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Introduction

Statistical analysis consists of three parts: collection of data, summarising data, and making inferences. The main
focus of this text is on the key tools of statistical inference: parameter estimation and hypothesis testing based upon
properly collected, relatively small data sets. Special attention, therefore, is paid to the basic principles of experimental
design: randomisation, blocking, and replication. The reader will get a deeper understanding of some traditional topics
in mathematical statistics such as methods based on likelihood, aspects of experimental design, non-parametric testing,
analysis of variance, introduction to Bayesian inference, chi-squared tests, and multiple regression.

It is expected that the reader is familiar with the basics of probability theory. The diagram on the front page
illustrates the relationship between probability theory and statistical inference. An appreciation of these two different
perspectives is provided by the following statements.

PROBABILITY THEORY. Previous studies showed that the drug was 80% effective. We can anticipate that
for a study on 100 patients, in average 80 will be cured and at least 65 will be cured with probability 0.9999.

STATISTICAL INFERENCE. It was observed that 78 out of 100 patients were cured. We are 95% confi-
dent that for other similar studies, the drug will be effective on between 69.9% and 86.1% of patients.
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Chapter 1

Parametric models

Notationally, we distinguish between random variables X, Y, Z and their realisations z, y, z by consistently using either
capital or small letters. For a random variable X, we usually denote its mean value and variance by

p=E(X), o%=Var(X).
Recall that the mean (expected) value of X is computed as
(o) o0
E(X) = / zf(x)dr  or E(X)= Zmipi,
- i=1

depending on whether the distribution of X is continuous, with the probability density function f(x), or discrete, with
the probability mass function p; = P(X = x;). The difference (X — p) is called the deviation from the mean, and the
variance of X is defined by

Var(X) = E((X — )?).

The square root of the variance, o, is called the standard deviation of X.

By X ~ F(u,o) we will mean that X has a distribution with mean p and standard deviation o. The
symbol F(u,o) will often denote the so-called population distribution.

The standardized version of X,

often called a z-score, is the result of a linear transformation of X such that E(Z) = 0 and Var(Z) = 1. Notice that
an arbitrary linear transformation Y = a + bX, having mean p,, = a 4 by and standard deviation o, = bo, brings the
same z-score:

Y—py X—p _

Z.

oy o

It follows, that the z-score is a unit-less entity (for example, giving the same number of one’s standardized height
irrespectively of the length unit, be it centimeters or inches).
The covariance of two random variables (X7, X53), with means (u1, 2), is defined by

Cov (X1, X2) = E((X1 — 1) (X2 — p2)).

If (Z1, Z5) are standardised (X7, X3), then the correlation coefficient for (X, X2) is given by p = Cov(Z1, Z3).

‘ The correlation coefficient is used as a measure of linear dependence between a pair of random variables. ‘

In general, the correlation coefficient belongs to the interval —1 < p < 1. In particular, if X; and X5 are independent
random variables, then p = 0, and if X5 = a + bX1, then p = £1 depending on the sign of the non-zero slope b.

1.1 Normal distribution

A key parametric statistical model is the normal distribution which will be denoted by N(u, o). A normally distributed

random variable
X ~ N(p,0)

has mean E(X) = p, variance Var(X) = ¢2, and the probability density function

(z—p)?
f(x) = e 27 —oo<x<oo.




The corresponding z-score Z = % has the so-called standard normal distribution N(0,1). The cumulative distribu-
tion function of N(0, 1) is assigned a special notation

O(z)=P(Z<zx), —oc0o<x<o0.
The values of ®(x) for x > 0, may be found using the table in Section 11.1. Importantly, if X ~ N(u, o), then
P(X <) = P(328 < 224) = P(Z < 208) = O(22F),

(e

The next figure presents four probability density functions N(0,0.5), N(0,2), N(—2,1), and N(2,0.5). All normal
distribution curves have the same shape and differ only in their location parameter p and their scale parameter o.

[ce]
©
e Q9
> o
=
o <
T O ]
£
S o _|
Z o
e |
e | | T | |
4 2 0 2 4
The key role of the normal model in the statistical inference is due to the central limit theorem. Let (X1,...,X,)
be independent and identically distributed random variables with mean p and variance o2. The arithmetical average
% Xi4+...+ X
n

represents the sample mean. According to the central limit theorem, for a large sample size n,

X ~N(u, %),

meaning that the random variable X is asymptotically normally distributed with mean j and variance ‘;—f

Signal and noise

Suppose we want to measure the unknown signal value p and each measurement Y has a random measurement error.
Let
Y=p+0Z, Z~ N(0,1),

where 0Z is the measurement error or, in other words, the noise component. Then, the response variable Y ~ N(pu, o).
In view of the central limit theorem, it is natural to model the random noise using the N(0, o)-model, since the noise
is an accumulation of all external factors neither of which having a dominating effect on the response variable. In such
a setting, we refer to o as the size of the noise.

Mixtures of normal distribution

A motivating example for the mixture model is the hight of people in a population consisting of women and men. Let
N(p1,01) be the distribution of women’s height and N(u2,02) be the distribution of men’s height. Then, the mixed
population distribution describes the outcome of a two step random experiment: first toss a coin for choosing index
to be either 1 or 2, then generate a value using N(u;,0;). The resulting density function has the shape of a "camel
curve" as illustrated below (red line).




More generally, suppose that we are given k£ > 2 normally distributed random variables
X1~ N(p1,01), -, Xi ~ N(pg, o).

Define the response variable Y as X; with a random index ¢ taking one of the values 1,...,k with probabilities
wi, ..., W, SO that
w4+ ... +w =1.

This yields the following expressions for the mean = E(Y) and variance 0% = Var(Y)

B=wipr + ..+ W,
k

k
0'2 = ij(,uj — ,LL)2 + ZUIJU']Q-.
7j=1

The above expression for o2 is due to the law of total variance, see Wikipedia, which recognises two sources of variation
variation between the strata Z?:l wji(pj — p)?,

variation within the strata 3 ;_, w;o?.

1.2 One-way and two-way layout models

Suppose the expectation pu; of the response variable is a function of the level i for a single main factor A having I
different levels:
Y, ~ N(u;,o), i=1,...,1.

It is helpful to represent the population means u; as the sum

i =pt o, = —

of the so called grand mean
e
h= I
and the effect a; of the main factor A at the level i. Observe that ZZ.IZI a; = 0, meaning the total effect of the factor
A is zero.
In the case of two main (categorical) factors, with factor A having I different levels, and factor B having J different
levels, assume that the response variable depends on the combination of the levels of the two main factors in the

following way
}/ijNN(,uij7g)7 7;:1’"'717 j:17"'a‘]7

where
pij = p+ o + B + b,

is the sum of the grand mean p, the main effect o; of the factor A at the level 4, the main effect 3; of the factor B at
the level j, and the interaction ¢;; of the two main factors. Here it is assumed that

I J
Yo =3 -0
i=1 j=1

and
J

I P
Zéij:07 j:]-?"'aJv Z(sijzo, l:1,,I
i=1 7j=1

In general, at different combinations of levels (4,j) of the two factors may interact either negatively, §;; < 0, or
positively, d;; > 0.

Additive model

In the special case, with §;; = 0 for all (¢, ), the model claims that there is no interaction and the main factors
contribute additively:
Wij = p+ o + B,

Example: pay gap

Let the response variable be the salary of a person chosen from a large population. Factor A is person’s sex having
I =2 levels: i =1 for a female and ¢ = 2 for a male. Factor B is person’s profession having say J = 20 levels, where
j = 1is a farmer, j = 2 is a police officer, j = 3 is a doctor, and so on. In this example, the difference a; — as
represents the pay gap between women and men.



1.3 Sample mean, sample variance, and t-distributions

Suppose we are given a vector (Xi,...,X,) of independent random variables having the same distribution F(u, o).
A realisation of this vector (z1,...,z,) will be called (with a slight abuse of the established terminology) a random
sample drawn from the population distribution F(u, o) with population mean p and population standard deviation
o. For the given sample (z1,...,z,) define the sample mean, sample variance, and sample standard deviation by

ot 4o, 9 1 & .9 \/(ml—j)2+..‘+(xn—f)2

I=——797909o2— s = T —T)°, s= .

n ’ n—1 ;( i~ 7) n—1
An alternative formula for the sample variance
2 2
2_ N @ -2, 2= 331—&-...—&-33“7
n—1 n

is often more convenient to use for pen and paper calculations. The sample mean Z and sample variance s? are

realisations of the random variables

X 4.+ X, 1 _
X = 1+ + ’ 52: Z(Xi_X)27

n n—1

which have the following means and variances

2

E(X)=p, Var(X)=2, E(S*) =0 Var(S®) = : (E(X—u)4 _ @)

g
n

If the population distribution is normal
F(p, o) = N(p, o),

then by Cochran’s theorem, see Wikipedia, the so-called t-score of the random sample

X —p

<= ~ il

S/vn
has the t-distribution with n — 1 degrees of freedom. The density function of the t-distribution with £ > 1 degrees of
freedom

F(u) 22 _%
f(x)m<l+k) , —o0o<x< oo

involves the gamma function -
I(a) = / e % de,
which is an extension of the factorial function to the no(;l—integer positive numbers a, in that
Lk)y=(k-1), k=12,...
The t-distribution curve with k& > 3 of degrees of freedom looks similar to the N(0, 1)-curve, being symmetric around

zero and having the standard deviations \/ﬁ which is larger than 1. The figure below depicts three t-distribution

curves together with the N(0,1)-curve (in red). The degrees of freedom used in the figure are k = 1, k = 2 in blue,
and k = 6. The t-distribution with £ = 1 degree of freedom has undefined mean value and infinite variance. The
t-distribution with k = 2 degrees of freedom has zero mean and infinite variance.
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The connection between the ¢-distribution and the standard normal distribution can be described in the following
way: if Z,Zy,...,Z; are independent random variables with N(0, 1)-distribution, then

Z
VZ2+. . +ZY)]k

~ 1.



1.4 Gamma, exponential, and chi-squared distributions

The gamma distribution Gam(a, ) is a continuous distribution described by two parameters: the shape parameter
a > 0 and the inverse scale (or the rate) parameter A > 0. Its probability density function has the form

The next figure depicts
on the left panel, the gamma densities with A =1 and a = 0.9, 1, 2, 3,4,
on the middle panel, the gamma densities with o =1 and A = 0.5,1,2, 3,
on the right panel, the gamma densities with A\ = 1 and o = 10, 15, 20, 25, 30.
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The gamma distribution model, despite being restricted to positive values, is more flexible than the normal distri-
bution model since for the different values of «, the density curves have different shapes. In particular, if a = 1, then
we obtain the exponential distribution (see the middle panel above)

Gam(1,\) = Exp(\).
Moreover, if X; ~ Exp(\), i = 1,...,k are independent, then
X1+ ...+ Xk ~Gam(k,\), k=12,...

The mean and variance of the gamma distribution are

a 2 a
=%, 0 =3z

For large values of the shape parameter, there is a useful normal approximation for the gamma distribution:

Gam(a, ) %N(%,@), a> 1.

The chi-squared distribution with k& degrees of freedom is the gamma distribution with a = g, A= % The figure
below depicts the chi-squared distribution densities with & = 2,3,4,5,6 degrees of freedom.
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The chi-squared distribution is connected to the standard normal distribution as follows: if Z1,..., Z; are independent

random variables with N(0, 1)-distribution, then
Zi+ ..+ 2}~ x:
Importantly, if (X1,...,X,) are independent and random variables each having the N(u, o) distribution, then

Z?:l(Xi *X)Z 2
- 2z ~ Xn-1-

Here, the number of degrees of freedom is n — 1 instead of n, because one degree of freedom is consumed after u being
replaced by X.



1.5 Bernoulli, binomial, and multinomial distributions

Let X be the outcome of a Bernoulli trial with probability of success p, meaning that
PX=1)=p, P(X=0)=1-p.

In this case, we write X ~ Bin(1,p) and say that X has the Bernoulli distribution with parameter p € [0,1]. The
Bernoulli model is used for describing dichotomous data, when observations have two possible outcomes: female or
male, heads or tails, passed or failed. Under such a dichotomy, one outcome is usually called a success and the other
failure, and the value z = 1 is assigned to the successful outcome. The mean and variance of X ~ Bin(1,p) are

p=p, o =p(l—p).

If X is the sum of outcomes of n independent Bernoulli trials with probability p of success, then its distribution is
called the binomial distribution Bin(n,p). This is a discrete distribution with the probability mass function

)pm(l -p)"7* x=0,...,n,
yielding the following formulas for the mean and variance

p=mnp, o> =np(l—p).
The normal approximation for the binomial distribution

Bin(n, p) ~ N(np, /np(1 — p)).

is an instrumental example of the central limit theorem. The rule of thumb says that this normal approximation is
good enough if both np > 5 and n(1 — p) > 5, so that

P(X <)~ @(\/%).

Continuity correction

For smaller values of n, this approximation is improved with help of the continuity correction trick, which in view of
the equality
PX<z)=PX <z+1),

suggests replacing x by = + % on the right hand side of the approximation formula
P(X <2)~ q>(%),
(X < 2) v/np(1—p)
resulting in

1
P(X < ) ~ @(M
(X <2) \/nza(lfp)>7

or similarly,

s,
»
A

&
2

()
np(1—p)/’

Example

To illustrate, we plot the Bin(10,1/3) distribution together with its normal approximation: on the left panel without
the continuity correction and on the right panel with the continuity correction. Observe that n = 10 is so small that

with p = 1/3 we have np = 3.33 which smaller than the recommended lower bound 5. Still, the normal approximation
with the continuity corrections is quite close.
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The multinomial distribution (X1,...,X,) ~ Mn(n;p1,...,p,) is defined by

n
PXi=xz,....X, =2,) = L pEr
( 1 1 s LA r) (xla--~7xr)p1 Pr
where
z;=0,...,n, 1=1,...,m
and (p1,...,pr) is a vector of probabilities such that
pr+...+p- =1

This is an extension of the binomial distribution Bin(n,p) = Mn(n;p,1 — p). The Mn(n;p1,...,p,) distribution
describes the outcome of n independent trials with r possible outcomes labeled by ¢ = 1,...,r. If each trial outcome
has distribution (p1,...,p,) over the set of possible labels {1,...,r}, then X; should be treated as the number of trials
with the outcome labeled by i. We have

X1—|—...—|—X,»=n,

the marginal distribution of X is binomial X; ~ Bin(n, p;), and the different counts (X;, X;) are negatively correlated:

COV(Xi7Xj) = —Nnp;pj, ) ;é ]

1.6 Poisson, geometric, and hypergeometric distributions
The Poisson distribution X ~ Pois(p) is a discrete distribution with
PX=z)="—¢* 2=0,1,..., EX)=pu, Var(X)=p.
The Poisson distribution is obtained as an approximation for the Bin(n, p) distribution in the case

n — oo, p— 0, and np — p.

It is used to describe the number of rear events (like accidents) observed during a given time interval. The next figure
depicts

on the left panel, the Poisson distribution with p =1,
on the middle panel, the Poisson distribution with u = 8,
on the right panel, the Poisson distribution with g = 3 in red is compared to the Bin(100,0.03) distribution.
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Geometric distribution

Consider a sequence of independent Bernoulli trials with probability p of success. The geometric distribution is either
one of two discrete probability distributions:

the distribution of the number X of trials needed to get one success,
the distribution of the number Y = X — 1 of failures before the first success.

Which of these is called the geometric distribution is a matter of convention and convenience. Often, the name shifted
geometric distribution is adopted for the distribution of X supported on the set {1,2,...}. To avoid ambiguity, in this
text, we say that X has the geometric distribution with parameter p and write X ~ Geom(p) if

P(X:Z’):(l—p)wilp’ 1.:172""7

yielding the mean and variance formulas

1 2__ 1-p
‘UJ—E, O'—pz.

Like its continuous analogue, the exponential distribution, the geometric distribution is memoryless: the die one throws
or the coin one tosses does not have a memory of how many failures have been observed so far.

11



Hypergeometric distribution

The hypergeometric distribution X ~ Hg(N,n,p) describes the number z of black balls among n balls drawn without
replacement from a box with N balls, of which

B = Np balls are black and
W = N(1 — p) balls are white.

In this case, X is the number of successes in n Bernoulli trials which depend on each other. The distribution of X is
given by the formula

for the integer numbers z satisfying
max(0,n — W) < z < min(n, B).
The mean and variance of X are
p=np, o°=np(l—pi=2.
Compared to the variance of the Bin(n, p) distribution, the last formula contains the factor

N—n __ 1— n—1
N—-1 — N-1»

which is called the finite population correction factor. With a small fraction value n/N, the finite population correction
is close to 1 and Hg(N, n, p) ~ Bin(n,p). One may say that the binomial distribution is a version of the hypergeometric
distribution with the infinite population size.

Despite the dependence between the drawings without replacement, there is a normal approximation also for the
hypergeometric distribution:

Hg(N,n,p) ~ N(u,0),  p=np, o=+/np(l—p)\/l—+=%,

which is recommended to be applied provided np > 5 and n(1 — p) > 5. On the figure below the Hg(100,10,0.5)
distribution is compared to its normal approximation with the continuity correction. Again, with the continuity
correction the normal approximation works well even for smaller values of np and n(1 — p).

0.20
|

0.10
1

0.00
|

1.7 Exercises

Problem 1
For any pair of random variables (X7, X5) with means (p1, 12), show that

Var(X;) = E(X?) — p?, Cov(X1,X5) = B(X1X5) — 1 pto.

Problem 2
Let
_ X1—M17 Zy = XQ_,UQ,
01 02
be the standardised versions of X; and X,. Verify that E(Z;) = 0 and Var(Z;) = 1. Show that the correlation
coefficient for X; and Xs is given by

A

p=E(Z12),

and explain in what sense it is a dimensionless quantity.

12



Problem 3
For (X1,...,X,) ~ Mn(n;p1,...,p,), what is the distribution of the sum X; + X, assuming i # j7

Problem 4

Let X ~ Gam(a, A). To see that the parameter X influences only the scale of the gamma distribution, show that the
scaled random variable Y = AX has the gamma distribution Gam(a, 1).

Problem 5

Show that
Var(X +Y) = Var(X) + Var(Y) + 2Cov (X, Y).

Problem 6

The average number of goals in a World Cup soccer match is approximately 2.5 and the Poisson model is appropriate.
Compute the probabilities of k goals in a match for k = 0,1, 2.

Problem 7

Show that for large NV,
Hg(N,n,p) = Bin(n, p).

Problem 8

Consider a truncated version of the geometric distribution Geom(n, p) such that for X ~ Geom(n,p),
n—1
P(X=2)=(1-p)", 2=0,1,....n-1, P(X=n)=1-> P(X=uz),
z=1

and compute P(X = n).

13



Chapter 2

Random sampling

Statistical inference is the use of data analysis for inferring relevant statistical patterns in a large population with help
of a random sample drawn from the population in question.

Picking at random one element from the population, produces a realisation = of
a random variable X ~ F(u, o) having the population distribution.

In many situations, studying the population distribution by enumeration is either very expensive or even impossible.
Luckily, a good guess is available by studying a sample of n observations (z1,...,z,) drawn independently from the
population distribution F(u, o). Such a random sample is a single realisation of the vector (X7, ..., X,,) of independent
and identically distributed random variables. If the sampling experiment is repeated, the new realization (z,...,])
will differ from (z1,...,z,).

‘ Randomisation in sampling protects against investigator’s biases even unconscious. ‘

Any function g(x1,...,x,) of the sample data is called a statistic. The most important examples of statistics are
the sample mean and sample variance
1+ ...+, s (z1—2)*+...+ (zn —7)?

jzi S =
n ’ n—1

Example: in class experiment

The figure below presents the data of heights and gender for the students attending the course Statistical Inference
at a certain year. The collected height values form a sample drawn from the population distribution of the heights of
Gothenburg students for that year.

- Can this dataset be viewed as a random sample, in the sense that the students are drawn independently
at random from the population of Gothenburg students?

- How would you estimate the population mean and variance of the heights using the collected data?

- How would you estimate the population proportion of women?

X
X
X
[e) 2%
@) )Y X
@) > X iX
% (101 10 X A
A 0% X IR XD GIXE 4P
O o O &) X XKL XX
D10 @ O x| 1IOXKBIXX] ixd X X GO RN
& O iy 0ot 0 O PKOIOKIOION X! X Kt PECXIXAA N XXX
156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196

Report your hight in cm by adding O if you are female and X if you are male

2.1 Point estimation

Suppose the population distribution of interest is a gamma distribution

F(p,0) = Gam(a, \)

14



with unknown parameters. Given a random sample (x1,...,x,) drawn from Gam(a, \) distribution, one can try to

estimate the shape parameter a using a relevant statistic g(x1,...,zp).

More generally, to estimate a population parameter 6 based on a given random sample (z1,...,z,), we need a
sensible point estimate 6= g(x1,...,2,). Observe, that in the same way as (z1,...,2,) is a realisation of a random
vector (X7i,...,X,), the point estimate 0 is a realisation of a random variable

0 =g(X1,...,Xn),

which we will call a point estimator of . The distribution of the random variable O is called the sampling distribution
of the point estimator. The quality of the the point estimator © is measured by the mean square error

E((© — 6)?) = Var(©) + (E(©) — 6)?

which is the sum of two components involving

~

the bias size E(©) — 6, measuring the lack of accuracy (systematic error),

~

Var(0), measuring the lack of precision (random error).

If the mean square error vanishes E(((:) —0)?) — 0 as n — oo, the point estimate 6§ is called consistent. If E(@) =4,

the estimate is called unbiased. The standard deviation og = Var(©) of the estimator © is called the standard error

of the point estimate 6.

The estimated standard error s; of the point estimate 0
is a point estimate of og computed from the data.

Remark on termilogy

Consistency is a feature of estimator. Sometimes, we write consistent estimate and mean that the estimate is a value
of a consistent estimator. The same holds for unbiased estimators and estimates.

Sample mean, sample variance, and sample standard deviation

In view of
— 2

B(X)=p. Var(X) =%, E(S%) =0’ Var(s?) =5 (BT ).

o n—1

we conclude that the sample mean Z is an unbiased and consistent estimate of the population mean § = u. Furthermore,
the sample variance s? is an unbiased and consistent estimate for the population variance = o2.

The estimated standard error for the sample mean Z is given by sz = ﬁ

Notice that the sample standard deviation s systematically underestimates the population standard deviation o since
E(S) < o, provided Var(S) > 0. To see this, observe that (E(S))? < E(S?), where E(S?) = 02. However, s is an
asymptotically unbiased and consistent estimate of o.

2.2 Approximate confidence intervals
By the central limit theorem, for the large sample sizes n,
X ~N(u, %),

or in terms of the z-score _
X —p
—— =~ N(0,1).
YN (0,1)

Due to the consistency property S ~ o it follows that in terms of the t-score we have

X—p
77 ~NO),

This yields - - -
P(X —zS/vVn<pu< X +2zS/vn)) = P(—z0/vn < X — u < zo/y/n) ~2(1 — ®(2)),

giving the following formula of an approximate 100(1-a)% two-sided confidence interval for the population mean p:

W T E2(5) sz
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or equivalently,

_ s
Ii~T+2(5) —.

Vn
Here z(«) is obtained from the normal distribution table using the relation
P(z(e)=1—a, a€(0,1),
so that for example,

100(1-a)% | 68% | 80% | 90% | 95% | 99% | 99.7%

2(%) | 1.00 | 1.28 | 1.64 | 1.96 | 2.58 | 3.00

The higher the confidence level 100(1-a)%, the wider is the confidence interval I,.
On the other hand, the larger the sample size n, the narrower is I,,.

The exact meaning of the confidence level is a bit tricky. It is important to realise that the source of randomness
in the expression Z + 2(§) - sz is in the sampling procedure. For a given sample (21, ..., xy), the concrete interval I,
is a realisation of a random interval Z,,, such that

P(random interval Z,, covers the point p) ~ 1 — a.

For example, out of a hundred 95% confidence intervals I, computed for 100 samples, on average 95 intervals are
expected to cover the true value of p. Notice that in this case, the random number of the confidence intervals covering
w has distribution Bin(100,0.95) which is approximately normal N(95,2.18).

Example: 50% confidence level

The figure below presents a case for the 50% confidence interval. Here 20 samples of size n = 8 were drawn from a
population with mean u. The 20 samples produce different sample means and sample variances. The resulting 20
confidence intervals for the mean p have different middle points and widths:

some of the intervals cover the mean value (blue intervals),
some of the intervals fail to capture the mean value (red intervals).

/“\
1 . .:.—3— oo o
2 T
3 o ob .
4 . .= -
5 —t e eee
6 . Tt -
7 o .
8 — .
9 —.
10 i % .
11 e o i
12 .« o~
13 . TS .
14 o TP ce o
15 T e . o
16 e 1T e
17 . it
18 T
19 oot
20 )
2.3 Simple random sample
A finite population of size N can be viewed as a set of N elements characterised by numerical values « € {a1,as,...,an}.

The corresponding population distribution F(u, o) is then given by the probability mass function

where N, is the number of elements labeled by a; = x. There are two basic ways of drawing a random sample of size
n from a population of size IV:
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- sampling with replacement produces what we call a random sample consisting of independent and identically
distributed observations,

- sampling without replacement produces a so called simple random sample having identically distributed but
dependent observations.

Notice that if the ratio  is small, then the two approaches are almost indistinguishable.
In this section we consider a simple random sample (z1,...,x,) with dependent observations. In this case the
sample mean Z is again an unbiased and consistent estimate for the population mean, such that

= 2

E(X) = p, Var(X)=2(1 - 4=1),

Here N is the finite population size and the finite population correction

1— n—1 _ N-—n
N-1 "~ N-1

reflects the negative correlation between observations due to sampling without replacement.
Observe that the sample variance s becomes a biased estimate of o2. Indeed, since

-1

B - BB - ) - B - )

n
= 230+t = (1= 32D — i) = 0t - (- A2 = oty

we find that

N-1

Replacing 02 by s?£=% in the formula Var( n—l

=1}, we obtain the following unbiased estimate of Var(X):

>

N—
I

‘Q

I

=
|

=M 0- D =50-%)

Thus, for the sampling without replacement, the formula for the estimated standard error of the sample mean Z takes

the form
Sz = ﬁ@/l — %

With this new formula for the estimated standard error sz, the formula of an approximate 100(1-«)% confidence
interval

I, =&+ 2(a/2)s3,

remains to be valid even for the sampling without replacement, due to the central limit theorem under weak dependence.
The figure below plots the sampling distribution of the sample mean and its normal approximation. Here the
sampling is performed without replacement from the population

{ay,a2,...,an} ={1,2,...,100}

using the sample size n = 10.

0.04
|

0.02
|

0.00
L

20 40 60 80
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2.4 Dichotomous data

Consider the important case when the population distribution is a Bernoulli distribution
F(p,0) = Bin(1,p)

with the unknown parameter p. A random sample drawn from the Bernoulli distribution consists of 0 or 1 values
x; € {0,1}, therefore, the data (z1,...,z,) will be called dichotomous. This model can be used for categorical data,
where the observed values are of non-numerical form, like male or female, after converting the non-numerical values
to the 0-1 format: female = 1, male = 0.

The defining parameter of the Bernoulli model

p=PX =1),

will be called called the population proportion. The population proportion p defines both population mean and
variance by

p=p, o’ =p(l-p)
and the sample mean turns into a sample proportion p = Z. The sample proportion is an unbiased and consistent
estimate of p. Since 27 = z; for z; € {0,1}, we find that the sample variance takes the form

D=

2o @ =P+ 4@ —p)? @l - 2wp+ Pty — 2wp +

n—1 n—1
S — 2P+ PP+ ...y — 22,p+ P2 B np? — (w1 + ...+ 2,)pP
N n—1 N n—1
_np(1—p)
n—1
The estimated standard error for the sample proportion p is s; = P (nl:lﬁ )

Simple random sample

If sampling from a dichotomous population of size N is performed without replacement, the formula for the estimated

standard error of p becomes
_ /(-5
Sp = pn,f 1— %

The following confidence interval formula is valid both for sampling with replacement and for sampling without
replacement.

An approximate 100(1-«)% two-sided confidence interval for p is given by I, = p+ 2(5) - 55 ‘

Example: opinion polls

Swedish population of eligible voters has the size N of 7 millions. You are interested in the current attitude among
voters towards a certain Swedish political party, quantified by a relevant population proportion p. How informative
would be the result of a survey involving n = 2000 people? An intuitive response is that asking 2000 people could not
accurately reflect the overall opinion of 7 000 000 people. However, if the sample is truly random, the error in p is
quite small.

35%

30.0 %

30 %
25%
20 % 19.5% 19.1%
15%
10% 9.3%
7.2%
= 6.1%
5% H 3.6 % 34% | -
BER
- H N [ |
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@
R
L&

18



Indeed, the standard error of the sample proportion p with n = 2000 and N = 7000000 equals

sp =B 1 — 1= 0.02241/5(1 — p),

which is less or equal than 1.12%, since p(1 — p) < 0.25.

2.5 Stratified random sampling

Given additional information on the population structure, one can reduce the sampling error using the method of
stratified sampling. Assume that a population of size N consists of k strata of sizes Ni,...,Nj, so that N =
Ni + ...+ Ni. Suppose the strata fractions w; = N;/N are known. A simple example of a stratified population is
the Swedish population divided in two strata: the subpopulation of females and the subpopulation of males, so that
k =2 and w; = wy = 0.5.

In terms of the unknown strata means and standard deviations

(H“j70j)7 j = 15"'ak’
we get the following expressions for the population mean and variance

B=wipr + ..+ We g,
Kk
o? =02+ ij(uj — )2
j=1

In view of
wy + ... +w =1,

the above formulas for ;s and o2 are obtained using the law of total expectation and law of total variance, see Wikipedia.
The expression for o2 is due to the law of total variance, with

) 2 2
02 = w0y + ...+ wioj,

being the average variance, see the end of Section 1.1.

Population
(N units)

Stratum 1 Stratum 2 Stratum k _ Nk
(N1 units) (N2 units) (NK units) N = Z':' Ni

Y vV

s le 1 Sample 2 Sample k — Y%
(né:rqﬂmﬁs) (n2 units) (nk units) n=Ziam

The stratified random sampling procedure consists of taking k£ independent random samples from each stratum
with sample sizes (ng,...,n;) and sample means Ty, ..., Tg.

‘ The stratified sample mean is the weighted average of k sample means s = w1Z1 + ... + Wi Tp.

Observe that for any allocation (nq,...,ng) of
n=ny+...+ng
observations, the stratified sample mean is an unbiased estimate of p since
E(Xy) = w1 E(Xy) + ... + wiB(Xy) = wipg + ... + wipp, = .
The variance of X is given by the formula

— — — 2 _2 2 2
Var(X,) = wiVar(X1) + ... + wjVar(Xy) = Z270 4. 4 “%k,

ng
It is estimated by

2.2 2.2

2 _ 2.2 2.2 _ wisy w8,

sfs—wlsil—i-...—i—wksik_—nl +"‘+Tk ,

where s; is the sample standard deviation corresponding to the sample mean ;.
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A confidence interval for the mean based on a stratified sample: I, = Zs £ 2(%5) - sz,

Suppose we are allowed to collect n observations from the stratified population of size N and assume that n < N.
What would be the optimal allocation (n1,...,nk) of n observations among different strata minimising the sampling
error sz, of Zs? The solution of this optimisation problem is given by the formula n; = .,n, where &
is the average standard deviation

O =wi01+ ...+ WLOk.

The stratified sample mean X, with the optimal allocation n; = nw’;" has the

smallest variance Var(Xg,) = %2 among all allocations of n observations.

The optimal allocation assigns more observations to larger strata and strata with larger variation. The major drawback
of the optimal allocation formula is that it requires the knowledge of the standard deviations o;.

If 0; are unknown, which is often the case, then a sensible choice is to allocate the observations proportionally to
the strata sizes, so that n; = nw;. Observe that with the proportional allocation, the stratified sample mean is equal
to the usual sample mean

Esp:wlil-l-...—&-wn:fk:%:ﬁl-l-...—i—%:ﬁk:w:i.
However, this is not the mean of a random sample with independently allocated observations, since the n observations
are forcefully allocated among the k strata proportionally to the strata sizes. For the truly random sample, the sample
sizes ni,...,n; are the outcome of a random allocation of n observations among k strata following the multinomial
distribution Mn(n,ws,...,wg).

The stratified sample mean Xsp for the proportional allocation n; = nw; has the variance Var(XSp) = %

Comparing the three unbiased estimates of the population mean (Zgso,Zsp, Z), we find that their variances are
ordered in the following way - - -
Var(Xso) < Var(Xsp) < Var(X),

since

7)? o?
Yo«
oS

<

=]

n .

Variability of o; across the different strata makes the optimal allocation more effective than proportional

Var(Xsp) — Var(X,,) = %(?— %) = %ij(aj —

Variability of j; across the strata makes the proportional allocation more effective than the sample mean produced
by a random sample

Var(X) — Var(Xy,) = 2(0? —02) = 1 Zw]

2.6 Exact confidence intervals
Recall the approximate confidence interval formula for the mean
I~ %+ 2(5) - sz,

which is based on the central limit theorem for the t-score of a random sample with a sufficiently large size n:

X -
S/f

The approximate confidence interval formula does not require that the population distribution is normal, but it works
only for large sample sizes. In this section, we state two confidence interval formulas based on the probability theory
facts mentioned in Sections 1.3 and 1.4:

N(0, 1),

X—p (h—-1$2
Ntn—17 2 NXn—l'

These formulas are valid for small sample values under the assumption that the population distribution is normal.
Assume that a random sample (z1,...,z,) is taken from the normal distribution

Flu,0) = N(u,0)
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with unspecified parameters p and o. Replacing the normal approximation by the exact distribution for the t-score
X—up
== ~ln-1,
S/v/n

we arrive at the exact 100(1 — a)% confidence interval formula for the mean
Il»’« =+t tnfl(%) * Sz,

which is valid even for the small values of n > 2. Remember that this formula requires that the population distribution
is normal.

For example, with = 0.05 and n = 10, 16, 25, 30 we get the following four 95% confidence intervals for the mean
I, =% £226- sz for n =10,
I, =2 %213 sz for n =16,
1, =% %206 sz for n =25,
I, =x+£2.05- sz for n = 30.
Here the critical values for the t-distribution

t6(0.025) = 2.26, 115(0.025) = 2.13, £54(0.025) = 2.06, t50(0.025) = 2.05

are obtained from the table in Section 11.2 using the column 0.025 and the rows k = 9,15,24,29. These intervals are
getting narrower for larger values of n asymptotically approaching the familiar approximate 95% confidence interval

I, ~T+1.96-s;z.

The second exact confidence interval formula of this section is aimed at the population variance o2. We want to
have a formula for a random interval Z 2, such that

P(o?€Z,2)=1-0.

Under the normality assumption we have Var(S?) = %, so that an unbiased estimated of the standard error for the

unbiased estimate s2 of o2 is

Sg2 = n— 18
However, we can not use the same kind of formula 1> = s% + tn—1(5) - 852 as for the mean.
The correct exact 100(1 — a)% confidence interval formula for o2 is based on the non-symmetric chi-squared

distribution in the above mentioned relation
(n—1)5° 2
T X
and has the following non-symmetric form

. ((n—l)sQ' (n—1)s? )

$n,1(%) ’ xnfl(]- - %)

The numbers () are obtained from the table of Section 11.3 giving the critical values of the chi-squared distributions.

Example

Examples of the 95% confidence intervals for o2 are

I,> = (0.47s%,3.335%) for n = 10,
I,> = (0.555%,2.405%) for n = 16,
I> = (0.61s2,1.945%) for n = 25,

= ( %)

I» = (0.63s2,1.81s%) for n = 30.

To clarify, turn to the last formula dealing with n = 30. The y3,-distribution table gives the critical values
799(0.025) = 45.722,  x99(0.975) = 16.047,

yielding
n—1 _ 29 —0.63, n—1 _ 29
Tno1(§)  45.722 rp1(1—§) 16.047

We conclude that for n = 30,

= 1.81.

2

I>— ((”_ Ds*  (n—1)s )) = (0.6352,1.815%).



2.7 Exercises

Problem 1

Consider a population consisting of five values
1,2,2,4,8.

Find the population mean and variance. Calculate the sampling distribution of the mean of a random sample of size
2 by generating all possible such samples (x1,x2). Then find the mean and variance of the sampling distribution, and

verify the formulas given in this section
2

_ - o
E(X)=pu, Var(X)=—.
n
Problem 2
In a simple random sample of 1500 voters, 55% said they planned to vote for a particular proposition, and 45% said
they planned to vote against it. The estimated margin of victory for the proposition is thus 10%. What is the standard
error of this estimated margin? What is an approximate 95% confidence interval for the margin of victory?

Problem 3

This problem introduces the concept of a one-sided confidence interval. Using the central limit theorem, how should
the constant k1 be chosen so that the interval
(=00, T + k18z)

is an approximate 90% confidence interval for 7 How should ks be chosen so that
(T — kasz,00)

is an approximate 95% confidence interval for u?

Problem 4

Verify the formula for the mean square error

E((© — 6)?) = Var(©) + (E() — 6)>.

Problem 5

A simple random sample of a population size 2000 yields 25 values with

104 109 11 109 87
8 80 119 88 122
91 103 99 108 96

104 98 98 83 107
79 & 94 92 97

(a) Calculate an unbiased estimate of the population mean.
(b) Calculate an unbiased estimates of the population variance and Var (X).

(¢) Give an approximate 95% confidence interval for the population mean.

Problem 6

For a simple random sample, take z2 as a point estimate of 2. (This is an example of the method of moments estimate
introduced in the next chapter.) Compute the bias of this point estimate, if any.

Problem 7

The following table (Cochran 1977) shows the stratification of all farms in a county by farm size and the mean and
standard deviation of the number of acres of corn in each stratum.

Farm size | 0-40 | 41-80 | 81-120 | 121-160 | 161-200 | 201-240 | 241+
Number of farms N; 394 | 461 | 391 334 169 113 148
Stratum mean p; 0.4 16.3 243 34.5 42.1 50.1 63.8
Stratum standard deviation o; | 8.3 | 13.3 15.1 19.8 24.5 26.0 35.2

(a) What are the population mean and variance?
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(b) For a sample size of 100 farms, compute the sample sizes from each stratum for proportional and optimal
allocation, and compare them.

(c) Calculate the variances of three sample means with different allocations of 100 observations: (1) proportional
allocation, (2) optimal allocation, (3) random sampling.

(d) Suppose that ten farms are sampled per stratum. What is Var(X;)? How large a simple random sample would
have to be taken to attain the same variance? Ignore the finite population correction.

(e) Repeat part (d) using proportional allocation of n = 70 observations.

Problem 8

How might stratification be used in each of the following sampling problems?

(a) A survey of household expenses in a city.
(b) A survey to examine the lead concentration in the soil in a large plot of land.

(c) A survey to estimate the number of people who use elevators in a large building with a single bank of elevators.

Problem 9

Consider stratifying the population of Problem 1 into two strata (1,2,2) and (4,8). Assuming that one observation is
taken from each stratum, find the sampling distribution of the estimate of the population mean and the mean and
standard deviation of the sampling distribution. Check the formulas of Section 2.5.

Problem 10

The following 16 numbers were generated from a normal distribution N(u, o)

5.3299 4.2537 3.1502 3.7032
1.6070 6.3923 3.1181 6.5941
3.5281 4.7433 0.1077  1.5977
5.4920 1.7220 4.1547 2.2799

(a) Give unbiased estimates of y and o2.

(b) Give 90%, 95%, and 99% confidence intervals for y and o2
(c) Give 90%, 95%, and 99% confidence intervals for o.
(

d) How much larger sample would you need to halve the length of the confidence interval for u?
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Chapter 3

Parameter estimation

Given a parametric model determined by a vector of unknown parameters § = (61,...,0;), we wish to estimate 6 from
a given random sample (x1,...,%,). There are two basic methods of finding good point estimates: (1) the method
of moments and (2) the maximum likelihood method. The method of moments is based on k summary statistics
called sample moments, while the maximum likelihood method uses the full information on the joint distribution of
(X1,...,Xn).

3.1 Method of moments

Consider the case of a parametric model characterised by a pair of parameters (1, 63). Suppose we have explicit
expressions for the first and second population moments (E(X), E(X?)) in terms of (01, 02):

E(X) = f(01,02), E(X?)=g(61,02).

Given a random sample (z1, ..., ;) drawn from this parametric model, we define the first and second sample moments
by

2 2

_ 1+ ...+ x, — Ty + ...+ x5

Ir=——m I*=——.
n n

By the Law of Large Numbers saying that for any j > 1,

X] 4.+ X}
—_

E(X7), n — oo,
n

implying that (Z,x2) are consistent estimates of (E(X),E(X?)). After replacing the population moments with the
corresponding sample moments, we arrive at the equations

Lf:f(élvéQ)a p:g(élvéQ)v

whose solution (6, 6,) will be called the method of moments estimates of (61, 65).

Geometric model

A researcher has observed n = 130 birds and counted the number of hops that each bird does between flights. As a
result, she obtained a random sample (z1,...,z,), where

x; = number of hops that the i-th bird does between flights.

The observed range of the number of hops j was between 1 and 12. The next table summarizes the dataset (x1,...,2,)

number of hopsz | 1 | 2 | 3 |4 |5][6|7[8[9]10]11 |12 total
observedcountsoz‘48‘31‘20‘9‘6‘5‘4‘2‘1‘1‘2‘1‘130

in terms of the observed counts o, defined as the number of observed birds, who hopped x times. The observed counts
are computed from (z1,...,z,) as
Oy = l{mlzw} +...+ 1{93“:w},
where 14 is the indicator function of the relation A, which equals 1 if A is true and 0 otherwise.
The data produces the following summary statistics

T = total number of hops __ 363 _ 279’

number of birds 130
T2 12 48 2 31 2 2 2 1 _
s* =130 (32 — 2%) = 5.47,
53 =/ 3t = 0.205.
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An approximate 95% confidence interval for u, the mean number of hops per bird is given by
I, =~ T+ 2(0.025) - sz =2.79 £ 1.96 - 0.205 = 2.79 £ 0.40.

The data plot below exhibits the frequencies descending by a certain factor.

40

30
|

10
1

This suggests a geometric model for the number of jumps X ~ Geom(p) for a random bird:
PX=z)=01-p)'p, 2z=12,...

(such a geometric model implies that a bird "does not remember" the number of hops made so far, and the next move
of the bird is to jump with probability 1 — p or to fly away with probability p).

The method of moment estimate for the parameter § = p of the geometric model requires a single equation arising
from the expression for the first population moment

Sl L

=
This expression leads to the equation z = % which gives the method of moment estimate
p=1/z =0.36.
In this case, we can even compute an approximate 95% confidence interval for p using the above mentioned I,,:
I ~ (

1 1
2.7940.40° 2.79—0.40) = (0.31,0.42).

It is useful to compare the observed frequencies (counts) to the frequencies expected from the geometric distribution
with parameter p:

T 1 2 3 4 5 6 | 7+
Cy 48 31 20 9 6 5 11
E, | 46.8 130.0|19.2 | 123 | 79| 5.0 | 88

The expected counts E, are computed in terms of independent geometric random variables (X1, ..., X,,)

E, = E(Cm) = E(l{Xlzw} + ...+ l{X.,L:a:})
=nP(X =z)=n(1-p)"'p=130-(0.64)*"1(0.36), z=1,...,6,
E7:n—E1—...—E6.

An appropriate measure of discrepancy between the observed and expected counts is given by the following so-called

chi-squared test statistic
7

= Y (et Bt g6,

r=1

As it will be explained later on, the obtained small value 1.86 of the chi-squared test statistic allows us to conclude
that the geometric model fits the bird data very well.
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3.2 Maximum likelihood estimation

In a parametric setting with population density function f(x|@), the observed sample (x1,...,z,) is a realization of
the random vector (X7, ..., X,) having the joint probability distribution

FQyrs - ynl0) = f(ya]0) - - f(ynl®)

over the possible sample vectors (y1, ..., yn), obtained as the product of the marginal densities due to the assumption
of independence. Fixing the sample values (y1,...,yn) = (21,...,2,) and allowing the parameter value 6 to vary, we
obtain the so-called likelihood function

Observe thar the likelihood function is not a density function over 6.
Clearly, if L(61) > L(62), then the parametric model f(x|6;) has a better support for the given data (x1,...,z,)
compared to the model f(z|62).

The maximum likelihood estimate 6 of 0 is the value of # that maximises the likelihood function L(#).

Observe that it is often more convenient to find the maximum likelihood estimate 6 by maximizing the log-likelihood
function

1(0) =InL(0) =1n f(z1]0) + ...+ In f(x,]0).

Sufficiency
Suppose there is a summary statistic t = g(z1,...,z,) such that
L(0) = f(x1,...,2,]0) = h(t,0)c(x,. .., zn) x h(t,0),
where the sign o means "proportional to". Here the coefficient of proportionality c(z1,...,z,) does not explicitly
depend on #. In this case, the maximum likelihood estimate 6 depends on the data (z1,...,z,) only through the

statistic £. Given such a factorisation property, we call ¢ a sufficient statistic, as no other statistic that can be calculated
from the same sample provides any additional information on the value of the maximum likelihood estimate 6.

Example: normal distribution model

The two-parameter normal distribution model

F(p,0) =N(u,0)

has a two-dimensional sufficient statistic ¢ = (¢1,t2), where

n n
t = ; ty = ?
1— Ly 2 — L,
i=1 i=1

which follows from

n
1 (w—p)? 1 no (zi—w? 1 to—2uty +np?
— - -2 - - 721’:1 -2 -~ s~ )
L(H’7J) | I o 27Te 2 0—n(27r)n/26 ’ J"(?W)”/Qe ’ ’

i=1

Thus two samples having the same values for (¢1,t2) will produce the same maximum likelihood estimates for (u, o).
Notice the match between the number of sufficient statistics and the number of parameters of the model.

Example: Bernoulli distribution model

Consider the case of the Bernoulli model X ~ Bin(1,p) described by the probability mass function
flalp) =P(X =2) =p"(1—p)'™", z€{0,1}.
Suppose we are given a random sample (21, ...,2,) of zeros and ones drawn from a population distribution
F(u,0) = Bin(1,p)
with unknown p. Since u = p, the method of moment estimate of p is computed as the sample proportion p = .

The likelihood function,

n

Lip) = [[p" (1 = p)' " =p'(1 = p)" ",
i=1
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where [ stands for the product, is fully determined by the number of successes
t=x1+...+x, =nx,
providing with another example of a sufficient statistic. To maximise the log-likelihood function

I(p) =In L(p) = tlogp + (n — t)log(1 — p),

take its derivative
, t n—t
Ip) =——
p l-=p
and put it equal to zero. As a result, we find that even the maximum likelihood estimate of p is the sample proportion

=t

Large sample properties of the maximum likelihood estimates

For a random sample (z1,...,z,) drawn from a parametric population distribution f(z|6), the log-likelihood function
is the sum
1(0)=Inf(z1|0) + ...+ 1n f(x,]0)

due to independence between n observations. This implies that the log-likelihood function can be treated as a reali-
sation of a sum of independent and identically distributed random variables ¥; = In f(X;|6). Using the central limit
theorem argument one can derive the normal approximation

Jg

Vn

for the maximum likelihood estimator. Here o3 is the inverse of the so-called Fisher information in a single observation
(if interested, see Wikipedia). It follows that the maximum likelihood estimators are asymptotically unbiased and
consistent. Moreover, they are asymptotically efficient estimates in the sense of the following Cramer-Rao inequality.

6 ~ N(0, —=)

2
)
ot

Cramer-Rao inequality: if #* is an unbiased estimator of 6, then Var(©*) >

Example: exponential model

The lifetimes of five batteries measured in hours
1 =05, x3=14.6, z3=50, z4=72, z5=12
are assumed to be generated by the exponential population distribution
F(u,0) = Exp(6).

In this case, the mean lifetime is p = 1/, and 6 can be viewed as the battery death rate per hour. The likelihood
function
L(G) _ ee—aml 96—0x296—91306—991496—9z5 — ene—ﬁ’(ml-&-...-‘rwn) _ 956—9»28.5

first grows from 0 to 2.2 - 1077 and then falls down towards zero. The likelihood maximum is reached at 6 =0.175.
For the exponential model, t = x1 + ... + x,, is a sufficient statistic, and the maximum likelihood estimate

6=n/t=1/z
coincides with the method of moment estimate. It is a biased estimate of 6, since
E(6) =E(1/X) # 1/BE(X) = 1/n =9,

but asymptotically unbiased due to the Law of Large Numbers saying that X = p for the large sample sizes.

3.3 Maximum likelihood estimation for the gamma distribution
Let (z1, - ,x,) be a random sample from the gamma distribution

F(u,o) = Gam(a, A)
with the two-dimensional unknown parameter 6 = (a, A). Put

t1=x1+ ...+ xn, to =1 Tn,
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and observe that the corresponding likelihood function takes the form

)\na a—1_—Xtq
Im(a)

s 1 AX O™ 1 7/\11 _ AT a—1_—Xz1+...4zn) _
L

=1

We see that (t1,t2) is a pair of sufficient statistics containing all information from the data needed to compute the
likelihood function. To maximise the log-likelihood function

l(a, A) =InL(a, N),

set the two derivatives

20, ) = nln(A) — n' & +Ints,
Lo, \) = e — g,

equal to zero. The maximum likelihood estimates of the parameters (a, A) can be obtained from the following two
equations

A= am
In(a/z)

A numerical solution of the second equation would benefit of using the method of moment estimate & as the initial
guess.

Lint, +T'(a)/T ().

Example: male heights

Consider a random sample of n = 24 male heights (cm) given in ascending order:
170,175,176, 176, 177, 178, 178, 179, 179, 180, 180, 180, 180, 180, 181, 181, 182, 183, 184, 186, 187, 192, 192, 199.

Assuming that these numbers are generated by the Gam(a, A) distribution, we would like to estimate the parameters
A and a.
To apply the method of moments, we use the formulas for the first and second population moments

B(X?) = Var(X) + (B(X))? = & + & — 2 +a),

B(X) = A2 N2 22

&
A7
and the two sample moments computed from the data

T = 181.46, 22 = 32964.2

From the equations

j:g —_al+a)
A (A)?
we get
a 14+ a 32964.2
— = 181.46 — = = 181.66
A ’ A 181.46 ’

yielding the method of moments estimates ~
A=5.00, a=907.3.

The maximum likelihood estimate of the shape parameter « is obtained from the equation
In(a/z) = —7lnt2 +T'(&)/T(a)
using the method of moment estimate & = 907.3 as the initial guess. The Mathematica command
FindRoot|Log[a] == 0.00055+Gamma’[a]/Gammala|, {a, 907.3}|

gives
& = 908.76.

Then the maximum likelihood estimate of the scale parameter X is obtained from the equation A = @& /T yielding
A =5.01.

Notice that the obtained maximum likelihood estimates are close to the method of moment estimates.
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Example: Gam(q, 1) model

A random sample (1.23,0.62,2.22,2.55,1.42) was generated by the gamma distribution with the shape parameter
« = 2 and the scale parameter A = 1. Treating 6 = «a as the unknown parameter, and assuming that A = 1 is known,
we arrive at the Gam(q, 1) model and wish to estimate « using the given sample of size n = 5.

Since, the population mean is p = a/\ = «, the method of moments estimate is @ = z = 1.61. This estimate
should be compared to the true value o = 2. The corresponding likelihood function has the form

n

1 a—1_—z; —n a—1_-8.
L(a) = H (o) ¢ e = T (@)t e 80,
i=1

where the constant 8.04 is obtained as x1 + ... + z,, and
t=x1---x, =6.13

is a sufficient statistic in this case. The graph of the likelihood function L(«) on the figure below, shows that the area
under the curve is much smaller than 1. A closer look at the figure reveals that the maximum likelihood estimate is
slightly smaller than the true value a = 2.

0.0000 0.0005 0.0010 0.0015 0.0020

To maximise the log-likelihood function
l(a) = —nIn(T'(e)) + (o — 1) Int — 8.04,
take its derivative and put it equal to zero. This results in the equation
0=Int—nl'(a)/T(a).
The Mathematica command
FindRoot[Log[a] == Log[6.14] - 5*Gamma'[a]/Gammala], {a, 1.61}

gives a numerical solution & = 1.90989, to be compared with the true value o = 2. Here the method of moments
estimate 1.61 is used as the initial guess for the algorithm solving the equation. In this example, the maximum
likelihood estimate brings a drastic improvement compared to the method of moments estimate.

3.4 Exercises

Problem 1

The Poisson distribution has been used by traffic engineers as a model for light traffic. The following table shows the
number of right turns during 300 three-min intervals at a specific intersection.
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T frequency
0 14
1 30
2 36
3 68
4 43
5 43
6 30
7 14
8 10
9 6
10 4
11 1
12 1
13+ 0

Fit a Poisson distribution. Comment on the fit by comparing observed and expected counts. It is useful to know that
the 300 intervals were distributed over various hours of the day and various days of the week.

Problem 2
Let (z1,...,%,) be a random sample from a geometric distribution
PX=z)=01-p)°'p, z=12,...
(a) Write down the likelihood function based on this random sample and suggest a simple sufficient statistic.
(b) Find the maximum likelihood estimate of p.

(c) Is this estimate consistent? Explain.

Problem 3

Suppose that X is a discrete random variable with
P(X =0) = 26,
P(X =1) =316,
P(X=2)=2(1-90),
P(X =3)=1(1-9),

where the parameter 6 € [0,1] is unknown. The following 10 independent observations were drawn from this distribu-
tion:
(3,0,2,1,3,2,1,0,2,1).

(a) Find the method of moments estimate 6 of .

(b) Estimate the standard error of 6.

(¢) What is the maximum likelihood estimate 6 of 67

(d) Estimate the standard error of 6.

Problem 4

Suppose that z is generated by a Bin(n, p) distribution with unknown p.

(a) Show that the maximum likelihood estimate of p is p = =.

(b) Given n = 10 and x = 5, sketch the graph of the likelihood function.

Problem 5

A company has manufactured certain objects and has printed a serial number on each object. The serial numbers
start at 1 and end at N, where N is the number of objects that have been manufactured. One of these objects is
selected at random, and the serial number of that object is 888.

(a) What is the method of moments estimate of N?

(b) What is the maximum likelihood estimate of N?
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Problem 6

To estimate the number N of fish living in a lake, a master degree student has applied the capture-recapture method
according to the two-step procedure:

1. capture and tag n = 100 fish, then release them in the lake,

2. capture and release k = 50 fish one by one, and count the number of the tagged fish among those captured on
the second stage.

Suppose & = 20 fish were tagged among the k = 50 fish captured on the second stage. Find a maximum likelihood
estimate of N after suggesting a simple parametric model.

Problem 7

The following 16 numbers came from the normal random number generator on a computer:

9.33 425 3.15 3.70
1.61 6.39 3.12 6.59
3.53 4.74 0.11 1.60
549 1.72 4.15 2.28

(a) Write down the likelihood function based on this sample. (Hint: to avoid tedious calculations on your calculator
use the numbers in the next subquestion.)

(b) In what sense the sum of the sample values (which is close to 58), and the sum of their squares (which is close
to 260) are sufficient statistics in this case?

(¢) Turning to the log-likelihood function compute the maximum likelihood estimates for the mean and variance. Is
the obtained variance estimate unbiased?

Problem 8

Let (z1,...,2,) be a random sample generated by the continuous uniform distribution over the interval [0, 6] with
unknown 6.

(a) Find the method of moments estimate of § and its mean and variance.
(b) Find the maximum likelihood estimate of 6.

(c) Find the probability density of the maximum likelihood estimator and calculate its mean and variance. Compare
the variance, the bias, and the mean square error to those of the method of moments estimate.

(d) Find a modification of the maximum likelihood estimate that renders it unbiased.

Problem 9

For two factors, starchy-or-sugary and green-or-white base leaf, the following counts for the progeny of self-fertilized
heterozygotes were observed (Fisher 1958)

Type Count
Starchy green cp = 1997
Starchy white co = 906
Sugary green c3 =904
Sugary white cy = 32

According to the genetic theory the cell probabilities are

240

11—
b1 = 4 )

1-6 0
b2 = 4 )

b3 = 4 p4:17

where 0 < # < 1. In particular, if € = 0.25, then the genes are unlinked and the genotype frequencies are

Green White | Total

Starchy | 9/16 3/16 3/a
Sugary | 3/16 /16 1/4
Total 3/a 1/4 1

(a) Find the likelihood function of . Specify a sufficient statistic.

(b) Find the maximum likelihood estimate of 6.
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Problem 10

The method of randomised response deals with surveys asking sensitive questions. Suppose we want to estimate the
proportion q of the fishermen who during the last 12 months have gone fishing without a valid permit. We are interested
in the population as a whole - not in punishing particular individuals. Suppose randomly chosen n fishermen have
responded yes/no to a randomised statement according to the instructions in the figure below. Suggest a probability
model for this experiment, and find a method of moments estimate for g. What is the standard error of the estimated

proportion?

Instructions

Before answering,
the question, rell
a e and note the
numiber on the

top face.

Remember!
If the number is _..

1= answer "Yes'
B = answer ‘™o’

234,005 = answer
honestly

Question

During the last 12
months, have you
gonee fshing without
a valid permit?

[Yes] [Mao]
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Chapter 4

Hypothesis testing

Hypothesis testing is a crucial part of the scientific method. In this chapter we learn about the statistical hypothesis

testing.
Observation
I / question \
Report Research
conclusions topic area
Scientific
method
Hypothesis
\ Test with /
experiment

Example: extrasensory perception

Your friend claims that he has extrasensory perception ability. To test this claim you arrange an experiment where
he asked to guess the suits of n = 100 playing cards. As a result the friend guessed correctly the suits of 30 cards out
of 100. What would be your conclusion?

‘Eme-Sens\org Perc:epﬁqn

One particular way of reasoning in such a case is the topic of this chapter. Under the hypothesis of pure guessing
the number of correct answers is X ~ Bin(100,1/4). Then the observed outcome = = 30 deviates from the mean
100 - 1/4 = 25 for about one standard deviation. Since such an outcome is not unusual, a sensible conclusion is that
the data does not contradict the hypothesis of pure guessing.

4.1 Statistical significance

Often we need a rule based on data for choosing between two mutually exclusive hypotheses
Hy: the effect of interest is zero,
Hy: the effect of interest is not zero.

Here the null hypothesis Hj represents an established theory that must be discredited in order to demonstrate a
phenomenon contradicting the established theory stated in the form of the alternative hypothesis H;. The decision
rule for hypothesis testing is based on a test statistic t = ¢(x1,...,2,), a function of the data with distinct typical
values under Hy and H;. The task is to find an appropriately chosen rejection region R so that

we reject Hy in favour of H; if and only if ¢t € R.

Making a such decision we are facing four possible outcomes:
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‘ Negative decision: do not reject Hy ‘ Positive decision: reject Hy in favour of H;
If Hy is true | True negative outcome False positive outcome, type I error
If H, is true | False negative outcome, type II error | True positive outcome

The figure below illustrates the case of two simple hypotheses
Ho:@zeo, H119:91,

where 61 > 6y, so that the alternative hypothesis claims a positive effect size 8, — 6y. The figure depicts two sampling
distributions of the test statistic T the null distribution in green and the alternative distribution in blue. The rejection
region consists on the values of ¢ to the right of the red line.

02 03 04
|
£

rejection
region

0.0 041

Test statistic

This figure illustrates the following four important conditional probabilities:

a=P(T € R|Hy) the conditional probability of type I error, called the significance level of the test,
is given by the area below the green line to the right of the red line

1—a=P(T ¢ R|Hp) | the specificity of the test,

is given by the area below the green line to the left of the red line

B8 =P(T ¢ R|Hy) the conditional probability of type II error,

is given by the area below the blue line to the left of the red line

1—-8=P(T € R|H1) | the sensitivity of the test or the power of the test

is given by the area below the blue line to the right of the red line

The larger the power of the test 1 — 3, the better the ability of the test to recognise the effect of size 6, — 0y. It
is desirable to place the red line in such a way that both « and 8 are minimised, however, according to the figure,
moving the red line to the right or to the left would decrease one of the error sizes and increase the other.

‘For a given test statistic, if the sample size is fixed, one can not make both o and § smaller by changing R.

A significance test resolves the conflict between the two types of errors, by controlling the significance level a.
Given the value of «, say 5%, the rejection region R is found from the equation

a =P(T € R|Hy)

using the null distribution of the test statistic T'. After the rejection region is determined, the size of type II error is
computed by
p=P(T ¢ R|H).

To summarise, the significance testing calculations follow the next flow chart

choose a — find R — compute S — compute the power of the test 1 — 3.

Example: extrasensory perception

Your friend guessed correctly the suits of y = 30 cards out of n = 100. To analyse this data we use a binomial
model, assuming that the number of cards guessed correctly is generated by the Y ~ Bin(n,p) distribution, where
the unknown p is the probability of your friend guessing correctly the suit of a playing card. The null hypothesis,
Hy : p = 0.25, posits pure guessing, and the alternative hypothesis of interest, H; : p > 0.25, suggests the presence of
the extrasensory perception ability. Taking y as a test statistic and putting a = 0.05, define the rejection region by

R ={y:y>y(0.05)},
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where the critical value y(0.05) is determined by the equation
0.05 =P(Y > y(0.05)|p = 0.25).

Using the normal approximation for the z-score

Y — 25 Hy

Zo = ~ N(0,1),

we find that
y(0.05) = 25 + 4.33 - 1.645 ~ 32.

Since the observed test statistic yops = 30 is below 32, we conclude that the experimental result is not significant, and
we do not reject Hy at the 5% significance level.

4.2 Large-sample test for the proportion

The last example is an illustration of the large-sample test for the proportion described next. Consider a random
sample of size n drawn from a Bernoulli distribution

F(p,0) = Bin(1, p)

with the unknown population proportion p. Recall that the corresponding sample proportion p gives the maximum
likelihood estimate of p.

P—Po

V/Po(1—po)/n’

Given the null hypothesis Hy: p = pg, use the test statistic zp =

H
By the central limit theorem, the null distribution of the z-score is approximately normal: Zj ~ N(0,1). Depending
on the problem in hand, there might arise three different alternative hypotheses:

Hi: p>po, Hi:p<po, Hi:p#po.

The corresponding rejection region depends on the exact form of the alternative hypothesis

Hy Rejection region
one-sided p > po R={z>z(a)}
one-sided p < po R={z<—z2(a)}
two-sided  p # pyg R={2<—-2(§)}U{z>2(9)}

where z(«) is found from ®(z(a)) = 1 — « using the normal distribution table.

Confidence interval method of hypotheses testing

Consider testing Hg: p = po against the two-sided alternative Hi: p # pg. Observe that at the significance level «,
the rejection rule can be expressed as

R={po ¢ Ip}»

in terms of a 100(1-a))% confidence interval for the proportion. The corresponding decision rule is simple: reject the
null hypothesis stating p = py, if the confidence interval I, does not cover the value pg.

Power of the test

Consider the one-sided setting
Hy: p = pg against Hy: p > pog.

The power function Pw(p) of the one-sided test can be computed using the normal approximation Z = N(0,1) under
H,, for the sampling distribution of the z-score

p—p .
p(1—p)/n

zy/p(1 = p) = z0v/Po(1 — po) + po — p.

z =

To this end observe that

We have

Py(p) = P(Zo > (a)|Hy) = P(Z 5 #la po(1 = po) + v/n(po — p) |H1)
p(l—p)
~1_ q)(z(a)vm(l — o) + vn(po — p)
p(1—p)
Observe that with p = pg, we get Pw(p) = . The larger is the effect size p — pg, the larger is the power Pw(p) of the
test.

), p>po.
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Planning the sample size

In the setting
Hy: p = po against Hy: p = pq,

the formula

\/ﬁ%z(a) po(1 —po) +2(8)v/p1(1 — p1)
Ip1 — pol

gives the sample size n corresponding to given values of o and 5. If the alternatives are very close to each other, the
denominator goes to zero and the required sample size becomes very large. This is very intuitive as it becomes more
difficult to distinguish between two close parameter values. On the other hand, if we decrease the levels a and 3, the
values z(«) and z(3) from the normal distribution table become larger and the corresponding sample size n = n(«, )
will be larger as well, meaning that for both types of errors to be small, you have to collect more data.

Next, we derive this formula for p; > pg leaving the other case p; < pg as an exercise. As shown before, for p; > po,

po(1 —po) ++/n(po *pl))

1= 5= Puipr) 1 - o2 = p)

yielding the equation

B~ (I)(Z(Oé)\/po(l — o) + v/n(po *pl))'

p1(1—p1)
Combining this with
B =@(—z(8)),
we arrive at the relation
z(a)y/po(1 —po) + vn(po —p1) —_2(8)
p1(1—p1)
which brings the desired formula.
Binomial test
The binomial test is a test for proportion for a small sample size n. Consider a random sample (x1,...,x,) drawn

from a Bernoulli distribution Bin(1,p) with the unknown population proportion p. Let ¢ = x1 + ... + 2, count the
number of successes, so that the corresponding random variable has a binomial distribution

C ~ Bin(n, p).
Under Hy : p = po, we have C' ~ Bin(n, pg). Using this distribution define b, and ¢, by
P(C <by|Ho) =, P(C > cq|lHp) = a.

Then the rejection region of the binomial test is determined according to the next table

H, Rejection region
one-sided p > po R={c>cy}
one-sided p < po R ={c<by}
two-sided  p # pg R ={c<bas2}U{c>caya}

To illustrate the binomial test, consider the extrasensory perception test, where the subject is asked to guess the
suits of n = 20 cards. The number of cards guessed correctly is C' ~ Bin(20, p) and the null hypothesis of interest is
Hy : p=0.25. The null distribution Bin(20, 0.25) of the test statistic ¢ gives the following probabilities

c |8 | 9 [ 10| 11
P(C >¢) | 0.101 | 0.041 | 0.014 | 0.004

We conclude that in particular, for the one-sided alternative Hy : p > 0.25 and «a = 4.1%, the rejection region of the
binomial test is R = {¢ > 9}. The corresponding power function

Pw(p) =P(C > 9|C ~ Bin(20, p))

takes the following values

p | 027 | 030 | 040 | 0.50 | 0.60 | 0.70
Pw(p) | 0.064 | 0.113 | 0.404 | 0.748 | 0.943 | 0.995
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4.3 P-value of the test

A p-value of the test base on the test statistic ¢ is the probability p of obtaining a test statistic value as extreme or
more extreme than the observed value .1, given that Hy is true.

‘For a given significance level «, we reject Hy, if p < «a, and do not reject Hy otherwise. ‘

The p-value depends on the observed data t,,s and therefore, is a realisation of a random variable P. The source of
randomness is in the sampling procedure: if you take another sample, you obtain a different p-value. To illustrate,
suppose we are testing Hy : 0 = 6y versus Hy : 6 > 0y with help of a test statistic Z whose null distribution is N(0,1).
In this case, the p-value is computed as

p=P(Z > zons|Ho) = 1 — ®(20bs),
and in terms of the underlying random variables
P=P(Z > Zys|Ho) =1 — O(Zops).
Since Zgps i N(0,1), we conclude that the p-value has a uniform null distribution:

P(P < p|Ho) = P(1 = ®(Zons) < p|Ho) = P(®(Zobs) = 1—p|Ho) = P(Zops = ®—1(1 —p)|Ho) =1 2(®_1(1—p)) =p.

Example: extrasensory perception

A subject is asked to guess the suits of n = 100 cards, and we want to test
Hy : p=0.25 (pure guessing), against H; : p > 0.25 (extrasensory perception ability),

Applying the large sample test for proportion we find the rejection rule at 5% significance level to be

R = {55 = 1.645} = {p > 0.32} = {y > 32},

where y is the number of suits guessed correctly. With a simple alternative H; : p = 0.30 the power of the test is

1— @(1.645694%383—0.5) = 32%.

The sample size required for the 90% power is

n = (1.645»0.433+1.28»0.458)2 — 675.

0.05
If the observed sample count is yops = 30, then the observed z-score zy = 1(3 ;p 0 > takes the value
Poll—=po)/m
0.3—0.25
obs = —————— = 1.15,
“obs = 70 0433 g

and the one-sided p-value is computed as
P(Zy > 1.15|Hp) = 12.5%.

Since the p-value is larger that 10%, the result is not significant, and we do not reject Hy.

Large-sample test for mean

The large-sample test for the mean deals with Hy: p = po against either the two-sided or a one-sided alternative for
continuous or discrete data. The corresponding test statistic is the t-score
T — po

to = .
Sz

This test works well even if the population distribution F(u, o) is not necessarily normal, provided the sample size n
is sufficiently large. The rejection region is computed using the normal approximation of the null distribution

Ty % N(0, 1).

One-sample t-test

For small n, under the assumption that the population distribution is normal

.F(,U,,U) = N(/La U)a

the t-test of Hy: p = o is based on the exact null distribution

H,
Ty ~ tr_1.
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4.4 Likelihood-ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given «) uses the likelihood
ratio as the test statistic. Consider first the case of two simple hypotheses. For testing

Hy: 0 =0y against Hy : 6 = 6,

L) a5 the test statistic. A larger value of the likelihood-ratio would suggest that the

L(61)
parameter value 0y explains the data set better than 6;, while a smaller value éggi’; would indicate that the alternative

hypothesis H; explains the data set better than Hy.

use the likelihood-ratio

The likelihood-ratio test rejects Hy for small values of the likelihood-ratio.

By the Neyman-Pearson lemma, see Wikipedia, the likelihood-ratio test is the optimal test in the case of two simple
hypotheses.
Nested hypotheses
The general case of two composite alternatives can be stated in term of a pair of nested parameter sets g C Q)

Hy : 0 € Qp against Hy : 6 € Q\ Q.
It will be more convenient to recast this setting in terms of two nested hypotheses

Hy:0€Qy, H:0€QQ,

leading to two maximum likelihood estimates

0o — maximises the likelihood function L(6) over € Q,
¢ = maximises the likelihood function L(#) over 6 € €.

In this case, the likelihood-ratio is defined by

and the likelihood-ratio test rejects Hy for smaller values of w, or equivalently for larger values of
—Inw =InL(0) —In L().
Observe that 0 < w < 1, so that —Ilnw > 0. By Wilks’ theorem, see Wikipedia, the test statistic (—2Inw) has a nice
approximation for its null distribution
oW % 2, where df = dim(£) — dim(Q).

The approximation is valid for sufficiently large sample sizes n.

4.5 Chi-squared test of goodness of fit

Suppose that the random sample consists of n independent observations, with each observation belonging to one of
J classes with probabilities (p1,...,ps). Such data are summarised as the vector of observed counts whose joint
distribution is multinomial

n!
(Cr,...,C5) ~ Mn(n;p1,...,p1), P(Ci=¢c1,...,C5=cj) = ————p" - pF.
Tl o]

The general parameter space

Q:{(ph"'apJ) :p1+"'+pJ:17p1 2077]9]20}
has dimension
dim(Q) = J — 1.
Consider a parametric model for the data
Ho : (p1,---,ps) € Qo,
where
Q0 = {(plv' .. apJ) €: (plv cee 7PJ) = (pl()‘)v cee 7pJ(>‘))7 NS A}a
with
dim(Qo) =r, 0<r<J-1.
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To see if the proposed model fits the data, compute 5\, the maximum likelihood estimate of A, and then the expected
cell counts

Ej =n-p;(A),
where "expected" means expected under the null hypothesis model. In this special setting, the above mentioned

likelihood-ratio test statistic

—2Inw &~ x>

is approximated by the so-called chi-squared test statistic
2
2 (¢; — Ej)
X =
=
Jj=1
and the approximate null distribution of the chi-squared test statistic is

H
2 Ho o
X~ XTo1-r

where the number of degrees of freedom is computed as the difference
df = dim(Q) —dim(Qp) =(J—-1)—r=J—-1—r.

The chi-squared test is approximate in that all expected counts are recommended to be at least 5. If not, then you
should combine small cells in larger cells and recalculate the number of degrees of freedom df.

Example: geometric model

Returning to the data on the number of hops for birds, consider
Hy : number of hops that a bird does between flights has a geometric distribution Geom(p).

Using p = 0.358 and J = 7 we obtain x> = 1.86. Using the chi-squared distribution table with df =7 — 1 — 1 = 5, we
find that the p-value is close to 90%. This implies that the geometric distribution model fits very well to the data.

Case study: sex ratio in german families

A 1889 study made in Germany recorded the numbers of boys (x1,...,x,) for n = 6115 families with 12 children each.
Each z; is an independent realisation of the random variable X having a discrete distribution

p:=PX=2), z=0,1,...,12.

The corresponding parameter space {2 has dimension dim(Q2) = 12. The data is given in the table below in the form
of thirteen observed counts.

Number of boys x | Observed count ¢, | Model 1: E, and % Model 2: E, and %

0 7 1.5 20.2 2.3 9.6

1 45 17.9 41.0 26.1 13.7

2 181 98.5 69.1 132.8 17.5

3 478 3284 68.1 410.0 11.3

4 829 739.0 11.0 854.2 0.7

5 1112 11824 4.2 1265.6 18.6

6 1343 1379.5 1.0 1367.3 0.4

7 1033 1182.4 18.9 1085.2 2.5

8 670 739.0 6.4 628.1 2.8

9 286 3284 5.5 258.5 2.9

10 104 98.5 0.3 71.8 14.4

11 24 17.9 2.1 12.1 11.7

12 3 1.5 1.5 0.9 4.9

Total 6115 6115 x? =249.2 6115 x? =110.5

Model 1

A simple way for describing the vector of parameters (py,...,p12) is to use the symmetric binomial distribution

X ~ Bin(12,0.5). This leads to the setting

12 B
HO:(po,...7p12):(péo),...,pgg)), wherepgco):<x)-2 2 ¢ =0,1,...,12,
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with the set £y consisting of a single point

0
Qo ={(),....p)},

so that dim(€p) = 0. Under this Hy, the expected counts are computed as
12
E, =npl® = 6115 - ( ) 2712 2 =0,1,...,12,
x

see the table below. The observed chi-squared test statistic is x? = 249.2, df = 12. Since z12(0.005) = 28.3, we can
reject Hy at 0.5% level.

Model 2
Consider a more flexible model X ~ Bin(12, A) with an unspecified probability of a boy A. The corresponding null
hypothesis takes the form
12 .
Hy : (po,---,p12) = (p1(A), ..., p12(N)), where p,(A) = (x) NA=N2T 2=0,...,12, 0<A <1

Clearly, the corresponding parameter space 2y has dimension dim(€2y) = 1. The expected cell counts

12) . j\m . (1 _ ;\)12—95

E, =6115- (
x
are computed using the maximum likelihood estimate of the proportion of boys A
total number of boys ~ 1-45+4+2-181+...+12-3
total number of children 611512

The observed chi-squared test statistic x> = 110.5 is much smaller than the one for the Model 2. However, since
211(0.005) = 26.76, even the Model 2 should be rejected at 0.5% significance level.

\ = =0.481

Case summary

The figure below compares the observed counts (black histogram) with the Model 1 expected counts (red line) and the
Model 2 expected counts (blue line). The red line has a better fit to the data, however it underestimates the variation
of the observed cell counts. To make the model even more flexible model, one should allow the probability of a boy A
to differ from family to family.

1000 1200
| 1

800
|

Observed counts

Number of bays

4.6 Exercises
Problem 1
Suppose that X ~ Bin(100,p). Consider a test
Hy:p=1/2, H;:p#1/2.
that rejects Hy in favour of Hy for |z — 50| > 10. Use the normal approximation to the binomial distribution to

respond to the following items:
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(a) What is a?

(b) Graph the power as a function of p.

Problem 2

This problem introduces the case of one-sided null hypothesis. A random sample (z1,...,2,) is drawn from a normal
population distribution N(g,1). Consider two alternative composite hypotheses

Ho : p < po, Hy:p> po.
(a) Rewrite Hy and H; as a pair of nested hypotheses Hy and H.

(b) Demonstrate that the likelihood function satisfies

L(p) o< exp{—%5(p — 7)*}.
(¢) Show that the corresponding likelihood ratio has the form
1 if < po,
v { 67%(‘%7#0)2 if T > po
(d) Explain why the rejection region of the likelihood ratio test can be expressed as
R={Z>po+ca}
where ¢, is determined by the equation

= P(X > o).
o géc“gg( Ho + Calpt)

In particular, for « = 0.05 and n = 25, show that
R ={Z > po + 0.33}.

Problem 3

Let (z1,...,zy,) be a sample from a Poisson distribution Pois(x). Find the likelihood ratio for testing Hy : p = po
against Hy : p # pg. Use the fact that the sum of independent Poisson random variables follows a Poisson distribution
to explain how to determine a rejection region for this test at the significance level a.

Problem 4

Let (x1,...,225) be a sample from a normal distribution having a variance of 100.
(a) Find the rejection region for a test at level & = 0.1 of Hy : p =0 versus Hy : p = 1.5.
(b) What is the power of the test?

(c) Repeat (a) and (b) for o = 0.01.

Problem 5
Under Hyp, a random variable has a cumulative distribution function
F(x):xz, 0<x<1,
and under H, it has a cumulative distribution function
F(x):arg, 0<z<1.
(a) What is the form of the likelihood ratio test of Hy versus Hi?
(b) What is the rejection region of this test for the level a?

(c) What is the power of the test?

Problem 6

A random sample from N(u, o) results in I, = (—2,3) as a 99% confidence interval for p. Test
Hy:p=-3 against Hp:p# -3

at a = 0.01.
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Problem 7

Let (x1,...,215) be a random sample from a normal distribution N(p, o). The sample standard deviation is s = 0.7.
Test Hy : 0 =1 versus H; : 0 < 1 at the significance level a = 0.05.

Problem 8
Consider the binomial model for the data value z:
X ~ Bin(n,p).
(a) What is the likelihood ratio for testing Hy : p = 0.5 against H; : p # 0.57
(b) Show that the corresponding likelihood ratio test should reject for larger values of |z — /.

(¢) For the rejection region
R={lz— 5| >k}

determine the significance level « as a function of k.
(d) If n =10 and k = 2, what is the significance level of the test?
(e) Use the normal approximation to the binomial distribution to find the significance level given n = 100 and

k = 10.

Problem 9

Suppose that a test statistic Z has a standard normal distribution under the null hypothesis.

(a) If the test rejects for larger values of |z|, what is the p-value corresponding to the observed value 1.5 of the test
statistic z7

(b) Answer the same question if the test rejects only for larger values of z.

Problem 10

It has been suggested that H; : dying people may be able to postpone their death until after an important occasion,
such as a wedding or birthday. Phillips and King (1988) studied the patterns of death surrounding Passover, an
important Jewish holiday.

(a) California data (1966-1984). They compared the number of deaths during the week before Passover to the
number of deaths during the week after Passover for 1919 people who had Jewish surnames. Of these, 922
occurred in the week before and 997 in the week after Passover. Apply a statistical test to see if there is evidence
supporting the claim H;.

(b) For 852 males of Chinese and Japanese ancestry, 418 died in the week before and 434 died in the week after

Passover. Can we reject Hy : death cannot be postponed, using these numbers?

Problem 11
If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur with probabilities
p1=(1-0)7 p=20(1-0), ps=0°
for some 0 < 6 < 1. Plato et al. (1964) published the following data on haptoglobin type in a sample of 190 people

Genotype ‘ AA Aa  aa
Observed count‘ 10 68 112

Test the goodness of fit of the data to the equilibrium model.

Problem 12

Check for the seasonal variation in the following data on the US suicides in 1970.
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Month  Number of suicides

Jan 1867
Feb 1789
Mar 1944
Apr 2094
May 2097
Jun 1981
Jul 1887
Aug 2024
Sep 1928
Oct 2032
Nov 1978
Dec 1859

Problem 13

In 1965, a newspaper carried a story about a high school student who reported getting 9207 heads and 8743 tails in
17950 coin tosses.

(a) Is this a significant discrepancy from the null hypothesis Hy : p = %, where p is the probability of heads?

(b) A statistician contacted the student and asked him exactly how he had performed the experiment (Youden
1974). To save time the student had tossed groups of five coins at a time, and a younger brother had recorded
the results, shown in the table:

number of heads‘ 0 1 2 3 4 5 ‘Total
observed | 100 524 1080 1126 655 105 | 3590

Are the data consistent with the hypothesis that all the coins were fair (p = 1)?

(c) Are the data consistent with the hypothesis that all five coins had the same probability of heads but this
probability was not necessarily %?
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Chapter 5

Bayesian inference

The statistical tools introduced in this course so far are based on the so called frequentist approach. In the parametric
case, the frequentist treats the data = as randomly generated by a distribution f(z|¢) involving the unknown true
population parameter value 6, which may be estimated using the method of maximum likelihood. This section presents
basic concepts of the Bayesian approach relying on the following model for the observed data x:

0 ()6
Apriori distribution M generates a value 6 fﬂ) data x.

The model assumes that before the data is collected the parameter of interest 6 is randomly generated by a prior
distribution g(f). The computational power of the Bayesian approach stems from the possibility to treat 6 as a
realisation of a random variable ©.

The prior distribution g(#) brings into the statistical model our knowledge (or lack of knowledge) on 0 before the
data x is generated using a conditional distribution f(z|@), which in this section is called the likelihood function. After
the data x is generated by such a two-step procedure involving the pair g(6) and f(xz|0), we may update our knowledge
on # and compute a posterior distribution h(f|x) using the Bayes formula

f(z]6)g(8)
o(z)

The denominator, depending on whether the distribution is continuous or discrete,

h(0]z) =

¢>(x)=/f($|9)g(9)d9 or gx) = f(«[0)g(6)
0

gives the marginal distribution of the random data X. For a fixed realization z, treating the denominator ¢(z) as a
constant which does not explicitly involve 6, the Bayes formula can be summarized as

‘posterior o likelihood x prior

where the sign o« means proportional.

If we have no prior knowledge on 6, the prior distribution is often modelled by the uniform distribution. In this
case of uninformative prior, with g() being a constant over a certain interval, we have h(f|z) < f(x|@), implying that
the posterior knowledge comes solely from the likelihood function.

Example: IQ measurement

A randomly chosen individual has an unknown true intelligence quotient value 6. Suppose the 1Q test is calibrated in
such a way that 6 can be viewed as a realisation of a random variable © having the normal prior distribution N(100, 15).
This normal distribution describes the population distribution of people’s IQ with population mean g = 100 and
population standard deviation og = 15. For a person with an IQ value 6, the result = of an IQ measurement is
generated by another normal distribution N(6, 10), with no systematic error and a random error o = 10. Since

1 —ewp? 1 (2=0)?
= e 275, xlf) = e 202
V2moy f(19) Varo

we find that likelihood times prior equals

9(9)

1 _@=p?  (=—0)’
e 202 202

9(0)f (x]0) =

)

2mogo

which is proportional to

exp{ _ 92 — 22,u19} ~ exp{ (0 _M1)2}’

207 20%

44



where

o2

= 1—79)x, 2 = yod, = —-.
p = o+ (1 =)z, of =705, 7 p
It follows that the posterior distribution is also normal N(p1, 01).

The parameter

is called a shrinkage factor. Being v € (0, 1) it measures the reduction in variance when the posterior distribution is
compared to the prior distribution. The smaller is ~ the larger is the gain from the data.

In particular, if the observed IQ result is © = 130, then the posterior distribution becomes N(120.7,8.3). The
posterior mean p; = 120.7 is obtained as a down-corrected measurement result x = 130 in view of the lower prior
expectation pip = 100. The posterior variance o = 69.2 is smaller than that of the prior distribution oo = 225 by the
shrinkage factor v = 0.308, reflecting the fact that the updated knowledge brings much more certainty about the true
1Q value compared to the available prior knowledge.

< . .
The figure on the right depicts three probability density curves over =a | Helihood

the values of the parameter 0 representing possible 1Q values. N

Observe that the posterior curve is close to zero S

not only for those 6 where either the prior curve is close to zero ° 4 prior

but also where the likelihood curve is close to zero. g |

As a result, the posterior curve becomes narrower than the prior curve. = N

60 80 100 140

5.1 Conjugate priors

Suppose the data x is generated by a parametric model having the likelihood function f(z|f). Consider a parametric
family of the prior distributions G.

G is called a family of conjugate priors for the likelihood function f(z|6)
if for any prior g(f) € G, the corresponding posterior distribution h(f|z) € G

The next table presents five Bayesian models involving conjugate priors. The details of the first three models come
next. Notice that the posterior variance is always smaller than the prior variance. This list also illustrates that the
contribution of the prior distribution to the posterior distribution becomes smaller as the sample size n increases.

Parametric model for the data Unknown 6 Prior Posterior distribution

X, Xn ~ N(p,0) 0=p N(p0,00) N(ynpo + (1 = 1) %5 00y/Tn)

X ~ Bin(n,p) 0=p Beta(a, b) Beta(a + z,b+n — x)

Ky Xo) ~ Ma(mipryeopn) | 0= (pnoeep2) | Dit(on, -, 0p) | Dir(ar + 21,0, + a2

X1,..., X ~ Geom(p) 0=p Beta(a, b) Beta(a + n,b+ nZ —n)

X1,...,Xpn ~ Pois(u) 0=p Gam(ag, Ag) Gam(ag + n&, Ag + n)

X1,y X ~ Gam(a, A) 0=\ Gam(ag, Ag) Gam(ag + an, A\g + n)
Normal-normal model
Suppose a random sample (21, . .., z,) is drawn from the normal distribution N(u, o) with a known standard deviation

o and the unknown mean ¢ = p. Taking the normal prior © ~ N(ug,00) with known (pg, 0g) results in the normal
posterior N(u1,01) with

1= Yo + (1 =), 0F = 057n,

where
o2 foid

— — n
Tn = 2+ 2~ 2 5
g7+ noy = +op

is the shrinkage factor which becomes smaller for the larger sample sizes n. As a result for the large samples, the
posterior mean g1 gets close to the maximum likelihood estimate and the input v, 1o involving the prior mean becomes
negligible.

Binomial-beta model

Next, we introduce the beta distribution which serves as a convenient family of conjugate priors for Bayesian inference
for p, in the case when the data « is generated by the Bin(n,p).
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Beta distribution

Beta distribution Beta(a, b) is determined by two parameters a > 0, b > 0 which are called pseudo-counts. It is defined
by the probability density function

g(p) = WF (1-p ' 0<p<l,

its mean and variance are given by

AR Sy €t D)
a+b’ a+b+1°
The figure below depicts five different beta-distribution curves. o
- flat black Beta(1,1), o
N
- U-shaped brown Beta(0.5,0.5), - \
o
- bell-shaped red Beta(5, 3), = >L Q
- L-shaped blue Beta(1, 3), o |
e T T | T | T
- J-shaped green Beta(3,0.5). 00 02 04 06 08 10

Proof of the conjugacy property
To demonstrate that the beta distribution is a conjugate prior for the binomial likelihood, observe that
prior oc p*~ (1 —p)*7t,

and
likelihood o< p®(1 — p)"~2,

imply
posterior o prior x likelihood o p®*®=1(1 — p)btn—=-1,

This entails that the posterior is also a beta distribution Beta(ay, b1) with the updated parameters

ag=a+zx, by=b+n-—uz.

R (™
V\ J
Example: thumbtack landing on its base / \
Suppose we are interested in the probability p of a thumbtack landing on its base. \ @ \
Two experiments are performed. An experiment consists of n tosses of the thumbtack ‘ L s

with the number of base landings X ~ Bin(n,p) being counted.

Experiment 1: after ny = 10 tosses, the observed count of the base landings is 1 = 2. We apply the uninformative
prior distribution Beta(1l,1) with the mean py = 0.50 and standard deviation oy = 0.29. The resulting posterior
distribution is the Beta(3, 9) distribution with the posterior mean p; = 1—32 = 0.25 and standard deviation oy = 0.12.

Experiment 2: after ny = 40 tosses, the observed count of the base landings is zo = 9. As a new prior distribution
we use the posterior distribution obtained from the first experiment Beta(3, 9). The new posterior distribution becomes

Beta(12, 40) with the mean i = 12 = 0.23 and standard deviation o3 = 0.06.

Multinomial-Dirichlet model

The multinomial-Dirichlet model is a multivariate version of the binomial-beta model. For both the binomial-beta
and multinomial-Dirichlet models, the updating rule has the form

the posterior pseudo-counts = the prior pseudo-counts plus the sample counts

Dirichlet distribution

The Dirichlet distribution Dir(ay, ..., ) is a multivariate extension of the beta distribution. It is a probability
distribution over the vectors (p1,...,p,) with non-negative components such that

p1+...+p- =1

The positive parameters aq, ..., a, of the Dirichlet distribution are often called the pseudo-counts. The probability
density function of Dir(ay, ..., a;) is given by
r Qo — -
g(P1,. . yDr) = (a0) e 1...pf‘r L= +... +a,.

T(a1)...D(an)
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The marginal distributions of the random vector (X7,...,X,) ~ Dir(ay,...,q,) are the beta distributions

XjNBeta(aj,ao—ozj), jzl,...ﬂ".
Different components of the vector have negative covariances
o0
Cov(X;, X;) = ———2— for i # j.
(X, X) =~ gy for i

The figure below illustrates four examples of Dir(ay, ag, a3) distribution. Each triangle contains n = 300 points
generated using different sets of parameters (o, as, as):

upper left (0.3,0.3,0.1), upper right (13,16, 15), lower left (1,1, 1), lower right (3,0.1,1).

A dot in a triangle gives a realisation (z1, 22, x3) of the vector (X1, X2, X3) ~ Dir(ay, as,a3) as the distances to the
bottom edge of the triangle (1), to the right edge of the triangle (x3), and to the left edge of the triangle (z3).

1 1

0.8 / 08
0.6 /. oa 0.6
0.4 /. R 0.4
0.2 o AN 02
00'5:' 02 04 06 08 1 % 0z 04 o6 08 i
1 1
0.8 /> 0.8
06 % 056 / '-
0.4 0.4 -
0.2 02
% - 1 % 02 04 06 08 1
Example: loaded die experiment
A possibly loaded die is rolled 18 times, giving 4 ones, 3 twos, 4 threes, 4 fours, 3 fives, and 0 sixes: 3/
2,1,1,4,5,3,3,2,4,1,4,2,3,4,3,5,1,5. S
The parameter of interest is the vector of six probabilities § = (p1,...,ps). The data can be viewed as generated by a
multinomial distribution Mn(18;p1,...,ps). Since we have no idea about the values of the probabilities (p1, ..., pg) we

will use the uninformative prior distribution Dir(1,1,1,1,1,1). Due to the conjugacy property we obtain the posterior
distribution to be Dir(5,4,5,5,4,1), where the posterior pseudo-counts are computed as

(5,4,5,5,4,1) = (1,1,1,1,1,1) 4 (4,3,4,4,3,0).

5.2 Bayesian estimation

In the language of decision theory, finding a point estimate a for the unknown population parameter 6 is an action of
assigning the value a to the unknown parameter 6. In the frequentist setting, the optimal @ is found by maximising
the likelihood function. In the Bayesian setting, the optimal choice of a is determined by the so-called loss function
1(0,a). The so-called Bayes action minimises the posterior risk

R(a|z) = E(l(@, a)|x),

computed using the posterior distribution

R(a|z) = /l(@,a)h(@\z)d@ or R(alz) = Zl(ﬂ,a)h(9|a:).

0

We consider two loss functions leading to two different Bayesian estimators. These two loss functions called the
zero-one loss and the squared error loss
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Zero-one loss function: 1(0,a) = 1{p4} ’Squared error loss: 1(0,a) = (0 — a)? ‘

are schematically depicted on the figure below.

3 g ,
o | \ /f‘l
o 81 loss(6, a) = (6 -a)* /
A\ /
w oA loss(8, @) = 1(.a) w \ /
1% « o _] \ /
8 8 8 \ /
c w c \ /
j=) o= o
¢ g o \ /
a o | o ¥ AN /
|‘ = /
w | ~
) .
4
2 - o - _
T T T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
A-a f-a

Zero-one loss function and maximum a posteriori probability
With the zero-one loss function, the posterior risk is equal to the probability of misclassification

R(a|z) = Z h(f)z) =1 — h(a|z).

0#a

In this case, to minimise the risk we have to maximise the posterior probability h(a|z). We define émap as the value
of # that maximises h(f|z). Observe that with the uninformative prior, Omap = Gmie.

Squared error loss function and posterior mean estimate

Using the squared error loss function we find that the posterior risk is a sum of two components
R(alz) = E((© — a)?|z) = Var(0|z) + (E(O|z) — a)?.

Since the first component is independent of a, we minimise the posterior risk by putting

Opme = E(Ol2),

resulting in the posterior mean value as the Bayesian point estimate of 6.

Example: loaded die experiment

Turning to the loaded die experiment, observe that the maximum likelihood estimate based on the sample counts is
given by the vector of sample proportions

) _ (4 3 4 4 3
omlc - (ﬁv 187 187 187 18" )

Notably, the maximum likelihood estimate assigns value zero to pg, thereby predicting that in the future observations
there will be no sixes.
Considering the two alternative Bayesian estimates based on the posterior distribution Dir(5,4,5,5,4,1)

Oy = (A, 3 A 4 3 gy § (5 4 5 5 4 1,
map — 118 187 18’ 187 18? ) pme ™ \ 247 24 247 24 247 24/

we see that the former coincides with 6., while the latter estimate has the advantage of assigning a positive value

to pg.

5.3 Credibility interval

Given data x coming from a parametric model with the likelihood function f(x|6), a 100(1 — @)% confidence interval
for the parameter 6,

Iy = (a1(z), az(x)),
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is viewed as a realisation of a random interval (a1(X), a2(X)) such that
P(al(X) <0< GQ(X)) =1-a.

This frequentist interpretation of the confidence level 100(1 — «)% is rather cumbersome as it requires mentioning
other samples and potential confidence intervals which as a group cover the true unknown value of 6 with probability
1—-a.

In the framework of Bayesian inference we can refer to € as a realisation of a random variable ® with a certain
posterior distribution h(f|z). This allows us to define a 100(1 — )% credibility interval (or credible interval)

Jo = (b1(x), ba(x))
by the relation based on the posterior distribution
P(bi(z) < © < ba(z)|x) =1—
The interpretation of the credibility interval is more intuitive as it does not refer to some potential, never observed

data values.

Example: IQ measurement

Given a single IQ value z = 130, we have X ~ N(u;10) and an exact 95% confidence interval for the true IQ value
takes the form
Iy =1304+1.96 - 10 = 130 + 19.6.

The interval 130 & 19.6 has 95% confidence level in the sense that if we repeat the 1QQ measurement for the same
person, then the new IQ result X will produce a random confidence interval which will cover the true IQ of the subject
with probability 0.95.

With the posterior distribution © ~ N(120.7;8.3) in hand, a 95% credibility interval for € is computed as

Ju =120.7£1.96 - 8.3 = 120.7 & 16.3.

The proper understanding of the obtained interval 120.7 4+ 16.3 is the following. If we choose another person from the
general population and the person’s IQ turns out to be z = 130, then the new person’s IQ © belongs to the interval
120.7 £ 16.3 with probability 0.95. On the other hand, if we get a second 1Q test result x5 for the same person, then
we can compute a new credibility interval based on x5 using the posterior distribution after the first IQ test result as
the new prior.

5.4 Bayesian hypotheses testing
Considering the case of two simple hypotheses

Hy:0=0y against H,:0=0,

we wish to choose between Hy and H; using not only the two likelihood functions f(z|6y), f(x|61) but also the prior
probabilities of the two optional values

P(HO) = 7o, P(H1) =m;, mo+m =1

In terms of an appropriate rejection region R for the available data x, the Bayesian decision should be taken depending
of a cost function having the following four cost values

Decision ‘ Hy true ‘ H; true
x ¢ R | Do not reject Hy 0 cost
TER Reject Hy costg 0

where costg is the error type I cost and cost; is the error type II cost. For a given set R, the average cost is the
weighted mean of two values costy and cost;

costomoP(X € R|Hp) + costymP(X ¢ R|H;y) = costymy —|—/ (costom)f(scwo) — cost17r1f(gc\91)>dx.
R
Now observe that
/ (costoﬂof(xwo) - costlﬂlf(xwl))dx > / (costoﬂ'of(xwo) - costlﬂlf(m|91))da:,
R *

where
R* = {x : costomo f(x]6o) < costym f(x]61)}
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It follows that the rejection region minimising the average cost is R = R*. Taking R* as the rejection region, we
should reject Hy for values of the likelihood ratio which are smaller than a certain critical value:

f(z]0g)  costim
f(z|61) ~ costomg’

determined by the prior odds mp/m and the cost ratio costy /costg. In other terms, we reject Hy for the values of the
posterior odds smaller than the cost ratio

h(fplz)  costy

h(01|x) ~ costy’

Example of Bayesian hypothesis testing

The defendant N charged with rape, is a male of age 37 living in the area not very far from the crime place. The jury
have to choose between two alternative hypotheses Hy: N is innocent, Hy: N is guilty. There are three conditionally
independent pieces of evidence

FEq: a DNA match,
Fs: defendant N is not recognised by the victim,
F5: an alibi supported by the N’s girlfriend.

The reliability of these pieces of evidence was quantified as

P(E1|Ho) = 555005005: P (F1lH1)=1, very strong evidence in favour of H; with ggﬂgi’g = 550055500
P(E3|Hy) = 0.1, P(E3|Hp) = 0.9, strong evidence in favour of Hy with Eégzi}g‘l’; =9
P(E3|Hy) = 0.25, P(E3|Hp) = 0.5, evidence in favour of Hy with % =2

For the sake of Bayesian inference the non-informative prior probability

m =P(H1) = 20010007

is suggested, taking into account the number of males who theoretically could have committed the crime without any
evidence taken into account. This yields the prior odds for Hy to be very high

70 _ 200000.
T

The resulting posterior odds is

P(H0|E17E27E3) o 7T0P(E1,E2,E3|H0) o @ ) P(EllH()) ) P(E2|H0) ) P(Eg,‘H())

= = = 0.018.
P(H1|E1,E27E3) 7T1P(E1,E2,E3|H1) 1 P(E1|H1) P(E2|H1) P(Eg‘Hl)

Conclusion: the defendant N would deemed to be guilty if the cost values assigned by the jury are such that

cost cost for unpunished crime
L - P > 0.018.

costg  cost for punishing an innocent

BETTER THAT TEN
GUILTY PERSONS ESCAPE
THAN THAT ONE
INNOCENT SUFFER

— Se WiLLan Brackstone (1765)

5.5 Exercises

Problem 1

This is a continuation of the Problem 3 (a-d) from Section 3.4.

(e) Assume the uniform prior for the parameter 6 and find the posterior density. Sketch the posterior curve. Find
the MAP estimate of 6.
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Problem 2

In an ecological study of the feeding behaviour of birds, the number of hops between flights was counted for several
birds.

Number of hopsj | 1 [ 2 | 3 [4|5]6|7[8]9|10] 11|12 Tot

Observed count ¢; |48 |31 [20[9[6 5[4 |21 1| 2] 1 |130

Assume that the data were generated by a Geom(p) model and take the uniform prior for p. What is the posterior
distribution and what are the posterior mean and standard deviation?

| ESSAT PHILOSOPHIQUE

Problem 3

On the Laplace rule of succession. LES PROBABILITES;
Laplace claimed that when an event happens n times in a row and never fails to happen,
the probability that the event will occur the next time is Zi%

Can you suggest a rationale for this claim?

PAR M. LE COMTE LAPLACE,

SECONDE EDITION,

Problem 4 t #,
It is known that the random variabl