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Preface 1

PREFACE

Welcome to Calculus Volume 3, an OpenStax resource. This textbook has been created with several goals in mind:
accessibility, customization, and student engagement—all while encouraging students toward high levels of academic
scholarship. Instructors and students alike will find that this textbook offers a strong foundation in calculus in an accessible
format.

About OpenStax

OpenStax is a non-profit organization committed to improving student access to quality learning materials. Our free
textbooks go through a rigorous editorial publishing process. Our texts are developed and peer-reviewed by educators
to ensure they are readable, accurate, and meet the scope and sequence requirements of today’s college courses. Unlike
traditional textbooks, OpenStax resources live online and are owned by the community of educators using them. Through
our partnerships with companies and foundations committed to reducing costs for students, OpenStax is working to improve
access to higher education for all. OpenStax is an initiative of Rice University and is made possible through the generous
support of several philanthropic foundations. Since our launch in 2012 our texts have been used by millions of learners
online and thousands of institutions worldwide.

About OpenStax's Resources

OpenStax resources provide quality academic instruction. Three key features set our materials apart from others: they can
be customized by instructors for each class, they are a "living" resource that grows online through contributions from
educators, and they are available free or for minimal cost.

Customization

OpenStax learning resources are designed to be customized for each course. Our textbooks provide a solid foundation on
which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors can select the
sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes and student
body. Teachers are encouraged to expand on existing examples by adding unique context via geographically localized
applications and topical connections.

Calculus Volume 3 can be easily customized using our online platform (http://cnx.org/content/col11963/). Simply select the
content most relevant to your current semester and create a textbook that speaks directly to the needs of your class. Calculus
Volume 3 is organized as a collection of sections that can be rearranged, modified, and enhanced through localized examples
or to incorporate a specific theme of your course. This customization feature will ensure that your textbook truly reflects
the goals of your course.

Curation

To broaden access and encourage community curation, Calculus Volume 3 is “open source” licensed under a Creative
Commons Attribution Non-Commercial ShareAlike (CC BY-NC-SA) license. This license lets others remix, edit, build
upon the work non-commercially, as long as they credit OpenStax and license their new creations under the same
terms. The academic mathematics community is invited to submit examples, emerging research, and other feedback to
enhance and strengthen the material and keep it current and relevant for today’s students. Submit your suggestions to
info@openstaxcollege.org.

Cost

Our textbooks are available for free online, and in low-cost print and e-book editions.

About Calculus Volume 3

Calculus Volume 3 is the first of three volumes designed for the two- or three-semester calculus course. For many students,
this course provides the foundation to a career in mathematics, science, or engineering. As such, this textbook provides an
important opportunity for students to learn the core concepts of calculus and understand how those concepts apply to their
lives and the world around them. The text has been developed to meet the scope and sequence of most general calculus
courses. At the same time, the book includes several innovative features designed to enhance student learning. A strength of
Calculus Volume 3 is that instructors can customize the book, adapting it to the approach that works best in their classroom.
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Coverage and Scope

Our Calculus Volume 3 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have
worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the
subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to
provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is to
enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future
careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators
dedicated to the project.

Volume 1
Chapter 1: Functions and Graphs

Chapter 2: Limits

Chapter 3: Derivatives

Chapter 4: Applications of Derivatives
Chapter 5: Integration

Chapter 6: Applications of Integration

Volume 2
Chapter 1: Integration

Chapter 2: Applications of Integration

Chapter 3: Techniques of Integration

Chapter 4: Introduction to Differential Equations
Chapter 5: Sequences and Series

Chapter 6: Power Series

Chapter 7: Parametric Equations and Polar Coordinates

Volume 3
Chapter 1: Parametric Equations and Polar Coordinates

Chapter 2: Vectors in Space

Chapter 3: Vector-Valued Functions

Chapter 4: Differentiation of Functions of Several Variables

Chapter 5: Multiple Integration

Chapter 6: Vector Calculus

Chapter 7: Second-Order Differential Equations
Pedagogical Foundation

Throughout Calculus Volume 3 you will find examples and exercises that present classical ideas and techniques as well as
modern applications and methods. Derivations and explanations are based on years of classroom experience on the part
of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students.
Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas
of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to
explore interesting sidelights in pure and applied mathematics, from navigating a banked turn to adapting a moon landing
vehicle for a new mission to Mars. Chapter Opening Applications pose problems that are solved later in the chapter, using
the ideas covered in that chapter. Problems include the average distance of Halley's Comment from the Sun, and the vector
field of a hurricane. Definitions, Rules, and Theorems are highlighted throughout the text, including over 60 Proofs of
theorems.

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Checkpoint” question. The book also includes assessments at the end of each chapter so
students can apply what they’ve learned through practice problems. Many exercises are marked with a [T] to indicate they

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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are suitable for solution by technology, including calculators or Computer Algebra Systems (CAS). Answers for selected
exercises are available in the Answer Key at the back of the book.

Early or Late Transcendentals

The three volumes of Calculus are designed to accommodate both Early and Late Transcendental approaches to calculus.
Exponential and logarithmic functions are introduced informally in Chapter 1 of Volume 1 and presented in more rigorous
terms in Chapter 6 in Volume 1 and Chapter 2 in Volume 2. Differentiation and integration of these functions is covered in
Chapters 3-5 in Volume 1 and Chapter 1 in Volume 2 for instructors who want to include them with other types of functions.
These discussions, however, are in separate sections that can be skipped for instructors who prefer to wait until the integral
definitions are given before teaching the calculus derivations of exponentials and logarithms.

Comprehensive Art Program

Our art program is designed to enhance students’ understanding of concepts through clear and effective illustrations,
diagrams, and photographs.

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Check Your Learning” component. The book also includes assessments at the end of each
chapter so students can apply what they’ve learned through practice problems.

Ancillaries

OpenStax projects offer an array of ancillaries for students and instructors. The following resources are available.
PowerPoint Slides
Instructor’s Answer and Solution Guide

Student Answer and Solution Guide
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Our resources are continually expanding, so please visit http://openstaxcollege.org to view an up-to-date list of the Learning
Resources for this title and to find information on accessing these resources.

WeBWorK

WeBWorK is a well-tested homework system for delivering individualized calculus problems over the Web. By providing
students with immediate feedback on the correctness of their answers, WeBWorK encourages students to make multiple
attempts until they succeed. With individualized problem sets, students can work together but will have to enter their own
work to receive credit. WeBWorK can present and grade any mathematics calculation problem from basic algebra through
calculus, matrix linear algebra, and differential equations. Its extensible answer evaluators correctly recognize and grade a
wide variety of answers, including numbers, functions, equations, answers with units and much more, allowing instructors
and students to concentrate on correct mathematics and ask the questions they should rather than just the questions they can.
More than 770 institutions currently use WeBWorK. WeBWork and its 30,000 plus library of Creative Commons-licensed
problems are open source and free for institutions to use.

About Our Team
Senior Contributing Authors

Gilbert Strang, PhD

Dr. Strang received his PhD from UCLA in 1959 and has been teaching mathematics at MIT ever since. His Calculus online
textbook is one of eleven that he has published and is the basis from which our final product has been derived and updated
for today’s student. Strang is a decorated mathematician and past Rhodes Scholar at Oxford University.

Edwin “Jed” Herman, PhD

Dr. Herman earned a BS in Mathematics from Harvey Mudd College in 1985, an MA in Mathematics from UCLA in
1987, and a PhD in Mathematics from the University of Oregon in 1997. He is currently a Professor at the University of
Wisconsin-Stevens Point. He has more than 20 years of experience teaching college mathematics, is a student research
mentor, is experienced in course development/design, and is also an avid board game designer and player.

Contributing Authors

Catherine Abbott, Keuka College

Nicoleta Virginia Bila, Fayetteville State University

Sheri J. Boyd, Rollins College

Joyati Debnath, Winona State University

Valeree Falduto, Palm Beach State College

Joseph Lakey, New Mexico State University

Julie Levandosky, Framingham State University

David McCune, William Jewell College

Michelle Merriweather, Bronxville High School

Kirsten R. Messer, Colorado State University - Pueblo

Alfred K. Mulzet, Florida State College at Jacksonville

William Radulovich (retired), Florida State College at Jacksonville

Erica M. Rutter, Arizona State University
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David Smith, University of the Virgin Islands
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David Torain, Hampton University
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John Beyers, University of Maryland
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Chapter 1 | Parametric Equations and Polar Coordinates

1| PARAMETRIC

EQUATIONS AND POLAR
COORDINATES

Figure 1.1 The chambered nautilus is a marine animal that lives in the tropical Pacific Ocean. Scientists think they have
existed mostly unchanged for about 500 million years.(credit: modification of work by Jitze Couperus, Flickr)
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Chapter Outline

1.1 Parametric Equations

1.2 Calculus of Parametric Curves

1.3 Polar Coordinates

1.4 Area and Arc Length in Polar Coordinates
1.5 Conic Sections

Introduction

The chambered nautilus is a fascinating creature. This animal feeds on hermit crabs, fish, and other crustaceans. It has a
hard outer shell with many chambers connected in a spiral fashion, and it can retract into its shell to avoid predators. When
part of the shell is cut away, a perfect spiral is revealed, with chambers inside that are somewhat similar to growth rings in
a tree.

The mathematical function that describes a spiral can be expressed using rectangular (or Cartesian) coordinates. However,
if we change our coordinate system to something that works a bit better with circular patterns, the function becomes much
simpler to describe. The polar coordinate system is well suited for describing curves of this type. How can we use this
coordinate system to describe spirals and other radial figures? (See Example 1.14.)

In this chapter we also study parametric equations, which give us a convenient way to describe curves, or to study the
position of a particle or object in two dimensions as a function of time. We will use parametric equations and polar
coordinates for describing many topics later in this text.

1.1 | Parametric Equations

Learning Objectives

1.1.1 Plot a curve described by parametric equations.
1.1.2 Convert the parametric equations of a curve into the form y = f(x).

1.1.3 Recognize the parametric equations of basic curves, such as a line and a circle.
1.1.4 Recognize the parametric equations of a cycloid.

In this section we examine parametric equations and their graphs. In the two-dimensional coordinate system, parametric
equations are useful for describing curves that are not necessarily functions. The parameter is an independent variable that
both x and y depend on, and as the parameter increases, the values of x and y trace out a path along a plane curve. For
example, if the parameter is t (a common choice), then t might represent time. Then x and y are defined as functions of time,
and (x(7), y(¢)) can describe the position in the plane of a given object as it moves along a curved path.

Parametric Equations and Their Graphs

Consider the orbit of Earth around the Sun. Our year lasts approximately 365.25 days, but for this discussion we will use
365 days. On January 1 of each year, the physical location of Earth with respect to the Sun is nearly the same, except for

leap years, when the lag introduced by the extra 1 day of orbiting time is built into the calendar. We call January 1 “day 1”

4
of the year. Then, for example, day 31 is January 31, day 59 is February 28, and so on.
The number of the day in a year can be considered a variable that determines Earth’s position in its orbit. As Earth revolves
around the Sun, its physical location changes relative to the Sun. After one full year, we are back where we started, and a
new year begins. According to Kepler’s laws of planetary motion, the shape of the orbit is elliptical, with the Sun at one
focus of the ellipse. We study this idea in more detail in Conic Sections.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Figure 1.2 Earth’s orbit around the Sun in one year.

Figure 1.2 depicts Earth’s orbit around the Sun during one year. The point labeled F, is one of the foci of the ellipse; the

other focus is occupied by the Sun. If we superimpose coordinate axes over this graph, then we can assign ordered pairs to
each point on the ellipse (Figure 1.3). Then each x value on the graph is a value of position as a function of time, and each
y value is also a value of position as a function of time. Therefore, each point on the graph corresponds to a value of Earth’s
position as a function of time.

Figure 1.3 Coordinate axes superimposed on the orbit of
Earth.

We can determine the functions for x(¢#) and y(¢), thereby parameterizing the orbit of Earth around the Sun. The variable

t is called an independent parameter and, in this context, represents time relative to the beginning of each year.

A curve in the (x, y) plane can be represented parametrically. The equations that are used to define the curve are called

parametric equations.

Definition

If x and y are continuous functions of t on an interval I, then the equations

x=x(t)and y = y(?)
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are called parametric equations and t is called the parameter. The set of points (x, y) obtained as t varies over the

interval I is called the graph of the parametric equations. The graph of parametric equations is called a parametric
curve or plane curve, and is denoted by C.

Notice in this definition that x and y are used in two ways. The first is as functions of the independent variable t. As t varies
over the interval I, the functions x(#) and y(¢) generate a set of ordered pairs (x, y). This set of ordered pairs generates the

graph of the parametric equations. In this second usage, to designate the ordered pairs, x and y are variables. It is important
to distinguish the variables x and y from the functions x(¢) and y(7).

Example 1.1

Graphing a Parametrically Defined Curve

Sketch the curves described by the following parametric equations:
a. x()=t—-1, y@)=2t+4, -3<tL2
b. x()=1>=3, yO)=2u+1, -2<t<3

c. x(t)=4cost, y@)=4sint, 0<r<2rx

Solution

a. To create a graph of this curve, first set up a table of values. Since the independent variable in both x()

and y(¢) is t, let t appear in the first column. Then x(#) and y(#) will appear in the second and third
columns of the table.

t x0) | y0)
-3 -4 -2
-2 -3 0
-1 -2 2
0 -1 4
1 0 6
2 1 8

The second and third columns in this table provide a set of points to be plotted. The graph of these points
appears in Figure 1.4. The arrows on the graph indicate the orientation of the graph, that is, the direction
that a point moves on the graph as t varies from —3 to 2.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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b. To create a graph of this curve, again set up a table of values.

t x9) | »@
-2 1 -3
-1 -2 -1
0 -3 1
1 -2 3
2 1 5
3 6 7

Figure 1.4 Graph of the plane curve described by the
parametric equations in part a.

The second and third columns in this table give a set of points to be plotted (Figure 1.5). The first point
on the graph (corresponding to # = —2) has coordinates (1, —3),

and the last point (corresponding

to t = 3) has coordinates (6, 7). As t progresses from —2 to 3, the point on the curve travels along a

parabola. The direction the point moves is again called the orientation and is indicated on the graph.

11
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Figure 1.5 Graph of the plane curve described by the
parametric equations in part b.

c. In this case, use multiples of #z/6 for t and create another table of values:

t x(¢) y(@©) t x(?) y(@)

0 4 0 Iz —-2V3 ~ 3.5 2

6

% 2V3 ~ 3.5 2 43_7r -2 -2V3 ~ =3.5
z 2 203 ~ 3.5 3 0 -4

3 2

z 0 4 Sz 2 —2V3 ~ -3.5
2 3

2?;; -2 2V3 ~ 3.5 llTﬂ 2V3 ~ 3.5 2

Sz —2V3~ 35 2 2r 4 0

6

T -4 0

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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The graph of this plane curve appears in the following graph.

Figure 1.6 Graph of the plane curve described by the
parametric equations in part c.

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The
starting point and ending points of the curve both have coordinates (4, 0).

@ 1.1 Sketch the curve described by the parametric equations

x()=3t+2, yn)=t>-1, -3<t<2.

Eliminating the Parameter

To better understand the graph of a curve represented parametrically, it is useful to rewrite the two equations as a single
equation relating the variables x and y. Then we can apply any previous knowledge of equations of curves in the plane to
identify the curve. For example, the equations describing the plane curve in Example 1.1b. are

xt)=1>=3, yn=2+1, -2<1<3.

Solving the second equation for t gives

This can be substituted into the first equation:

_(y—1)2_3_y2—2y+1_3_y2—2y—11
A ) -4 - 4

This equation describes x as a function of y. These steps give an example of eliminating the parameter. The graph of this
function is a parabola opening to the right. Recall that the plane curve started at (1, —3) and ended at (6, 7). These

terminations were due to the restriction on the parameter t.
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Example 1.2

Eliminating the Parameter

Eliminate the parameter for each of the plane curves described by the following parametric equations and describe
the resulting graph.

a. x(t)=\2t+4, YO =2+1, -2<t<6

b. x(t)=4cost, y(t)=3sint, 0<r<2n

Solution

a. To eliminate the parameter, we can solve either of the equations for t. For example, solving the first
equation for t gives

x = V2r+4

x> = 2t+4
x’—4 = 2
2

_ x* -4

to= A=

2
Note that when we square both sides it is important to observe that x > 0. Substituting ¢ = £ 2_ 4 this

into y(¢) yields

yi) = 2t+1
2
— x“ -4
y = 2( 5 )+1
= x’—4+1
y = x2=3.

This is the equation of a parabola opening upward. There is, however, a domain restriction because
of the limits on the parameter t. When t=-2, x=%Y2(-2)+4=0, and when ¢=26,

x =\2(6) + 4 = 4. The graph of this plane curve follows.
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Figure 1.7 Graph of the plane curve described by the
parametric equations in part a.

b. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for
this example are

x(t) =4 cos tand y(r) = 3 sint.

Solving either equation for t directly is not advisable because sine and cosine are not one-to-one functions.
However, dividing the first equation by 4 and the second equation by 3 (and suppressing the ¢) gives us

cost=%Xandsint =2

4 3

Now use the Pythagorean identity cos’t+sin’7 =1 and replace the expressions for sin¢ and cost
with the equivalent expressions in terms of x and y. This gives

2 2
RO

This is the equation of a horizontal ellipse centered at the origin, with semimajor axis 4 and semiminor
axis 3 as shown in the following graph.
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Figure 1.8 Graph of the plane curve described by the
parametric equations in part b.

As t progresses from 0 to 2z, a point on the curve traverses the ellipse once, in a counterclockwise

direction. Recall from the section opener that the orbit of Earth around the Sun is also elliptical. This is a
perfect example of using parameterized curves to model a real-world phenomenon.

1.2 Eliminate the parameter for the plane curve defined by the following parametric equations and describe
the resulting graph.

M)=2+3, yn=1-1, 2<1<6

So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe
a plane curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for
that curve? This is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process
is known as parameterization of a curve.

Example 1.3

Parameterizing a Curve
Find two different pairs of parametric equations to represent the graph of y = 2x2 - 3.

Solution
First, it is always possible to parameterize a curve by defining x(#) = ¢, then replacing x with ¢ in the equation

for y(t). This gives the parameterization

xO) =1, y()=22-3.

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Since there is no restriction on the domain in the original graph, there is no restriction on the values of t.

We have complete freedom in the choice for the second parameterization. For example, we can choose
x(t) = 3t — 2. The only thing we need to check is that there are no restrictions imposed on x; that is, the range

of x(¢) is all real numbers. This is the case for x(f) = 3t — 2. Now since y = 2x% =3, we can substitute
x(t) = 3t — 2 for x. This gives
) =23t-2)2-2
=2(9r* - 12+ 4) -2

=182 —24t+8 -2
=182 — 24t + 6.

Therefore, a second parameterization of the curve can be written as

x(f) = 3t — 2 and y(f) = 181> — 241 + 6.

@ 1.3 Find two different sets of parametric equations to represent the graph of y = x% +2x.

Cycloids and Other Parametric Curves

Imagine going on a bicycle ride through the country. The tires stay in contact with the road and rotate in a predictable
pattern. Now suppose a very determined ant is tired after a long day and wants to get home. So he hangs onto the side of
the tire and gets a free ride. The path that this ant travels down a straight road is called a cycloid (Figure 1.9). A cycloid
generated by a circle (or bicycle wheel) of radius a is given by the parametric equations

x(t) = a(t —sint), y(t) =a(l —cost).
To see why this is true, consider the path that the center of the wheel takes. The center moves along the x-axis at a constant
height equal to the radius of the wheel. If the radius is a, then the coordinates of the center can be given by the equations
x()y=at, Yt =a

for any value of ¢. Next, consider the ant, which rotates around the center along a circular path. If the bicycle is moving

from left to right then the wheels are rotating in a clockwise direction. A possible parameterization of the circular motion of
the ant (relative to the center of the wheel) is given by

x(t) = —asint, y(t) =—acost.

(The negative sign is needed to reverse the orientation of the curve. If the negative sign were not there, we would have to
imagine the wheel rotating counterclockwise.) Adding these equations together gives the equations for the cycloid.

x(t) = a(t —sint), y(t) =a(l —cos?).

Figure 1.9 A wheel traveling along a road without slipping; the point on
the edge of the wheel traces out a cycloid.
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Now suppose that the bicycle wheel doesn’t travel along a straight road but instead moves along the inside of a larger wheel,
as in Figure 1.10. In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point
on the edge of the green circle traces out the red graph, which is called a hypocycloid.

Figure 1.10 Graph of the hypocycloid described by the parametric
equations shown.

The general parametric equations for a hypocycloid are

x(f) = (a—b)cost+bcos(a;b)t

y(t) = (a—b)sint — b sin(a = b)t

These equations are a bit more complicated, but the derivation is somewhat similar to the equations for the cycloid. In this

case we assume the radius of the larger circle is a and the radius of the smaller circle is b. Then the center of the wheel

travels along a circle of radius a — b. This fact explains the first term in each equation above. The period of the second
2zb

trigonometric function in both x(¢) and y(¢) is equal to PRy

The ratio % is related to the number of cusps on the graph (cusps are the corners or pointed ends of the graph), as illustrated

in Figure 1.11. This ratio can lead to some very interesting graphs, depending on whether or not the ratio is rational.
Figure 1.10 corresponds to a =4 and b = 1. The result is a hypocycloid with four cusps. Figure 1.11 shows some
a

b
number of cusps, so they never return to their starting point. These are examples of what are known as space-filling curves.

other possibilities. The last two hypocycloids have irrational values for -. In these cases the hypocycloids have an infinite

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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Figure 1.11 Graph of various hypocycloids corresponding to
different values of a/b.
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The Witch of Agnesi

Many plane curves in mathematics are named after the people who first investigated them, like the folium of Descartes
or the spiral of Archimedes. However, perhaps the strangest name for a curve is the witch of Agnesi. Why a witch?

Maria Gaetana Agnesi (1718—-1799) was one of the few recognized women mathematicians of eighteenth-century Italy.
She wrote a popular book on analytic geometry, published in 1748, which included an interesting curve that had been
studied by Fermat in 1630. The mathematician Guido Grandi showed in 1703 how to construct this curve, which he
later called the “versoria,” a Latin term for a rope used in sailing. Agnesi used the Italian term for this rope, “versiera,”
but in Latin, this same word means a “female goblin.” When Agnesi’s book was translated into English in 1801, the
translator used the term “witch” for the curve, instead of rope. The name “witch of Agnesi” has stuck ever since.

The witch of Agnesi is a curve defined as follows: Start with a circle of radius a so that the points (0, 0) and (0, 2a)
are points on the circle (Figure 1.12). Let O denote the origin. Choose any other point A on the circle, and draw the
secant line OA. Let B denote the point at which the line OA intersects the horizontal line through (0, 2a). The vertical

line through B intersects the horizontal line through A at the point P. As the point A varies, the path that the point P
travels is the witch of Agnesi curve for the given circle.

Witch of Agnesi curves have applications in physics, including modeling water waves and distributions of spectral
lines. In probability theory, the curve describes the probability density function of the Cauchy distribution. In this
project you will parameterize these curves.

Figure 1.12 As the point A moves around the circle, the point P traces out the witch of
Agnesi curve for the given circle.

1. On the figure, label the following points, lengths, and angle:
a. Cis the point on the x-axis with the same x-coordinate as A.
b. xis the x-coordinate of P, and y is the y-coordinate of P.
c. Eisthe point (0, a).

d. Fis the point on the line segment OA such that the line segment EF is perpendicular to the line segment
OA.

e. bis the distance from O to F.
f. cis the distance from F to A.
g. dis the distance from O to B.
h. @ is the measure of angle ZCOA.
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The goal of this project is to parameterize the witch using 6 as a parameter. To do this, write equations for x
and y in terms of only 6.

2. Show that d = —24_,
sin &

3. Note that x = dcosf. Show that x = 2acotd. When you do this, you will have parameterized the x-

coordinate of the curve with respect to 6. If you can get a similar equation for y, you will have parameterized
the curve.

4. Interms of 6, whatis the angle ZEOA?

5. Show that b+ c =2a cos(% - 9).

6. Show that y = 2a cos(% - 9) sin 6.

7. Show that y = 2a sin%@. You have now parameterized the y-coordinate of the curve with respect to 6.
8. Conclude that a parameterization of the given witch curve is

x=2acot0,y=2asin20, — 0 <0< 00.

8a>

9. Use your parameterization to show that the given witch curve is the graph of the function f(x) = B0 0,2
x“+4a
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Travels with My Ant: The Curtate and Prolate Cycloids

Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a
wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid,
called the curtate and prolate cycloids.

First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant
trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very
edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 1.13).

As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter t
represent the angle the tire has rotated through. Looking at Figure 1.13, we see that after the tire has rotated through
an angle of ¢, the position of the center of the wheel, C = (x, y), is given by

Xxc=atandyc =a.
Furthermore, letting A = (x4, y4) denote the position of the ant, we note that
Xc—Xxp=asintandy-—y, =acost.
Then

Xp=Xc—asint=at—asint = a(t —sin?)

Ya=Yc—acost=a—acost=a(l —cost).

Figure 1.13 (a) The ant clings to the edge of the bicycle tire as the tire rolls along
the ground. (b) Using geometry to determine the position of the ant after the tire has
rotated through an angle of t.

Note that these are the same parametric representations we had before, but we have now assigned a physical meaning
to the parametric variable t.

After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the
spokes toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of
motion. The new path has less up-and-down motion and is called a curtate cycloid (Figure 1.14). As shown in the
figure, we let b denote the distance along the spoke from the center of the wheel to the ant. As before, we let t represent
the angle the tire has rotated through. Additionally, we let C = (x, y) represent the position of the center of the

wheel and A = (x4, y,) represent the position of the ant.
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Figure 1.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b)
The ant’s path of motion after he climbs closer to the center of the wheel. This is called a
curtate cycloid. (c) The new setup, now that the ant has moved closer to the center of the
wheel.

1. What is the position of the center of the wheel after the tire has rotated through an angle of ¢?

2. Use geometry to find expressions for x-— x, and for y-—y,.

3. On the basis of your answers to parts 1 and 2, what are the parametric equations representing the curtate
cycloid?
Once the ant’s head clears, he realizes that the bicyclist has made a turn, and is now traveling away from his
home. So he drops off the bicycle tire and looks around. Fortunately, there is a set of train tracks nearby, headed
back in the right direction. So the ant heads over to the train tracks to wait. After a while, a train goes by,
heading in the right direction, and he manages to jump up and just catch the edge of the train wheel (without
getting squished!).
The ant is still worried about getting dizzy, but the train wheel is slippery and has no spokes to climb, so he
decides to just hang on to the edge of the wheel and hope for the best. Now, train wheels have a flange to keep
the wheel running on the tracks. So, in this case, since the ant is hanging on to the very edge of the flange, the
distance from the center of the wheel to the ant is actually greater than the radius of the wheel (Figure 1.15).
The setup here is essentially the same as when the ant climbed up the spoke on the bicycle wheel. We let
b denote the distance from the center of the wheel to the ant, and we let t represent the angle the tire has
rotated through. Additionally, we let C = (x., y) represent the position of the center of the wheel and

A = (x4, y4) represent the position of the ant (Figure 1.15).

When the distance from the center of the wheel to the ant is greater than the radius of the wheel, his path of
motion is called a prolate cycloid. A graph of a prolate cycloid is shown in the figure.
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Figure 1.15 (a) The ant is hanging onto the flange of the train wheel. (b) The new
setup, now that the ant has jumped onto the train wheel. (c) The ant travels along a
prolate cycloid.

4. Using the same approach you used in parts 1— 3, find the parametric equations for the path of motion of the
ant.

5. What do you notice about your answer to part 3 and your answer to part 4?
Notice that the ant is actually traveling backward at times (the “loops” in the graph), even though the train
continues to move forward. He is probably going to be really dizzy by the time he gets home!

This OpenStax book is available for free at http://cnx.org/content/col11966/1.2
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1.1 EXERCISES

For the following exercises, sketch the curves below by
eliminating the parameter t. Give the orientation of the
curve.

Lox=42, y=t1+1

2. x =cos(t), y = sin(¢), (0, 2x]

3. x=2t+4,y=1t-1

4. x=3-t,y=2t-3,15<t<3

For the following exercises, eliminate the parameter and
sketch the graphs.
5 x=212, y=r*+1

For the following exercises, use technology (CAS or
calculator) to sketch the parametric equations.

6. [Tl x=1>+1, y=1>-1
7. [Tl x=e, y=e¢*-1
8. [T] x=3cost, y=4sint
9. [T] x=sect, y=cost

For the following exercises, sketch the parametric
equations by eliminating t