Skip to main content
Log in

Arsenic (As)-Resistant Endophytic Bacteria Isolated from Ferns Growing in As-Contaminated Areas

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In this study, As-resistant endophytic bacteria (AEB) from four different ferns (i.e., Pteris vittata, Pityrogramma calomelanos, Blenchum orientale, and Nephrolepis exaltata) collected from the polymetallic mine (Nui Phao) in Vietnam were isolated and characterized. The sampling locations were contaminated with As concentration within the range of 316–1606 mg kg–1. A total of 5 arsenite(III)- and 26 arsenate(V)-resistant endophytic bacterial strains that belonged to 13 different genera were obtained. The most predominant isolate (accounting for 36% of the total isolated AEB in root ferns) was identified as Bacillus sp. The isolates were more resistant to As(V) than to As(III). Among As(V)-resistant strains, 26 were resistant to As(V) at concentrations of 80–320 mM, whereas 5 As(III)-resistant strains were able to tolerate As(III) of up to 160 mM. Although all the isolates had the ability to produce indole acetic acid (IAA), only three strains (i.e., Sporosarcina luteola R3.3.1, Paenibacillus sp. R3.8.3, and Acinetobacter sp. L2.5.1) had the phosphate-solubilizing ability. The pot experiments using P. vittata and inoculation of the four selected AEB (i.e., Priestia megaterium R2.5.2, Micrococcus luteus S3.4.1, P. megaterium R3.4.5, and P. megaterium L3.5.1) confirmed the important role of AEB in plant growth promotion and phytoremediation potential of As-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Aliyat, F.Z., Maldani, M., El Guilli, M., Nassiri, L., and Ibijbijen, J., Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: calcium, iron, and aluminum phosphates, Microorganisms, 2022, vol. 10, p. 980. https://doi.org/10.3390/microorganisms10050980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alves, A.R.A., Yin, Q., Oliveira, R.S., Silva, E.F., and Novo, L.B., Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: current knowledge and future directions, Sci. Total Environ., 2022, vol. 838, p. 156435. https://doi.org/10.1016/j.scitotenv.2022.156435

    Article  CAS  PubMed  Google Scholar 

  3. Andrews, J.M., Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother., 2011, vol. 48, pp. 5−16. https://doi.org/10.1093/jac/48.suppl_1.5

    Article  Google Scholar 

  4. Anh, B.T., Kim, D.D., Tua, T.V., Kien, N.T., and Anh, D.T., Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam, J. Environ. Biol., 2011, vol. 32, pp. 257−262.

    CAS  PubMed  Google Scholar 

  5. Batista, B.D., Bonatelli, M.L., and Quecine, M.C., Fast screening of bacteria for plant growth promoting traits, Methods in Molecular Biology (Clifton, N.J.), 2021, vol. 2232, pp. 61−75. https://doi.org/10.1007/978-1-0716-1040-4_7

    Article  CAS  PubMed  Google Scholar 

  6. Bermanec, V., Paradžik, T., Kazazić, S.P., Venter, C., Hrenović, J., Vujaklija, D., Duran, R., Boev, I., and Boev, B., Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia, J. Hazard. Mater., 2021, vol. 402, p. 123437. https://doi.org/10.1016/j.jhazmat.2020.123437

    Article  CAS  PubMed  Google Scholar 

  7. Bric, J.M., Bostock, R.M., and Silverstone, S.E., Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane, Appl. Environ. Microbiol., 1991, vol. 57, pp. 535−538. https://doi.org/10.1128/aem.57.2.535-538.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bui, A.T.K., Nguyen, H.T.H., Nguyen, M.N., Tran, T.H.T., Vu, T.V., Nguyen, C.H., and Reynolds, H.L., Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam, Environ. Monit. Assess., 2016, vol. 188. https://doi.org/10.1007/s10661-016-5535-5

  9. Capita, R., Vicente-Velasco, M., Rodríguez-Melcón, C., García-Fernández, C., Carballo, J., and Alonso-Calleja, C., Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica, Sci. Rep., 2019, vol. 9, p. 15905. https://doi.org/10.1038/s41598-019-51907-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlin, D.J., Naujokas, M.F., Bradham, K.D., Cowden, J., Heacock, M., Henry, H.F., Lee, J.S., Thomas, D.J., Thompson, C., Tokar, E.J., Waalkes, M.P., Birnbaum, L.S., and Suk, W.A., Arsenic and environmental health: state of the science and future research opportunities, Environ. Health Perspect., 2016, vol. 124, pp. 890−899. https://doi.org/10.1289%2Fehp.1510209

    Article  CAS  PubMed  Google Scholar 

  11. Cavalca, L., Zanchi, R., Corsini, A., Colombo, M., Romagnoli, C., Canzi, E., and Andreoni, V., Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics, Syst. App-l. Microbiol., 2010, vol. 33, pp. 154−164. https://doi.org/10.1016/j.syapm.2010.02.004

    Article  CAS  Google Scholar 

  12. Das, S., Dash, H.R., and Chakraborty, J., Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 2967−2984. https://doi.org/10.1007/s00253-016-7364-4

    Article  CAS  PubMed  Google Scholar 

  13. Finnegan, P.M. and Chen, W., Arsenic toxicity: the effects on plant metabolism, Front. Physiol., 2012, vol. 3. https://doi.org/10.3389/fphys.2012.00182

  14. Ghosh, P.K., Maiti, T.K., Pramanik, K., Ghosh, S.K., Mitra, S., and De, T.K., The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity, Chemosphere., 2018, vol. 211, pp. 407−419. https://doi.org/10.1016/j.chemosphere.2018.07.148

    Article  CAS  PubMed  Google Scholar 

  15. Giner-Lamia, J., Pereira, S.B., Bovea-Marco, M., Futschik, M.E., Tamagnini, P., and Oliveira, P., Extracellular proteins: novel key components of metal resistance in cyanobacteria?, Front. Microbiol., 2016, vol. 7, p. 878. https://doi.org/10.3389/fmicb.2016.00878

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gómez, E.J., Delgado, J.A., and González, J.M., Persistence of microbial extracellular enzymes in soils under different temperatures and water availabilities, Ecol. Evol., 2020, vol. 10, no. 18, pp. 10167−10176. https://doi.org/10.1002/ece3.6677

    Article  PubMed  PubMed Central  Google Scholar 

  17. Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S., Rajasekar, A., and Chang, Y.C., Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens, Biotech., 2016, vol. 6, no. 2, p. 242. https://doi.org/10.1007/s13205-016-0560-1

    Article  CAS  Google Scholar 

  18. Ha, N.T.H., Ha, N.T., Nga, T.T.H., Minh, N.N., Anh, B.T.K., Hang, N.T.A., Duc, N.A., Nhuan, M.T., and Kim, K.W., Uptake of arsenic and heavy metals by native plants growing near Nui Phao multi-metal mine, northern Vietnam, J. Appl. Geochem., 2019, vol. 108, p. 104368. https://doi.org/10.1016/j.apgeochem.2019.104368

    Article  CAS  Google Scholar 

  19. Jan, R., Khan, M.A., Asaf, S., Lee, I.J., and Kim, K.M., Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones, Plants, 2019, vol. 8, no. 10, https://doi.org/10.3390/plants8100363

  20. Lampis, S., Santi, C., Ciurli, A., Andreolli, M., and Vallini, G., Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective, Front. Plan Sci., 2015, vol 6. https://doi.org/10.3389/fpls.2015.00080

  21. Lim, K.T., Shukor, M.Y., and Wasoh, H., Physical, chemical, and biological methods for the removal of arsenic compounds, Biomed Res. Int., 2014, vol. 2014, p. 503784 https://doi.org/10.1155/2014/503784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, S.L., Chen, L., Chen, J.L., Xiao, X., Xu, T.Y., Wan, Y., Rao, C., Liu, C.B., Liu, Y.T., Lai, C., and Zeng, G.M., Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation, Chemosphere, 2011, vol. 85, no. 7, pp. 1130−1138. https://doi.org/10.1016/j.chemosphere.2011.07.053

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Y., Oliveira, R.S., Nai, F., Rajkumar, M., Luo, Y., Rocha, I., and Freitas, H., The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil, J. Environ. Manage., 2015, vol. 156, pp. 62−69. https://doi.org/10.1016/j.jenvman.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  24. Manzoor, M., Abid, R., Rathinasabapathi, B., De Oliveira, L.M., da Silva, E., Deng, F., Rensing, C., Arshad, M., Gul, I., Xiang, P., and Ma, L.Q., Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil, Sci. Total Environ., 2019, vol. 660, pp. 18−24. https://doi.org/10.1016/j.scitotenv.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  25. Román-Ponce, B., Ramos-Garza, J., Arroyo-Herrera, I., Maldonado-Hernández, J., Bahena-Osorio, Y., Vásquez-Murrieta, M.S., and Wang, E.T., Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production, Arch. Microbiol., 2018, vol. 200, pp. 883−895. https://doi.org/10.1007/s00203-018-1495-1

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook, J. and Russell, D., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 2001.

    Google Scholar 

  27. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., and Glick, B.R., Plant growth-promoting bacterial endophytes, Microbiol. Res., 2016, vol. 183, pp. 92−99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  28. Sheng, X.F., Xia, J.J., Jiang, C.Y., He, L.Y., and Qian, M., Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape, Environ. Pollut., 2008, vol. 156, pp. 1164−1170. https://doi.org/10.1016/j.envpol.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Shi, K., Wang, Q., and Wang, G., Microbial oxidation of arsenite: regulation, chemotaxis, phosphate metabolism and energy Generation, Front. Microbiol., 2020, vol. 11. https://doi.org/10.3389/fmicb.2020.569282

  30. Shutsrirung, A., Chromkaew, Y., Pathom-Aree, W., Choonluchanon, S., and Boonkerd, N., Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity, J. Soil Sci. Plant Nutr., 2013, vol. 59, pp. 322−330. https://doi.org/10.1080/00380768.2013.776935

    Article  CAS  Google Scholar 

  31. Sim, C.S.F., Chen, S.H., and Ting, A.S.Y., Endophytes: emerging tools for the bioremediation of pollutants, in Emerging and Eco-Friendly Approaches for Waste Management, Bharagava, R.N. and Chowdhary, P., Eds., Singapore: Springer, 2019, pp. 189−217. https://doi.org/10.1007/978-981-10-8669-4_10

  32. Teaf, C., Covert, D.J., Teaf, P.A., Page, E., and Starks, M., Arsenic cleanup criteria for soils in the US and abroad: comparing guidelines and understanding inconsistencies, Proc. Annu. Int. Conf. on Soils, Sediments, Water and Energy, 2010. https://scholarworks.umass.edu/soilsproceedings/ vol15/iss1/10.

  33. Thao, P.T.H., Linh, N.V.M., Lien, N.T.H., and Hieu, N.V., Biological characteristics and antimicrobial activity of endophytic Streptomyces sp. TQR12-4 isolated from Elite Citrus nobilis cultivar Ham Yen of Vietnam, Int. J. Microbiol., 2016, vol. 2016, p. 7207818. https://doi.org/10.1155/2016/7207818

    Article  CAS  Google Scholar 

  34. Tiwari, S., Sarangi, B.K., and Thul, S.T., Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application, J. Environ. Manage., 2016, vol 180, pp. 359−365 https://doi.org/10.1016/j.jenvman.2016.05.029

    Article  CAS  PubMed  Google Scholar 

  35. Ullah, A., Heng, S., Munis, M.F.H., Fahad, S., and Yang, X., Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review, Environ. Exp. Bot., 2015., vol. 117, pp. 28−40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  36. Upadhyay, M.K., Majumdar, A., Suresh, K.J., and Srivastava, S., Arsenic in rice agro-ecosystem: solutions for safe and sustainable rice production, Front. Sustain. Food Syst., 2020, vol. 4. https://doi.org/10.3389/fsufs.2020.00053

  37. van Delden, S.H., Nazarideljou, M.J., and Marcelis, L.F.M., Nutrient solutions for Arabidopsis thaliana: a study on nutrient solution composition in hydroponics systems, Plant Methods, 2020, vol. 16. https://doi.org/10.1186/s13007-020-00606-4

  38. Vuong, X., Analyzing the total content of zinc, copper, lead and cadmium in Eleusine indica L plant using ICP-MS method, TNU J. Sci. Technol., 2019, vol. 208, pp. 131−136.

    Google Scholar 

  39. Xinxian, L., Xuemei, C, Yagang, C., Woon-Chung, W.J., Zebin, W., and Qitang, W., Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil, World J. Microbiol. Biotechnol., 2011, vol. 27, pp. 1197−1207. https://doi.org/10.1007/s11274-010-0568-3

    Article  CAS  Google Scholar 

  40. Xu, J.Y., Han, Y.H., Chen, Y., Zhu, L.J., and Ma, L.Q., Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata, Chemosphere, 2016, vol. 144, pp. 1233−1240. https://doi.org/10.1016/j.chemosphere.2015.09.102

    Article  CAS  PubMed  Google Scholar 

  41. Zacaria, V.T., Román-Ponce, B., Rivera, O. F.N., Estrada de los Santos, P., Vásquez-Murrieta, M.S., Deng, Y., Yuan, H.L., and Wang, E.T., An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes, Arch. Microbiol., 2019, vol. 201, pp. 1285−1293. https://doi.org/10.1007/s00203-019-01692-2

    Article  CAS  Google Scholar 

  42. Zhu, L.J., Guan, D.X., Luo, J., Rathinasabapathi, B., and Ma, L.Q., Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida, Chemosphere., 2014a, vol. 113, pp. 9−16. https://doi.org/10.1016/j.chemosphere.2014.03.081

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, Y.G., Yoshinaga, M., Zhao, F.J., and Rosen, B.P., Earth abides arsenic biotransformations, Annu. Rev. Earth Planet Sci., 2014b, vol. 42, pp. 443−467. https://doi.org/10.1146/annurev-earth-060313-054942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first two authors contributed to the work equally. All authors contributed to the study conception and design. TBKN: conceptualization, methodology, formal analysis, investigation, writing—review and editing, funding acquisition. THTP: conceptualization, methodology, formal analysis, investigation, writing—review and editing. TTL, NTD, VTN and LHTN: conceptualization, formal analysis, investigation, writing—original draft. PMN: conceptualization, methodology, formal analysis, investigation, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. M. Nguyen.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no competing interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.B., Phan, T.H., Le, T.T. et al. Arsenic (As)-Resistant Endophytic Bacteria Isolated from Ferns Growing in As-Contaminated Areas. Microbiology 92, 892–906 (2023). https://doi.org/10.1134/S002626172260330X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172260330X

Keywords:

Navigation