Advertisement
Review| Volume 23, ISSUE 12, P1045-1052, December 2021

Download started.

Ok

Adenovirus vector-attributed hepatotoxicity blocks clinical application in gene therapy

  • Zeng Wang
    Correspondence
    Correspondence: Zeng Wang, PhD, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, China.
    Affiliations
    Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
    Search for articles by this author
  • Xiaozhan Zhang
    Affiliations
    College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
    Search for articles by this author
Published:September 18, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.07.013

Abstract

Adenoviruses (Ads), common self-limiting pathogens in humans and animals, usually cause conjunctivitis, mild upper respiratory tract infection or gastroenteritis in humans and hepatotoxicity syndrome in chickens and dogs, posing great threats to public health and livestock husbandry. Artificially modified Ads, which wipe out virulence-determining genes, are the most frequently used viral vectors in gene therapy, and some Ad vector (AdV)-related medicines and vaccines have been licensed and applied. Inherent liver tropism enables AdVs to specifically deliver drugs/genes to the liver; however, AdVs are closely associated with acute hepatotoxicity in immunocompromised individuals, and the side effects of AdVs, which stimulate a strong inflammatory reaction in the liver and cause acute hepatotoxicity, have largely limited clinical application. Therefore, this review systematically elucidates the intimate relationship between AdVs and hepatotoxicity in terms of virus and host and precisely illustrates the accumulated understanding in this field over the past decades. This review demonstrates the liver tropism of AdVs and molecular mechanism of AdV-induced hepatotoxicity and looks at the studies on AdV-mediated animal hepatotoxicity, which will undoubtedly deepen the understanding of AdV-caused liver injury and be of benefit in the further safe development of AdVs.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Rutala W.A.
    • Peacock J.E.
    • Gergen M.F.
    • Sobsey M.D.
    • Weber D.J.
    Efficacy of Hospital Germicides against Adenovirus 8, a Common Cause of Epidemic Keratoconjunctivitis in Health Care Facilities.
    Antimicrob. Agents Chemother. 2006; 50: 1419-1424
    • Bru T.
    • Salinas S.
    • Kremer E.J.
    An Update on Canine Adenovirus Type 2 and Its Vectors.
    Viruses-Basel. 2010; 2: 2134-2153
    • Onda Y.
    • Kanda J.
    • Sakamoto S.
    • Okada M.
    • Anzai N.
    • Umadome H.
    • Tashima M.
    • Haga H.
    • Watanabe C.
    • Hanaoka N.
    Detection of adenovirus hepatitis and acute liver failure in allogeneic hematopoietic stem cell transplant patients.
    Transpl. Infect. Dis. 2021; 23: e13496
    • Schaberg Kurt
    • Kambham Neeraja
    • Sibley Richard
    • John
    Adenovirus Hepatitis: Clinicopathologic Analysis of 12 Consecutive Cases From a Single Institution.
    Am. J. Surg. Pathol. 2017; 40: 810-819
    • Lynch J.P.
    • Fishbein M.
    • Echavarria M.
    Adenovirus.
    Semin. Respir. Crit. Care Med. 2011; 32: 494-511
    • Lion T.
    Adenovirus infections in immunocompetent and immunocompromised patients.
    Clin. Microbiol. Rev. 2014; 27: 441-462
    • Edward Amy; Lo
    • Rao Sambasivia
    • Yang Guang-Yu
    Concurrent Acute Necrotizing Adenovirus Hepatitis and Enterocolitis in an Adult Patient After Double Cord Blood Stem Cell Transplant for Refractory Crohn's Disease.
    Int. J. Surg. Pathol. 2015; 23: 404-408
    • Ronan B.; A.
    • Agrwal N.
    • Carey E.; J.
    • De G.
    Fulminant hepatitis due to human adenovirus.
    Infection. 2013; 42: 105-111
    • Steiner I.
    • Aebi C.
    • Lüthy A.R.
    • Wagner B.
    • Leibundgut K.
    Fatal adenovirus hepatitis during maintenance therapy for childhood acute lymphoblastic leukemia.
    Pediatr. Blood Cancer. 2010; 50: 647-649
    • Chakrabarti S.
    • Collingham K.E.
    • Fegan C.D.
    • Milligan D.W.
    Fulminant adenovirus hepatitis following unrelated bone marrow transplantation: failure of intravenous ribavirin therapy.
    Bone Marrow Transplant. 1999; 23: 1209-1211
    • Chang J.
    Adenovirus Vectors: Excellent Tools for Vaccine Development.
    Immune Netw. 2021; 21: e6
    • Mercado N.
    • Zahn R.
    • Wegmann F.
    • Loos C.
    • Chandrashekar A.
    • Yu J.
    • Liu J.
    • Peter L.
    • McMahan K.
    • Tostanoski L.
    • He X.
    • Martinez D.
    • Rutten L.
    • Bos R.
    • van Manen D.
    • Vellinga J.
    • Custers J.
    • Langedijk J.
    • Kwaks T.
    • Bakkers M.
    • Zuijdgeest D.
    • Rosendahl Huber S.
    • Atyeo C.
    • Fischinger S.
    • Burke J.
    • Feldman J.
    • Hauser B.
    • Caradonna T.
    • Bondzie E.
    • Dagotto G.
    • Gebre M.
    • Hoffman E.
    • Jacob-Dolan C.
    • Kirilova M.
    • Li Z.
    • Lin Z.
    • Mahrokhian S.
    • Maxfield L.
    • Nampanya F.
    • Nityanandam R.
    • Nkolola J.
    • Patel S.
    • Ventura J.
    • Verrington K.
    • Wan H.
    • Pessaint L.
    • Van Ry A.
    • Blade K.
    • Strasbaugh A.
    • Cabus M.
    • Brown R.
    • Cook A.
    • Zouantchangadou S.
    • Teow E.
    • Andersen H.
    • Lewis M.
    • Cai Y.
    • Chen B.
    • Schmidt A.
    • Reeves R.
    • Baric R.
    • Lauffenburger D.
    • Alter G.
    • Stoffels P.
    • Mammen M.
    • Van Hoof J.
    • Schuitemaker H.
    • Barouch D.
    Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.
    Nature. 2020; 586: 583-588
    • Bett A.J.
    • Haddara W.
    • Prevec L.
    • Graham F.L.
    An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3.
    Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 8802-8806
    • Kovesdi I.
    • Hedley S.J.
    Adenoviral producer cells.
    Viruses. 2010; 2: 1681-1703
    • Louis N.
    • Evelegh C.
    • Graham F.L.
    Cloning and sequencing of the cellular–viral junctions from the human adenovirus type 5 transformed 293 cell line.
    Virology. 1997; 233: 423-429
    • Yang Y.
    • Nunes F.A.
    • Berencsi K.
    • Furth E.E.
    • Gonczol E.
    • Wilson J.M.
    Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.
    Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4407-4411
    • Wang Q.
    • Finer M.H.
    Second-generation adenovirus vectors.
    Nat. Med. 1996; 2: 714-716
    • Yang Y.
    • Li Q.
    • Ertl H.C.
    • Wilson J.M.
    Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses.
    J. Virol. 1995; 69: 2004-2015
    • Sullivan D.E.
    • Dash S.
    • Du H.
    • Hiramatsu N.
    • Aydin F.
    • Kolls J.
    • Blanchard J.
    • Baskin G.
    • Gerber M.A.
    Liver-directed gene transfer in non-human primates.
    Hum. Gene Ther. 1997; 8: 1195-1206
    • Lu H.Y.
    • Sullivan D.
    • Gerber M.A.
    • Dash S.
    Adenovirus induced acute hepatitis in non-human primates after liver-directed gene therapy.
    Chin. Med. J. 2002; 115: 726-731
    • Dormond E.
    • Perrier M.
    • Kamen A.
    From the first to the third generation adenoviral vector: what parameters are governing the production yield?.
    Biotechnol. Adv. 2009; 27: 133-144
    • Brunetti-Pierri N.
    • Ng T.
    • Iannitti D.
    • Cioffi W.
    • Stapleton G.
    • Law M.
    • Breinholt J.
    • Palmer D.
    • Grove N.
    • Rice K.
    • Bauer C.
    • Finegold M.
    • Beaudet A.
    • Mullins C.
    • Ng P.
    Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors.
    Hum. Gene Ther. 2013; 24: 761-765
    • Chang J.
    • Zhao X.
    • Wu X.
    • Guo Y.
    • Guo H.
    • Cao J.
    • Guo Y.
    • Lou D.
    • Yu D.
    • Li J.
    A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers.
    Cancer Biol. Ther. 2009; 8: 676-682
    • Fueyo J.
    • Gomez-Manzano C.
    • Alemany R.
    • Lee P.S.
    • McDonnell T.J.
    • Mitlianga P.
    • Shi Y.X.
    • Levin V.A.
    • Yung W.K.
    • Kyritsis A.P.
    A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo.
    Oncogene. 2000; 19: 2-12
    • Liu H.W.
    • Liu J.H.
    Application of a novel mutant KRAS-regulated promoter in E1B-55kD-deleted oncolytic adenovirus for the therapy of pancreatic cancer.
    Hum. Gene Ther. 2016; 27: A88
    • Hall S.J.
    • Canfield S.E.
    • Yan Y.
    • Hassen W.
    • Selleck W.A.
    • Chen S.H.
    A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer.
    Gene Ther. 2002; 9: 511-517
    • Zhang Y.F.
    • Zhang B.C.
    • Zhang A.R.
    • Wu T.T.
    • Liu J.
    • Yu L.F.
    • Wang W.X.
    • Gao J.F.
    • Fang D.C.
    • Rao Z.G.
    Co-transduction of ribosomal protein L23 enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in human gastric cancer.
    Oncol. Rep. 2013; 30: 1989-1995
    • Howells A.
    • Marelli G.
    • Lemoine N.R.
    • Wang Y.H.
    Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer.
    Front. Oncol. 2017; 7: 195
    • Raper S.E.
    • Chirmule N.
    • Lee F.S.
    • Wivel N.A.
    • Bagg A.
    • Gao G.P.
    • Wilson J.M.
    • Batshaw M.L.
    Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer.
    Mol. Genet. Metab. 2003; 80: 148-158
    • Morral N.
    • O'Neal W.K.
    • Rice K.
    • Leland M.M.
    • Piedra P.A.
    • Aguilar-Cordova E.
    • Carey K.D.
    • Beaudet A.L.
    • Langston C.
    Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons.
    Hum. Gene Ther. 2002; 13: 143-154
    • Brunetti-Pierri N.
    • Palmer D.J.
    • Beaudet A.L.
    • Carey K.D.
    • Finegold M.
    • Ng P.
    Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates.
    Hum. Gene Ther. 2004; 15: 35-46
    • Atasheva S.
    • Emerson C.C.
    • Yao J.
    • Young C.
    • Stewart P.L.
    • Shayakhmetov D.M.
    Systemic cancer therapy with engineered adenovirus that evades innate immunity.
    Sci. Transl. Med. 2020; 12: eabc6659
    • Liang M.
    Oncorine, the World First Oncolytic Virus Medicine and its Update in China.
    Curr. Cancer Drug Targets. 2018; 18: 171-176
    • Garber K.
    China approves world's first oncolytic virus therapy for cancer treatment.
    J. Natl. Cancer Inst. 2006; 98: 298-300
    • Pénzes J.
    • Menéndez-Conejero R.
    • Condezo G.
    • Ball I.
    • Papp T.
    • Doszpoly A.
    • Paradela A.
    • Pérez-Berná A.
    • López-Sanz M.
    • Nguyen T.
    • van Raaij M.
    • Marschang R.
    • Harrach B.
    • Benkő M.
    • San Martín C.
    Molecular characterization of a lizard adenovirus reveals the first atadenovirus with two fiber genes and the first adenovirus with either one short or three long fibers per penton.
    J. Virol. 2014; 88: 11304-11314
    • Yeh H.
    • Pieniazek N.
    • Pieniazek D.
    • Gelderblom H.
    • Luftig R.
    Human adenovirus type 41 contains two fibers.
    Virus Res. 1994; 33: 179-198
    • Kidd A.
    • Chroboczek J.
    • Cusack S.
    • Ruigrok R.
    Adenovirus type 40 virions contain two distinct fibers.
    Virology. 1993; 192: 73-84
    • Song J.D.
    • Liu X.L.
    • Chen D.L.
    • Zou X.H.
    • Wang M.
    • Qu J.G.
    • Lu Z.Z.
    • Hung T.
    Human adenovirus type 41 possesses different amount of short and long fibers in the virion.
    Virology. 2012; 432: 336-342
    • Roelvink P.
    • Lizonova A.
    • Lee J.
    • Li Y.
    • Bergelson J.
    • Finberg R.
    • Brough D.
    • Kovesdi I.
    • Wickham T.
    The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F.
    J. Virol. 1998; 72: 7909-7915
    • Green N.
    • Wrigley N.
    • Russell W.
    • Martin S.
    • McLachlan A.
    Evidence for a repeating cross-beta sheet structure in the adenovirus fibre.
    The EMBO journal. 1983; 2: 1357-1365
    • Hong J.
    • Engler J.
    The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal.
    Virology. 1991; 185: 758-767
    • Bergelson J.
    • Cunningham J.
    • Droguett G.
    • Kurt-Jones E.
    • Krithivas A.
    • Hong J.
    • Horwitz M.
    • Crowell R.
    • Finberg R.
    Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.
    Science (New York, N.Y.). 1997; 275: 1320-1323
    • Nakamura T.
    • Sato K.
    • Hamada H.
    Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber.
    J. Virol. 2003; 77: 2512-2521
    • Yun C.
    • Yoon A.
    • Yoo J.
    • Kim H.
    • Kim M.
    • Ha T.
    • Kim G.
    • Kim H.
    • Kim J.
    Coxsackie and adenovirus receptor binding ablation reduces adenovirus liver tropism and toxicity.
    Hum. Gene Ther. 2005; 16: 248-261
    • Ambriović-Ristov A.
    • Mercier S.
    • Eloit M.
    Shortening adenovirus type 5 fiber shaft decreases the efficiency of postbinding steps in CAR-expressing and nonexpressing cells.
    Virology. 2003; 312: 425-433
    • Shayakhmetov D.
    • Lieber A.
    Dependence of adenovirus infectivity on length of the fiber shaft domain.
    J. Virol. 2000; 74: 10274-10286
    • Vigne E.
    • Dedieu J.
    • Brie A.
    • Gillardeaux A.
    • Briot D.
    • Benihoud K.
    • Latta-Mahieu M.
    • Saulnier P.
    • Perricaudet M.
    • Yeh P.
    Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation.
    Gene Ther. 2003; 10: 153-162
    • Smith T.
    • Idamakanti N.
    • Rollence M.
    • Marshall-Neff J.
    • Kim J.
    • Mulgrew K.
    • Nemerow G.
    • Kaleko M.
    • Stevenson S.
    Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice.
    Hum. Gene Ther. 2003; 14: 777-787
    • Marttila M.
    • Persson D.
    • Gustafsson D.
    • Liszewski M.
    • Atkinson J.
    • Wadell G.
    • Arnberg N.
    CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7.
    J. Virol. 2005; 79: 14429-14436
    • Persson B.
    • John L.
    • Rafie K.
    • Strebl M.
    • Frängsmyr L.
    • Ballmann M.
    • Mindler K.
    • Havenga M.
    • Lemckert A.
    • Stehle T.
    • Carlson L.
    • Arnberg N.
    Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46.
    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2020732118
    • Wang H.
    • Li Z.
    • Liu Y.
    • Persson J.
    • Beyer I.
    • Möller T.
    • Koyuncu D.
    • Drescher M.
    • Strauss R.
    • Zhang X.
    • Wahl J.
    • Urban N.
    • Drescher C.
    • Hemminki A.
    • Fender P.
    • Lieber A.
    Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.
    Nat. Med. 2011; 17: 96-104
    • Nilsson E.
    • Storm R.
    • Bauer J.
    • Johansson S.
    • Lookene A.
    • Ångström J.
    • Hedenström M.
    • Eriksson T.
    • Frängsmyr L.
    • Rinaldi S.
    • Willison H.
    • Pedrosa Domellöf F.
    • Stehle T.
    • Arnberg N.
    The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis.
    Nat. Med. 2011; 17: 105-109
    • Lenman A.
    • Liaci A.
    • Liu Y.
    • Frängsmyr L.
    • Frank M.
    • Blaum B.
    • Chai W.
    • Podgorski I.
    • Harrach B.
    • Benkő M.
    • Feizi T.
    • Stehle T.
    • Arnberg N.
    Polysialic acid is a cellular receptor for human adenovirus 52.
    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E4264-E4273
    • Mizuta K.
    • Matsuzaki Y.
    • Hongo S.
    • Ohmi A.
    • Okamoto M.
    • Nishimura H.
    • Itagaki T.
    • Katsushima N.
    • Oshitani H.
    • Suzuki A.
    • Furuse Y.
    • Noda M.
    • Kimura H.
    • Ahiko T.
    Stability of the seven hexon hypervariable region sequences of adenovirus types 1-6 isolated in Yamagata, Japan between 1988 and 2007.
    Virus Res. 2009; 140: 32-39
    • Rux J.
    • Burnett R.
    Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2000; 1: 18-30
    • Alemany R.
    • Curiel D.T.
    CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors.
    Gene Ther. 2001; 8: 1347-1353
    • Smith T.
    • Idamakanti N.
    • Marshall-Neff J.
    • Rollence M.
    • Wright P.
    • Kaloss M.
    • King L.
    • Mech C.
    • Dinges L.
    • Iverson W.
    • Sherer A.
    • Markovits J.
    • Lyons R.
    • Kaleko M.
    • Stevenson S.
    Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates.
    Hum. Gene Ther. 2003; 14: 1595-1604
    • Kalyuzhniy O.
    • Di Paolo N.
    • Silvestry M.
    • Hofherr S.
    • Barry M.
    • Stewart P.
    • Shayakhmetov D.
    Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo.
    Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 5483-5488
    • Bradshaw A.
    • Parker A.
    • Duffy M.
    • Coughlan L.
    • van Rooijen N.
    • Kähäri V.
    • Nicklin S.
    • Baker A.
    Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X.
    PLoS Path. 2010; 6e1001142
    • Alba R.
    • Bradshaw A.
    • Parker A.
    • Bhella D.
    • Waddington S.
    • Nicklin S.
    • van Rooijen N.
    • Custers J.
    • Goudsmit J.
    • Barouch D.
    • McVey J.
    • Baker A.
    Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer.
    Blood. 2009; 114: 965-971
    • Alba R.
    • Bradshaw A.
    • Coughlan L.
    • Denby L.
    • McDonald R.
    • Waddington S.
    • Buckley S.
    • Greig J.
    • Parker A.
    • Miller A.
    • Wang H.
    • Lieber A.
    • van Rooijen N.
    • McVey J.
    • Nicklin S.
    • Baker A.
    Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors.
    Blood. 2010; 116: 2656-2664
    • Ma J.
    • Duffy M.
    • Deng L.
    • Dakin R.
    • Uil T.
    • Custers J.
    • Kelly S.
    • McVey J.
    • Nicklin S.
    • Baker A.
    Manipulating adenovirus hexon hypervariable loops dictates immune neutralisation and coagulation factor X-dependent cell interaction in vitro and in vivo.
    PLoS Path. 2015; 11e1004673
    • Short J.
    • Rivera A.
    • Wu H.
    • Walter M.
    • Yamamoto M.
    • Mathis J.
    • Curiel D.
    Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy.
    Mol. Cancer Ther. 2010; 9: 2536-2544
    • Alba R.
    • Bradshaw A.
    • Mestre-Francés N.
    • Verdier J.
    • Henaff D.
    • Baker A.
    Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus).
    Gene Ther. 2012; 19: 109-113
    • Xu Z.
    • Qiu Q.
    • Tian J.
    • Smith J.
    • Conenello G.
    • Morita T.
    • Byrnes A.
    Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement.
    Nat. Med. 2013; 19: 452-457
    • Irons E.
    • Flatt J.
    • Doronin K.
    • Fox T.
    • Acchione M.
    • Stewart P.
    • Shayakhmetov D.
    Coagulation factor binding orientation and dimerization may influence infectivity of adenovirus-coagulation factor complexes.
    J. Virol. 2013; 87: 9610-9619
    • Parker A.
    • McVey J.
    • Doctor J.
    • Lopez-Franco O.
    • Waddington S.
    • Havenga M.
    • Nicklin S.
    • Baker A.
    Influence of coagulation factor zymogens on the infectivity of adenoviruses pseudotyped with fibers from subgroup D.
    J. Virol. 2007; 81: 3627-3631
    • Shiri A.
    • Sarvari J.
    • Firoozi Ghahestani S.
    • Gholijani N.
    • Tamaddon A.
    • Rastegari M.
    • Moattari A.
    • Hosseini S.
    The Inflammatory and Fibrotic Patterns of Hepatic Stellate Cells Following Coagulation Factors (VII or X)-Shielded Adenovirus Infection.
    Curr. Microbiol. 2021; 78: 718-726
    • Ghahestani S.F.
    • Shiri A.
    • Moattari A.
    • Sarvari J.
    • Hossein S.Y.
    The superior role of coagulation factor FX over FVII in adenoviral-mediated innate immune induction of the hepatocyte: an in vitro experiment.
    Clinical and Experimental Hepatology. 2020; 6: 199-206
    • Wickham T.
    • Filardo E.
    • Cheresh D.
    • Nemerow G.
    Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization.
    The Journal of cell biology. 1994; 127: 257-264
    • Wickham T.J.
    • Mathias P.
    • Cheresh D.A.
    • Nemerow G.R.
    Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment.
    Cell. 1993; 73: 309-319
    • Stasiak A.
    • Stehle T.
    Human adenovirus binding to host cell receptors: a structural view.
    Med. Microbiol. Immunol. 2020; 209: 325-333
    • Hussein H.
    • Walker L.
    • Abdel-Raouf U.
    • Desouky S.
    • Montasser A.
    • Akula S.
    Beyond RGD: virus interactions with integrins.
    Arch. Virol. 2015; 160: 2669-2681
    • Zubieta C.
    • Blanchoin L.
    • Cusack S.
    Structural and biochemical characterization of a human adenovirus 2/12 penton base chimera.
    The FEBS journal. 2006; 273: 4336-4345
    • Einfeld D.
    • Schroeder R.
    • Roelvink P.
    • Lizonova A.
    • King C.
    • Kovesdi I.
    • Wickham T.
    Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions.
    J. Virol. 2001; 75: 11284-11291
    • Koizumi N.
    • Mizuguchi H.
    • Sakurai F.
    • Yamaguchi T.
    • Watanabe Y.
    • Hayakawa T.
    Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation.
    J. Virol. 2003; 77: 13062-13072
    • Koop D.
    • Klopfenstein B.
    • Iimuro Y.
    • Thurman R.
    Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1.
    Mol. Pharmacol. 1997; 51: 944-950
    • Stachlewitz R.
    • Seabra V.
    • Bradford B.
    • Bradham C.
    • Rusyn I.
    • Germolec D.
    • Thurman R.
    Glycine and uridine prevent D-galactosamine hepatotoxicity in the rat: role of Kupffer cells.
    Hepatology (Baltimore, Md.). 1999; 29: 737-745
    • Bremer C.
    • Bradford B.U.
    • Hunt K.J.
    • Knecht K.T.
    • Thurman R.G.
    Role of Kupffer cells in the pathogenesis of hepatic reperfusion injury.
    Am. J. Physiol. 1994; 267: 630-636
    • Lieber A.
    • He C.
    • Meuse L.
    • Schowalter D.
    • Kirillova I.
    • Winther B.
    • Kay M.
    The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors.
    J. Virol. 1997; 71: 8798-8807
    • Alemany R.
    • Suzuki K.
    • Curiel D.
    Blood clearance rates of adenovirus type 5 in mice.
    The Journal of general virology. 2000; 81: 2605-2609
    • Muruve D.
    • Barnes M.
    • Stillman I.
    • Libermann T.
    Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo.
    Hum. Gene Ther. 1999; 10: 965-976
    • Shayakhmetov D.
    • Li Z.
    • Ni S.
    • Lieber A.
    Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors.
    J. Virol. 2004; 78: 5368-5381
    • Xu Z.
    • Tian J.
    • Smith J.
    • Byrnes A.
    Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement.
    J. Virol. 2008; 82: 11705-11713
    • Haisma H.
    • Boesjes M.
    • Beerens A.
    • van der Strate B.
    • Curiel D.
    • Plüddemann A.
    • Gordon S.
    • Bellu A.
    Scavenger receptor A: a new route for adenovirus 5.
    Mol. Pharm. 2009; 6: 366-374
    • Khare R.
    • May S.
    • Vetrini F.
    • Weaver E.
    • Palmer D.
    • Rosewell A.
    • Grove N.
    • Ng P.
    • Barry M.
    Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2011; 19: 1254-1262
    • Wheeler M.
    • Yamashina S.
    • Froh M.
    • Rusyn I.
    • Thurman R.
    Adenoviral gene delivery can inactivate Kupffer cells: role of oxidants in NF-kappaB activation and cytokine production.
    J. Leukocyte Biol. 2001; 69: 622-630
    • Kono H.
    • Rusyn I.
    • Yin M.
    • Gäbele E.
    • Yamashina S.
    • Dikalova A.
    • Kadiiska M.
    • Connor H.
    • Mason R.
    • Segal B.
    • Bradford B.
    • Holland S.
    • Thurman R.
    NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease.
    The Journal of clinical investigation. 2000; 106: 867-872
    • Appledorn D.
    • Patial S.
    • McBride A.
    • Godbehere S.
    • Van Rooijen N.
    • Parameswaran N.
    • Amalfitano A.
    Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo.
    Journal of immunology (Baltimore, Md.: 1950). 2008; 181: 2134-2144
    • Gooding L.
    Regulation of TNF-mediated cell death and inflammation by human adenoviruses.
    Infect. Agents Dis. 1994; 3: 106-115
    • Ferrero E.
    • Zocchi M.
    • Magni E.
    • Panzeri M.
    • Curnis F.
    • Rugarli C.
    • Ferrero M.
    • Corti A.
    Roles of tumor necrosis factor p55 and p75 receptors in TNF-alpha-induced vascular permeability.
    American journal of physiology. Cell physiology. 2001; 281: C1173-C1179
    • Eguchi A.
    • Wree A.
    • Feldstein A.E.
    Biomarkers of liver cell death.
    J. Hepatol. 2014; 60: 1063-1074
    • Su L.
    • Li N.
    • Tang H.
    • Lou Z.
    • Chong X.
    • Zhang C.
    • Su J.
    • Dong X.
    Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells.
    Cell Death Dis. 2018; 9: 323
    • Schiedner G.
    • Bloch W.
    • Hertel S.
    • Johnston M.
    • Molojavyi A.
    • Dries V.
    • Varga G.
    • Van Rooijen N.
    • Kochanek S.
    A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells.
    Hum. Gene Ther. 2003; 14: 1631-1641
    • Tao N.
    • Gao G.
    • Parr M.
    • Johnston J.
    • Baradet T.
    • Wilson J.
    • Barsoum J.
    • Fawell S.
    Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2001; 3: 28-35
    • Manickan E.
    • Smith J.
    • Tian J.
    • Eggerman T.
    • Lozier J.
    • Muller J.
    • Byrnes A.
    Rapid Kupffer cell death after intravenous injection of adenovirus vectors.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2006; 13: 108-117
    • van Horssen J.
    • van Schaik P.
    • Witte M.
    Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders?.
    Neurosci. Lett. 2019; 710132931
    • Capucetti A.
    • Albano F.
    • Bonecchi R.
    Multiple Roles for Chemokines in Neutrophil Biology.
    Front. Immunol. 2020; 11: 1259
    • Martin C.
    • Burdon P.
    • Bridger G.
    • Gutierrez-Ramos J.
    • Williams T.
    • Rankin S.
    Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence.
    Immunity. 2003; 19: 583-593
    • Bleul C.
    • Fuhlbrigge R.
    • Casasnovas J.
    • Aiuti A.
    • Springer T.
    A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1).
    The Journal of experimental medicine. 1996; 184: 1101-1109
    • Alvarenga D.
    • Mattos M.
    • Araújo A.
    • Antunes M.
    • Menezes G.
    Neutrophil biology within hepatic environment.
    Cell Tissue Res. 2018; 371: 589-598
    • Liu Z.
    • Han D.
    • Gunawan B.
    • Kaplowitz N.
    Neutrophil depletion protects against murine acetaminophen hepatotoxicity.
    Hepatology (Baltimore, Md.). 2006; 43: 1220-1230
    • Jaeschke H.
    Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions.
    American journal of physiology. Gastrointestinal and liver physiology. 2006; 290: G1083-G1088
    • Furze R.
    • Rankin S.
    Neutrophil mobilization and clearance in the bone marrow.
    Immunology. 2008; 125: 281-288
    • Ben-Baruch A.
    • Michiel D.F.
    • Oppenheim J.J.
    Signals and Receptors Involved in Recruitment of Inflammatory Cells.
    J. Biol. Chem. 1995; 270: 11703-11706
    • Cara D.
    • Kaur J.
    • Forster M.
    • McCafferty D.
    • Kubes P.
    Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo.
    Journal of immunology (Baltimore, Md.: 1950). 2001; 167: 6552-6558
    • Gasque P.
    Complement: a unique innate immune sensor for danger signals.
    Mol. Immunol. 2004; 41: 1089-1098
    • García-García E.
    • Rosales C.
    Signal transduction during Fc receptor-mediated phagocytosis.
    J. Leukocyte Biol. 2002; 72: 1092-1108
    • Cotter M.
    • Zaiss A.
    • Muruve D.
    Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1.
    J. Virol. 2005; 79: 14622-14631
    • Li Y.
    • Muruve D.
    • Collins R.
    • Lee S.
    • Kubes P.
    The role of selectins and integrins in adenovirus vector-induced neutrophil recruitment to the liver.
    Eur. J. Immunol. 2002; 32: 3443-3452
    • Jaeschke H.
    • Ho Y.
    • Fisher M.
    • Lawson J.
    • Farhood A.
    Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress.
    Hepatology (Baltimore, Md.). 1999; 29: 443-450
    • Abel A.
    • Yang C.
    • Thakar M.
    • Malarkannan S.
    Natural Killer Cells: Development, Maturation, and Clinical Utilization.
    Front. Immunol. 2018; 9: 1869
    • Mandal A.
    • Viswanathan C.
    Natural killer cells: in health and disease.
    Hematol. Oncol. Stem Cell Ther. 2015; 8: 47-55
    • Goossens P.
    • Jouin H.
    • Marchal G.
    • Milon G.
    Isolation and flow cytometric analysis of the free lymphomyeloid cells present in murine liver.
    J. Immunol. Methods. 1990; 132: 137-144
    • Long E.
    • Kim H.
    • Liu D.
    • Peterson M.
    • Rajagopalan S.
    Controlling natural killer cell responses: integration of signals for activation and inhibition.
    Annu. Rev. Immunol. 2013; 31: 227-258
    • Tomasello E.
    • Blery M.
    • Vely F.
    • Vivier E.
    Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells.
    Semin. Immunol. 2000; 12: 139-147
    • Horowitz A.
    • Strauss-Albee D.
    • Leipold M.
    • Kubo J.
    • Nemat-Gorgani N.
    • Dogan O.
    • Dekker C.
    • Mackey S.
    • Maecker H.
    • Swan G.
    • Davis M.
    • Norman P.
    • Guethlein L.
    • Desai M.
    • Parham P.
    • Blish C.
    Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry.
    Sci. Transl. Med. 2013; 5: 208ra145
    • Pegram H.J.
    • Andrews D.M.
    • Smyth M.J.
    • Darcy P.K.
    • Kershaw M.H.
    Activating and inhibitory receptors of natural killer cells.
    Immunol. Cell Biol. 2011; 89: 216-224
    • Skoskiewicz M., J.
    Widespread and selective induction of major histocompatibility complex-determined antigens in vivo by gamma interferon.
    J. Exp. Med. 1985; 162: 1645-1664
    • Lanier L.L.
    NK cell receptors.
    Annu. Rev. Immunol. 1998; 16: 359-393
    • Ruzek M.
    • Kavanagh B.
    • Scaria A.
    • Richards S.
    • Garman R.
    Adenoviral vectors stimulate murine natural killer cell responses and demonstrate antitumor activities in the absence of transgene expression.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2002; 5: 115-124
    • Liu Z.
    • Govindarajan S.
    • Okamoto S.
    • Dennert G.
    NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection.
    Journal of immunology (Baltimore, Md.: 1950). 2000; 164: 6480-6486
    • Giorgio Trinchieri
    Interleukin-12: a cytokine at the interface of inflammation and immunity.
    Adv. Immunol. 1998; : 83-243
    • Peng Y.
    • Falck-Pedersen E.
    • Elkon K.
    Variation in adenovirus transgene expression between BALB/c and C57BL/6 mice is associated with differences in interleukin-12 and gamma interferon production and NK cell activation.
    J. Virol. 2001; 75: 4540-4550
    • Vantourout P.
    • Hayday A.
    Six-of-the-best: unique contributions of γδ T cells to immunology.
    Nature reviews. Immunology. 2013; 13: 88-100
    • Turchinovich G.
    • Hayday A.
    Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells.
    Immunity. 2011; 35: 59-68
    • Ribot J.
    • deBarros A.
    • Pang D.
    • Neves J.
    • Peperzak V.
    • Roberts S.
    • Girardi M.
    • Borst J.
    • Hayday A.
    • Pennington D.
    • Silva-Santos B.
    CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets.
    Nat. Immunol. 2009; 10: 427-436
    • Zhou Q.
    • Wu F.
    • Pang L.
    • Zhang T.
    • Chen Z.
    Role of γδT cells in liver diseases and its relationship with intestinal microbiota.
    World J. Gastroenterol. 2020; 26: 2559-2569
    • Ajuebor M.
    • Jin Y.
    • Gremillion G.
    • Strieter R.
    • Chen Q.
    • Adegboyega P.
    GammadeltaT cells initiate acute inflammation and injury in adenovirus-infected liver via cytokine-chemokine cross talk.
    J. Virol. 2008; 82: 9564-9576
    • Atasheva S.
    • Shayakhmetov D.
    Adenovirus sensing by the immune system.
    Curr. Opin. Virol. 2016; 21: 109-113
    • Prill J.
    • Espenlaub S.
    • Samen U.
    • Engler T.
    • Schmidt E.
    • Vetrini F.
    • Rosewell A.
    • Grove N.
    • Palmer D.
    • Ng P.
    • Kochanek S.
    • Kreppel F.
    Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.
    Molecular therapy: the journal of the American Society of Gene Therapy. 2011; 19: 83-92
    • Wang Z.
    • Wang B.
    • Lou J.
    • Yan J.
    • Gao L.
    • Geng R.
    • Yu B.
    Mutation in fiber of adenovirus serotype 5 gene therapy vector decreases liver tropism.
    Int. J. Clin. Exp. Med. 2014; 7: 4942-4950
View full text