Skip to main content

Advertisement

Log in

Ambient ozone at a rural Central European site and its vertical concentration gradient close to the ground

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The representativeness of ambient air quality of an in situ measurement is key in the use and correct interpretation of the measured concentration values. Though the horizontal representativeness aspect is generally not neglected in air pollution studies, a detailed, high-resolution vertical distribution of ambient air pollutant concentrations is rarely addressed. The aim of this study is twofold: (i) to explore the vertical distribution of ground-level ozone (O3) concentrations measured at four heights above the ground—namely at 2, 8, 50, and 230 m—and (ii) to examine in detail the vertical O3 concentration gradient in air columns between 2 and 8, 8 and 50, and 50 and 230 m above the ground. We use the daily mean O3 concentrations measured continuously at the Košetice station, representing the rural Central European background ambient air quality observed during 2015–2021. We use the semiparametric GAM (generalised additive model) approach (with complexity or roughness-penalised splines implementation) to analyse the data with sufficient flexibility. Our models for both O3 concentrations and O3 gradients use (additive) decomposition into annual trend and seasonality (plus an overall intercept). The seasonal and year-to-year patterns of the modelled O3 concentrations look very similar at first glance. Nevertheless, a more detailed look through O3 gradients shows that they differ substantially with respect to their seasonal and long-term dynamics. The vertical O3 concentration gradient in 2–230 m is not uniform but changes substantially with increasing height and shows by far the highest dynamics near the ground between 2 and 8 m, differing in both the seasonal and annual aspects for all the air columns inspected. We speculate that non-linear changes of both seasonal and annual components of vertical O3 gradients are due to atmospheric-terrestrial interactions and to meteorological factors, which we will explore in a future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agathokleous E, Feng Z, Oksanen E, Sicard P, Sajtanis CJ et al (2020) Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci Adv 6:eabc1176

    CAS  Google Scholar 

  • Anav A, De Marco A, Collalti A, Emberson L, Feng Z et al (2005) Legislative and functional aspects of different metrics used for ozone risk assessment to forests. Environ Pollut 295:118690

    Google Scholar 

  • Andersson C, Langner J, Bergström R (2007) Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA-40 reanalysis. Tellus B 59:77–98

    Google Scholar 

  • Aneja VP, Mathur R, Arya SP, Li Y, Murray GC et al (2000) Coupling the vertical distribution of ozone in the atmospheric boundary layer. Environ Sci Technol 34:2324–2329

    CAS  Google Scholar 

  • Bergin MS, West JJ, Keating TJ, Russell AG (2005) Regional atmospheric pollution and ransboundary air quality management. Annu Rev Environ Resour 30:1–37

    Google Scholar 

  • Blanchard CL, Carr EL, Collins JF, Smith TB, Lehrman DE, Michaels HM (1999) Spatial representativeness and scales of transport during the 1995 integrated monitoring study in California’s San Joaquin Valley. Atmos Environ 33:4775–4786

    CAS  Google Scholar 

  • Bosveld FC, Baas P, Beljaars ACM, Holtslag AAM, de Arellano JV-G, de Wiel BJH (2020) Fifty years of atmospheric boundary-layer research at Cabauw serving weather, air quality, and climate. Boundary-Layer Meteorol 177:583–612. https://doi.org/10.1007/s10546-020-00541-w

    Article  Google Scholar 

  • Brodin M, Helmig D, Oltmans S (2010) Seasonal ozone behaviour along an elevation gradient in the Colorado Front Range Mountains. Atmos Environ 44:5305–5315

    CAS  Google Scholar 

  • Burden RL, Faires JD, Reynolds AC (1997) Numerical Analysis, 6th edn. Brooks/Cole, Boston, MA, pp 120–121

    Google Scholar 

  • Chameides WL, Fehsenfeld F, Rodgers MO, Cardelino C, Martinez J (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res Atmos 97:6037–6055

    CAS  Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordónez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground based study for Western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    CAS  Google Scholar 

  • CHMI (2021) Air Pollution in the Czech Republic in 2020. Czech/English. CHMI, Prague. https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2021_enh/pdf/kom.pdf. Accessed 11 Nov 2022

  • Chou CC-K, Liu SC, Lin C-Y, Shiu C-J, Chang K-H (2006) The trend of surface ozone in Taipei, Taiwan, and its causes: implications for ozone control strategies. Atmos Environ 40:3898–3908

    CAS  Google Scholar 

  • Coe H, Gallagher MW, Choulaqrton TW, Dore C (1995) Canopy scale measurements of stomatal and cuticular 03 uptake by sitka spruce. Atmos Environ 29:1413–1423

    CAS  Google Scholar 

  • Collbeck I, Harrison RM (1985) Dry deposition of ozone: some measurements of deposition velocity and of vertical profiles to 100 metres. Atmos Environ 19:1807–1818

    Google Scholar 

  • Colette A, Andersson C, Baklanov A, Bessagnet B, Brandt J et al (2015) Is the ozone climate penalty robust in Europe? Environ Res Lett 10:084015

    Google Scholar 

  • De Boor C (2001) A practical guide to splines, Revised. Springer, New York

    Google Scholar 

  • De Marco A, Proietti C, Anav A, Ciancarella L, d’Elia I et al (2019) Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ Int 125:320–333

    Google Scholar 

  • Derwent RG, Parrish DD (2022) Analysis and assessment of the observed long-term changes over three decades in ground-level ozone across north-west Europe from 1989–2018. Atmos Environ 286:119222

    CAS  Google Scholar 

  • Dodge Y (2003) The Oxford Dictionary of Statistical Terms. Oxford University Press, New York

    Google Scholar 

  • Duyzer J, van den Hout D, Zandveld P, van Ratingen S (2015) Representativeness of air quality monitoring networks. Atmos Environ 104:88–101

    CAS  Google Scholar 

  • Dvorská A, Sedlák P, Schwarz J, Fusek M, Hanuš V, Vodička P, Trusina J (2015) Atmospheric station Křešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality. Adv Sci Res 12:79–83. https://doi.org/10.5194/asr-12-79-2015

    Article  Google Scholar 

  • EC (1997) Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the member states. OJEC L 35/14

  • EC (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJEC L 152

  • Edwards DP, Emmons LK, Gille JC, Chu A, Attié J-L et al (2006) Satellite-observed pollution from Southern Hemisphere biomass burning. J Geophys Res Atmos 111:D1431

    Google Scholar 

  • EEA (2019) Air quality in Europe – 2019 report. European Environment Agency, Luxembourg

  • Emberson LD, Kitwiroon N, Beevers S, Buker P, Cinderby S (2013) Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems? Atmos Chem Phys 13:6741–6755

    Google Scholar 

  • Emmerichs T, Kerkweg A, Ouwersloot H, Fares S, Mammarella I, Taraborrelli D (2021) A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54. Geosci Model Dev 14:495–519

    CAS  Google Scholar 

  • Feng Z, Shang B, Li Z, Calatayud V, Agathokleus E (2019) Ozone will remain a threat for plants independently of nitrogen load. Funct Ecol 33:1854–1870

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academia Press, San Diego

    Google Scholar 

  • Fleming ZL, Doherty RM, von Schneidemesser E, Malley CS, Cooper OR et al (2018) Tropospheric Ozone Assessment Report: present-day ozone distribution and trends relevant to human health. Elementa 6:12

    Google Scholar 

  • Fontan J, Minga A, Lopez A, Druilhet A (1992) Vertical ozone profiles in a pine forest. Atmos Environ A 26:863–869

    Google Scholar 

  • Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. J Philos Trans Royal Soc London 324B:247–265

    Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    CAS  Google Scholar 

  • Gerosa G, Mazzali C, Ballarin-Denti A (2001) Techniques of ozone monitoring in a mountain forest region: passive and continuous sampling, vertical and canopy profiles. Sci World J 1:612–626

    CAS  Google Scholar 

  • Gottardini E, Cristofolini F, Cristofori A et al (2018) In search for evidence: combining ad hoc survey, monitoring, and modeling to estimate the potential and actual impact of ground level ozone on forests in Trentino (Northern Italy). Environ Sci Pollut Res 25:8206–8216

    CAS  Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models: a roughness penalty approach. Chapman and Hall, New York

    Google Scholar 

  • Grulke N, Heath RL (2020) Ozone effects on plants in natural ecosystems. Plant Biol 22(Suppl. 1):12–37. https://doi.org/10.1111/plb.12971

    Article  CAS  Google Scholar 

  • Hakola H, Joffre S, Lattila H, Taalas P (1991) Transport, formation and sink processes behind surface ozone variability in north European conditions. Atmos Environ 25:1437–1447

    Google Scholar 

  • Hao X, Zhang Y, Yu G, He B, Yang F et al (2022) Online vertical measurement of air pollutants: development of a monitoring platform on a skyscraper and its application in Shanghai. Atmos Pollut Res 13:101477

    CAS  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Henne S, Brunner D, Folini D, Solberg S, Klausen J, Buchmann B (2010) Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos Chem Phys 10:3561–3581

    CAS  Google Scholar 

  • Hovorka J, Leoni C, Dočekalová V, Ondráček J, Zíková N (2016) Aerosol distribution in the planetary boundary layer aloft a residential area. IOP Conf Ser: Earth Environ Sci 44:052017

    Google Scholar 

  • Hůnová I (2020) Ambient air quality in the Czech Republic: past and present. Atmosphere 11(2):214. https://doi.org/10.3390/atmos11020214

    Article  CAS  Google Scholar 

  • Hůnová I, Bäumelt V (2018) Observation-based trends in ambient ozone in the Czech Republic over the past two decades. Atmos Environ 172:157–167

    Google Scholar 

  • Hůnová I, Bäumelt V, Modlík M (2020a) Long-term trends in nitrogen oxides at different types of monitoring stations in the Czech Republic. Sci Total Environ 699:134378

    Google Scholar 

  • Hůnová I, Brabec M, Malý M (2019a) What are the principal factors affecting ambient ozone concentrations in Czech mountain forests? Front for Glob Change. https://doi.org/10.3389/ffgc.2019.00031

    Article  Google Scholar 

  • Hůnová I, Brabec M, Malý M (2020) Trends in ambient O3 concentrations at twelve sites in the Czech Republic over the past three decades: close inspection of development. Sci Total Environ 746:141038. https://doi.org/10.1016/j.scitotenv.2020.141038

    Article  CAS  Google Scholar 

  • Hůnová I, Kurfürst P, Baláková L (2019b) Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. Sci Total Environ 656:567–575

    Google Scholar 

  • Hůnová I, Malý M, Řezáčová J, Braniš M (2013) Association between ambient ozone and health outcomes in Prague. Int Arch Occup Environ Health 86:89–97

    Google Scholar 

  • Hůnová I, Stoklasová P, Schovánková J, Kulasová A (2016) Spatial and temporal trends of ozone distribution in the Jizerské hory Mountains of the Czech Republic. Environ Sci Pollut Res 23:377–387. https://doi.org/10.1007/s11356-015-5258-0

    Article  CAS  Google Scholar 

  • Juráň S, Grace J, Urban O (2021) Temporal changes in ozone concentrations and their impact on vegetation. Atmosphere 12:82

    Google Scholar 

  • Juráň S, Šigut L, Holub P, Fares S, Klem K, Grace J, Urban O (2019) Ozone flux and ozone deposition in a mountain spruce forest are modulated by sky conditions. Sci Total Environ 672:296–304

    Google Scholar 

  • Kanda I, Wakamatsu S (2018) Small-scale variations in ozone concentration in low mountains. Atmos Environ 184:98–109

    CAS  Google Scholar 

  • Karlsson PE, Hansson M, Höglund H-O, Pleijel H (2006) Ozone concentration gradients and wind conditions in Norway spruce (Picea abies) forests in Sweden. Atmos Environ 40:1610–1618

    CAS  Google Scholar 

  • Karlsson PE, Klingberg J, Engardt M, Andersson C, Langner J, Pihl Karlsson G, Pleijel H (2017) Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci Total Environ 576:22–35

    CAS  Google Scholar 

  • Kim J-W, Baik J-J, Han B-S, Lee J, Jin H-G et al (2022) Tall-building effects on pedestrian-level flow and pollutant dispersion: large-eddy simulations. Atmos Pollut Res 13:101500

    CAS  Google Scholar 

  • Kley D, Geiss H, Mohnen VA (1994) Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmos Environ 28:149–158

    CAS  Google Scholar 

  • Kracht O, Santiago J-L,Martin F, Piersanti A, Cremona G et al (2017) Spatial representativeness of air quality monitoring sites. JRC Technical Report. Luxembourg, Publications Office of the European Union. https://doi.org/10.2760/60611

  • La Sorte FA, Aronson MFJ, Lepczyk CA, Horton KG (2022) Assessing the combined threats of artificial light at night and air pollution for the world’s nocturnally migrating birds. Glob Ecol Biogeogr 31:912–924. https://doi.org/10.1111/geb.13466

    Article  Google Scholar 

  • Lefohn AS, Malley CS, Simon H, Wells B, Xu X, Zhang L, Wang T (2017) Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmos Environ 152:123–145

    CAS  Google Scholar 

  • Lhotka R, Hůnová I, Váňa M, Komínková K, Holoubek I (2020) Vertikální distribuce přízemního ozonu ze stožárového měření v Košeticích/ Vertical distribution of ground-level ozone from the mast measurements in the Košetice observatory. Meteorologické Zprávy 73:12–18 (in Czech with English abstract)

    Google Scholar 

  • Li HZ, Gu P, Ye Q, Zimmermann N, Robinson ES et al (2019) Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors. Atmos Environ X 2:100012

    CAS  Google Scholar 

  • Li L, Lu C, Chan P-W, Zhang X, Yang H-L et al (2020) Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos Environ 220:117083

    CAS  Google Scholar 

  • Llacuna S, Gorriz A, Riera M et al (1996) Effects of air pollution on hematological parameters in passerine birds. Arch Environ Contam Toxicol 31:148–152

    CAS  Google Scholar 

  • Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42:7823–7843

    CAS  Google Scholar 

  • Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR et al (2018) Tropospheric ozone assessment Report 1: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa Sci Anth 6:47. https://doi.org/10.1525/elementa.302

    Article  Google Scholar 

  • Monks PS, Archibald AT, Colette A, Cooper O, Coyle M et al (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973

    CAS  Google Scholar 

  • Neemann EM, Crosman ET, Horel JD, Avey L (2015) Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmos Chem Phys 15:135–151

    CAS  Google Scholar 

  • Neu U, Kunzle T, Wanner H (1994) On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration — a case study. Boundary Layer Meteorol 69:221–247

    Google Scholar 

  • Newchurch MJ, Ayoub MA, Oltmans S, Johnson B, Schmidlin FJ (2003) Vertical distribution of ozone at four sites in the United States. J Geophys Res Atmos 108:4031

    Google Scholar 

  • Nuvolone D, Petri D, Voller F (2018) The effects of ozone on human health. Environ Sci Pollut Res 25:8074–8088

    CAS  Google Scholar 

  • Oikonomakis E, Aksoyoglu S, Ciarelli G, Baltensperger U, Prevot ASH (2018) Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe. Atmos Chem Phys 18:2175–2198

    CAS  Google Scholar 

  • Oltmans S, Schnell R, Johnson B, Pétron G, Mefford T, Neely III R (2014) Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah. Elementa 2: 000024. https://doi.org/10.12952/journal.elementa.000024

  • Otero N, Sillmann J, Schnell JL, Rust HW, Butler T (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett 11:024005

    Google Scholar 

  • Paoletti E, De Marco A, Beddows DCS, Harrison RM, Manning WJ (2014) Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ Pollut 192:295–299

    CAS  Google Scholar 

  • Piersanti A, Vitali L, Righini G, Cremona G, Ciancarella L (2015) Spatial representativeness of air quality monitoring stations: a grid model based approach. Atmos Pollut Res 6:953–960

    Google Scholar 

  • Pleim J, Ran L (2011) Surface flux modeling for air quality applications. Atmosphere 2:271–302

    CAS  Google Scholar 

  • Pusede SE, Steiner AL, Cohen RC (2015) Temperature and recent trends in the chemistry of continental surface ozone. Chem Rev 115:3898–3918

    CAS  Google Scholar 

  • Reif J, Gamero A, Flousek J, Hůnová I (2023) Ambient ozone – new threat to birds in mountain ecosystems? Sci Total Environ 876:162711

    CAS  Google Scholar 

  • Righini G, Cappalletti A, Giucci A, Cremona G, Piersanti A et al (2014) GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos Environ 97:121–129

    CAS  Google Scholar 

  • Rondon A, Johansson C, Granat L (1993) Dry deposition of nitrogen dioxide and ozone to coniferous forests. J Geophys Res 98:5159–5172

    CAS  Google Scholar 

  • Samad A, Vogt U, Panta A, Uprety D (2020) Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany. Atmos Poll Res 11:1441–1450

    CAS  Google Scholar 

  • Schnitzhofer R, Norman M, Wisthaler A, Vergeiner J, Harnisch F, Gohm A, Obleitner F, Fix A, Neininger B, Hansel A (2009) A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime. Atmos Chem Phys 9:3385–3396

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics. John Wiley, New York, USA

    Google Scholar 

  • Shi S, Zhu B, Tang G, Liu C, An J (2022) Observational evidence of aerosol radiation modifying photochemical ozone profiles in the lower troposphere. Geophys Res Lett 49:e2022GL099274. https://doi.org/10.1029/2022GL099274

    Article  CAS  Google Scholar 

  • Sicard P (2021) Ground-level ozone over time: an observation-based global overview. Opin Environ Sci Health 19:100226

    Google Scholar 

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845

    CAS  Google Scholar 

  • Silva SJ, Heald CL (2017) Investigating dry deposition of ozone to vegetation. JGR Atmos 123:559–573

    Google Scholar 

  • Simon H, Reff A, Wells B, Xing J, Frank N (2015) Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Science Technol 49:186–195

    CAS  Google Scholar 

  • Skelly JM, Fredericksen TS, Savage JE, Snyder KR (1996) Vertical gradients of ozone and carbon dioxide within a deciduous forest in Central Pennsylvania. Environ Pollut 94:235–240

    CAS  Google Scholar 

  • Snel S, de Leeuw F, Vila J (2004) Improvement of classifications European monitoring stations for AirBase: a quality control. ETC/ACC Technical Paper 2004/7

  • Váňa M, Dvorská A (2014) Košetice Observatory – 25 years, 1. edition, Czech Hydrometeorological Institute, Prague

  • Váňa M, Holubová Smejkalová A, Svobodová J, Machálek P (2020) Long-term trends of Air pollution at National Atmospheric Observatory Košetice (ACTRIS, EMEP, GAW). Atmosphere 11:537

    Google Scholar 

  • van Dop H, Guicherit R, Lanting RW (1977) Some measurements of the vertical distribution of ozone in the atmospheric boundary layer. Atmos Environ 11:65–71

    Google Scholar 

  • Wang Y, Fu X, Wang T, Ma J, Gao H et al (2023) Large contribution of nitrous acid to soil-emitted reactive oxidized nitrogen and its effect on air quality. Environ Sci Technol 57:3516–3526

    CAS  Google Scholar 

  • Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    CAS  Google Scholar 

  • Whalley LK, Stone D, Dunmore R, Hamilton J, Hopkins JR et al (2018) Understanding in situ ozone production in the summertime through radical observations and modelling studies during the clean air for London project (ClearfLo). Atmos Chem Phys 18:2547–2571

    CAS  Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman & Hall/CRC, New York

    Google Scholar 

  • Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc 111(516):1548–1575

    CAS  Google Scholar 

  • Wu D, Horn MA, Behrendt T et al (2019) Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME J 13:1688–1699

    CAS  Google Scholar 

  • Yang J, Shi B, Zheng Y, Shi Y, Xia G (2020) Urban form and air pollution disperse: key indexes and mitigation strategies. Sustain Cities Soc 57:101955

    Google Scholar 

  • Yang S, Yuesi W, Changchun Z (2009) Measurement of the vertical profile of atmospheric SO2 during the heating period in Beijing on days of high air pollution. Atmos Environ 43:468–472

    Google Scholar 

  • Zhang J, Rao T (1999) The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J Appl Met Clim 38:1674–1691

    Google Scholar 

  • Zhang T, Xu X, Su Y (2022) Long-term measurements of ground-level ozone in Windsor, Canada and surrounding areas. Chemosphere 294:133636

    CAS  Google Scholar 

  • Zhu X, Wu J, Tang G, Qiao L, Han T et al (2023) Influence of circulation types on temporal and spatial variations of ozone in Beijing. J Environ Sci 130:37–51

    Google Scholar 

Download references

Acknowledgements

We would like to thank Stanislav Juráň for valuable comments on O3 fluxes and Erin Naillon for proofreading. The O3 data were retrieved from the Information System of Air Quality (ISKO) run by the Czech Hydrometeorological Institute.

Funding

Ozone concentration measurements at the tall tower used for the analysis were financially supported by the project ACTRIS-CZ LM2018122 and ACTRIS-CZ RI (CZ.02.1.01/0.0/0.0/16_013/0001315). This study was partially supported from the long-term strategic development financing of the Institute of Computer Science (Czech Republic RVO 67985807) and by the Czech Hydrometeorological Institute research project ʽDlouhodobá koncepce rozvoje výzkumné organizace (DKRVO) Český hydrometeorologický ústav’ financed by the Czech Ministry of the Environment.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Data curation was performed by Marek Malý; the statistical modelling was performed by Marek Brabec. The first draft of the manuscript was written by Iva Hůnová, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Iva Hůnová.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hůnová, I., Brabec, M. & Malý, M. Ambient ozone at a rural Central European site and its vertical concentration gradient close to the ground. Environ Sci Pollut Res 30, 80014–80028 (2023). https://doi.org/10.1007/s11356-023-28016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28016-8

Keywords

Navigation