Skip to main content

Advertisement

Log in

From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Abbreviations

5hmc:

5-Hydroxymethylcytosine

AFF1:

ALF Transcription Elongation Factor 1

ALKs:

Activin-like kinases

AMH:

Anti-mullerian hormone

ART:

Assisted reproduction techniques

BLIMP1:

Lymphocyte-induced maturation protein-1

BMP15:

Bone morphogenetic protein 15

BMP6:

Bone morphogenetic protein 6

BMPs:

Bone morphogenetic proteins

BOULE:

Boule Homolog, RNA Binding Protein

cAMP:

Cyclic-adenosine-monophosphate

CCs:

Cumulus cells

CDK1:

Cyclin Dependent Kinase 1

cGMP:

Cyclic guanosine monophosphate

CNP:

C-type natriuretic peptide

Co-Smads:

Commun Smads

CSDE1:

Cold Shock Domain Containing E1

CYP26B1:

Cytochrome P450 26B1

DAX1:

Dosage-Sensitive Sex-Reversal-AHC Critical Region on the X Chromosome

DAZL:

Deleted In Azoospermia Like

DDX4:

XXX

DNA:

Deoxyribonucleic acid

DND:

MicroRNA-Mediated Repression Inhibitor 1

DNMT3A:

DNA Methyltransferase 3 Alpha

DNMT3B:

DNA Methyltransferase 3 Beta

DPPA3:

DEAD-Box Helicase 4

DPPA3:

Developmental Pluripotency Associated 3

EB:

Embryoid body

EGF:

Epidermal growth factor

EOMES:

Eomesodermin

ESCs / hESCs:

Embryonic stem cells / human embryonic stem cells

ETV5:

ETS Variant Transcription Factor 5

FGF2:

Fibroblast Growth Factor 2

FGF8:

Fibroblast Growth Factor 8

FGF9:

Fibroblast Growth Factor 9

FGFCs:

Female germline stem cells

FGG:

Fibrinogen Gamma Chain

FIGLA:

Folliculogenesis-Specific Basic Helix-Loop-Helix Protein.

FLS:

Follicle-like structures

FOXD1:

Forkhead Box D1

FOXL2:

Forkhead box L2

FOXO6:

Forkhead Box O6

FSH:

Follicle-stimulating hormone

GATA3:

GATA binding protein 3

GATA4:

GATA binding protein 4

GCLCs:

Granulosa cells like-cells

GCs:

Granulosa cells

GDF9:

Growth Differentiation Factor 9

GH:

Growth hormone

GREM1:

Gremlin 1, DAN Family BMP Antagonist

GSK3:

Glycogen Synthase Kinase 3

GTF2I:

General Transcription Factor IIi

GV:

Germinal vesicle

GVBD:

Germinal vesicle breaking down

H1FOO:

H1 Histone Family, Member O, Oocyte-Specific

H3K27me 3:

Histone H3 lysine 27 tri-methylation

H3K9me2:

H3 lysine 9 di-methylation

HAS2:

Hyaluronan Synthase 2

HBP1:

HMG-Box Transcription Factor 1

hCG:

Human chorionic gonadotropin

HES6:

Hes Family BHLH Transcription Factor 6

HIF1A:

Hypoxia Inducible Factor 1 Subunit Alpha

HMBG3:

High Mobility Group Box 3

hOLCs:

Human oocyte-like cells

HOXA5:

Homeobox A5

HOXB6:

Homeobox B6

ID3:

Inhibitor of DNA binding 3

IGFBP5:

Insulin-like growth factor binding protein 5

iMeLCs:

Incipient mesoderm-like cells

iPSCs / hiPSCs:

Induced pluripotent stem cells / human induced pluripotent stem cells

ITGB3:

Integrin subunit beta 3

JARID2:

Jumonji and AT-rich interaction domain containing 2

JNK:

C-Jun N-terminal kinase

KIT:

KIT Proto-Oncogene, Receptor Tyrosine Kinase

KITL:

KIT ligand

KLF2:

KLF transcription factor 2

LH:

Luteinizing hormone

LIF:

Leukemia Inhibitory Factor

MAEL:

Maelstrom spermatogenic transposon silencer

MAPK:

Mitogen-activated protein kinase

mGCs:

Mural granulosa cells

MVH:

Mouse vasa homolog

miRNAs:

Micro RNAs

MPF:

Maturation promoting factor

mRNAs:

Messenger RNAs

NANOS:

Nanos C2HC-Type Zinc Finger

NANOS3:

Nanos C2HC-Type Zinc Finger 3

NFKB2:

Nuclear factor kappa b subunit 2

NOBOX:

Homeobox protein NOBOX

NPPC:

Natriuretic peptide C

NPR2:

Natriuretic peptide receptor 2

NR3C2:

Nuclear receptor subfamily 3 group C member 2

NR5A1:

Nuclear receptor subfamily 5 group A member 1

OTX2:

Orthodenticle Homeobox 2

PBX1:

PBX Homeobox 1

PGCLCs/ hPGCLCs:

Primordial germ cells like-cells / human primordial germ cells like-cells

PGCs:

Primordial germ cells

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

PINX1:

PIN2 (TERF1) interacting telomerase inhibitor 1

PIWIL2:

Piwi-like RNA-mediated gene silencing 2

PKA:

Protein kinase A

PNCK:

Pregnancy up-regulated nonubiquitous CaM kinase

PROK2:

Prokineticin 2

PTEN:

Phosphatase and tensin homolog

PTGS2:

Prostaglandin-endoperoxide synthase 2

PTX3:

Pentraxin 3

RAD51AP2:

RAD51 associated protein 2

RARB:

Retinoic acid receptor beta

REC8:

REC8 Meiotic recombination protein

RNA:

Ribonucleic acid

RUNX1:

Runt-related transcription factor 1

RUNX2:

Runt-related transcription factor 2

RYR2:

Ryanodine receptor 2

SCF:

Stem cell factor

SCP3:

Synaptonemal Complex Protein 3

Smads-R:

Response Smads

SMARCE1:

SWI/SNF related, matrix associated, actin-dependent regulator of Chromatin, Subfamily E, member 1

SOHLH2:

Spermatogenesis and oogenesis specific basic helix-loop-helix 2

SOX13:

SRY-box transcription factor 13

SOX17:

SRY-box transcription factor 17

SOX30:

SRY-box transcription factor 30

SPO11:

SRY-box transcription factor 11

SRY:

Sex-determining region Y

StAR:

Steroidogenic acute regulatory protein

STAT1:

Signal transducer and activator of transcription 1

STELLA:

Stella-related protein

STRA8:

Stimulated by retinoic acid 8

TBX3:

T-Box transcription factor 3

TCs:

Theca cells

TDRD6:

Tudor domain containing 6

TEAD2:

TEA domain transcription factor 2

TERT:

Telomerase reverse transcriptase

TEX12:

Testis expressed 12

TEX14:

Testis expressed 14

TFAP2C:

Transcription Factor AP-2 Gamma

TGFα:

Transforming growth factor alpha

TGFβ:

Transforming growth factor beta

TSPAN8:

Tetraspanin 8

TUB:

TUB Bipartite transcription factor

TZPs:

Transzonal projections

UHRF1:

Ubiquitin like with PHD and ring finger domains 1

UTF1:

Undifferentiated embryonic cell transcription factor 1

WNT3A:

Protein Wnt-3a

WNT4:

Wnt family member 4

WT1:

Wilms Tumor 1

YBX2:

Y-Box Binding Protein 2

ZBTB11:

Zinc finger and btb domain containing 11

ZGLP1:

Zinc finger GATA like protein 1

ZIC1:

Zic Family member 1

ZNF362:

Zinc finger protein 362

ZNF98:

Zinc finger protein 98

ZP2:

Zona pellucida glycoprotein 2

ZP3:

Zona pellucida glycoprotein 3

References

  1. Borumandnia N, Majd, HA, Khadembashi N, Alaii H. Worldwide trend analysis of primary and secondary infertility rates over past decades: a cross-sectional study. Int J Reprod Biomed. 2022; https://doi.org/10.18502/ijrm.v20i1.10407

  2. Wang J, Sauer MV. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag. 2006. https://doi.org/10.2147/tcrm.2006.2.4.355.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang PY, Fan Y, Tan T, Yu Y. Generation of artificial gamete and embryo from stem cells in reproductive medicine. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00781.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Makar K, Sasaki K. Roadmap of germline development and in vitro gametogenesis from pluripotent stem cells. Andrology. 2020. https://doi.org/10.1111/andr.12726.

    Article  PubMed  Google Scholar 

  5. Nagaoka SI, Saitou M, Kurimoto K. Reconstituting oogenesis in vitro: recent progress and future prospects. Curr Opin Endocr Metab Res. 2021. https://doi.org/10.1016/j.coemr.2021.03.022.

    Article  Google Scholar 

  6. Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science. 2018. https://doi.org/10.1126/science.aat1674.

    Article  PubMed  Google Scholar 

  7. Yokobayashi S, Okita K, Nakagawa M, Nakamura T, Yabuta Y, Yamamoto T, Saitou, M. Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. Biol Reprod. 2017; https://doi.org/10.1093/biolre/iox038

  8. Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, et al. Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA. 2016. https://doi.org/10.1073/pnas.1603817113.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell. 2015. https://doi.org/10.1016/j.stem.2015.06.014.

    Article  PubMed  Google Scholar 

  10. Procópio MS, Lacerda SMS, Costa GMJ, França LR. Development of Artificial gametes. In: Parekattil S, Esteves S, Agarwal A, editors. Male Infertility. Springer: Cham; 2020. p. 747–66.

    Chapter  Google Scholar 

  11. Wang X, Liao T, Wan C, Yang X, Zhao J, Fu R, et al. Efficient generation of human primordial germ cell-like cells from pluripotent stem cells in a methylcellulose-based 3D system at large scale. PeerJ. 2019. https://doi.org/10.7717/peerj.6143.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah SM, Saini N, Ashraf S, Singh MK, Manik RS, Singla SK et al. Cumulus cell-conditioned medium supports embryonic stem cell differentiation to germ cell-like cells. Reprod Fertil Dev. 2017; https://doi.org/10.1071/RD15159

  13. Dompe C, Kulus M, Stefańska K, Kranc W, Chermuła B, Bryl R, et al. Human granulosa cells—stemness properties, molecular cross-talk and follicular angiogenesis. Cell. 2021. https://doi.org/10.3390/cells10061396.

    Article  Google Scholar 

  14. Cox E, Takov V. Embryology, Ovarian Follicle Development. In StatPearls. StatPearls Publishing. 2021. https://www.ncbi.nlm.nih.gov/books/NBK532300/. Accessed 15 jul 2022.

  15. Wen L, Tang F. Human germline cell development: from the perspective of single-cell sequencing. Mol Cell. 2019. https://doi.org/10.1016/j.molcel.2019.08.025.

    Article  PubMed  Google Scholar 

  16. Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis. J Soc Gynecol Investig. 2001. https://doi.org/10.1016/s1071-5576(00)00099-x.

    Article  PubMed  Google Scholar 

  17. Alam MH, Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod Med Biol. 2020. https://doi.org/10.1002/rmb2.12292.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eppig JJ. Reproduction: oocytes call, granulosa cells connect. Curr Biol. 2018. https://doi.org/10.1016/j.cub.2018.03.005.

    Article  PubMed  Google Scholar 

  19. Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y, et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol cell. 2018. https://doi.org/10.1016/j.molcel.2018.10.029.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021. https://doi.org/10.1093/humupd/dmaa043.

    Article  PubMed  Google Scholar 

  21. Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 2019; https://doi.org/10.1016/j.celrep.2019.11.083

  22. Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther. 2022. https://doi.org/10.1038/s41392-022-01197-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Felici M. Origin, migration and proliferation of human primordial germ cells. In: Coticchio G, Albertini DF, De Santis L, editors. Oogenesis. London: Springer-Verlag; 2013. p. 19–37.

    Chapter  Google Scholar 

  24. Lesch BJ, Page DC. Genetics of germ cell development.Nat Rev Genet. 2012; https://doi.org/10.1038/nrg3294

  25. Collado-Fernandez E, Picton HM, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. Int J Dev Biol. 2012. https://doi.org/10.1387/ijdb.120140ec.

    Article  PubMed  Google Scholar 

  26. Kanamori M, Oikawa K, Tanemura K, Hara K. Mammalian germ cell migration during development, growth, and homeostasis. Reprod Med Biol. 2019. https://doi.org/10.1002/rmb2.12283.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hancock GV, Wamaitha SE, Peretz L, Clark AT. Mammalian primordial germ cell specification. Development. 2021. https://doi.org/10.1242/dev.189217.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998. https://doi.org/10.1073/pnas.95.23.13726.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nicholls P, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci USA. 2019. https://doi.org/10.1073/pnas.1910733116.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mikedis M, Downs K. STELLA-positive subregions of the primitive streak contribute to posterior tissues of the mouse gastrula. Dev Biol. 2012. https://doi.org/10.1016/j.ydbio.2011.10.003.

    Article  PubMed  Google Scholar 

  31. Mikedis M, Downs K. PRDM1/BLIMP1 is widely distributed to the nascent fetal-placental interface in the mouse gastrula. Dev Dyn. 2017. https://doi.org/10.1002/dvdy.24461.

    Article  PubMed  Google Scholar 

  32. Sánchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Mol Basis Dis. 2012. https://doi.org/10.1016/j.bbadis.2012.05.013.

    Article  Google Scholar 

  33. Kubicek P, Fenouil T, Jacquemus J, Chapuis O, Fléchon A, Dumesnil C, et al. Could aberrant migration explain metachronous germ cell tumors? Cancer Invest. 2021. https://doi.org/10.1080/07357907.2020.1828447.

    Article  PubMed  Google Scholar 

  34. Hoffman BL, Schorge JO, Bradshaw KD, Halvorson LM, Schaffer JI, Corton MM. Williams Gynecology. 3rd ed. 2016. ISBN: 978–0–07–184908–1

  35. Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C, et al. Single-cell roadmap of human gonadal development. Nature. 2022. https://doi.org/10.1038/s41586-022-04918-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riis ML, Jørgensen A. Deciphering sex-specific differentiation of human fetal gonads: insight from experimental models. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.902082.

    Article  Google Scholar 

  37. Fang L, Yu Y, Li Y, Wang S, Zhang R, Guo Y, et al. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.902082.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Overeem AW, Chang YW, Spruit J, Roelse CM, Lopes CSLSM. Ligand–receptor interactions elucidate sex-specific pathways in the trajectory from primordial germ cells to gonia during human development. Front Cell Dev Biol. 2022; https://doi.org/10.3389/fcell.2021.661243

  39. Gershon E, Dekel N. Newly identified regulators of ovarian folliculogenesis and ovulation. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21124565.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, et al. Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell. 2017. https://doi.org/10.1016/j.stem.2017.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frydman N, Poulain M, Arkoun B, Duquenne C, Tourpin S, Messiaen S, et al. Human foetal ovary shares meiotic preventing factors with the developing testis. Hum Reprod. 2017. https://doi.org/10.1093/humrep/dew343.

    Article  PubMed  Google Scholar 

  42. Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019. https://doi.org/10.1093/humrep/dez191.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jørgensen A, Rajpert-De ME. Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling. Biomol Concepts. 2014. https://doi.org/10.1515/bmc-2014-0014.

    Article  PubMed  Google Scholar 

  44. Liu L, Kong N, Xia G, Zhang M. Molecular control of oocyte meiotic arrest and resumption. Reprod Fertil Dev. 2013. https://doi.org/10.1071/RD12310.

    Article  PubMed  Google Scholar 

  45. Haston KM, Reijo-Pera RA. Germ line determinants and oogenesis. In: Moody SA, editor. Principles of developmental genetics. New York: Academic Press; 2007. p. 150–72.

    Google Scholar 

  46. Granot I, Dekel N. The ovarian gap junction protein connexin43: regulation by gonadotropins. Trends Endocrinol Metab. 2002. https://doi.org/10.1016/s1043-2760(02)00623-9.

    Article  PubMed  Google Scholar 

  47. Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet. 2018. https://doi.org/10.1007/s10815-018-1180-y.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000. https://doi.org/10.1210/edrv.21.2.0394.

    Article  PubMed  Google Scholar 

  49. Novella-Maestre E, Herraiz S, Rodríguez-Iglesias B, Díaz-García C, Pellicer A. Short-term PTEN inhibition improves in vitro activation of primordial follicles, preserves follicular viability, and restores AMH levels in cryopreserved ovarian tissue from cancer patients. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0127786.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020. https://doi.org/10.3390/cells9010200.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pan B, Li J. The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol. 2019. https://doi.org/10.1186/s12958-018-0445-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baird DT, Mitchell A. Hormonal control of folliculogenesis: the key to successful reproduction. Ernst Schering Res Found Workshop. 2002. https://doi.org/10.1007/978-3-662-04960-0_1.

    Article  PubMed  Google Scholar 

  53. Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012. https://doi.org/10.1387/ijdb.120133cc.

    Article  PubMed  Google Scholar 

  54. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003. https://doi.org/10.1093/humupd/dmg009.

    Article  PubMed  Google Scholar 

  55. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015. https://doi.org/10.1016/j.fertnstert.2014.11.015.

    Article  PubMed  Google Scholar 

  56. Downs SM. The Biochemistry of Oocyte Maturation. Berlin: Springer-Verlag; 2002. p. 81–99.

    Google Scholar 

  57. Atwood CS, Meethal SV. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol. 2016. https://doi.org/10.1016/j.mce.2016.03.039.

    Article  PubMed  Google Scholar 

  58. Robertson DM, Lee CH, Baerwald A. Interactions between serum FSH, inhibin B and antral follicle count in the decline of serum AMH during the menstrual cycle in late reproductive age. Endocrinol Diabetes Metab. 2020. https://doi.org/10.1002/edm2.172.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007. https://doi.org/10.1016/j.theriogenology.2006.09.027.

    Article  PubMed  Google Scholar 

  60. Grøndahl C. Oocyte maturation. Basic and clinical aspects of in vitro maturation (IVM) with special emphasis of the role of FF-MAS. Dan Med Bull. 2008; 55(1):1–16.

  61. Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013. https://doi.org/10.1038/nrm3531.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sparks A. An atlas of human gametes and conceptuses: an illustrated reference for assisted reproductive technology. In: Veeck LL, editor.1st ed. CRC Press; 1999.

  63. Tajima K, Orisaka M, Mori T, Kotsuji F. Ovarian theca cells in follicular function. Reprod Biomed Online. 2007. https://doi.org/10.1016/s1472-6483(10)60392-6.

    Article  PubMed  Google Scholar 

  64. Liu T, Qin QY, Qu JX, Wang HY, Yan J. Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chin Med J (Engl). 2020. https://doi.org/10.1097/CM9.0000000000000850.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010. https://doi.org/10.1530/REP-10-0094.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update. 2014. https://doi.org/10.1093/humupd/dmt044.

    Article  PubMed  Google Scholar 

  67. Robker RL, Hennebold JD, Russell DL. Coordination of ovulation and oocyte maturation: a good egg at the right time. Endocrinology. 2018. https://doi.org/10.1210/en.2018-00485.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021. https://doi.org/10.3390/cells10092292.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod. 2012. https://doi.org/10.1095/biolreprod.111.095208.

    Article  PubMed  Google Scholar 

  70. Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet. 2014. https://doi.org/10.1093/hmg/ddt486.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Niu W, Spradling AC. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci USA. 2020. https://doi.org/10.1073/pnas.2005570117.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lan CW, Chen MJ, Jan PS, Chen HF, Ho HN. Differentiation of human embryonic stem cells into functional ovariangranulosa-like cells. J Clin Endocrinol Metab. 2013. https://doi.org/10.1210/jc.2012-4302.

    Article  PubMed  Google Scholar 

  73. Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, et al. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of mscs—a review based on cellular and molecular knowledge. Cells. 2020. https://doi.org/10.3390/cells9061418.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baena V, Terasaki M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37766-2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nottola SA, Heyn R, Camboni A, Correr S, Macchiarelli G. Ultrastructural characteristics of human granulosa cells in a coculture system for in vitro fertilization. Microsc Res Tech. 2006. https://doi.org/10.1002/jemt.20309.

    Article  PubMed  Google Scholar 

  76. Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, et al. Characterization of an immortalized human granulosa cell line (COV434). Mol Hum Reprod. 2000. https://doi.org/10.1093/molehr/6.2.146.

    Article  PubMed  Google Scholar 

  77. Bertoldo MJ, Cheung MY, Sia ZK, Agapiou D, Corley SM, Wilkins MR, et al. Non-canonical cyclic AMP SMAD1/5/8 signalling in human granulosa cells. Mol Cell Endocrinol. 2019. https://doi.org/10.1016/j.mce.2019.04.003.

    Article  PubMed  Google Scholar 

  78. Fabbri R, Porcu E, Marsella T, Primavera MR, Cecconi S, Nottola SA, et al. Human embryo development and pregnancies in an homologous granulosa cell coculture system. J Assist Reprod Genet. 2000. https://doi.org/10.1023/a:1009424528177.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Machtinger R, Laurent L C, Baccarelli A A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016; https://doi.org/10.1093/humupd/dmv055

  80. Burnik Papler T, Vrtacnik Bokal E, Maver A, Kopitar AN, Lovrečić L. Transcriptomic analysis and meta-analysis of human granulosa and cumulus cells. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0136473.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod. 2015. https://doi.org/10.1095/biolreprod.114.121756.

    Article  PubMed  Google Scholar 

  82. Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology. 2016. https://doi.org/10.1016/j.theriogenology.2016.04.017.

    Article  PubMed  Google Scholar 

  83. Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017. https://doi.org/10.1007/s10815-017-0876-8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-35379-3.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev. 2022. https://doi.org/10.1002/mrd.23645.

    Article  PubMed  Google Scholar 

  86. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002. https://doi.org/10.1530/rep.0.1230613.

    Article  PubMed  Google Scholar 

  87. Simon AM, Chen H, Jackson CL. Cx37 and Cx43 localize to zona pellucida in mouse ovarian follicles. Cell Commun Adhes. 2006. https://doi.org/10.1080/15419060600631748.

    Article  PubMed  Google Scholar 

  88. Kordowitzki P, Sokolowska G, Wasielak-Politowska M, Skowronska A, Skowronski MT. Pannexins and connexins: their relevance for oocyte developmental competence. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115918.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Whinterhager E, Kidder G. Gap junction connexins in female reproductive organs: implications for women’s reproductive health. Hum Reprod Update. 2015. https://doi.org/10.1093/humupd/dmv007.

    Article  Google Scholar 

  90. Zhang Y, Wang Y, Feng X, Zhang S, Xu X, Li L, et al. Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-22829-2.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kaivo-oja N, Jeffery LA, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol. 2006. https://doi.org/10.1186/1477-7827-4-21.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chang HM, PCK Leung. Physiological roles of activins in the human ovary. J BioX Rev. 2018; https://doi.org/10.1097/JBR.0000000000000016.

  93. Hayes E, Kushnir V, Xiaoting M, Biswas A, Prizant H, Gleicher N. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol. 2016. https://doi.org/10.1016/j.mce.2016.05.019.

    Article  PubMed  Google Scholar 

  94. Hayes E, Kushnir V, Ma X, Biswas A, Prizant H, Gleicher N, et al. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol. 2016. https://doi.org/10.1016/j.mce.2016.05.019.

    Article  PubMed  Google Scholar 

  95. Van-Houten ELAF, Themmen APN, Visser JA. Anti-Müllerian hormone (AMH): regulator and marker of ovarian function. Ann Endocrinol (Paris). 2010. https://doi.org/10.1016/j.ando.2010.02.016.

    Article  PubMed  Google Scholar 

  96. Kastora S, Triantafyllidou O, Kolovos G, Kastoras A, Sigalos G, Vlahos N. Combinational approach of retrospective clinical evidence and transcriptomics highlight AMH superiority to FSH, as successful ICSI outcome predictor. J Assist Reprod Genet. 2020. https://doi.org/10.1007/s10815-020-01802-w.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Maruo T, Ladines-Llave CA, Samoto T, Matsuo H, Manalao AS, Ito H, et al. Expression of epidermal growth factor and its receptor in the human ovary during follicular growth and regression. Endocrinology. 1993. https://doi.org/10.1210/endo.132.2.8425504.

    Article  PubMed  Google Scholar 

  98. Abassi L, El-Hayek S, Carvalho KF, Wang W, Yang Q, Granado S et al.

  99. Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation. Nat Commun. 2021; https://doi.org/10.1038/s41467-021-21644-z

  100. Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018. https://doi.org/10.1093/humupd/dmx029.

    Article  PubMed  Google Scholar 

  101. Shimizu K, Makamura T, Bayasula, Nakanishi N, Kasahara Y, Nagai T et al. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet. 2019; https://doi.org/10.1007/s10815-019-01469-y.

  102. Macklon N, Fauser B. Follicle-stimulating hormone and advanced follicle development in the human. Arch Med Res. 2001. https://doi.org/10.1016/s0188-4409(01)00327-7.

    Article  PubMed  Google Scholar 

  103. Casarini L, Crépieux P. Molecular mechanisms of action of FSH. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00305.

    Article  Google Scholar 

  104. Das D, Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev. 2017. https://doi.org/10.1002/mrd.22806.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Samoto T, Maruo T, Ladines-Llave CA, Matsuo H, Deguchi J, Barnea ER, et al. Insulin receptor expression in follicular and compartments of the human ovary over the follicular growth. Regression and Artresia Endrocr J. 1993. https://doi.org/10.1507/endocrj.40.715.

    Article  Google Scholar 

  106. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2019. https://doi.org/10.1042/BCJ20160124.

    Article  Google Scholar 

  107. Seculovski N, Whorton AE, Shi M, Hayashi K, Mc Lean JA. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility. FASEB J. 2020. https://doi.org/10.1096/fj.201901791r.

    Article  Google Scholar 

  108. Thomas FH, Vanderhyden BC. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol. 2006. https://doi.org/10.1186/1477-7827-4-19.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tuck AR, Robker RL, Norman RJ, Tilley WD, Hickey TE. Expression and localisation of c-kit and KITL in the adult human ovary. J Ovarian Res. 2015. https://doi.org/10.1186/s13048-015-0159-x.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nunes C, Silva JV, Silva V, Torgal I, Fardiha M. Signalling pathways involved in oocyte growth, acquisition of competence and activation. Hum Fertil. 2015. https://doi.org/10.3109/14647273.2015.1006692.

    Article  Google Scholar 

  111. Hutt K, McLaughlin E, Holland M. KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod. 2006. https://doi.org/10.1095/biolreprod.106.051516.

    Article  PubMed  Google Scholar 

  112. Jeppesen JV, Kristensen SG, Nielsen ME, Humaidan P, Del Canto M, Fadini R, et al. LH-Receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metabol. 2012. https://doi.org/10.1210/jc.2012-1427.

    Article  Google Scholar 

  113. Yung Y, Aviel-Ronen S, Mman E, Rubistein N, Avivi C, Orvieto R, et al. Localization of luteinizing hormone receptor protein in the human ovary. Mol Hum Reprod. 2014. https://doi.org/10.1093/molehr/gau041.

    Article  PubMed  Google Scholar 

  114. Arroyo A, Kim B, Yeh J. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod Sci. 2020. https://doi.org/10.1007/s43032-019-00137-x.

    Article  PubMed  Google Scholar 

  115. Otsuka F, McTravish K, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 2011. https://doi.org/10.1002/mrd.21265.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rosseti R, Ferrari I, Bestetti I, Moleri S, Brancati F, Petrone L, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency. Hum Mutat. 2020. https://doi.org/10.1002/humu.23988.

    Article  Google Scholar 

  117. Kristensen SG, Andersen K, Clement CA, Franks S, Hardy K, Andersen CY. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. Mol Hum Reprod. 2014. https://doi.org/10.1093/molehr/gat089.

    Article  PubMed  Google Scholar 

  118. Gilchrist RB, Luciano AM, Richano D, Zeng HT, Wang X, De Vos M, Sugimura S. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016. https://doi.org/10.1530/rep-15-0606.

    Article  PubMed  Google Scholar 

  119. Straczynska P, Papis K, Moraweiec E, Czerwinski M, Gahewski Z, Olejek A et al. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod Biol Endocrinol. 2022; 10.1186%2Fs12958-022-00906-5

  120. Clark KL, George JW, Pzygrodzka E, Plewes MR, Hua G, Wang C, et al. Hippo signaling in the ovary: emerging roles in development, fertility, and disease. Endrocr Rev. 2022. https://doi.org/10.1210/endrev/bnac013.

    Article  Google Scholar 

  121. Kawashima I, Kawamura K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst Biol Reprod Med. 2018. https://doi.org/10.1080/19396368.2017.1411990.

    Article  PubMed  Google Scholar 

  122. Bøtkjær JA , Pors SE, Petersen TS 2, Kristensen SG , Jeppesen JV, Oxvig C. Transcription profile of the insulin-like growth factor signaling pathway during human ovarian follicular development. J Assist Reprod Genet. 2019; https://doi.org/10.1007/s10815-019-01432-x

  123. Mazerbourg S, Monget P. Insulin-like growth factor binding proteins and IGFBP proteases: a dynamic system regulating the ovarian folliculogenesis. Front Endocrinol. 2018. https://doi.org/10.3389/fendo.2018.00134.

    Article  Google Scholar 

  124. Budani MC, Tiboni GM. Novel insights on the role of nitric oxide in the ovary: a review of the literature. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18030980.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: an overview. Gen Comp Endocrinol. 2019. https://doi.org/10.1016/j.ygcen.2018.09.008.

    Article  PubMed  Google Scholar 

  126. Tamanini C, Basini G, Grasselli F, Tirelli M. Nitric oxide and the ovary. J Anim Sci. 2003. https://doi.org/10.2527/2003.8114_suppl_2E1x.

    Article  Google Scholar 

  127. Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and Its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010. https://doi.org/10.1126/science.1193573.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sato Y, Cheng Y, Kawamura K, Takae S, Hsueh AJW. C-type natriuretic peptide stimulates ovarian follicle development. Mol Endocrinol. 2012. https://doi.org/10.1210/me.2012-1027.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Cecconi S, Mauro A, Cellini V, Patacchiola F. The role of Akt signalling in the mammalian ovary. Int Dev Biol. 2012. https://doi.org/10.1387/ijdb.120146sc.

    Article  Google Scholar 

  130. Goto M, Iwase A, Ando H, Korotsuchi S, Harata T, Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J Assist Reprod Genet. 2007. https://doi.org/10.1007/s10815-007-9156-3.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Felici M, Klinger FG. PI3K/PTEN/AKT signaling pathways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22189838.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Choudhury S. Genome-wide analysis of the FIGLA gene in Mammals. Research Square. 2023; https://doi.org/10.21203/rs.3.rs-2413209/v1

  133. Huntriss J, Gosden R, Hinkis M, Oliver B, Miller D, Rutheford AJ, et al. Isolation, characterization and expression of the human Factor In the Germline alpha (FIGLA) gene in ovarian follicles and oocytes. Mol Hum Reprod. 2002. https://doi.org/10.1093/molehr/8.12.1087.

    Article  PubMed  Google Scholar 

  134. Georges A, Auguste A, Bessière L, Vanet A, Todeschini AL, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol. 2013. https://doi.org/10.1530/jme-13-0159.

    Article  PubMed  Google Scholar 

  135. Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev. 2022. https://doi.org/10.1159/000519836.

    Article  PubMed  Google Scholar 

  136. Yung Y, Ophir L, Yerushalmi GM, Baum M, Hourvitz A, Maman E. HAS2-AS1 is a novel LH/hCG target gene regulating HAS2 expression and enhancing cumulus cells migration. J Ovarian Res. 2019. https://doi.org/10.1186/s13048-019-0495-3.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li X, Du X, Yao W, Pan Z, Li Q. TGF-β/SMAD4 signaling pathway activates the HAS2–HA system to regulate granulosa cell state. J Cell Phys. 2019. https://doi.org/10.1002/jcp.29134.

    Article  Google Scholar 

  138. Niu Q, Shi J, Gao Q, Fu J. WNT5A enhances LH-mediated expression of HAS2 in granulosa cells. Reprod Sci. 2022. https://doi.org/10.1007/s43032-021-00736-7.

    Article  PubMed  Google Scholar 

  139. Ren Y, Suzuki H, Jagarlamuti K, Golnoski K, McGuire M, Lopes R. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis. BMC Biol. 2015. https://doi.org/10.1186/s12915-015-0151-3.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Qin Y, Zhao H, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analysis of LHX8 mutation in premature ovarian failure. Fertil Steril. 2008. https://doi.org/10.1016/j.fertnstert.2007.04.017.

    Article  PubMed  Google Scholar 

  141. Zhao L, Li Q, Kuang Y, Xu P, Sun X, Meng Q, et al. Heterozygous loss-of-function variants in LHX8 cause female infertility characterized by oocyte maturation arrest. Genet Med. 2022. https://doi.org/10.1016/j.gim.2022.07.027.

    Article  PubMed  Google Scholar 

  142. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004. https://doi.org/10.1126/science.1099755.

    Article  PubMed  Google Scholar 

  143. Camaioni A, Klinger FG, Campagnolo L, Salustri A. The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front Immunol. 2018; 10.3389%2Ffimmu.2018.02808.

  144. Salustri A, Garlanda C, Hirsch E, Acetis M, Maccagno A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004. https://doi.org/10.1242/dev.01056.

    Article  PubMed  Google Scholar 

  145. Zhang X, Liu R, Su Z, Zhang Y, Zhang W, Liu X et al. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human issues. PLoS One. 2015; 10.1371%2Fjournal.pone.0137431.

  146. Shin YH, Ren Y, Suzuki H, Golnoski KJ, Ahn HW, Mico V, et al. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I. J Clin Invest. 2017. https://doi.org/10.1172/jci90281.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. 2018. Biosci Rep. https://doi.org/10.1042/BSR20171469.

  148. Cho, WK, Stern S, Biggers JD. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool B Mol Dev Evol. 1974; https://doi.org/10.1002/jez.1401870307

  149. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci. 2002. https://doi.org/10.1523/jneurosci.22-08-03262.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mehlmann L. Stops and starts in mammalian oocytes: recent advances in understand. Reprod Rev. 2005. https://doi.org/10.1530/rep.1.00793.

    Article  Google Scholar 

  151. Das D, Arur S. Regulation of oocyte maturation: role of conserved ERK signaling. Mol Reprod Dev. 2022. https://doi.org/10.1002/mrd.23637.

    Article  PubMed  Google Scholar 

  152. Casalechi M, Dias JA, Pinto LV, Lobach VN, Pereira MT, Cavallo IK, et al. C-type natriuretic peptide signaling in human follicular environment and its relation with oocyte maturation. Mol Cell Endocrinol. 2019. https://doi.org/10.1016/j.mce.2019.05.003.

    Article  PubMed  Google Scholar 

  153. Emori C, Sugiura K. Role of oocyte-derived paracrine factors in follicular development. Anim Sci J. 2014. https://doi.org/10.1111/asj.12200.

    Article  PubMed  PubMed Central  Google Scholar 

  154. De Caestecker, M. The transforming growth factor-β superfamily of receptors.Cytokine Growth Factor Rev. 2004; https://doi.org/10.1016/j.cytogfr.2003.10.004

  155. Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet. 2018. https://doi.org/10.1007/s10815-018-1268-4.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Paulini F, Melo EO. The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reprod Domest Anim. 2011. https://doi.org/10.1111/j.1439-0531.2010.01739.x.

    Article  PubMed  Google Scholar 

  157. Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 2001. https://doi.org/10.1093/emboj/20.15.4132.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen APN, Hovatta O. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006. https://doi.org/10.1093/humrep/del165.

    Article  PubMed  Google Scholar 

  159. Durlinger A, Kramer P, Karels B, Jong F, Uilenbroek J, Grootegoed J, et al. Control of primordial follicle recruitment by anti-müllerian hormone in the mouse ovary. Endocrinol. 1999. https://doi.org/10.1210/endo.140.12.7204.

    Article  Google Scholar 

  160. Kidder GM, & Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence.Can J Physiol Pharmacol. 2010; https://doi.org/10.1139/y10-009

  161. Buratini J, Price CA. Follicular somatic cell factors and follicle development. Reprod Fertil Dev. 2011. https://doi.org/10.1071/rd10224.

    Article  PubMed  Google Scholar 

  162. Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999. https://doi.org/10.1210/endo.140.9.6994.

    Article  PubMed  Google Scholar 

  163. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000. https://doi.org/10.1530/ror.0.0050143.

    Article  PubMed  Google Scholar 

  164. Ma H, Li T, Xie X, Jiang L, Ye J, Gong C. RAD51AP2 is required for efficient meiotic recombination between X and Y chromosomes. Si Adv. 2022. https://doi.org/10.1126/sciadv.abk1789.

    Article  Google Scholar 

  165. Bellil H, Ghieh F, Hermenl E, Mandon-Pepin B, Vialard F. Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility. Basic Clin Androl. 2021. https://doi.org/10.1186/s12610-021-00127-7.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhang S, Tao W, Han JDJ. 3D chromatin structure changes during spermatogenesis and oogenesis. Comput Struct Biotechnol J. 2022. https://doi.org/10.1016/j.csbj.2022.05.032.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo PR. Transcriptional control of human gametogenesis. Hum Reprod Update. 2022. https://doi.org/10.1093/humupd/dmac002.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Pangas SA, Matzuk MM. The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod. 2005. https://doi.org/10.1095/biolreprod.105.042127.

    Article  PubMed  Google Scholar 

  169. Yoshino T, Suzuki T, Nagamatsu G, Yabukami H, Ikegaya M, Kishima M, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science. 2021. https://doi.org/10.1126/science.abe0237.

    Article  PubMed  PubMed Central  Google Scholar 

  170. West JA, Park IH, Daley GQ, Geijsen N. In vitro generation of germ cells from murine embryonic stem cells. Nat Protoc. 2006; nprot.2006.303

  171. Riesco MF, Valcarce DG, Alfonso J, Herráez MP, Robles V. In vitro generation of zebrafish PGC-like cells. Biol Reprod. 2014. https://doi.org/10.1095/biolreprod.114.121491.

    Article  PubMed  Google Scholar 

  172. Eguizabal C, Shovlin TC, Durcova-Hills G, Surani A, McLaren A. Generation of primordial germ cells from pluripotent stem cells. Differentiation. 2009. https://doi.org/10.1016/j.diff.2009.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, et al. Porcine primordial germ cell-like cells generated from induced pluripotent stem cells under different culture conditions. Stem Cell Rev Rep. 2022. https://doi.org/10.1007/s12015-021-10198-8.

    Article  PubMed  Google Scholar 

  174. Aflatoonian B, Ruban L, Jones M, Aflatoonian R, Fazeli A, Moore HD. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum Reprod. 2009. https://doi.org/10.1093/humrep/dep334.

    Article  PubMed  Google Scholar 

  175. Clark AT, Amander TC, Megan SB, Mark F, Ryan TR, Michael J, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet. 2004. https://doi.org/10.1093/hmg/ddh088.

    Article  PubMed  Google Scholar 

  176. Kee K.; Gonsalves, J.M.; Clark, A. T. Reijo Pera, R.A. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells.Stem Cells Dev. 2006; DOI: https://doi.org/10.1089/scd.2006.15.831

  177. Chen HF, Jan PS, Kuo HC, Wu FC, Lan CW, Huang MC, et al. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells. Reprod Biomed Online. 2014. https://doi.org/10.1016/j.rbmo.2014.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Jung, D., Xiong, J., Ye, M., Qin, X., Li, L., Cheng, S. et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun. DOI: https://doi.org/10.1038/ncomms15680

  179. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015. https://doi.org/10.1016/j.cell.2014.12.013.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Gell JJ, Liu W, Sosa E, Chialastri A, Hancock G, Tao Y, et al. An extended culture system that supports human primordial germ cell-like cell survival and initiation of DNA methylation erasure. Stem Cell Reports. 2020. https://doi.org/10.1016/j.stemcr.2020.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Alves-Lopes JP, Wong FC, Tang WW, Gruhn WH, Ramakrishna NB, Jowett GM. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Rep. 2023. https://doi.org/10.1016/j.celrep.2022.111907.

    Article  PubMed  Google Scholar 

  182. Leng L, Tan Y, Gong F, Hu L, Ouyang Q, Zhao Y, et al. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Hum Reprod. 2015. https://doi.org/10.1093/humrep/deu358.

    Article  PubMed  Google Scholar 

  183. Wen Y, He W, Jiang M, Zeng M, Cai L. Deriving cells expressing markers of female germ cells from premature ovarian failure patient-specific induced pluripotent stem cells. Regen Med. 2017. https://doi.org/10.2217/rme-2016-0074.

    Article  PubMed  Google Scholar 

  184. Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, Yokobayashi S. Saitou M Generation of human oogonia from induced pluripotent stem cells in culture. Nat Protoc. 2020. https://doi.org/10.1038/s41596-020-0297-5.

    Article  PubMed  Google Scholar 

  185. Murase, Y.; Yabuta, Y.; Ohta, H.; Yamashiro, C.; Nakamura, T.; Yamamoto; T. et al. Long‐term expansion with germline potential of human primordial germ cell‐like cells in vitro. EMBO J. 2020; https://doi.org/10.15252/embj.2020104929

  186. Yang S, Liu Z, Wu S, Zou L, Cao Y, Xu H. Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests. Stem Cell Res Ther. 2022. https://doi.org/10.1186/s13287-022-03019-3.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Farini D, Scaldaferri ML, Iona S, La Sala G, De Felici M. Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev Biol. 2005. https://doi.org/10.1016/j.ydbio.2005.06.036.

    Article  PubMed  Google Scholar 

  188. Fukunaga N, Teramura T, Onodra Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram. 2010. https://doi.org/10.1089/cell.2009.0097.

    Article  PubMed  Google Scholar 

  189. Shang D, Lan T, Wang Y, Li X, Liu Q, Dong H, et al. PGCLCs of human 45, XO reveal pathogenetic pathways of neurocognitive and psychosocial disorders. Cell Biosci. 2022. https://doi.org/10.1186/s13578-022-00925-0.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev. 2002. https://doi.org/10.1016/s0925-4773(02)00237-x.

    Article  PubMed  Google Scholar 

  191. Jostes S, Schorle H. Signals and transcription factors for specification of human germ cells. Stem Cell Investig. 2018; https://doi.org/10.21037/sci.2018.04.01.

  192. Saitou M, Yamaji M. Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction. 2010. https://doi.org/10.1530/rep-10-0043.

    Article  PubMed  Google Scholar 

  193. Fang F, Angulo B, Xia N, Wang Z, Carey CC, Mazurie A, et al. A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells. Nat Cell Biol. 2018. https://doi.org/10.1038/s41556-018-0094-3.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kojima Y, Sasaki K, Yokobayashi S, Sakai Y, Nakamura T, Yabuta Y, et al. Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell. 2017. https://doi.org/10.1016/j.stem.2017.09.005.

    Article  PubMed  Google Scholar 

  195. Saitou M, Hayashi K. Mammalian in vitro gametogenesis. Science. 2021. https://doi.org/10.1126/science.aaz6830.

    Article  PubMed  Google Scholar 

  196. Yokobaiashi S, Okita K, Nakagawa M, Nakamura T Yabuta Y, Yamamoto T et al. Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. Biol Reprod. 2017; https://doi.org/10.1093/biolre/iox038.

  197. Fang F, Li Z, Zhao Q, Xiong C, Ni K. Analysis of multi-lineage gene expression dynamics during primordial germ cell induction from human induced pluripotent stem cells. Stem Cell Res Ther. 2020. https://doi.org/10.1186/s13287-020-01620-y.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Park TS, Galic Z, Conway AE, Lindgren A, Handel BJ, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009. https://doi.org/10.1002/stem.13.

    Article  PubMed  Google Scholar 

  199. Coskun S, Uzumcu M, Jaroudi K, Hollanders JM, Parhar RS, Al-Sedairy ST. Presence of leukemia inhibitory factor and interleukin-12 in human follicular fluid during follicular growth. Am J Reprod Immunol. 1998. https://doi.org/10.1111/j.1600-0897.1998.tb00382.x.

    Article  PubMed  Google Scholar 

  200. Hu R, Wang FM, Yu L, Luo Y, Wu X, Li J, et al. Antimüllerian hormone regulates stem cell factor expression in human granulosa cells. Fertil Steril. 2014. https://doi.org/10.1016/j.fertnstert.2014.08.012.

    Article  PubMed  Google Scholar 

  201. Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Nose E, et al. Bone Morphogenetic protein-2 (BMP2) increases gene expression of FSH receptor and aromatase and decreases gene expression of LH receptor and StAR in human granulosa cells. Am J Reprod Immunol. 2011. https://doi.org/10.1111/j.1600-0897.2010.00917.x.

    Article  PubMed  Google Scholar 

  202. Shah SM, Saini N, Ashraf S, Singh MK, Manik RS, Singla SK. Bone morphogenetic protein 4 (BMP4) induces buffalo (Bubalus bubalis) embryonic stem cell differentiation into germ cells. Biochimie. 2015. https://doi.org/10.1016/j.biochi.2015.10.021.

    Article  PubMed  Google Scholar 

  203. Grieve KM, McLaughlin M, Dunlop CE, Telfer EE, Abderson RA. The controversial existence and functional potential of oogonial stem cell. Maturitas. 2015. https://doi.org/10.1016/j.maturitas.2015.07.017.

    Article  PubMed  Google Scholar 

  204. Martin JJ, Woods DC, Tilly JL. Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells. 2019. https://doi.org/10.3390/cells8020093.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004. https://doi.org/10.1038/nature02316.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Liu J, Shang D, Xiao Y, Zhong P, Cheng H, Zhou R. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice. J Biol Chem. 2017; 10.1074%2Fjbc.M117.799403.

  207. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1869.

    Article  PubMed  Google Scholar 

  208. Zhang C, Wu J. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Mol Hum Reprod. 2016. https://doi.org/10.1093/molehr/gaw030.

    Article  PubMed  Google Scholar 

  209. White Y, Woods D, Takai Y, Ishihara O, Seki H, Tilly J. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012. https://doi.org/10.1038/nm.2669.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Silvestris E, Cofforio p, dóRONZO s, Felici C, Silvestris F, Loverro G. In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Hum Reprod. 2018; https://doi.org/10.1093/humrep/dex377.

  211. Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-14936-3.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hernandez SF, Vahidi NA, Park S, Weitzel RP. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med. 2015. https://doi.org/10.1038/nm.3775.

    Article  PubMed  Google Scholar 

  213. Telfer EE. Future developments: In vitro growth (IVG) of human ovarian follicles. Obstet Gyneac. 2019. https://doi.org/10.1111/aogs.13592.

    Article  Google Scholar 

  214. Dilon BA, Garcia C. Pediatric and young adult patients and oncofertility. Curr Treat Options Oncol. 2012. https://doi.org/10.1007/s11864-012-0183-7.

    Article  Google Scholar 

  215. Bahroudi Z, Zarnaghi MR, Izadpanah M, Abedelahi A, Niknafs B, Nasrabadi HT, et al. Review of ovarian tissue cryopreservation techniques for fertility preservation. J Gyn Obstet Hum Reprod. 2022. https://doi.org/10.1016/j.jogoh.2021.102290.

    Article  Google Scholar 

  216. Dolmans MM, Luyckx V, Donnez J, Andersen Cy, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fert Steril. 2013; https://doi.org/10.1016/j.fertnstert.2013.03.027.

  217. McLaughlin m, Albertini DF, Wallace WHB, Andersson RS, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018; https://doi.org/10.1093/molehr/gay002

  218. Vo KCT, Kawamura K. In Vitro activation early follicles: from the basic science to the clinical perspectives. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22073785.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Bertoldo MJ, Walters KA, Ledger WL, Gilchrist RB, Mermillod P, Locatelli Y. In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod BioMed Online. 2018. https://doi.org/10.1016/j.rbmo.2018.01.014.

    Article  PubMed  Google Scholar 

  220. Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018. https://doi.org/10.1093/humrep/dey250.

    Article  PubMed  Google Scholar 

  221. Roy SK, Treacy BJ. Isolation and long-term culture of human preantral follicles. Fertil Steril. 1993. https://doi.org/10.1016/S0015-0282(16)55860-9.

    Article  PubMed  Google Scholar 

  222. Roy SK, Greenwald GS. Methods of separation and in-vitro culture of pre-antral follicles from mammalian ovaries. Hum Reprod Update. 1996. https://doi.org/10.1093/humupd/2.3.236.

    Article  PubMed  Google Scholar 

  223. Hovatta O. Cryopreservation and culture of human primordial and primary ovarian follicles. Mol Cell Endocrinol. 2000. https://doi.org/10.1016/S0303-7207(00)00359-2.

    Article  PubMed  Google Scholar 

  224. Wright CS, Hovatta O, Margara R, Trew G, Winston RML, Franks S, Hardy K. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999. https://doi.org/10.1093/humrep/14.6.1555.

    Article  PubMed  Google Scholar 

  225. Kedem A, Fisch B, Ben-Zaken A, Gizunterman T, Felz C, et al. Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. J Clin Endocrinol Metabol. 2011. https://doi.org/10.1210/jc.2011-0410.

    Article  Google Scholar 

  226. Younis AJ, Lerer-Serfaty G, Stav D, Sabbah B, Shochat T, et al. Extracellular-like matrices and leukaemia inhibitory factor for in vitro culture of human primordial follicles. Reprodd Fertil Dev. 2016. https://doi.org/10.1071/RD16233.

    Article  Google Scholar 

  227. Coticchio G, Del-Canto M, Guglielmo MC, Renzini MM, Fadini R. Human oocyte maturation in vitro. Int J Dev Biol. 2012. https://doi.org/10.1387/ijdb.120135gv.

    Article  PubMed  Google Scholar 

  228. Krisher RL. Present state and future outlook for the application of in vitro oocyte maturation in human infertility treatment. Biol Reprod. 2022. https://doi.org/10.1093/biolre/ioac010.

    Article  PubMed  Google Scholar 

  229. Virant-Klun I, Bauer C, Stahlberg A, Kubista M, Skutella T. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reprod Biomed Online. 2018. https://doi.org/10.1016/j.rbmo.2018.01.011.

    Article  PubMed  Google Scholar 

  230. Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl). 2021. https://doi.org/10.1007/s00109-020-02028-0.

    Article  PubMed  Google Scholar 

  231. Lancaster M A, Huch M.Disease modelling in human organoids.Dis Model Mech. 2019; https://doi.org/10.1242/dmm.039347

  232. Kopper O, De Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, et al. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity. Nat Med. 2019. https://doi.org/10.1038/s41591-019-0422-6.

    Article  PubMed  Google Scholar 

  233. Maenhoudt N, Defraye C, Boretto M, Jan Z, Heremans R, Boeckx B, et al. Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Reports. 2020. https://doi.org/10.1016/j.stemcr.2020.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Kwong J, Chan FL, Wong KK, Birrer MJ, Archibald KM, Balkwill FR, et al. Inflammatory cytokine tumor necrosis factor α confers precancerous phenotype in an organoid model of normal human ovarian surface epithelial cells. Neoplasia. 2009. https://doi.org/10.1593/neo.09112.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ. 2020. https://doi.org/10.1038/s41418-020-0565-5.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wang J, Du H, Ma L, Feng M, Li L, Zhao X, Dai Y. MitoQ protects ovarian organoids against oxidative stress during oogenesis and folliculogenesis in vitro. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24020924.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Li X, Zheng M, Xu B, Li D, Shen Y, Nie Y, et al. Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials. 2021. https://doi.org/10.1016/j.biomaterials.2021.121213.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Takashima T, Fujimaru T, Obata Y. Effect of in vitro growth on mouse oocyte competency, mitochondria and transcriptome. Reproduction. 2021. https://doi.org/10.1530/REP-21-0209.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the support from CAPES, FAPEMIG (RED-00135-2- REDE MINEIRA DE INTELIGÊNCIA ARTIFICIAL NA REPRODUÇÃO HUMANA and RED-00079-22- REDE MINEIRA DE NANOMEDICINA TERANÓSTICA) and CNPq (scholarship granted to S.A.C.). We also acknowledge the Center for Image Acquisition and Processing of the Institute of Biological Sciences at UFMG (CAPI, ICB/UFMG) and Clínica Cegonha de Medicina Reprodutiva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samyra Maria dos Santos Nassif Lacerda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coxir, S.A., Costa, G.M.J., Santos, C.F.d. et al. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Human Cell 36, 1283–1311 (2023). https://doi.org/10.1007/s13577-023-00921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00921-7

Keywords

Navigation