETS3=THETS4
ZS3=ZS4
RS4=RS(200)
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THETS4=THETAS(200)
ZS4=ZS(200)

C SAVE THE CURRENT THREE STEPS FOR USE IN THE NEXT.
C

DO 1800 I=1,200
X(I,1)=X(I,2)
Y(I,1)=Y(I,2)
QX(I,1)=QX(I,2)
QY(I,1)=QY(I,2)
X(I,2)=X(I,3)
Y(I,2)=Y(I,3)
QX(I,2)=QX(I,3)
QY(I,2)=QY(I,3)

1800 CONTINUE

C CALCULATE THE VERTICALITY.
C

VERCLT(M-2)=(ZS(1)-ZS(200))/(200*DELTAS)
C
C SAVE SOME DATA OVER TIME.
C

R2(M-2)=RS(2)
THETA2(M-2)=THETAS(2)
Z2(M-2)=ZS(2)
R200(M-1)=RS(200)

C
C IF USING ANTI-YOYO, SAVE THE REQUIRED BANK ANGLE VARIATION.
C

IF (YO .EQ. 1.0) THEN
C
C PHIV(M-2)=PHIVMX*COS(THEDOT*(M-2)*DELTAT-(2*PI-DWYO1))
C
C THIS VERSION IS FOR THE ANTI-YOYO CASE USING THE AVERAGE
C APPARENT FORCING WIND.
C

PHIV(M-2)=PHIVMX*COS(THEDOT*(M-2)*DELTAT-(2*PI-DWYO))
C

ELSE
ENDIF

C OPTIONAL DATA FILES. IF THESE ARE USED, THEY PROVIDE SNAPSHOTS
C OF THE DISPLACEMENTS AT VARIOUS TIMES.
C

IF (M .EQ. K-1000) THEN
OPEN (UNIT=11,FILE='DATA1.MAT')
DO 1850 I=1,200
WRITE(11,*) X(I,3)

1850 CONTINUE
CLOSE(11)
ENDIF

IF (M .EQ. K-500) THEN
OPEN (UNIT=12,FILE='DATA2.MAT')
DO 1860 1=1,200
WRITE(12,*) X(I,3)

1860 CONTINUE
CLOSE(12)
ENDIF

IF (M .EQ. K-200) THEN
OPEN (UNIT=13,FILE='DATA3.MAT')
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DO 1870 I=1,200
WRITE(13,*) X(I,3)

1870 CONTINUE
CLOSE(13)
ENDIF

IF (M .EQ. K-100) THEN
OPEN (UNIT=14,FILE=*DATA4.MAT')
DO 1880 1=1,200
WRITE(14,-) X(I,3)

1880 CONTINUE
CLOSE(14)
ENDIF

IF (M .EQ. K-50) THEN
OPEN (UNIT=15,FILE='DATA5.MAT')
DO 1890 1=1,200
WRITE(15,*) X(I,3)

1890 CONTINUE
CLOSE(15)
ENDIF

IF (M .EQ. K-40) THEN
OPEN (UNIT=16,FILE='DATA6.MAT')
DO 1900 I=1,200
WRITE(16,*) X(I,3)

1900 CONTINUE
CLOSE(16)
ENDIF

IF (M .EQ. K-30) THEN
OPEN (UNIT=17,FILE='DATA7.MAT-)
DO 1910 I=1,200
WRITE(17,*) X(I,3)

1910 CONTINUE
CLOSE(17)
ENDIF

IF (M .EQ. K-20) THEN
OPEN (UNIT=18,FILE='DATA8.MAT')
DO 1920 I=1,200
WRITE(18,*) X(I,3)

1920 CONTINUE
CLOSE(18)
ENDIF

IF (M .EQ. K-1O) THEN
OPEN (UNIT=19,FILE=,DATA9.MAT')
DO 1930 I=1,200
WRITE(19,*) X(I,3)

1930 CONTINUE
CLOSE(19)
ENDIF

IF (M .EQ. K) THEN
OPEN (UNIT=20,FILE='DATA10.NAT-)
DO 1940 1=1,200
WRITE(20,*) X(I,3)

19.0 CONTINUE
CLOSE(20)
ENDIF

C
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C END OF THE TIME LOOPS.
C
C WRITE EACH 100TH M TO GIVE THE OPERATOR A PROGRESS REPORT.
C

IF (NINT(M/100.0) .EQ. M/100.0) THEN
WRITE(6,-)M
ELSE
ENDIF

2000 CONTINUE
C

C WRITE VERTICALITY, POSITION VARIATION AT A POINT 45 FEET PAST
C THE TOWPOINT, THE TENSION AT THE TOWPOINT AND THE VARIATION
C IN PHI REQUIRED BY THE ANTI-YOYO MANEUVER TO FILES.
C

DO 2050 I=1,K-2
WRITE(30,10)VERCLT(I)
WRITE(31,10)R(2)+(R2(I)-R(2))*45.0/DELTAS
WRITE(32,10)THETA2(I)*45.0/DELTAS
WRITE(33,10)Z(2)+(Z2(I)-Z(2))*45.0/DELTAS
IF (DELT(I) .LT. 1000) THEN
WRITE(34,10)(DELT(I)+T(1))
ELSE
ENDIF
IF (YO .EQ. 1.0) THEN
WRITE(35,10)PHIV(I)*360/(2.0*PI)
ELSE
ENDIF
WRITE(36,10) R200(I)

2050 CONTINUE

C IF DESIRED, MAY WRITE TO SCREEN FOR QUICK EVALUATION OF THE
C RESULTS.
C
C DO 2100 I=1,200
C WRITE(6,*) I,RS(I),THETAS(I),ZS(I)
C IF (I .EQ. 20) THEN
C PAUSE
C ELSEIF (I .EQ. 40) THEN
C PAUSE
C ELSEIF (I .EQ. 60) THEN
C PAUSE
C ELSEIF (I .EQ. 80) THEN
C PAUSE
C ELSEIF (I .EQ. 100) THEN
C PAUSE
C ELSEIF (I .EQ. 120) THEN
C PAUSE
C ELSEIF (I .EQ. 140) THEN
C PAUSE
C ELSEIF (I .EQ. 160) THEN
C PAUSE
C ELSEIF (I .EQ. 180) THEN
C PAUSE
C ELSE
C ENDIF
C2100 CONTINUE

WRITE(6,*)K,' TIME STEPS COMPLETE!11'
WRITE(6,*)'
WRITE(6,*)'THE OUTPUT IS INCLUDED IN THE FOLLOWING:'
WRITE(6,*)'VERCLT.MAT IS A TIME HISTORY OF THE VERTICALITY.'

220



WRITE(6,*)'R2.MAT IS A TIME HISTORY OF THE RADIAL COORDINATE'
WRITE(6,*)'OF THE POINT 45 FEET BEHIND THE AIRCRAFT.-
WRITE(6,*)*THETA2.MAT AND R2.MAT ARE THE CORRESPONDING THETA'
WRITE(6,*)pAND R COORDINATES.-
WRITE(6,*) T1.MAT IS THE TOWPOINT TENSION TIME HISTORY.-
WRITE(6,*) PHIV.MAT IS THE VARIATION IN BANK ANGLE REQUIRED'
WRITE(6,*) TO FLY THE ANTI-YOYO MANEUVER IF IT IS SELECTED.,
WRITE(6,*) ALL FILES ARE INDEXED TO THE CORRESPONDING TIME,
WRITE(f *)'STEP AND NOT ACTUAL CLOCK TIME.-
WRITE( *)'SELECTED SNAPSHOTS OF THE X DISPLACEMENTS ARE'
WRITE(6,*)IAVAILABLE IN DATA1.MAT THROUGH DATA2.MAT.'
END
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APPENDIX F

EFFECTS OF ANTI-YOYO MANEUVER INDUCED TOWPLANE
RADIUS AND ORBIT RATE VARIATIONS

As mentioned in Chapter V, the angle of bank variations

used by the anti-yoyo maneuver caused a change in both the

towplane orbit radius and towplane orbit rate. Applying

equation (5.4) to the mean and the maximum angles of bank

for the test conditions described in Figure 5.7 showed that

the turn radius varied 4% per degree of bank angle

variation. Equation (5.3) demonstrated that 6 also varied

4% per degree of angle of bank change. To analyze the

effects of these harmonic variations, a two dimensional

computer simulation of the dangling chain with the drogue

attached to the lower end and a movable upper boundary

condition was developed using the wire configuration used to

generate Figure 5.7. The simulation is depicted in Figure

F.1.

The upper end of the dangling chain was sinusoidally

moved AR-±400 feet over a range of frequencies. The limit

of AR-±400 feet corresponded to the maximum change in radius

due to the angle of bank variation used in Figure 5.7. The

simulation was performed for the completely undamped case

and for the case where pseudo-damping due to the lateral

oscillation rate was present as described in Chapter IV.
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Figure F.1: Dangling Chain Model With Harmonically Moving
Upper Boundary

The results are shown in Figure F.2 where the maximum drogue

displacements, normalized by AR, were plotted versus the

frequency at which the upper end location was modulated.

The resonant peaks for the undamped case corresponded to the

theoretical singularities for the dangling chain with a

weight attached to the free end calculated in Appendix B and

listed in equation B.23. Note that with the application of

the lateral rate drag, the resonant peaks were suppressed

and the resulting magnitude of the oscillations were greatly

reduced.

The simulation above applied only the pseudo-damping due

to the lateral oscillation rate and was thus conservative.

At the typical TACAMO orbit frequencies of between 0.04

rad/sec and 0.08 rad/sec, the gain between the input

displacement magnitude at the upper end of the chain and the
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DANGUNG CHAIN RESPONSE TO HARMONIC INPLTS

-- k resonance

Sundamped
I •

Io L  -. with lateral
rate drag

L

0 0.02 004 0.06 0.08 0.1 0.12 0.14

input frequency (rad/secl

Figure F.2: Dangling Chain Response to Harmonic Displacements

at the Top

displacement magnitude at the lower end near the drogue was

approximately unity. The second form of pseudo-damping,

which was due to the angle of bank variation, was applied

for the test conditions of Figure 5.7. The input frequency

was 0.057 rad/sec for these conditions. The effect of the

restorative force due to angle of attack variations was to

reduce the output to 50 feet/400 feet=0.125, an order of

magnitude dissipation of the output from the input

magnitude. The discussion in this appendix has shown that

the effects of anti-yoyo maneuver induced towplane radius
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and orbit rate variations were attenuated by pseudo-damping

and thus they were neglected.

As a further analysis of the effects of pseudo-damping

upon the dangling chain simulation, the static model was

modified to allow the addition of a constant set of forcing

function forces along the wire length. The forcing function

forces were chosen equal to the forces calculated by the

dynamic model at a single point in time. Figure F.3 is a

comparison of the Z coordinate of the wire position for the

dynamic model, the static model and for the static model

with the addition of the forcing function forces (quasi-

static solution). Note that the dynamic model position

calculation was distinct from both the static model position

as well as the quasi-static model position, highlighting the

effects of the dangling chain governing equation. If the

dynamic and quasi-static position calculations had been the

same, it would have indicated that pseudo-damping had

completely eliminated the effects of the dangling chain

dynamics. Figures F.2 and F.3 demonstrate that the effects

of pseudo-damping eliminate much, but not all, of the

dangling chain dynamics.
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X104 COMPARISON OF QUASI-STATIC DYNAMIC AND STATIC SOLUTIONS

TOWLANS 2-6A TACA•O SystemEND 3X7 Wire
towplane airspeed-156 KEAS:1. tmialane altitude-19,325 feetconstant towplane bank angle-34'

constant towplans turn radius-6469 feetwire length-20,290 feet

1.4

1.2

S.. STATIC SOLUTION
-QUASI-STATIC SOLUTION
---- DYNAMIC SOLUTION

0.8 " \

DROGUE
END

060 0.5 1 1.5 2.5

distance along ue (feet) ldO0

Figure F.3: Comparison of Quasi-static, Dynamic and StaticVertical Coordinate Position Solutions
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"APPENDIX G

FLYING DROGUE DESIGN

The requirements of a flying autonomous drone towed

behind an airplane were similar in concept to those of a

Remotely Piloted Vehicle (RPV). An RPV was selected that

approximately fit the requirements of weight, size and

configuration. The flying drogue was thus based upon the

general design of the EXDRONE or SYMDEC 4 RPV with the

engine removed. Hill provided a number of the desired

parameters as outlined in (G.1) [Ref. 21:pp. 23-46] and Yip

made available others in (G.2) [Ref. 22:pp. 34-46] where AR

was the aspect ratio, bD was the drogue span and 1 D was the

theoretical root chord.

AR=3.14
CLAD= 2 .5 3 until CL,=0.8,a=24 0

-D axt CLD=0 .33 ,CDD=0. 031

SD= 2 1.24ft 2

bD=8. 167 ft 2  (G.2)
D=4 .458ft

In addition, Hill provided a plot of CDD versus CLD at

Reynolds numbers applicable to the sea level 45 to 100 knot

regime of interest to the flying drogue. An analytical

expression, vice a table look up, was much preferred for
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programming purposes and so a number of points were

extracted from this plot and used to perform a third order

polynomial curve fit. The resulting polynomial is prebented

in equation (G.3). Since the EXDRONE data was being used as

a rough approximation of the final drogue parameters, the

inaccuracies introduced by curve fitting the experimental

data were deemed acceptable. A maximum CLD of 0.75 was used

whenever appropriate since the stall CLD for the EXDRONE was

approximately 0.8. It should be emphasized that the flying

drogue probably will not use the exact EXDRONE

configuration. The EXDRONE data and configuration were used

to approximate the maximum coefficients and forces which can

be physically developed in flying hardware.

C =0. 3129C,+O. 084C% -0. l53C+0. 0205 (G.3)

The pure lateral control scheme required both controlled

drag as well as lift. This mix of forces allowed control of

the vector perpendicular to the local tangent vector.

Tailoring the lift of the drogue merely required controlling

the angle of attack. The CLaD and other needed parameters

were described as part of the steady-state flying drogue

model. A split speedbrake configuration was chosen to

develop the tailored drag. This required that the EXDRONE

be modified such that the aft part of the wing inboard of

the ailerons as well as the vertical tail split open on

command to produce the required drag. The ailerons were

moved as far out on the tips of the EXDRONE wing as possible
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to maximize the area available to split. By splitting the

last twenty inches of the wing as well as the vertical tail,

approximately eleven square feet of area was available.

The effect of the split speedbrake was approximated

using the 1958 Hoerner approximation for drag on a wedge of

given half internal angle (Ref. 10:p. 3-18). The

speedbrakes were split to the approximate shape of a wedge

with a half internal angle of e. Holes were added to the

speedbrakes to enhance stability of the bluff body when the

speedbrakes were split to a large angle. The combined

effects of the holes and the effect of the EXDRONE fuselage

was to reduce the drag generating capability and so only

0.75 C Do as provided by Hoerner was used. Since the Hoerner

derived numbers were used only as a rough, early cut of the

CDO generated by the speedbrakes, a number of points were

taken from the plot and used to develop a third order least

squares polynomial curve f it of the CDO versus e data. The

resulting polynomial is included in equation (G.4).

CDO=O . 2322e3-0.7 816e2+1, 5665e+O. 6479

CDOmO.75CDO e in radians (G.4)
CDO reference area =pro,! ec4t-ed frontal area

Figure G.1 is a side on view of the split flap

configuration. w was defined as shown in Figure G.1 and it

was remembered that the flaps had a chordwise length of 20

inches. Wext, it was assumed that the maximum deflection of

the split peedbrakes was emax=60? These assumptions
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resulted in wmax=l. 4 4 feet. The vertical tail was

approximately triangular and 12 inches tall. For the

purpose of simplifying the following calculations, all of

the split surface, including the surface on the EXDRONE wing

as well as the vertical tail was treated as a single

surface. Knowing that the total split speedbrake area was

11 ft 2 and that the chordwise length of the speedbrake was

1.667 ft, the equivalent spanwise length of the speedbrakes

including both the wing and vertical tail area was found to

be 6.6 ft. Using wmax=1. 4 4 ft and remembering that this

value was only half of the projected frontal height of the

speedbrake wedge as seen in Figure G.1, provided a value of

the maximum projected frontal area of the fully deployed

speedbrakes, Spf=l 9 ft 2 .

of speedbrakes

Figure G.1: Edge View of Split Speedbrakes

Using 0.75 of Hoerner's CDO resulted in CDOmax=1. 2 7 5 and

applying this to the definition of the drag coefficient

using the projected frontal area of the wedge as the
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characteristic area resulted in equation (G.5). It was

assumed that the commanded drag may range from the maximum

value provided in (G.5) down to the zero lift drag of the

EXDRONE which was dependent upon the EXDRONE CDO provided in

equation (G.4). The minimum drag value was included in

equation (G.6) where the characteristic area was now the

EXDRONE wing area. The minimum and maximum available lift

were derived using a maximum lift coefficient under stall of

CLmax±0.75 and is provided in equation (G.7), where again

the characteristic area was the total wing area.

D~,,i,,f=O. 2124 pnRO) 2  (G.6)

L 1 /min"7 965p4RN0)2  (G.7)

When the wire was located at the high verticality

multiple solution, the angle between the wire and the

horizontal plane at the end of the wire near the drogue was

approximately 90 degrees. Equation (G.8) was the angle

between the wire segment connecting the drogue and the first

internal gridpoint and the horizontal plane. As an example,

for the flight profile and wind/drogue configuration used to

develop Figures 3.10 through 3.14, q=89.9! Applying the
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steady-state assumptions outlined in Chapter III, the drogue

drag was approximately perpendicular to the wire at the

lower grid segments and the lift was approximately

tangentidl to 'he w:Zre

Yj=aco[ (R- 1 ÷+R,(ONl-0-) (G.8)
4 ~AS I

Since the wire was approximately vertical, the Xn,m

displacement was approximately entirely in the eR coordinate

direction and the Yn,m displacement was approximately

entirely in the ee coordinate direction. Since the relative

wind vector was in the ee direction in steady-state

conditions and the drogue drag was collinear with the

relative wind, the drag of the drogue was approximately in

the Yn,m dangling chain displacement direction at the

drogue. By the same reasoning, as the drogue banked, the

lift vector, which was perpendicular to the relative wind

vector, developed a horizontal component which was

approximately in the Xnm dangling chain displacement

direction. Finally, for the nearly vertical wire, the

vertical component of lift was approximately in the wire

tangential direction.

Under the conditions outlined above, the maximum control

forces which could be applied as inputs to the Xnm and Yn,m

dangling chain displacement equations were determined.

Control forces were required in both the positive and

negative directions and so for the case of the lateral Yn,m
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control force direction, which was approximately all drag,

the maximum force available was equal to half of the

difference between the maximum and minimum drag forces

availaLle as 6hown in equation (G.3). Si..bstituting from

equations (G.5) and (G.6) resulted in (G.10).

F Iax (DD111 - D~in)
cos(t -n (G.9)

k2 IG O

(12.1-0.2124)pR 2

FDYmax/,in=±(

As discussed in Chapter V, the drogue was, in general,

flown at some non-zero steady-state bank angle and angle of

attack. LDss was thus defined as the steady-state component

of the drogue lift. Assuming the drogue could be banked to

approximately OD=±9 0 0 and could produce the maximum lift

given in equation (G.7), the maximum force in the Xn,m

displacement direction was shown in equation (G.11).

FD, =±V(7.965pR.) ) -L 8 (0.1)

Since the wire was nearly vertical near the drogue, the

maximum force available in the tangential direction wasJ

approximately determined by the maximum lift force which the

drogue could develop. The maximum tangential control force

was thus as shown in equation (G.7).
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