Skip to main content

Advances in Persian Walnut (Juglans regia L.) Breeding Strategies

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Nut and Beverage Crops

Abstract

Walnut (Juglans regia L.) is one of the oldest trees with harvestable products known to humans and has a history dating to 7000 BC in Persia. Walnut breeding programs aim to release productive scion cultivars with disease resistance and high-quality nuts, along with rootstocks resistant to biotic and abiotic stresses. Genetic improvement of walnut began with the selection of superior trees in their main centers of origin, primarily from the Persian plateau. The first selection and grafting of superior walnut genotypes began in France. The first organized walnut-breeding program employing targeted hybridization began in the USA in 1948, primarily using introduced French cultivars and selected local genotypes derived from seed imported from centers of origin (Iran, Afghanistan, China). Currently, both conventional hybridization with phenotypic evaluation and molecular breeding approaches are used in the USA programs as well as those in France, China, Iran, Spain and Italy. Recent advances in biotechnology and genomics show potential to accelerate cultivar development. In addition, the exploration, description, and preservation of biodiverse germplasm can provide a gene bank of desirable traits and enable biotechnologists to conduct breeding more accurately and rapidly in the future. Recent advancements have opened up new avenues to enhance the efficiency of walnut breeding to release new scions and rootstocks. These include next-generation sequencing (NGS) techniques, bioinformatics tools, high-throughput genotyping platforms and genomics-based approaches such as genome wide association studies (GWAS), marker-assisted selection (MAS), genomic selection (GS) and genome editing with the CRISPR-Cas9 system. In this chapter, we describe the background and development of conventional walnut breeding programs in the leading walnut producing countries of the USA, France, China, Iran and Turkey, and finally focus on the current use and status of molecular breeding and biotechnology in walnut breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abounasri Harvi G (1515) Agriculture guidance (Arshad Al-Zerae). The old manuscript. http://dl.nlai.ir/UI/cf0c4112-7703-4523-93f0-6811d1e20591/LRRView.aspx

  • Adem HH (2009) Best practice management for establishing a walnut orchard. Department of Primary Industries, Melbourne

    Google Scholar 

  • Akça Y, Ozongun S (2004) Selection of late leafing, late flowering, laterally fruitful walnut (Juglans regia) types in Turkey. N Z J Crop Hortic Sci 32(4):337–342

    Article  Google Scholar 

  • Akça Y, Polat AA (2007) Present status and future of walnut production in Turkey. Eur J Plant Sci Biotechnol 1(1):57–64

    Google Scholar 

  • Akça Y, Sütyemez M et al (2016) The new walnut variety breeding program in Turkey. VII international scientific agricultural symposium, Jahorina, Bosnia and Herzegovina, pp 461–466

    Google Scholar 

  • Aletà N, Olarte C, Truco MJ, Arus P (1990) Identification of walnut cultivars by isozyme analysis. Acta Hortic 284:91–96

    Article  Google Scholar 

  • Ali AM, Zubair SJ, Abbas AM et al (2016) Genetic diversity among walnuts (Juglans regia) population in Kurdistan region-Iraq using AFLP-PCR. ZANCO J Pure Appl Sci 28:50–55

    Google Scholar 

  • Aly MA, Fjellstrom RG, McGranahan GH et al (1992) Origin of walnut somatic embryos determined by RFLP and isozyme analysis. HortScience 27(1):61–63

    Article  Google Scholar 

  • Amiri R, Vahdati K, Mohsenipoor S et al (2010) Correlations between some horticultural traits in walnut. HortScience 45:1690–1694

    Article  Google Scholar 

  • Araji S, Grammer TA, Gertzen R et al (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164(3):1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arab MM, Marrano A, Abdollahi-Arpanahi R et al (2019) Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Sci Rep 9(1):6376

    Google Scholar 

  • Aradhya M, Woeste K, Velasco D (2009) Genetic diversity, structure and differentiation in cultivated walnut (Juglans regia L.). In: VI international Walnut symposium, vol 861, pp 127–132

    Google Scholar 

  • Arulsekar S, McGranahan GH, Parfitt DE (1986) Inheritance of phosphoglucomutase and esterase isozymes in Persian walnut. J Hered 77(3):220–221

    Article  CAS  Google Scholar 

  • Arzani K, Mansouri-Ardakan H, Vezvaei A et al (2008) Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran. N Z J Crop Hortic Sci 36(3):159–168

    Article  Google Scholar 

  • Asayesh ZM, Vahdati K, Aliniaeifard S (2017a) Investigation of physiological components involved in low water conservation capacity of in vitro walnut plants. Sci Hortic 224:1–7

    Article  CAS  Google Scholar 

  • Asayesh ZM, Vahdati K, Aliniaeifard S et al (2017b) Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Sci Hortic 220:114–121

    Article  Google Scholar 

  • Aslani Aslamarz A, Vahdati K, Rahemi M et al (2009) Estimation of chilling and heat requirements of some Persian walnut cultivars and genotypes. HortScience 44(3):697–701

    Article  Google Scholar 

  • Aslantaş R (2006) Identification of superior walnut (Juglans regia) genotypes in north-eastern Anatolia, Turkey. N Z J Crop Hortic Sci 34(3):231–237

    Article  Google Scholar 

  • Atefi J (1990) Preliminary research of Persian walnut and correlation between pair characters. Acta Hortic 284:97–104

    Article  Google Scholar 

  • Atefi J (1993) Evaluation of walnut genotypes in Iran. Acta Hortic 311:24–33

    Article  Google Scholar 

  • Atefi J (1997) Study on phonological and pomological characters on walnut promising clones in Iran. Acta Hortic 442:101–108

    Article  Google Scholar 

  • Avanzato D, McGranahan GH, Vahdati K et al (eds) (2014) Following walnut footprints (Juglans regia L.): cultivation and culture, folklore and history, traditions and uses. Scripta Horticulturae 17, ISHS

    Google Scholar 

  • Bâaziz KB, Lopez D, Bouzid S (2012) Early gene expression in the walnut tree occurring during stimulation of leaf hydraulic conductance by irradiance. Biol Plant 56(4):657–666

    Article  CAS  Google Scholar 

  • Bahrami Sirmandi H, Vahdati K (2009) Effect of carbohydrate source and polyethylene glycol on maturation and germination of somatic embryos in walnut (Juglans regia L.). Acta Hortic 839:165–172

    Article  Google Scholar 

  • Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188(3):892–901

    Article  PubMed  Google Scholar 

  • Bai WN, Yan PC, Zhang BW (2018) Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole genome sequences. New Phytol 217(4):1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Baojun Z, Yonghong G, Liqun H (2010) Overview of walnut culture in China. Acta Hortic 861:39–44

    Article  Google Scholar 

  • Baumgartner K, Fujiyoshi P, Browne GT et al (2013) Evaluating paradox walnut rootstocks for resistance to Armillaria root disease. HortScience 48(1):68–72

    Article  Google Scholar 

  • Bayazit S, Kazan K, Gülbitti S et al (2007) AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey. Sci Hortic 111(4):394–398

    Article  CAS  Google Scholar 

  • Bernard A, Lheureux F, Dirlewanger E (2018) Walnut: past and future of genetic improvement. Tree Genet Genomes 14(1):1–28

    Article  Google Scholar 

  • Bollersen V (2017) Revival der walnuss: neues und altes wissen zum walnussanbau in Deutschland. OLV Organic Farming Publication, Germany

    Google Scholar 

  • Bourre JM (2005) Dietary omega-3 fatty acids and psychiatry: mood, behavior, stress, depression, dementia and aging. J Nutr Health Aging 9(1):31–38

    CAS  PubMed  Google Scholar 

  • Britton M, Leslie C, McGranahan G et al (2007) Analysis of genes expressed in nematode–infected walnut plants (Unpublished raw data)

    Google Scholar 

  • Britton MT, Leslie CA, McGranahan GH et al (2009) Functional genomic analysis of walnut-nematode interactions. Walnut Research Reports Database

    Google Scholar 

  • Busov VB, Rink G, Woeste K (2002) Allozyme variation and mating system of black walnut (Juglans nigra L.) in the central hardwood region of the United States. For Genet 9(4):315–322

    CAS  Google Scholar 

  • Chakraborty S, Britton M, Martínez-García PJ et al (2016) Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues. AMB Express 6(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalupa V (1981) Clonal propagation of broad-leaved forest trees in vitro. Commun Inst Cech 12:255–271

    Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 10(6):595–608

    Article  CAS  PubMed  Google Scholar 

  • Chen L-H, Hu T-X, Zhang F, Li G–H (2008) Genetic diversities of four Juglans populations revealed by AFLP in Sichuan province, China. J Plant Ecol 32:1362–1372

    CAS  Google Scholar 

  • Chen L-H, Hu T-X, Zhang F (2009) AFLP analysis on genetic diversity of Juglans populations in dry and dry-hot valleys of Sichuan province. J Fruit Sci 26:48–54

    Google Scholar 

  • Chen C-M, Han S-J, Yuan S-S et al (2013) Isolation and characterization of 20 polymorphic microsatellite markers for Juglans mandshurica (Juglandaceae). Appl Plant Sci 1:1–4

    Article  Google Scholar 

  • Chen X, Xu L, Zhang SL, Liu ZQ (2014) Walnut genebank in China national clonal plant germplasm repository. Acta Hortic 1050:89–94

    Article  CAS  Google Scholar 

  • Cheng SZ, Yang WH (1987) Taxonomic studies of ten species of the genus Juglans based on isozymic zymograms. Acta Hortic Sin 14(2):90–96

    Google Scholar 

  • Choi S, Wing RA (2000) The construction of bacterial artificial chromosome (BAC) libraries. Plant Mol Biol Man H5:1–28

    Google Scholar 

  • Christopoulos MV, Rouskas D, Tsantili E et al (2010) Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by inter-simple sequence repeat (ISSR) markers. Sci Hortic 125(4):584–592

    Article  CAS  Google Scholar 

  • Ciarmiello LF, Piccirillo P, Pontecorvo G et al (2011) A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Mol Biol Rep 38(2):1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Colaric M, Veberic R, Solar A et al (2005) Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J Agr Food Chem 53(16):6390–6396

    Article  CAS  PubMed  Google Scholar 

  • Cornu D (1988) Somatic embryogenesis in tissue culture of walnut (Juglans regia, J. major and hybrids J. nigra x J. regia). In: Ahuja MR (ed) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Boston, pp 45–49

    Google Scholar 

  • Cornu D (1989) Walnut somatic embryogenesis, physiological and histological aspects. Ann Sci For 46S:133–135

    Article  Google Scholar 

  • Cornu D, Jay-Allemand C (1989) Micropropagation of hybrid walnut trees (Juglans nigra x Juglans regia) through culture and multiplication of embryos. Ann Sci For 46S:113–135

    Article  Google Scholar 

  • Cossio F, Minolta G (1983) Prove preliminary di coltura in vitro di embrioni isolati di noce (Juglans regia L). e confronto tra differenti combinazioni di Sali minerali. Rivista Ortoflorofrutticoltora Italiana 67:287–298

    Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008: 619832

    Google Scholar 

  • Dandekar AM, Martin LA, McGranahan G (1988) Genetic transformation and foreign gene expression in walnut tissue. J Am Soc Hortic Sci (USA)

    Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV et al (1994) Low levels of expression of wild type Bacillus thuringiensis var. Kurstaki cryIA (c) sequences in transgenic walnut somatic embryos. Plant Sci 1;96(1-2):151–162

    Article  CAS  Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV et al (1998) High levels of expression of full-length cryIA (c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131(2):181–193

    Article  CAS  Google Scholar 

  • Dandekar A, Leslie C, McGranahan G (2005) Juglans regia walnut. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publisher, Cambridge, pp 307–324

    Chapter  Google Scholar 

  • Dang M, Liu Z-X, Chen X et al (2015) Identification, development, and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. Biochem Syst Ecol 60:74–80

    Article  CAS  Google Scholar 

  • Dang M, Zhang T, Hu Y et al (2016) De Novo assembly and characterization of bud, leaf and flowers Transcriptome from Juglans regia L. for the identification and characterization of new EST-SSRs. Forests 7(10):247–263

    Article  Google Scholar 

  • Dangl GS, Woeste K, Aradhya MK et al (2005) Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J Am Soc Hortic Sci 130:348–354

    Article  CAS  Google Scholar 

  • Daniell H, Lin CS, Yu M et al (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng MD, Cornu D (1992) Maturation and germination of walnut somatic embryos. Plant Cell Tissue Organ Cult 28:195–202

    Article  Google Scholar 

  • Dogan M, Akgul A (2005) Fatty acid composition of some walnut (Juglans regia L.) cultivars from east Anatolia. Grasas Aceites 56(4):328–331

    Article  CAS  Google Scholar 

  • Dong W, Xu C, Li W et al (2017) Phylogenetic resolution in Juglans based on complete chloroplast genomes and nuclear DNA sequences. Front Plant Sci 30(8):1148

    Article  Google Scholar 

  • Dreher ML, Maher CV, Kearney P (1996) The traditional and emerging role of nuts in healthful diets. Nutr Rev 54(8):241–245

    Article  CAS  PubMed  Google Scholar 

  • Driver JA (1985) Direct field rooting and acclimatization of tissue–culture cuttings. In Vitro Cell Dev Biol 21(3):57

    Google Scholar 

  • Driver JA (1986) Method for acclimatizing and propagating plant tissue culture shoots. U.S. Patent No. 4,612,725. 23 Sep 1986

    Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut Juglans hindsii × Juglans regia rootstock. HortScience 19:507–509

    Google Scholar 

  • Dvorak J, Luo MC, Aradhya M et al (2008) Walnut genome analysis. Walnut Research Reports Database

  • Dvorak J, Luo MC, Aradhya M et al (2011) Walnut genome analysis. Walnut Research Reports Database

  • Dvorak J, Aradhaya M, Leslie C et al (2015) Discovery of the causative mutation of the lateral bearing phenotype in walnut. Walnut Research Reports Database

  • Ebrahimi A, Fatahi R, Zamani Z (2011) Analysis of genetic diversity among some Persian walnut genotypes (Juglans regia L.) using morphological traits and SSRs markers. Sci Hortic 130(1):146–151

    Article  CAS  Google Scholar 

  • Ebrahimi A, Khadivi–Khub A, Nosrati Z et al (2015) Identification of superior walnut (Juglans regia) genotypes with late leafing and high kernel quality in Iran. Sci Hortic 193:195–201

    Article  Google Scholar 

  • Ebrahimi A, Zarei A, McKenna JR et al (2017) Genetic diversity of Persian walnut (Juglans regia) in the cold temperate zone of the United States and Europe. Sci Hortic 220:36–41

    Article  Google Scholar 

  • El Euch C, Jay-Allemand C, Pastuglia et al (1998) Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability. Plant Mol Biol 38:467–479

    Article  PubMed  Google Scholar 

  • Emilia M, Spada M, Beritognolo I et al (1995) Differentiation of walnut hybrids (Juglans nigra L. X Juglans regia L.) through RAPD markers. III Int Walnut Congr 442(13):43–52

    Google Scholar 

  • Ertürk U, Akça Y (2014) Overview of walnut culture in Turkey. Acta Hortic 1050:369–372

    Article  Google Scholar 

  • Erturk UM, Dalkilic ZE (2011) Determination of genetic relationship among some walnut (Juglans regia L.) genotypes and their early-bearing progenies using RAPD markers. Rom Biotechnol Lett 16(1):5944–5952

    Google Scholar 

  • Escobar MA, Park JI, Polito VS et al (2000) Using GFP as a scorable marker in walnut somatic embryo transformation. Ann Bot 85(6):831–835

    Article  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR et al (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci 98(23):13437–13442

    Article  CAS  Google Scholar 

  • Escobar MA, Leslie CA, McGranahan GH et al (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163(3):591–597

    Article  CAS  Google Scholar 

  • Escobar MA (2013) RNA-seq and metabolite profiling reveal novel functions for the polyphenol oxidase enzyme in walnut (Juglans regia). Plant and animal genome XXI conference, San Diego, CA

    Google Scholar 

  • FAO (2016) FAO statistical yearbook. Agricultural production. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC

  • Fatahi R, Ebrahimi A, Zamani Z (2010) Characterization of some Iranians and foreign walnut genotypes using morphological traits and RAPD markers. Hortic Environ Biotechnol 51(1):51–60

    CAS  Google Scholar 

  • Famula RA, Richards JH, Famula TR et al (2019) Association genetics of carbon isotope discrimination and leaf morphology in a breeding population of Juglans regia L. Tree Genet Genomes 15(1):6

    Google Scholar 

  • Farooqui A, Khan A, Borghetto I et al (2015) Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. PloS one 10(2):e0118431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Zhang Z, Zhang S et al (2011) Development of walnut EST-SSR markers and primer design. Agric Sci Tech-Hunan 12(12):1810–1813

    CAS  Google Scholar 

  • Fjellstrom RG, Parfitt DE (1994a) RFLP inheritance and linkage in walnut. Theor Appl Genet 89(6):665–670

    Article  CAS  PubMed  Google Scholar 

  • Fjellstrom RG, Parfitt DE (1994b) Walnut (Juglans spp.) genetic diversity determined by restriction fragment length polymorphisms. Genome 37(4):690–700

    Article  CAS  PubMed  Google Scholar 

  • Fjellstrom RG, Parfitt DE, McGranahan GH (1994) Genetic relationships and characterization of Persian walnut (Juglans regia L.) cultivars using restriction fragment length polymorphisms (RFLPs). J Am Soc Hortic Sci 119(4):833–839

    Article  CAS  Google Scholar 

  • Fornari B, Malvolti ME, Taurchini D et al (2001) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. Acta Hortic 544:167–178

    Article  CAS  Google Scholar 

  • Forde HI (1975) Walnuts. In: Janick J, Moore JN (eds) Advances in Fruit Breeding. Purdue University Press, West Lafayette, pp 439–455

    Google Scholar 

  • Foroni I, Rao R, Woeste K et al (2005) Characterization of Juglans regia L. with SSR markers and evaluation of genetic relationships among cultivars and the ‘Sorrento’ landrace. J Hortic Sci Biotechnol 80(1):49–53

    Article  CAS  Google Scholar 

  • Foroni I, Woeste K, Monti LM et al (2007) Identification of “Sorrento” walnut using simple sequence repeats (SSRs). Genet Resour Crop Evol 54(5):1081–1094

    Article  Google Scholar 

  • Francesca PI, Pamfil DO, Raica P et al (2010) Assessment of the genetic variability among some Juglans cultivars from the Romanian National Collection at SCDP Valcea using RAPD markers. Rom Biotechnol Lett 15(1):41–49

    CAS  Google Scholar 

  • Gady AL, Hermans FW, Van de Wal MH et al (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gandev S (2007) Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria (Review). Bulgarian J Agric Sci 13:683–689

    Google Scholar 

  • Germain E (1990) Inheritance of late leafing and lateral bud fruitfulness in walnut, phenotypic correlations among some traits of the trees. Acta Hortic 284:125–134

    Article  Google Scholar 

  • Germain E (1997) Genetic improvement of the Persian walnut (Juglans regia L.). Acta Hortic 442:21–32

    Article  Google Scholar 

  • Germain E (1999) Le Noyer. Centre Technique Interpr. des Fruits et Legumes (CTIFL) Publication 280

    Google Scholar 

  • Germanà M (2012) Use of irradiated pollen to induce parthenogenesis and haploid production in fruit crops. In: Shu QY, Brian PF, Hitoshi N, Hitoshi N (eds) Plant mutation breeding and biotechnology. CABI Press, Wallingford, pp 409–419

    Google Scholar 

  • Godwin ID, Aitken EA, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18(9):1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruselle R, Badia N, Boxus P (1987) Walnut micropropagation: first results. Acta Hortic 212:511–516

    Article  Google Scholar 

  • Gunn BF, Aradhya M, Salick JM et al (2010) Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97(4):660–671

    Google Scholar 

  • Han H, Woeste KE, Hu Y et al (2016) Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL). Tree Genet Genomes 12(6):111

    Article  Google Scholar 

  • Hansche PE, Beres V, Forde HI (1972) Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement. J Am Soc Hortic Sci 97:279–285

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation: principles and practices, 6th edn. Prentice Hall International, New York 

    Google Scholar 

  • Hasey JK, Westerdahl BB, Micke W et al (2001) Yield performance of own-rooted ‘Chandler’ walnut versus ‘Chandler’ walnut on Paradox rootstock. Acta Hortic 544:489–493

    Article  Google Scholar 

  • Hassani D, Dastjerdi R, Haghjooyan R et al (2014) Genetic improvement of Persian walnut (Juglans regia L.) in Iran. Acta Hortic 1050:95–102

    Article  Google Scholar 

  • He F, Wang H, Zhang Z et al (2010) Identification of walnut cultivars with AFLP fingerprinting. Acta Hortic 861:151–154

    Article  CAS  Google Scholar 

  • He J, Zhao X, Laroche A et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker–assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 30(5):484

    Google Scholar 

  • Hestekin CN, Jakupciak JP, Chiesl TN et al (2006) An optimized microchip electrophoresis system for mutation detection by tandem SSCP and heteroduplex analysis for p53 gene exons 5–9. Electrophoresis 27(19):3823–3835

    Article  CAS  PubMed  Google Scholar 

  • Hoban S, Anderson R, McCleary T et al (2008) Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Mol Ecol Resour 8(3):643–646

    Article  CAS  PubMed  Google Scholar 

  • Hu YH, Zhao P, Zhang Q et al (2015) De novo assembly and characterization of transcriptome using Illumina sequencing and development of twenty five microsatellite markers for an endemic tree Juglans hopeiensis Hu in China. Biochem Syst Ecol 63:201–211

    Article  CAS  Google Scholar 

  • Hu Y, Woeste KE, Dang M et al (2016) The complete chloroplast genome of common walnut (Juglans regia). Mitochondrial DNA B 1(1):189–190

    Article  Google Scholar 

  • Hu Y, Dang M, Feng X et al (2017a) Genetic diversity and population structure in the narrow endemic Chinese walnut Juglans hopeiensis Hu: implications for conservation. Tree Genet Genomes 13(4):91

    Article  Google Scholar 

  • Hu Y, Woeste KE, Zhao P (2017b) Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny. Front Plant Sci 6(7):1955

    Google Scholar 

  • Huang W-Y, Davidge ST, Wu J (2013) Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment. Crit Rev Food Sci Nutr 53:615–630

    Article  CAS  PubMed  Google Scholar 

  • IHGSC (2004) International human genome sequencing consortium: finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Article  CAS  Google Scholar 

  • Ikhsan AS, Topçu H, Sütyemez M et al (2016) Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): effects of motif types and repeat lengths on polymorphism and genetic diversity. Sci Hortic 213:1–4

    Article  CAS  Google Scholar 

  • Iwata H, Minamikawa MF, Kajiya-Kanegae H et al (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66(1):100–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahanbani R, Ghaffari SM, Salami M et al (2016a) Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods Hum Nutr 71(4):402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahanbani R, Ghaffari SM, Vahdati K et al (2016b) Kinetics study of protein hydrolysis and inhibition of angiotensin converting enzyme by peptides hydrolysate extracted from walnut. Int J Pept Res Ther 24:77–85

    Article  CAS  Google Scholar 

  • Jahanbani R, Ghaffari M, Vahdati K et al (2018) Kinetics study of protein hydrolysis and inhibition of angiotensin converting enzyme by peptides hydrolysate extracted from walnut. Int J Pept Res Ther 24(1):77–85

    Article  CAS  Google Scholar 

  • Jay-Allemand C, Capelli P, Cornu D (1992) Root development of in vitro hybrid walnut microcuttings in a vermiculite–containing gelrite medium. Sci Hortic 51(3–4):335–342

    Article  Google Scholar 

  • Ji A, Wang Y, Wu G et al (2014) Genetic diversity and population structure of North China mountain walnut revealed by ISSR. Am J Plant Sci 5(21):3194–3202

    Article  Google Scholar 

  • Kafkas S, Ozkan H, Sütyemez M (2005) DNA polymorphism and assessment of genetic relationships in walnut genotypes based on AFLP and SAMPL markers. J Am Soc Hortic Sci 130:585–590

    Article  CAS  Google Scholar 

  • Karimi R, Ershadi A, Vahdati K et al (2010) Molecular characterization of Persian walnut populations in Iran with microsatellite markers. HortScience 45:1403–1406

    Article  Google Scholar 

  • Karimi R, Ershadi A, Ehteshamnia A et al (2014) Morphological and molecular evaluation of Persian walnut populations in northern and western regions of Iran. J Nuts 2:21–31

    Google Scholar 

  • Keqiang Y, Yuejin W, Yindong Z et al (2002) RAPD analysis for the identification of the precocious trait in walnuts. Acta Hortic Sin 29:573–574

    Google Scholar 

  • Khan MW, Khan IA, Ahmad H et al (2010) Estimation of genetic diversity in walnut. Pak J Bot 42:1791–1796

    Google Scholar 

  • Kluepfel D, Leslie C, Aradhya M et al (2015) Development of disease-resistant walnut rootstocks: integration of conventional and genomic approaches. Walnut Research Reports Database

  • Laurens F, Aranzana MJ, Arus P et al (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic Res 5(1):1–14

    Article  CAS  Google Scholar 

  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ (2004) Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breed 13(2):113–124

    Article  CAS  Google Scholar 

  • Lee BC, Shim SY, Lee SK (1988) Mass propagation and germination of somatic embryos in Juglans regia L. (English walnut). Res Rep Inst Genet Korea 24:99–106

    CAS  Google Scholar 

  • Leslie CA (2016) New walnut varieties. UC Davis walnut improvement program. Department of Plant Science, Sacramento Solano Yolo Walnut Day, February 23rd 2016. http://ccfruitandnuts.ucanr.edu/files/239180.pdf

  • Leslie CA, McGranahan GH (2014) The California walnut improvement program: scion breeding and rootstock development. Acta Hortic 1050:81–88

    Article  Google Scholar 

  • Leslie CA, McGranahan GH, Hackett W et al (2009) Walnut improvement programs. Walnut Research Reports, University of California, Davis

    Google Scholar 

  • Li Z, Lanying Z, Qianwen X (2007) Identification of RAPD markers linked to thickness gene of shuck in walnut. Adv Biol Res 1:137–140

    Google Scholar 

  • Li W, Ma M, Sun C et al (2010) Development of a SCAR marker linked to precocious trait in walnut (Juglans regia). Sci Silvae Sin 46(3):56–61

    Google Scholar 

  • Li Y, Luo X, Wu C (2017) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in red and green walnut (Juglans regia L.). Molecules 23(1):25

    Article  PubMed Central  CAS  Google Scholar 

  • Liu C, Shi L, Zhu Y et al (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13(1):715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Walawage SL, Leslie CA et al (2017) In vitro gene expression and mRNA translocation from transformed walnut (Juglans regia) rootstocks expressing DsRED fluorescent protein to wild-type scions. Plant cell Rep 36(6):877–885

    Article  CAS  PubMed  Google Scholar 

  • Long LM, Preece JE, Van Sambeek JW (1995) Adventitious regeneration of Juglans nigra L. (eastern black walnut). Plant Cell Rep 8:512–516

    Google Scholar 

  • Luo MC, Thomas C, You FM et al (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82(3):378–389

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo M-C, You FM, Li P et al (2015) Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials. BMC Genomics 16(1):707

    Google Scholar 

  • Ma Q, Zhang J, Pei D (2011) Genetic analysis of walnut cultivars in China using fluorescent amplified fragment length polymorphism. J Am Soc Hortic Sci 136:422–428

    Article  CAS  Google Scholar 

  • Maguire LS, OSullivan SM, Galvin K et al (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55(3):171–178

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodi R, Rahmani F, Rezaee R (2013) Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers. Span J Agric Res 11(2):431–437

    Article  Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP et al (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Malvolti ME, Paciucci M, Cannata F et al (1993) Genetic variation in Italian populations of Juglans regia L. Acta Hortic 311:86–94

    Article  Google Scholar 

  • Malvolti ME, Fineschi S, Pigliucci M (1994) Morphological integration and genetic variability in Juglans regia L. J Hered 85(5):389–394

    Article  Google Scholar 

  • Malvolti ME, Fornari B, Maccaglia E et al (2001) Genetic linkage mapping in an intraspecific cross of walnut (Juglans regia L.) using molecular markers. Acta Hortic 544:179–185

    Article  CAS  Google Scholar 

  • Malvolti ME, Pollegioni P, Bertani A et al (2010) Juglans regia provenance research by molecular, morphological and biochemical markers: a case study in Italy. Biorem Biodiv Bioavail 4:84–92

    Google Scholar 

  • Martínez-García PJ, Crepeau M, Puiu D et al (2014) Application of marker breeding in the walnut improvement program. Walnut Research Reports Database

  • Martínez-García PJ, Crepeau MW, Puiu D et al (2016) The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J 87(5):507–532

    Article  PubMed  CAS  Google Scholar 

  • Martínez-García PJ, Famula RA, Leslie C et al (2017) Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genet Genomes 13(5):109

    Article  Google Scholar 

  • Marrano A, Martínez-García PJ, Bianco L et al (2019) A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnol J 17(6):1027–1036

    Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3(1):200–231

    Article  Google Scholar 

  • Mba C, Afza R, Bado S et al (2010) Induced mutagenesis in plants using physical and chemical agents. In: Plant cell culture, essential methods, vol 20. Chichester, Wiley, pp 111–130

    Chapter  Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGranahan GH, Catlin PB (1987) Juglans rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 411–450

    Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL et al (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/technology 6(7):800

    Article  CAS  Google Scholar 

  • McGranahan GH, Leslie CA (1991) Walnuts (Juglans). Acta Hortic 290:905–951

    Google Scholar 

  • McGranahan GH, Leslie CA (2004) Three new walnut varieties: Sexton, Gillet and Forde. Walnut Research Reports, University of California, Davis

    Google Scholar 

  • McGranahan GH, Leslie CA (2005) Advances in genetic improvement of walnut at the University of California, Davis. Acta Hortic 705:117–122

    Article  Google Scholar 

  • McGranahan GH, Tulecke W, Arulsekar S, Hansen JJ (1986) Intergeneric hybridization in the Juglandaceae: Pterocarya sp × Juglans regia. J Am Soc Hortic Sci 111:627–630

    Google Scholar 

  • McGranahan G, Leslie C, Uratsu S et al (1990) Improved efficiency of the walnut somatic embryo gene transfer system. Plant Cell Rep 8:512–516

    Article  CAS  PubMed  Google Scholar 

  • Milind P, Deepa K (2011) Walnut: not a hard nut to crack. Int Res J Pharm 2(5):8–17

    Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51(4):497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsenipoor S, Vahdati K, Amiri R et al (2010) Study of the genetic structure and gene flow in Persian walnut (Juglans regia L.) using SSR markers. Acta Hortic 861:133–142

    Article  CAS  Google Scholar 

  • Molnar TJ, Zaurov DE, Capik JM et al (2011) Persian walnut (Juglans regia L.) in Central Asia. Annu Rep North Nut Grow Assoc 101:56–69

    Google Scholar 

  • Muir R, Baek J, Leslie A et al (2004) Analysis of genes expressed in walnut seed coat tissue (Unpublished raw data)

    Google Scholar 

  • Najafi F, Mardi M, Fakheri B et al (2014) Isolation and characterization of novel microsatellite markers in walnut (Juglans regia L.). Am J Plant Sci 5(03):409–415

    Article  CAS  Google Scholar 

  • Navatel JC, Bourrain L (2001) Plant production of walnut Juglans regia L. by in vitro multiplication. Acta Hortic 544:465–471

    Article  Google Scholar 

  • Neale DB, Marrano A, Sideli GM et al (2017) Application of marker breeding in the walnut improvement program (WIP). Walnut Research Reports Database

  • Nicese FP, Hormaza JI, McGranahan GH (1998) Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica 101(2):199–206

    Article  CAS  Google Scholar 

  • Nimbolkar PK, Awachare C, Reddy YTN et al (2016) Role of rootstocks in fruit production–a review. J Agric Eng Food Technol 3:183–188

    Google Scholar 

  • Ninot A, Aleta N (2003) Identification and genetic relationship of Persian walnut genotypes using isozyme markers. J Am Pomol Soc 57(3):106

    Google Scholar 

  • Noor Shah U, Mir JI, Ahmed N, Fazili KM (2016) Assessment of germplasm diversity and genetic relationships among walnut (Juglans regia L.) genotypes through microsatellite markers. J Saudi Soc Agric Sci. https://www.sciencedirect.com/science/article/pii/S1658077X16300662

  • Obermeier C, Friedt W (2015) Applied oilseed raps marker technology and genomics. In: Poltronieri P, Hong Y (eds) Applied plant genomics and biotechnology (No. 72). Woodhead Publishing, Cambridge, pp 253–295

    Chapter  Google Scholar 

  • Ogbu JU (2014) Genetic resources and biodiversity conservation in Nigeria through biotechnology approaches. In: Ahuja M, Ramawat K (eds) Biotechnology and biodiversity. Sustainable development and biodiversity, vol 4. Springer, Cham, pp 271–285

    Chapter  Google Scholar 

  • Ölez H (1971) Studies on the selection of walnut (Juglans regia L.) in the Marmara region. Bahçe 4:7–21

    Google Scholar 

  • Ozcan A, Bukucu SB, Sutyemez M (2017) Determination of pollen quality and production in new walnut cultivars. Asian J Agric Res 11:93–97

    Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (1996) Making genetic maps. In: Paterson AH (ed) Genome mapping in plants. Academic, Austin, pp 23–39

    Google Scholar 

  • Pathak MR, Abido MS (2014) The role of biotechnology in the conservation of biodiversity. J Exp Biol 2(4):352–363

    Google Scholar 

  • Pereira JA, Oliveira I, Sousa A et al (2008) Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem Toxicol 46(6):2103–2111

    Article  CAS  PubMed  Google Scholar 

  • Polito VS, McGranahan GH, Pinney K, Leslie CA (1989) Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): implications for Agrobacterium-mediated transformation. Plant Cell Rep 8:219–221

    Article  CAS  PubMed  Google Scholar 

  • Pollegioni P, Bartoli S, Cannata F et al (2003) Genetic differentiation of four Italian walnut (Juglans regia L.) varieties by intersimple sequence repeat (ISSR). J Genet Breed 57:231–240

    CAS  Google Scholar 

  • Pollegioni P, Woeste K, Major A et al (2008) Characterization of Juglans nigra L., Juglans regia L. and Juglans ×intermedia (Carr.) by SSR markers:a case study in Italy. Silvae Genet 57:68–78

    Google Scholar 

  • Pollegioni P, Woeste K, Mugnozza GS et al (2009) Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis. Mol Breed 24(4):321–335

    Article  CAS  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I et al (2011) Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7(4):707–723

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Chiocchini F et al (2017) Rethinking the history of common walnut (Juglans regia L.) in Europe: its origins and human interactions. PLoS One 12(3):0172541

    Article  CAS  Google Scholar 

  • Pop IF, Pamfil D, Raica P et al (2010) Assessment of the genetic variability among some Juglans cultivars from the Romanian National Collection at S.C.D.P. Vâlcea using RAPD markers. Rom Biotechnol Lett 15:41–49

    Google Scholar 

  • Pop IF, Vicol AC, Botu M et al (2013) Relationships of walnut cultivars in a germplasm collection: comparative analysis of phenotypic and molecular data. Sci Hortic 153:124–135

    Article  Google Scholar 

  • Potter D, Gao F, Aiello G et al (2002) Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut (Juglans regia) cultivars. J Am Soc Hortic Sci 127:75–81

    Article  CAS  Google Scholar 

  • Qi J, Hao Y, Zhu Y et al (2011) Studies on germplasm of Juglans by ESTSSR markers. Acta Hortic Sin 38:441–448

    CAS  Google Scholar 

  • Qianwen X, Kaizhi W, Lanying Z et al (2010) RAPD markers and heterotic effect of walnut quality in Sichuan of China. Adv Biol Res 4(2):81–85

    Google Scholar 

  • Qing Guo M, Jing Q, Dong P (2010) FISH–AFLP analysis of genetic diversity of early-fruiting walnut cultivars. For Res 23:631–636

    Google Scholar 

  • Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos DE (1997) Walnut production manual, vol 3373. UCANR Publications, Oakland

    Google Scholar 

  • Ramos D, Doyle J (1984) Walnut research and industry survey – France. Walnut Research Reports, University of California, Davis, pp 49–55

    Google Scholar 

  • Rao G, Sui J, Zhang J (2016) Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol Open 5(6):829–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla MA, Majada J, Rodriguez R (1989) Walnut (Juglans regia L.) micropropagation. For Tree Physiol 46:149–151

    Google Scholar 

  • Rikkerink EH, Oraguzie NC, Gardiner SE (2007) Prospects of association mapping in perennial horticultural crops. In: Association mapping in plants. Springer, New York, pp 249–269

    Chapter  Google Scholar 

  • Ripetti V, Kevers CL, Gaspar T (1994) Two successive media for the rooting of walnut shoots in vitro. Changes in peroxidases activity and in ethylene production. Adv Hortic Sci 8:29–32

    Google Scholar 

  • Robichaud RL, Glaubitz JC, Rhodes OE et al (2006) A robust set of black walnut microsatellites for parentage and clonal identification. New For 32(2):179–196

    Article  Google Scholar 

  • Rodriguez R (1982) Stimulation of multiple shoot-bud formation in walnut seeds [Vegetative propagation, Juglans regia]. HortScience (USA)

    Google Scholar 

  • Rodriguez R, Lopez C, Diaz-Sala C, Berros B (1993) Simultaneous shoot-bud development on walnut tissues of different ages: macro morphological and histological analyses. Acta Hortic 311:141–152

    Article  Google Scholar 

  • Roor W, Konrad H, Mamadjanov D et al (2017) Population differentiation in common walnut (Juglans regia L.) across major parts of its native range-insights from molecular and morphometric data. J Hered 108(4):391–404

    Article  PubMed  Google Scholar 

  • Ros E, Nunez I, Perez-Heras A, Serra M, Gilabert R et al (2004) A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation 109:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Ross-Davis A, Huang Z, McKenna J (2008) Morphological and molecular methods to identify butternut (Juglans cinerea) and butternut hybrids: relevance to butternut conservation. Tree Physiol 28(7):1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Ru S, Main D, Evans K et al (2015) Current applications, challenges, and perspectives of marker–assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11(1):8

    Article  Google Scholar 

  • Ruiz-Garcia L, Lopez-Ortega G, Denia AF, Tomas DF (2011) Identification of a walnut (Juglans regia L.) germplasm collection and evaluation of their genetic variability by microsatellite markers. Span J Agric Res 9(1):179–192

    Article  Google Scholar 

  • Saadata YA, Hennerty MJ (2002) Factors affecting the shoot multiplication of Persian walnut (Juglans regia L.). Sci Hortic 95:251–260

    Article  Google Scholar 

  • Sadat Hosseini Grouh MS, Vahdati K, Lotfi M et al (2011) Production of haploids in Persian walnut through parthenogenesis induced by gamma-irradiated pollen. J Am Soc Hortic Sci 136(3):198–204

    Article  Google Scholar 

  • Sarikhani Khorami S, Arzani K, Karimzadeh G et al (2018) Genome size; a novel predictor of nut weight and nut size of walnut trees. HortScience 53(3):275–282

    Article  Google Scholar 

  • Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Bjørnstad A, Ndjiondjop MN (2006) Principles, requirements and prospects of genetic mapping in plants. Afr J Biotechnol 5:2569–2587

    CAS  Google Scholar 

  • Sheikh Beig Goharrizi MA, Dejahang A, Tohidfar M et al (2016) Agrobacterium mediated transformation of somatic embryos of Persian walnut using fld gene for osmotic stress tolerance. J Agric Sci Technol 18:423–435

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H et al (2012a) Principles and applications of plant mutation breeding. In: Plant mutation breeding and biotechnology. CABI, Wallingford, pp 301–325. https://www.cabi.org/bookshop/book/9781780640853

    Chapter  Google Scholar 

  • Shu QY, Shirasawa K, Hoffmann M et al (2012b) Molecular techniques and methods for mutation detection and screening in plants. In: Plant mutation breeding and biotechnology. CABI/FAO, Oxfordshire, pp 241–256

    Chapter  Google Scholar 

  • Singh RK, Mishra GP, Thakur AK et al (2008) Molecular markers in plants. In: Singh RK, Singh R, Ye G et al (eds) Molecular plant breeding: principle, method and application. Studium Press LLC, Houston, pp 35–78

    Google Scholar 

  • Siqueira APS, Pacheco MTB, Naves MMV (2015) Nutritional quality and bioactive compounds of partially defatted baru almond flour. Food Sci Technol 35:127–132

    Article  Google Scholar 

  • Solar A, Colarič M, Usenik V et al (2006) Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci 170(3):453–461

    Article  CAS  Google Scholar 

  • Solar A, Smole J, Stampar F, Viršček-Marn M (1994) Characterization of isozyme variation in walnut (Juglans regia L.). Euphytica 77(1–2):105–112

    Article  CAS  Google Scholar 

  • Sommers PW, Van Sambeek JW, Preece JE et al (1982) In vitro micropropagation of black walnut. In: Proceedings of the 7th North America forest biology. University Kentucky Press, Lexington, pp 224–230

    Google Scholar 

  • Stevens KA, Woeste K, Chakraborty S et al (2018) Genomic variation among and within six Juglans species. G3: Genes Genomes Genet 8:2153–2165

    Article  CAS  Google Scholar 

  • Suo Z, Chen L, Pei D et al (2015) A new nuclear DNA marker from ubiquitin ligase gene region for genetic diversity detection of walnut germplasm resources. Biotechnol Rep 5(1):40–45

    Article  Google Scholar 

  • Sütyemez M (2006) Comparison of AFLP polymorphism in progeny derived from dichogamous and homogamous walnut genotypes. Pak J Biol Sci 9:2303–2307

    Article  Google Scholar 

  • Szarejko I (2012) Haploid mutagenesis. In: Plant mutation breeding and biotechnology. CABI, Wallingford, pp 387–410

    Chapter  Google Scholar 

  • Taheri S, Abdullah TL, Ahmad Z et al (2014) Effect of acute gamma irradiation on Curcuma alismatifolia varieties and detection of DNA polymorphism through SSR marker. Biomed Res Int 2014:631813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taheri S, Abdullah TL, Jain SM et al (2017) TILLING, high-resolution melting (HRM), and next–generation sequencing (NGS) techniques in plant mutation breeding. Mol Breed 37(3):40

    Article  CAS  Google Scholar 

  • Tang H, Ren Z, Reustle G, Krczal G (2001) Optimizing secondary somatic embryo production in English walnut (Juglans regia L.). Acta Hortic 544:187–194

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7(3):257

    Article  CAS  Google Scholar 

  • Topçu H, Ikhsan AS, Sütyemez M et al (2015) Development of 185 polymorphic simple sequence repeat (SSR) markers from walnut (Juglans regia L.). Sci Hortic 194:160–167

    Article  CAS  Google Scholar 

  • Tulecke W, McGranahan GH (1985) Somatic embryogenesis and plant regeneration from cotyledons of walnut, Juglans regia L. Plant Sci 40:57–63

    Article  Google Scholar 

  • Tulecke W, McGranahan G, Ahmadi H (1988) Regeneration by somatic embryogenesis of triploid plants from endosperm of walnut, Juglans regia L. cv Manregian. Plant cell Rep 7(5):301– 304

    Article  CAS  PubMed  Google Scholar 

  • Tulecke W, McGranahan G (1994) The walnut germplasm collection of the University of California, Davis. A description of the collection and a history of the breeding program of Eugene F Serr and Harold I Forde. Report no. 13. University of California Genetic Resources Conservation Program, Davis, CA

    Google Scholar 

  • Tulecke W, McGranahan G, Ahmadi H (1988) Regeneration by somatic embryogenesis of triploid plants from endosperm of walnut, Juglans regia L. cv Manregian. Plant Cell Rep 7(5):301–304

    Article  CAS  PubMed  Google Scholar 

  • Vahdati K (2000) Walnut situation in Iran. Nucis Newsl 9:32–33

    Google Scholar 

  • Vahdati K (2014) Walnut tolerance to abiotic stresses: approaches and prospects. Acta Hortic 1050:399–406

    Article  Google Scholar 

  • Vahdati K, Mohseniazar M (2016) Early bearing genotypes of walnut: a suitable material for breeding and high–density orchards. Acta Hortic 1139(2):101–106

    Article  Google Scholar 

  • Vahdati K, Rezaee R (2014) Behavior of some early mature and dwarf persian walnut trees in Iran. Acta Hortic 1050:189–196

    Article  Google Scholar 

  • Vahdati K, Leslie C, Zamani Z, McGranahan G (2004) Rooting and acclimatization of in vitro-grown shoots from mature trees of three Persian walnut cultivars. HortScience 39(2):324–327

    Article  Google Scholar 

  • Vahdati K, Jariteh M, Niknam V et al (2006) Somatic embryogenesis and embryo maturation in Persian walnut. Acta Hortic 705:199–205

    Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H et al (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult 93(2):163–171

    Article  CAS  Google Scholar 

  • Vahdati K, Hassani D, Rezaee R et al (2014) Following walnut footprints (Juglans regia L.) cultivation and culture, folklore and history, traditions and uses. In: Avanzato D, McGranahan GH, Vahdati K et al (eds) Walnut footprint in Iran. Scripta Horticulturae (ISHS) 17:187–201

    Google Scholar 

  • Vahdati K, Pourtaklu SM, Karimi R et al (2015) Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. Plant Syst 301(2):691–699

    Article  Google Scholar 

  • Vahdati K, Asayesh ZM, Aliniaeifard S et al (2017) Improvement of ex vitro desiccation through elevation of CO2 concentration in the atmosphere of culture vessels during in-vitro growth. HortScience 52(7):1006–1012

    Article  Google Scholar 

  • van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahdati K, McKenna JR, Dandekar AM et al (2002) Rooting and other characteristics of a transgenic walnut hybrid (Juglans hindsii× J. regia) rootstock expressing rolABC. J Am Soc Hortic Sci 127(5):724–728

    Article  Google Scholar 

  • Victory ER, Glaubitz JC, Rhodes OE Jr et al (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93(1):118–126

    Article  CAS  Google Scholar 

  • Vischi M, Chiabà C, Raranciuc S et al (2017) Genetic diversity of walnut (Juglans regia L.) in the Eastern Italian Alps. Forests 8(3):81

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas D, Sharma SK, Sharma DR (2003) Genetic structure of walnut genotype using leaf isozymes as variability measure. Sci Hortic 97(2):141–152

    Article  CAS  Google Scholar 

  • Wang H, Pei D, Gu R et al (2008) Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers. J Am Soc Hortic Sci 133:197–203

    Article  Google Scholar 

  • Wang H, Zhao S, Zhang Z et al (2010) Genetic relationship and diversity of eight Juglans species in China estimated through AFLP analysis. Acta Hortic 861:143–150

    Article  CAS  Google Scholar 

  • Wang G, Wang JY, He Q et al (2014) Agronomic evaluation and heritability of Jin RS–2 and Jin RS–3 walnut rootstocks. Acta Hortic 1050:113–121

    Article  Google Scholar 

  • Wang H, Wu W, Pan G et al (2015) Analysis of genetic diversity and relationships among 86 Persian walnut (Juglans regia L.) genotypes in Tibet using morphological traits and SSR markers. J Hortic Sci Biotechnol 90(5):563–570

    Article  CAS  Google Scholar 

  • Wani N, Bhat MA, Ahmad MF et al (2010) Molecular markers and their application in walnut improvement. Int J Curr Res 3:6–11

    Google Scholar 

  • Walawage SL, Britton MT, Leslie CA et al (2013) Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC genomics 14(1):668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woeste K, McGranahan G, Bernatzky R (1996a) The identification and characterization of a genetic marker linked to hypersensitivity to the cherry leafroll virus in walnut. Mol Breed 2(3):261–266

    Article  CAS  Google Scholar 

  • Woeste K, McGranahan GH, Bernatzky R (1996b) Randomly amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii × J. regia) × J. regia]. J Am Soc Hortic Sci 121(3):358–361

    Article  CAS  Google Scholar 

  • Woeste K, McGranahan G, Bernatzky R (1998) Low correlation between genomic and morphological introgression estimates in a walnut backcross. J Am Soc Hortic Sci 123(2):258–263

    Article  Google Scholar 

  • Woeste K, Burns R, Rhodes O et al (2002) Thirty polymorphic nuclear microsatellite loci from black walnut. J Hered 93(1):58–60

    Article  CAS  PubMed  Google Scholar 

  • Wu GL, Meng HJ, Hao YY et al (2010) Thirty years of breeding walnut in China. Acta Hortic 861:109–118

    Article  Google Scholar 

  • Wu D, Shu QY, Li C (2012a) Applications of DNA marker techniques in plant mutation research. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Wu J, Gu YQ, Hu Y et al (2012b) Characterizing the walnut genome through analyses of BAC end sequences. Plant Mol Biol 78(1–2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hu T, Zhang F (2012) Genetic diversity of walnut revealed by AFLP and RAPD markers. J Agric Sci 4:271–276

    Google Scholar 

  • Xu L, Chen X, Zhang LS et al (2014) Molecular cloning and expression analysis of the transcription factor gene JrCBF from Juglans regia L. Acta Hortic 1050:41–47

    Article  Google Scholar 

  • Xu Z, Ge Y, Zhang W et al (2018) The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC plant Biol 18(1):19

    Google Scholar 

  • Yang K, Wang Y, Zhang Y (2002) Analysis for the identification of the precocious trait in walnuts. Acta Hortic Sin 29(6):573–574

    Google Scholar 

  • Yi F, Zhijun Z, Shelong Z (2011) Development of walnut EST-SSR markers and primer design. Agric Sci Technol 12:1810–1813

    Google Scholar 

  • You FM, Deal KR, Wang J et al (2012) Genome–wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics 13(1):354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zekiri F, Molitor C, Mauracher SG et al (2014) Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 101:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, McEwen GK, Margulies EH et al (2009) Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PloS one 4(12):e8407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Liao L, Moore J et al (2009) Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem 113:160–165

    Article  CAS  Google Scholar 

  • Zhang R, Zhu A, Wang X et al (2010) Development of Juglans regia SSR markers by data mining of the EST database. Plant Mol Biol Report 28(4):646–653

    Article  CAS  Google Scholar 

  • Zhang ZY, Han JW, Jin Q et al (2013) Development and characterization of new microsatellites for walnut (Juglans regia). Genet Mol Res 12(4):4723–4734

    Article  CAS  PubMed  Google Scholar 

  • Zhang MY, Xu Y et al (2014) Review of walnut breeding research at the Shandong Institute of Pomology. Acta Hortic 1050:55–60

    Article  Google Scholar 

  • Zhang Q, Walawage SL, Tricoli DM et al (2015) A red fluorescent protein (DsRED) from Discosoma sp. as a reporter for gene expression in walnut somatic embryos. Plant cell Rep 34(5):861–869

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhang T, Zhou HJ (2015) Identification, development, and application of 40 polymorphic EST-SSR markers for common walnut (Juglans regia L.). NCBI, EST (unpublished raw data)

    Google Scholar 

  • Zhao P, Zhou HJ, Potter D et al (2018) Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS). Mol Phylogenet Evol 126:250–265

    Article  PubMed  Google Scholar 

  • Zhu Y, Yin Y, Yang K et al (2015) Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.). BMC Genomics 16(1):614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu T, Wang L, You FM et al (2019) Sequencing a Juglans regia× J. microcarpa hybrid yields high-quality genome assemblies of parental species. Hortic Res 6(1):55

    Google Scholar 

  • Zimin AV, Marçais G, Puiu D et al (2013) Genome assembler. Bioinformatics 29(21):2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Neus Aleta Soler, Fabrice Lheureux, Damiano Avanzato, Geza Bujdosó, Mehmet Sutyemez, Gamalier Lemus, Iosif Kiss, Joao Martins, Shugang Zhao, Hongxia Wang, Baojun Zhao, Yasar Akca, David L. McNeil, Mihai Botu, Dragan Milatovic, Anita Solar, Alexandros Papachatzis, Oleg Tirsina, Heini Gubler, Christof Gubler, David Zaurov, Zviad Bobokashvili, Endrit Kullaj, Sergey Khokhlov, Stefan Gandev, Basharat Ali Saleem, David Maghradze, Dietrich Darr and Davlet Mamadjanov who helped us to complete information of the walnut cultivars and research institutions inventory of their countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Vahdati .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Some Important Research Institutes Relevant to Walnut

Country

Institution

Specialization and research activities

Contact information and website

Albania

Agricultural University of Tirana

Walnut breeding program based on selection

Prof. Endrit Kullaj

ekullaj@ubt.edu.al

http://ubt.edu.al/

Argentina

National Research Institute of Argentina (INTA-Catamarca)

Variety walnut breeding program based on hybridization and selection

Dr. Dante Carabajal

Carabajal.dante@inta.gob.ar

https://inta.gob.ar/

Belarus

Belarusian Research Institute for Fruit Growing

Walnut breeding program for early bearing, high yield, winter resistant, diseases tolerant

Dr. Vyacheslav A. Samus

director@belsad.by

http://www.belsad.by

Bulgaria

Fruit Growing Institute

Breeding and studies of walnut cultivars

Dr. Stefan Gandev

sgandev@yahoo.com

http://www.fruitgrowinginstitute.com/

China

Hebei Agricultural University (College of Life Science)

Walnut breeding based on classic and molecular breeding

Dr. Shugang Zhao

zshug@126.com

http://life-auh.com/Index.html

China

Mountainous Area Research Institute of Hebei

Walnut breeding based on selection and hybridization

Dr. Hongxia Wang

whx@hebau.edu.cn

http://shanyansuo.hebau.edu.cn/

China

Chinese Academy of Forestry (Research Institute of Forestry)

Walnut improvement program

Prof. Pei Dong

peigu@caf.ac.cn

http://www.caf.ac.cn

China

Pomology Research Institute, Shanxi

Walnut breeding program based on selection and hybridization

Prof. Jianbao Tian

tianjb-001@163.com

http://www.gfar.net/organizations/pomology-research-institute-shanxi-academy-agriculture-science

China

Liaoning Institute of Economic Forestry

Walnut breeding program for high yield, blight and coldness tolerant and rootstock selection

Prof. Baojun Zhao

agroforestry@163.com

liufeng0427@sina.cn

http://www.lnly.gov.cn/lnly/kyyszw/sjjls/

Chile

Instituto de Investigaciones Agropecuarias

Orchard management and plant material evaluation

Dr. Gamalier Lemus

glemus@inia.cl

http://www.inia.cl

France

French National Institute for Agricultural Research (INRA)

Walnut breeding program for late flowering, frost resistance, early bearing, high yield, blight tolerant, systematics and ecology of plant pathogenic bacteria

Dr. Sophie Cesbron

sophie.cesbron@angers.inra.fr

http://www.inra.fr

France

Centre Technique Interprofessionnel des Fruits et Legumes (CTIFL)

Walnut breeding program and study of the behavior of new INRA walnut varieties and rootstocks

Dr. Fabrice Lheureux

lheureux@ctifl.fr

http://www.ctifl.fr/

France

Station Expérimentale de la Noix de Creysse

Study on walnut orchard management and walnut quality, improving the efficiency of the walnut industry in the south west of France

Dr. Eloise Tranchand

e.tranchand.creysse@orange.fr

Dr. Fabrice Lheureux

lheureux@ctifl.fr

http://www.noixsudouest.fr

France

Station d’Expérimentation Nucicole Rhône-Alpes

Orchard management and plant material evaluation walnut industry efficiency in the south east of France

Dr. Agnès Verhaeghe

Averhaeghe@senura.com

http://senura.com/

Georgia

Georgian Research Institute of Horticulture, Viticulture and Oenology

Breeding new species and varieties of walnut through hybridization of different species and varieties

Dr. Zviad Bobokashvili

bobokashvili@hotmail.com

http://agruni.edu.ge

Georgia

Scientific-Research Center of Agriculture Georgia

Selecting and preservation of walnut varieties

Dr. Zviad Bobokashvili

bobokashvili@hotmail.com

Dr. Nugzar Shengelia

shengelianugzar@gmail.com

http://agruni.edu.ge

Germany

Hochschule Geisenhiem University

Breeding, selection and preservation of walnut varieties

Prof. Joachim Heller (Head)

Joachim.Heller@hs-gm.de

https://www.hs-geisenheim.de/en/research/departments/pomology/department-of-pomology/

Germany

State Education and Research Institute for Viticulture and Pomology Weinsberg

Breeding, selection and preservation of walnut varieties

obstbau@lvwo.bwl.de

http://www.lvwo-bw.de/pb/,Lde/Startseite

Greece

Technological Educational Institute of Thessaly (TEI)

Walnut breeding program based on crossing of local genetical material with foreign cultivars

Prof. Alexandros Papachatzis

papachad@teilar.gr

http://www.teilar.gr

Greece

Technological Educational Institute of Peloponnese (TEI)

Walnut breeding program based on crossing of local genetical material with foreign cultivars

Prof. George Zakynthinos

gzakyn@yahoo.gr http://www.teipel.gr

Greece

National Agricultural Research Foundation (NAGREF)

Walnut breeding program based on selection

Dr. Pavlina Drogoudi

drogoudi@otenet.gr

http://www.elgo.gr

Hungary

NARIC Fruitculture Research Institute

Walnut breeding program based on selection and hybridization

Dr. Geza Bujdosó

resinfru@yahoo.com

https://fruitresearch.naik.hu/en

Iran

University of Tehran, Aburaihan Campus, Center of Excellence in Walnut Improvement and Technology

Walnut breeding for late leafing, lateral bearing and high yield; rootstock breeding for drought tolerance and dwarfing using classic breeding and biotechnology; giving consultation for walnut commercial micropropagation labs and establishment of modern walnut orchards and nurseries

Prof. Kourosh Vahdati

kvahdati@ut.ac.ir

http://walnut.ut.ac.ir/

https://rtis2.ut.ac.ir/cv/kvahdati/?lang=en-gb

Iran

Horticultural Science Research Institute (HSRI)

Walnut breeding program for late leafing, lateral bearing, high yield.

Dr. Darab Hassani

hassanida@gmail.com

http://www.hsri.ir

Italy

University of Turin

Evaluation of the performance of Italian and foreign walnut cultivars and selections obtained by intraspecific hybridization

Prof. Roberto Botta

roberto.botta@unito.it

http://www.disafa.unito.it/do/home.pl

Italy

Istituto Sperimentale per la Frutticoltura

Evaluation of the performance of Italian and foreign walnut cultivars and selections obtained by intraspecific hybridization; improving rooting and disease resistance in walnut through tissue culture techniques

Dr. Pasquale Piccirillo

pasquale.piccirillo@entecra.it

http://sito.entecra.it/portale/index2.php

Kyrgyzstan

National Academy of Kyrgyzstan (Jalal-Abad Research Center)

Walnut breeding based on selection

Dr. D.K. Mamadjanov

jangak@mail.ru

http://www.nas.aknet.kg

Moldova

State Agrarian University of Moldova

Creation of the walnut assortment in the republic of Moldova

Dr. Valerian Balan

v.balan@uasm.md

http://www.uasm.md

Moldova

Iargara State Forestry Service

Forestry management; walnut varieties improvement program

Ana Petrenco

iargara@moldsilva.gov.md

http://iargara.silvicultura.md/

Moldova

Institute for Horticulture and Food Technologies

Selection of walnut varieties within the existing local genetic resources

Constantin Dadu

www.isphta.md

Morocco

Institut National de Recherches Agronomiques

Prospection in local walnut populations in the south of Morocco

Dr. Abdellah Kajji

kajjiabdellah03@yahoo.fr

https://www.inra.org.ma/

Pakistan

Arid Agriculture University Rawalpindi, Department of Horticulture

Walnut breeding based on selection within local genetic resource

Prof. Nadeem Akhtar Abbasi

nadeemabbasi65@yahoo.com

http://www.uaar.edu.pk/homeUaar.php

Pakistan

Ayub Agriculture Research Institute (AARI), Hill Fruit Research Station

Walnut breeding based on selection within local genetic resource

Dr. Muhammad Afzal mafzal834@gmail.com

www.aari.punkab.gov.pk

Pakistan

University of Azad Jammu and Kashmir, Department of Botany

Walnut breeding based on selection within local genetic resource

Prof. Dr. Muhammad Qayyum Khan mqkhan2004@yahoo.com

www.ajku.edu.pk

Pakistan

Agriculture Research Institute (North) Mangora

Walnut breeding based on selection within local genetic resource

Dr Khalil Ur Rehman

khalilswat66@gmail.com

http://agrires.kp.gov.pk

Pakistan

Hazara Agriculture Research Station

Walnut breeding based on selection within local genetic resource

Mr Akhtar Nawaz akhtarsaeed5650@gmail.com

http://agrires.kp.gov.pk/page/hazaraagricultureresearchstation

Portugal

Direcção Regional de Agricultura da Beira Litoral

Behavior of some walnut-tree varieties in Região Agrária Da Beira Litoral

drapc@drapc.gov.pt

http://www.drapc.min-agricultura.pt/drapc/contactos.htm

Romania

University of Craiova (Fruit Growing Research Station – SCDP Vâlcea)

Breeding new cultivars for high yield, intensive growing, nut quality, resistance to diseases, adapted to environmental conditions and rootstock selection; evaluation of the performance of Romanian and foreign walnut cultivars

Prof. Mihai Botu

btmihai2@yahoo.com

http://horticultura.ucv.ro/horticultura/en

Romania

Fruit Growing Research Station – SCDP Iaşi

Selection of walnut with high yield and fruit quality, resistance to late spring and winter frosts, resistance to diseases and pests, reduced vigor

Dr. Gelu Corneanu office@pomicolaiasi.ro

www.pomicolaiasi.ro

Romania

Via Roots Srl

Study on walnut orchard management and walnut quality, study on lateral bearing in Romanian climate conditions

Iosif Kiss

iosif.kiss@nucifere.com

www.nucifere.com

Russia Federation

Nikita Botanical Gardens

Fundamental bases of management of selection process of creation of new plant genotypes with high economically valuable characteristics of productivity, resistance to biotic and abiotic stress

Dr. Sergei Khokhlov

ocean-10@mail.ru

http://www.nbgnscpro.com

Serbia

University of Priština, Faculty of Agriculture in Lešak

Biology of walnut flowering

Dr. Dragan Jankovic

draganjankovickv@gmail.com

Dr. Sladana Jankovic

https://www.uni-pr.edu/

Slovenia

University of Ljubljana

Selection of walnut populations in Slovenia, quantitative analysis of genotypic diversity in tree architecture constitution, evaluation of the performance of foreign walnut cultivars

Dr. Anita Solar

anita.solar@email.si

https://www.uni-lj.si/academies_and_faculties/faculties/2013052914461802/

Spain

Institute of Agrifood Research and Technology (IRTA.)

Breeding and selection for walnut varieties and rootstocks, selection of basic materials for woodland.

Dr. Neus Aleta

neus.Aleta@irta.es

http://www.irta.cat

Spain

Bosques Naturales S. A.

Selection of genotypes for timber production, genotype × environment studies, genotyping by SSR markers

Dr. Ricardo Julian Licea-Moreno

ricardolicea@bosquesnaturales.es

https://bosquesnaturales.com

Switzerland

Nuss-Baumschule Gubler GmbH

Walnut breeding for high yield, lateral bearing, late leafing and disease resistance

Dr. Heini Gubler

heini.gubler@skigubler.ch

www.nussbaeume.ch

Tajikistan

Tajikistan Forestry Institute

Walnut breeding based on selection

Prof. Hafiz Muminjanov

Turkey

Kahramanmaraş Sütçü imam University

Walnut cultivar and rootstock breeding based on classic (selection, hybridization) and molecular breeding program for late leafing, lateral bearing, high yield, nut quality

Dr. Mehmet Sütyemez

sutyemez@ksu.edu.tr

Dr. Akide Özcan

akideozcan@ksu.edu.tr

http://www.ksu.edu.tr

Turkey

University of Gaziosmanpasa

Walnut breeding for late leafing, lateral bearing, nut quality and blight resistance using intraspecific crosses, rootstock breeding for salt stress

Prof. Yasar Akca

akcanut@gmail.com

https://ziraat.gop.edu.tr

http://www.ceviz.gen.tr/

Ukraine

Institute of Horticulture of the National Academy of Agrarian Sciences of Ukraine

Creation of the national genetic collection of Persian walnut of promising cultivars (breeding to combine precocity, high productivity, tolerance to diseases and high nut quality)

Dr. Igor V. Grynyk (Director)

sad-institut@ukr.net

http://sad-institut.com.ua/o_nas.html

United States

University of California, Davis, Department of Plant Science

Walnut cultivar and rootstock breeding based on classic and molecular breeding

Dr. Pat J. Brown

pjbrown@ucdavis.edu

https://pjblab.faculty.ucdavis.edu/

http://fruitsandnuts.ucdavis.edu/

Uzbekistan

Schroeder Uzbek Research Institute

Walnut breeding based on selection

Aziz Nurbekov

a.nurbekov@cgiar.org

Uzbekistan

Uzbek Scientific Research Institute of Plant Industry (VIR)

Walnut breeding based on selection

Aziz Nurbekov

a.nurbekov@cgiar.org

1.2 Appendix II: Some Walnut Genetic Resources

Cultivar

Important traits

Cultivation location

Gizavezhda

High yield, average nut, tender shell, very light kernel color, cold-hardy and resistant to pest and diseases

Albania

Leshnica

Medium yield, lateral bearing, large nut, light kernel color, aromatic

Albania

Smokthina

Medium yield, lateral bearing, average nut, light tasty kernel

Albania

Trompito

High yield, early leafing, medium kernel color

Argentina

Ivarto

Low yield, pollinizer for medium and late varieties

Argentina

Rote Donaunuss

Moderate yield, early to mid-early leafing, medium nut size

Austria

Weinberg 2

Early leafing, large nut, thin shell, light kernel color, good kernel quality

Austria

Axel

Medium yield, late leafing, large nut

Belgium/Netherland

Dryanovski

Early flowering, medium nut size, light kernel color, high kernel quality

Bulgaria

Izvor 10

Moderate yield, medium nut size, thin shell, light kernel color

Bulgaria

Plovdivski

Large nut, high kernel percentage, high kernel quality, resistance to bacterial disease

Bulgaria

Proslavski

Large nut, good kernel quality, resistance to bacterial disease

Bulgaria

Silistrenski

Late flowering, medium nut size, frost resistant

Bulgaria

Broadview

Early leafing, precocious, homogamous, large nut, good kernel quality

Canada

Zha 343

High yield, lateral bearing, thin shell, light kernel color

China

Zanmei

High yield, lateral bearing, light kernel color

China

Jinlong 1

Moderate yield, terminal bearing, large nut, thin shell, light kernel color

China

Wen 185

High yield, lateral bearing, large nut, thin shell, light kernel color

China

Xiangling

High yield, lateral bearing, thin shell, light kernel color

China

Zhonglin 1

High yield, lateral bearing, thin shell, extra light kernel color

China

Liaoning 1

High yield, lateral bearing, thin shell, extra light kernel color

China

Jinboxiang1

High yield, lateral bearing, thin shell, light kernel color

China

Luguo 2

High yield, lateral bearing, thin shell, light kernel color

China

Luguo 7

High yield, thin shell, light kernel color, lateral bearing

China

Daixiang

High yield, thin shell, light kernel color, lateral bearing, dwarf

China

Xinfeng

High yield, thin shell, light kernel color, lateral bearing

China

Xinxin 2

High yield, thin shell, light kernel color, lateral bearing

China

Mars

High yield, late leafing, thin shell, good kernel quality

Czech Republic

Jupiter

High yield, large nut, thin shell, late leafing,

Czech Republic

Saturn

High yield, large nut, good kernel color

Czech Republic

Apollo

Good yield, terminal bearing, early flowering, large nut, good kernel color

Czech Republic

Sychrov

Medium nut size, red kernel color, thin shell, high kernel quality

Czech Republic

Franquette

Fair yield, terminal bearing, late leafing, good kernel quality, extra light kernel color, used as pollinizer for ‘Chandler’

France

Lara

High yield, lateral bearing, medium leafing

France

Fernor

High yield, lateral bearing, late leafing, extra light kernel color

France

Fernette

Good yield, lateral bearing, extra light kernel color, used as pollinizer for ‘Chandler’

France

Ferbel

High yield, lateral bearing, large nut, thin shell, good kernel quality

France

Ferouette

High yield, lateral bearing, extra light kernel color, large nut

France

Feradam

High yield, lateral bearing, extra light kernel color, medium leafing

France

Ferjean

High yield, lateral bearing, thin shell, extra light kernel color

France

Meylanaise

Moderate yield, late leafing, good kernel quality, Used as pollinizer

France

Ronde de Montignac

Late leafing, terminal bearing, high kernel quality, used as pollinizer,

France

Rubis

Early leafing, good kernel quality, red kernel color

France

Akura

Moderate yield, moderate lateral bearing, light kernel color

Georgia

Kaspura

High yield, moderate lateral bearing

Georgia

Avenisuri

Moderate yield, terminal bearing, large nut, thin shell

Georgia

Alazani

High yield, lateral bearing

Georgia

Aragvi

Moderate yield, terminal bearing, thin shell

Georgia

Atskuri

High yield, moderate lateral bearing, thin shell, frost resistance

Georgia

Drianovski

High yield, moderate lateral bearing, large nut

Georgia

Aufhausener Baden

Large nut, mid-early flowering, old favorite German cultivar

Germany

Finkenwerder Deichnuss Royal

Large nut, precocious, thin shell, high kernel quality

Germany

Geisenheimer

Moderate yield, medium nut size, medium shell thickness

Germany

Kurmarker

Medium nut size, good kernel quality

Germany

Ledema

Protogynous, large and heavy nut,

Germany

Moselaner

Large nut, light kernel color, good kernel quality

Germany

Ockerwitzer Lange

High yield, large nut, frost resistant.

Germany

Seifersdorfer Runde

Good yield, early flowering, thin shell, light kernel color, frost resistant

Germany

Spreewalder

High yield, early leafing, precocious, light kernel color, good kernel quality

Germany

Weinheimer

Medium nut size, late leafing, high kernel quality, light kernel color

Germany

Weinsberg 1

Moderate to high yield, early flowering, large nut

Germany

Wunder von Monrepos

Medium nut size, late leafing, high kernel quality

Germany

ZP–1, 2, 3, 4, 5

‘Chandler’ hybrids, lateral bearing, blight resistant, moderate to late leafing, light kernel color.

Greece

Milotai Kései℗

Late leafing and flowering, lateral bearing, nut like Milotai 10, higher tolerance to blight compared to Milotai 10

Hungary

Alsószentiváni 117

Moderate yield, terminal bearing, light kernel color

Hungary

Alsószentiváni 118

High yield, mid-early flowering, large nut

Hungary

Milotai 10

High yield, moderate lateral bearing, light kernel color

Hungary

Tiszacsécsi 83

High yield, moderate lateral bearing

Hungary

Esterhazy II

Early leafing, medium to large nut size, light kernel color, good kernel quality

Hungary

Jamal

Moderate yield, terminal bearing, medium light kernel color

Iran

Damavand

Early leafing, used as pollinizer for Jamal

Iran

Sorrento

Moderate yield, terminal bearing

Italy

Malizia

High yield, moderate lateral bearing

Italy

Qingxiang

High yield, terminal bearing, light kernel color

Japan

Kyrgyzskya Bomba

Large nut, great kernel quality, light kernel color

Kyrgyzstan

Ak Terek

Medium nut, great kernel quality, light kernel color

Kyrgyzstan

Oshsky

Medium nut size, great kernel quality

Kyrgyzstan

Uygursky

Large nut, great kernel quality, light kernel color

Kyrgyzstan

Ostrovershinny

Large nut, great kernel quality

Kyrgyzstan

Immuniy

Medium nut, great kernel quality, light kernel color

Kyrgyzstan

Desertniy

Large nut, great kernel quality, light kernel color

Kyrgyzstan

Pescianski

High yield, partial lateral bearing, thin shell, frost resistant, extra light kernel

Moldova

Calarasi

High yield, terminal bearing, frost resistant, light kernel

Moldova

Ovata

Large nut, terminal bearing, very cold resistant

Moldova

Carpatica

Huge nut, terminal bearing

Moldova

Amphyon

High yield, high kernel quality, low susceptible to disease

Netherland

Dionym

High yield, high kernel quality, low susceptible to disease

Netherland

Big & Easy

Late flowering, thin shell, good kernel quality

Netherland

Blanco

Large nut, homogamous

Netherland

Coenen

Early flowering, large nut, thin shell

Netherland

Lange van Lod

Large nut, late leafing, high kernel quality, slight tolerance to late spring frost

Netherland

Rex

High yield, late leafing, light color

New Zealand

Shannon

High yield, light kernel color, blight resistant

New Zealand

Meyric

High yield, late leafing, thin shell, high kernel quality

New Zealand

Wilsons Wonder

Large nut, light kernel color

New Zealand

Valcor

High yield, terminal bearing, thin shell, light kernel color

Romania

Valmit (Verisval)

Thin shell, terminal bearing, light kernel color,

Romania

Valrex

High yield, terminal bearing, large nut, thin shell

Romania

Sibişel 44

Moderate yield, terminal bearing, large nut

Romania

Jupâneşti

Precocious, high yield, terminal bearing, thin shell

Romania

Velniţa

Precocious, high yield, terminal bearing

Romania

Valstar

Precocious, high yield, terminal bearing light kernel

Romania

Valcris

Precocious, high yield, terminal bearing light kernel

Romania

Timval

High yield, terminal bearing, large nut

Romania

Miroslava

Terminal bearing, large nut

Romania

Ovidiu

Terminal bearing, large nut

Romania

Anica

Terminal bearing, large nut

Romania

Sibişel 252

Precocious, high yield, terminal bearing

Romania

Ciprian

Precocious, high yield, terminal bearing, large nut

Romania

Claudia

Precocious, high yield, terminal bearing

Romania

Germisara

Moderate yield, terminal bearing, large nut

Romania

Şuşiţa

Precocious, high yield, terminal bearing, light kernel

Romania

Ronutex

High yield, terminal bearing, large nut

Romania

Belbeksky 70

Late leafing, light kernel color, moderate shell thickness

Russia Federation

Vynoslivy

High yield, light kernel color, resistance to low temperature

Russia Federation

Pervomaysky

Late leafing, thin shell, light kernel color

Russia Federation

Krymsky Urozhayany

High yield, thin shell, light kernel color

Russia Federation

Elit

Late leafing, precocious, light kernel color

Slovenia

Krka

Homogenous flowering, high yield, bright kernel

Slovenia

Sava

Intermediate fruit-bearing, late leafing, moderate yield

Slovenia

Fischenthal

Medium nut size, thin shell, cluster bearing, homogamous

Switzerland

Giswill

Lateral bearing, interesting for wood production

Switzerland

Nyffenegger

Terminal bearing, thin shell, red kernel color

Switzerland

Rote Gubler

Medium nut size, light kernel color, forest resistant

Switzerland

Yalova 1

Fair yield, terminal bearing, large nut, thin shell

Turkey

Yalova 3

Fair yield, terminal bearing, thin shell, light kernel color

Turkey

Sebin

High yield, moderate lateral bearing, thin shell, light kernel color

Turkey

Bilecik

Moderate yield, terminal bearing

Turkey

Maras 18

Moderate yield, lateral bearing, light kernel color, high kernel percentage, very early harvest,

Turkey

Sütyemez 1

Moderate yield, lateral bearing, extra-large nut, light kernel color, very early harvest

Turkey

Kaman 1

High yield, lateral bearing, thin shell, light kernel color

Turkey

Maraş 12

High yield, terminal bearing, moderate nut, thin shell, light kernel color, extra high kernel percentage

Turkey

Diriliş

High yield, lateral bearing, late leafing, light kernel color, high kernel percentage, thin shell, early harvest

Turkey

15 Temmuz

High yield, lateral bearing, very late leafing, light kernel color, high kernel percentage thin shell, early harvest

Turkey

Bayrak

High yield, lateral bearing, thin shell, extra light kernel color, high kernel percentage

Turkey

Akça

High yield, lateral bearing, late leafing, good kernel quality, extra light kernel color, used as pollinizer for ‘Chandler’

Turkey

Niksar 1

Moderate yield, lateral bearing, late leafing, used as pollinizer for cv. Chandler

Turkey

Eureka

Fair yield, terminal bearing, poor kernel color

USA

Scharsch Franquette

Late leafing, medium thin shell, light kernel color

USA

Hartley

Moderate yield, terminal bearing, light kernel color

USA

Payne

High yield, lateral bearing, precocious, early leafing, early harvest, light kernel color

USA

Vina

High yield, lateral bearing, poor color

USA

Pedro

High yield, lateral bearing

USA

Tehama

Moderate yield, lateral bearing, light kernel color, used as pollinizer for cv. Serr

USA

Serr

Moderate yield, moderate lateral bearing, light kernel color, thin shell, excellent kernel quality, susceptible to pistillate flower abscission (PFA)

USA

Chandler

High yield, lateral bearing, medium leafing, extra light kernel color, thin shell

USA

Howard

High yield, lateral bearing, medium leafing, large nut, thin shell, light kernel color

USA

Sunland

High yield but susceptible to nut drop, lateral bearing, large nut, thin shell, light kernel color

USA

Cisco

Moderate yield, terminal bearing, medium light kernel color, high susceptibility to blight, used as pollinizer for cv. Chandler

USA

Tulare

High yield, lateral bearing, light kernel color, susceptible to winter cold

USA

Robert Livermore

Moderate yield, lateral bearing, red kernel color

USA

Sexton

High yield, lateral bearing, very precocious, light kernel color

USA

Gillet

High yield, lateral bearing, large nut, light kernel color, low susceptibility to blight

USA

Forde

Good yield, lateral bearing, light kernel color, low susceptibility to blight

USA

Ivanhoe

High yield, lateral bearing, very precocious, very early harvest, thin shell, extra light kernel color

USA

Solano

High yield, lateral bearing, extra light kernel color

USA

Durham

Good yield, early harvest, lateral bearing, large nut, light kernel color

USA

Ideal

Small nut from secondary flower, high kernel quality, precocious, cluster bearing habit

Uzbekistan

Hybridiy

Medium size nut

Uzbekistan

Pioner

Large size nut

Uzbekistan

Kazahstansky

High kernel quality

Uzbekistan

Bostonliksky

Large nut

Uzbekistan

Rodina

Large nut, high kernel quality, high frost resistance, low susceptibility to anthracnose

Uzbekistan

Parkent

Large nut

Uzbekistan

Nani

Large nut

Uzbekistan

Gvardiesky

High kernel quality

Uzbekistan

Panfilovets

High kernel quality

Uzbekistan

Tonkoskorlupnii

High kernel quality

Uzbekistan

Ubilini

High yield, high kernel quality, resistance to spring frosts, precocious

Uzbekistan

Bostandik

Large nut, high kernel quality, resistance to spring frosts, precocious

Uzbekistan

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vahdati, K., Arab, M.M., Sarikhani, S., Sadat-Hosseini, M., Leslie, C.A., Brown, P.J. (2019). Advances in Persian Walnut (Juglans regia L.) Breeding Strategies. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_11

Download citation

Publish with us

Policies and ethics