Skip to main content
Log in

Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) P.G. Waterman

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial resistance is facilitated by biofilm formation and quorum-sensing mediated processes. In this work, the stem bark (ZM) and fruit extracts (ZMFT) of Zanthoxylum gilletii were subjected to column chromatography and afforded lupeol (1), 2,3-epoxy-6,7-methylenedioxyconiferyl alcohol (3), nitidine chloride (4), nitidine (7), sucrose (6) and sitosterol-β-D-glucopyranoside (2). The compounds were characterized using MS and NMR spectral data. The samples were evaluated for antimicrobial, antibiofilm and anti-quorum sensing activities. Highest antimicrobial activity was exhibited by compounds 3, 4 and 7 against Staphylococcus aureus (MIC 200 µg/mL), compounds 3 and 4 against Escherichia coli (MIC = 100 µg/mL) and compounds 4 and 7 against Candida albicans (MIC = 50 µg/mL). At MIC and sub-MIC concentrations, all samples inhibited biofilm formation by pathogens and violacein production in C. violaceum CV12472 except compound 6. Good disruption of QS-sensing in C. violaceum revealed by inhibition zone diameters were exhibited by compounds 3 (11.5 ± 0.5 mm), 4 (12.5 ± 1.5 mm), 5 (15.0 ± 0.8 mm), 7 (12.0 ± 1.5 mm) as well as the crude extracts from stem barks (16.5 ± 1.2 mm) and seeds (13.0 ± 1.4 mm). The profound inhibition of quorum sensing mediated processes in test pathogens by compounds 3, 4, 5 and 7 suggests the methylenedioxy- group that these compounds possess as the possible pharmacophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Tankeo, S. B., Damen, F., Awouafack, M. D., Mpetga, J., Tane, P., Eloff, J. N., & Kuete, V. (2015). Antibacterial activities of the methanolic extracts, fractions and compounds from Fagara tesmannii Journal of Ethnopharmacology, 169, 275–279.

    Article  CAS  PubMed  Google Scholar 

  2. Rice, L. B. (2006). Unmet medicinal needs in antibacterial therapy. Biochemical Pharmacology, 71, 991–995.

    Article  CAS  PubMed  Google Scholar 

  3. Tamfu, A. N., Boukhedena, W., Boudiba, S., Deghboudj, S., & Ceylan, O. (2022). Synthesis and evaluation of inhibitory potentials of microbial biofilms and quorum-sensing by 3-(1, 3-dithian-2-ylidene) pentane-2, 4-dione and ethyl-2-cyano-2-(1, 3-dithian-2-ylidene) acetate. Pharmacia, 69(4), 973–980.

    Article  CAS  Google Scholar 

  4. Arab, Y., Sahin, B., Ceylan, O., Zellagui, A., Olmez, O. T., Kucukaydin, S., Tamfu, A. N., Ozturk, M., & Gherraf, N. (2022). Assessment of in vitro activities and chemical profiling of Senecio hoggariensis growing in Algerian Sahara. Biodiversitas, 23, 3498–3506.

    Article  Google Scholar 

  5. Tamfu, A. N., Kucukaydin, S., Quradha, M. M., Ceylan, O., Ugur, A., & Duru, M. E. (2022). Ultrasound-assisted extraction of Syringa vulgaris Mill., Citrus sinensis L. and Hypericum perforatum L.: phenolic composition, enzyme inhibition and anti-quorum sensing activities. Chemistry Africa, 5(2), 237–249.

  6. Jin-Hyung, L., Yong-Guy, K., Khadke, S. K., Yamano, A., Je-Tae, W., & Jintae, L. (2019). Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius Phytomedicine, 63, 153033.

    Article  Google Scholar 

  7. Huang, J. H., Shi, Y. H., Zeng, G. M., Gu, Y. L., Chen, G. Q., & Shi, L. X. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere, 157, 137–151.

    Article  CAS  PubMed  Google Scholar 

  8. Galloway, W. R., Hodgkinson, J. T., Bowden, S. D., Welch, M., & Spring, D. R. (2011). Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chemical Reviews, 111, 28–67.

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez, J. E., & Keshavan, N. D. (2006). Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews, 70(4), 859–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vasha, S., & Zarine, B. (2016). Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica, 5823013.

  11. Asafour, H. Z. (2018). Anti-quorum sensing natural compounds. Journal of Microscopyic and Ultrastructures, 6(1), 1–10.

    Article  Google Scholar 

  12. Ahmad, I., Mehmood, Z., & Mohammad, F. (1998). Screening of some indian medicinal plants for their antimicrobial properties. Journal of Ethnopharmacology, 62, 183–193.

    Article  CAS  PubMed  Google Scholar 

  13. Tamfu, A. N., Ceylan, O., Fru, G. C., Ozturk, M., Duru, M. E., & Shaheen, F. (2020). Antibiofilm, anti-quorum sensing and antioxidant activity of secondary metabolites from the seeds of Annona senegalensis, Persoon. Microbial Pathogenesis, 144, 104191.

    Article  CAS  PubMed  Google Scholar 

  14. Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. Journal of Microbiology and Experimentation, 1(3), 1–16.

    Article  Google Scholar 

  15. Kumar, L., Chibber, S., & Hazare, K. (2013). Zingeron inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PA01. Fitoterapia, 90, 73–78.

    Article  CAS  PubMed  Google Scholar 

  16. Dusane, D. H., Damare, S. R., Nancharaiah, Y. V., Ramaiah, N., Venugopalan, V. P., Kumar, A. R., & Zinjarde, S. S. (2013). Distruption of microbial biofilms by an extra-cellular protein isolated from epibiotic marine strain of Bacillus licheniformis PLoS One1, 8, 6450.

    Google Scholar 

  17. Koehn, F. E., & Carter, G. T. (2005). Rediscovering natural product as a source of new drugs. Discovery Medicine, 5(26), 159–164.

    PubMed  Google Scholar 

  18. Sampathkumar, S. J., Srivastava, P., Ramachandran, S., Sivashanmugam, K., & Muthukaliannah, G. K. (2019). Lutein: a potential antibiofilm and antiquorum sensing molecule from green microlagia. Chlorella Pyrenoidosa Microbial Pathogenesis, 135, 103658.

    Article  CAS  PubMed  Google Scholar 

  19. Tamfu, A. N., Munvera, A. M., Botezatu, A. V. D., Talla, E., Ceylan, O., Fotsing, M. T., Mbafor, J. T., Shaheen, F., & Dinica, R. M. (2022). Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chemistry, 4, 100322.

    Article  Google Scholar 

  20. Adesina, S. K. (2005). The nigerian Zanthoxylum; chemical and biological values. African Journal of Complementary and Alternative Medicine, 2(3), 282–301.

    CAS  Google Scholar 

  21. Negi, J. S., Bisht, V., Bhandari, A. K., Sing, P., & Sundriyal, R. C. (2011). Chemical constituents and biological activities of the genus Zanthoxylum. A review. African Journal of Pure and Applied Chemistry, 5(12), 412–416.

    CAS  Google Scholar 

  22. Letouzey, R. Flora of Cameroon I., & Rutaceae (1963). Zygophyllaceae, Balanitaceae (p. 174). Musee Nationale.

  23. Fish, F., & Waterman, P. G. (1973). Chemosystematics in the Rutaceae II. The Chemosystematics of the Zanthoxylum fagara complex. Taxonomy, 22(2/3), 177–203.

    Article  CAS  Google Scholar 

  24. Agyare, C., Mensah, A., & Osei-Asante, S. (2006). Antimicrobial activity and phytochemical studies of some medicinal plants from Ghana. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 5(6), 113–117.

    Google Scholar 

  25. Gaya, C. H., Kawaka, J. F., Muchugi, A., & Ngeranwa, J. J. (2013). Variation of alkaloids in the kenyan Zanthoxylum gilletii (De Wild Waterman). African Journal of Plant Science, 7(9), 438–444.

    Article  Google Scholar 

  26. Orsotet, B. A. M. B., Soro, S., Kone, D., & Zirihi, G. N. (2016). Étude ethnobotanique et évaluation in vitro de l’activité antifongique des extraits de l’écorce de Zanthoxylum gilletii (de Wild Waterman) sur deux souches phytopathogenes de sclerotium rolfsii Journal of Applied Bioscience, 98, 9309–9322.

    Article  Google Scholar 

  27. Wanga, L. A., Wagara, I. N., Ramadhan, M., & Matasyoh, J. C. (2018). Antimicrobial activity of metabolites extracted from Zanthoxylum gilletii, Markhamia lutea and their endophytic fungi against common bean bacterial pathogens. African Journal of Biotechnology, 17(26), 870–879.

    CAS  Google Scholar 

  28. Sinan, K. I., Zengin, G., Bene, K., & Mahomoodally, M. F. (2019). Chemistry and pharmacology of three antiplasmodial traditional medicinal plants from tropical Africa – A review. South African Journal of Botany, 126, 265–276.

    Article  CAS  Google Scholar 

  29. Omosa, L. K., & Okemza, E. K. (2017). Antiplasmodial activities of the stem bark extract and compounds of Zanthoxylum gilletii (de wild) PG Waterman. Pharmacognosy Communications, 7(1), 41–46.

    Article  CAS  Google Scholar 

  30. Claudio, R. N., & Lopes, L. M. X. (2011). Antiplasmodial natural products (review). Molecules, 16, 2146–2190.

    Article  Google Scholar 

  31. Tamfu, A. N., Sawalda, M., Fotsing, M. T., Kouipou, R. M. T., Talla, E., Chi, G. F., Epanda, J. J. E., Mbafor, J. T., Baig, T. A., Jabeen, A., & Shaheen, F. (2020). A new isoflavonol and other constituents from cameroonian propolis and evaluation of their anti-inflammatory, antifungal and antioxidant potential. Saudi Journal of Biological Sciences, 27(6), 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  32. Anza, M., Haile, E., Tadesse, S., Mammo, F., & Endale, M. (2014). A corniferyl alcohol derivative from the roots of Zanthoxylum chalybeum Journal of Coastal Life Medicine, 2(12), 970–974.

    CAS  Google Scholar 

  33. Nna, P. J., Tor-Anyiin, T. A., & Igoli, J. O. Fagaramide and Pellitorine from the stem bark of Zanthoxylum zanthoxyloides and their antimicrobial activities. SARJNP, 2(3), 1–8.

  34. Ngenge, T. A., Jabeen, A., Maurice, T. F., Baig, T. A., & Shaheen, F. (2019). Organic and mineral composition of seeds of Afrostyrax lepidophyllus Mildbr. And evaluation of ROS inhibition and cytotoxicity of isolated compounds. Chemistry Africa, 2(4), 615–624.

    Article  CAS  Google Scholar 

  35. Marek, R., Toušek, J., Dostál, J., Slavík, J., Dommisse, R., & Sklenář, V. (1999). H and. Magnetic Resonance in Chemistry, 37(11), 781–787.

    Article  CAS  Google Scholar 

  36. Rashid, M. A., Kashuanlb, G. K. R., Cardellina, Y., Mcmahon, J. H., & Boyd, M. R. (1995). Anti-hiv alkaloids from. Natural Products Letters, 6, 153–156.

    Article  CAS  Google Scholar 

  37. Peshin, T., & Kar, H. K. (2017). Isolation and characterization of β-Sitosterol-3-O-β-D-glucoside from the extract of the flowers of. British Journal of Pharmaceutical Research, 16(4), 1–8.

    Article  Google Scholar 

  38. Mofiz, N. M., & Sagar Hossan, M. D. (2015). Scopoletin and β-sitosterol glucoside from roots of Ipomoea digitate Journal of Pharmacognosy and Phytochemistry, 4(2), 05–07.

    Google Scholar 

  39. Tamfu, A. N., Ceylan, O., Kucukaydin, S., Ozturk, M., Duru, M. E., & Dinica, R. M. (2020). Antibiofilm and enzyme inhibitory potentials of two annonaceous food spices, african pepper (Xylopia aethiopica) and african nutmeg (Monodora myristica). Foods, 9(12), 1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Merritt, J. H., Kadouri, D. E., & O’Toole, G. A. (2005). Growing and analysing static biofilms. Current Protocols in Microbiology. https://doi.org/10.1002/9780471729259.mc01b01s00

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ceylan, O., Tamfu, A. N., Dogaç, Y. I., & Teke, M. (2020). Antibiofilm and antiquorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles. 3 Biotech, 10, 315.

  42. Alfred Ngenge, T., Kucukaydin, S., Ceylan, O., & Duru, M. E. (2021). Evaluation of enzyme inhibition and anti-quorum sensing potentials of Melaleuca alternifolia and Citrus sinensis essential oils. Natural Product Communications, 16(9), 1–8.

    Article  Google Scholar 

  43. Koh, K. M., & Tham, F. Y. (2011). Screening of traditional chinese medicinal plants for quorum-sensing inhibitors activity. Journal of Microbiology Immunology and Infection, 44, 144–148.

    Article  Google Scholar 

  44. Tamfu, A. N., Ceylan, O., Kucukaydin, S., & Duru, M. E. (2020). HPLC-DAD phenolic profiles, antibiofilm, anti-quorum sensing and enzyme inhibitory potentials of Camellia sinensis (L.) O. Kuntze and Curcuma longa L. LWT-Food Science Technology, 133, 110150.

    Article  CAS  Google Scholar 

  45. Mbaze, L. M., Lado, J. A., Wansi, J. D., Shiao, T. C., Chiozem, D. D., Mesaik, M. A., Choudhary, M. I., Lacaile-Dubois, M. A., Wandji, J., Roy, R., & Sewald, N. (2009). Oxidative burst inhibitory and cytotoxicity amides and lignans from the stem bark of Fagara heitzii. Phytochemistry, 70(11–12), 1442–1447.

  46. Youssef, S. B., Fakhfakh, J., Tchoumchoua, J., Halabalaki, M., & Allouche, N. (2016). Efficient purification and complete NMR characterization of galactinol, sucrose, raffinose and stachyose isolated from Pinus halepensis (Aleppo pine) seeds using acetylation procedure. Journal of Carbohydrate Chemistry, 35(4), 224–237.

    Article  Google Scholar 

  47. Seukep, J. A., Ngadjui, B., & Kuete, V. (2015). Antibacterial activities of Fagara macrophylla, Canarium schweinfurthii, Myrianthus arboreus, Dischistocalyx grandifolius and Tragia benthamii against multi-drug resistant gram-negative bacteria. Springerplus, 4, 567.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms a common cause of persistent infection. Science, 284, 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  49. Popova, M., Gerginova, D., Trusheva, B., Simova, S., Tamfu, A. N., Ceylan, O., Clark, K., & Bankova, V. (2021). A preliminary study of chemical profiles of honey, cerumen, and propolis of the african stingless bee Meliponula ferruginea Foods, 10(5), 997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kocak, G., Tamfu, A. N., Bütün, V., & Ceylan, O. (2021). Synthesis of quaternary piperazine methacrylate homopolymers and their antibiofilm and anti-quorum sensing effects on pathogenic bacteria. Journal of Applied Polymer Science, 138(21), 50466.

    Article  CAS  Google Scholar 

  51. Tamfu, A. N., Kucukaydin, S., Ceylan, O., Sarac, N., & Duru, E. M. (2021). Phenolic composition, enzyme inhibitory and anti-quorum sensing activities of cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum Linn). Chemistry Africa, 4(4), 759–767.

    Article  CAS  Google Scholar 

  52. Adonizio, A. L., Downum, K., & Bennett, B. C. (2006). Anti-quorum sensing activity of medicinal plants in Southern Florida. Journal of Ethnopharmacology, 105(3), 427–435.

    Article  PubMed  Google Scholar 

  53. Tamfu, A. N., Ceylan, O., Cârâc, G., Talla, E., & Dinica, R. M. (2022). Antibiofilm and anti-quorum sensing potential of cycloartane-type triterpene acids from cameroonian grassland propolis: phenolic profile and antioxidant activity of crude extract. Molecules, 27(15), 4872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suryanarayana, H. V., Arun, A. B., & Rekha, P. D. (2013). Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioica L. Asian Pacific Journal of Tropical Biomedicine, 3(12), 954–959.

    Article  Google Scholar 

  55. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., & Camara, M. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143, 3703–3711.

    Article  CAS  PubMed  Google Scholar 

  56. Halkare, S. V., Ananthapadmanabha, B. A., & Punchapady-Devasya, R. (2014). Anti-quorum sensing activity of Psidium guajava L. flavonoids against chromobacterium violaceum and pseudomonas aeruginosa PA01. Microbiology and Immunology, 58, 286–293.

    Article  Google Scholar 

  57. Ngenge, A., Ceylan, O., Fru, G., Arab, Y., Emin, D., & Ozturk, M. (2021). Antimicrobial, antibiofilm, anti-quorum sensing and motility inhibition activities of essential oil from seeds of food spice Xylopia aethiopica (Dunal) A. Rich. On some pathogenic bacteria. Research Journal of Biotechnology, 16, 68–76.

    Google Scholar 

  58. Alfred, T. N., Ceylan, O., Kucukaydin, S., Olmez, O. T., Godloves, C. F., Sylvain, S. K., Yeskaliyeva, B., Duru, M. E., & Ozturk, M. (2020). HPLC-DAD and GC-MS characterization of cameroonian honey samples and evaluation of their antibiofilm, anti-quorum sensing and antioxidant activities. Bulletin of Environment Pharmacology and Life Sciences, 9(10), 132–142.

    Google Scholar 

  59. Boudiba, S., Tamfu, A. N., Berka, B., Hanini, K., Hioun, S., Allaf, K., Boudiba, L., & Ceylan, O. (2021). Anti-quorum sensing and antioxidant activity of essential oils extracted from Juniperus species, growing spontaneously in Tebessa Region (East of Algeria). Natural Products Communication, 16(6), 1–11.

    Google Scholar 

  60. Beddiar, H., Boudiba, S., Benahmed, M., Tamfu, A. N., Ceylan, Ö., Hanini, K., Kucukaydin, S., Elomri, A., Bensouici, C., Laouer, H., Akkal, S., Boudiba, L., & Dinica, R. M. (2021). Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze. Plants, 10(9), 1955.

Download references

Acknowledgements

The authors are thankful to the pharmacognosy team of the University of Liège for undertaking the structural analysis of the compounds. The authors are also grateful to the Mugla Sitki Koçman University in Turkey for the biological part of this work.

Funding

This work was supported by the Institute of Medical Research and Medicinal Plants Studies (IMPM) Yaounde, Cameroon.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study methodology, writing review, and editing. Investigation, formal analysis were performed by Hermia Nalova Ikome, Alfred Ngenge Tamfu, Jean Pierre Abdou, Hugues Fouotsa, Pamela Kemda Nangmo and Fidèle Castro Weyepe Lah. Conceptualisation, methodology, visualisation, funding acquisition, project administration, analysis, supervision, resources and validation Alembert Tiabou Tchinda, Ozgur Ceylan, Michel Frederich and Augustin Ephrem Nkengfack. The first draft of the manuscript was written by Hermia Nalova Ikome and Alfred Ngenge Tamfu. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alfred Ngenge Tamfu or Alembert Tiabou Tchinda.

Ethics declarations

Ethics Approval

No ethical approval is required for this study.

Consent to Participate

This study did not require approval in this section.

Consent to Publish

This study did not require approval in this section. 

Author’s Agreement to Authorship and Submission

All authors have agreed to authorship and the submission of this manuscript for peer review and publication in Applied Biochemistry and Biotechnology.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikome, H.N., Tamfu, A.N., Abdou, J.P. et al. Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) P.G. Waterman. Appl Biochem Biotechnol 195, 6113–6131 (2023). https://doi.org/10.1007/s12010-023-04380-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04380-6

Keywords

Navigation