Skip to main content

Shallot (Allium cepa L. Aggregatum Group) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Shallot is loosely used to describe some cultivated species and interspecific hybrids within the genus Allium whose storage organ consists of clustered bulb divisions attached at their true stems. The present review, however, focuses on the diploid member of the bulb onion taxon (Allium cepa L.). Some physiological and phenotypic differences, led taxonomists to assign shallot to the Aggregatum group together with other intermediate forms of vegetatively-propagated bulbous Alliums. No ancestral forms of the biennial cross-pollinated shallot are known. The bulbs, leaves and young scapes are consumed as an onion substitute in warm climates and serve as an important culinary condiment in Europe, South America, the USA and elsewhere. Global climate changes, diminished resources, and salinization of soil and water raise serious challenges to shallot growth, development, florogenesis, quality and storage, and increase vulnerability to pests and diseases. Additionally, the slow but continuous shift towards the use of true seeds poses concrete hazards of a fast erosion of the genetically precious, irreplaceable clonally propagated cultivars. To secure the supply, and care for the environment, society and economics we need to extend our knowledge on, and increase breeding efforts for tolerance to, biotic and abiotic stress, long keeping and hybrid seed propagation. The current review provides information on shallot origin, taxonomy, economics, distribution, genetics, current propagation and breeding methods. Pros and cons of clonal vs. true-shallot-seed propagation are discussed. Comparisons to bulb onion clearly show that the knowledge acquired, and modern tools developed for bulb onion can be associated with conventional shallot breeding methods for its betterment and benefit growers and consumers alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Mann LK (1963) Bulb development in the onion (Allium cepa L.) and the effect of storage temperature on bulb rest. Hilgardia 35(5):85–112

    Article  Google Scholar 

  • Adel MR, Namaghi HS, Hosseini M (2013) Effects of insect pollinators on onion seed production quality and quantity. J Crop Prot 2:395–402

    Google Scholar 

  • Adiyoga W, Soetiarso TA (1997) The study of comparative advantage and economic incentives in shallot production. Indonesia J Hortic 7:614–621

    Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphy 135:187–204. https://doi.org/10.1023/B:EUPH0000014914854654f

    Article  Google Scholar 

  • Anonymous (1980) Varietes d’ail et d’eschalote Semences certifices disponible a l'automne. CTIFL-Document No 65-1-st trim 1980

    Google Scholar 

  • Anonymous (2014) Shallot. https://cals.arizona.edu/fps/sites/cals.arizona.edu.fps/files/cotw/Shallot.pdf

  • Asili A, Behravan J, Naghavi RM, Asili J (2010) Genetic diversity of Persian shallot (Allium hirtifolium) ecotypes based on morphological traits allicin content and RAPD markers. Open Access J Med Arom Plants 1:1–6 https://www.researchgate.net/publication/279464029_Genetic_diversity_of_Persian_shallot_Allium_hirtifolium_ecotypes_based_on_morphological_traits_allicin_content_and_RAPD_markers

  • Askari-Khorasgani O, Pessarakli M (2019) Agricultural management and environmental requirements for production of true shallot seeds – a review. Adv Plants Agric Res 9:318–322

    Google Scholar 

  • Astley D (1990) Conservation of genetic resources. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops: Volume I: Botany physiology and genetics. CRC Press, Boca Raton, pp 178–198

    Google Scholar 

  • Atkin, JD (1953) Genetic and cytological studies of the Allium cepa × A. ascalonicum. Ph. D. Thesis, Univ. Calif. Davis, CA. (cited from Jones HA, Mann, LK: Onions and their allies. London: Leonard Hill 1963)

    Google Scholar 

  • Atkin JD, Davis GN (1954) Altering onion flowering dates to facilitate hybrid seed production. Calif Agric Exp Stat Bull:746

    Google Scholar 

  • Aura K (1963) Studies of the vegetatively propagated onions cultivated in Finland with special reference to flowering and storage. Ann Agric Fenniae 2(Supplement 5):1–74

    Google Scholar 

  • Ayabe M, Sumi S (1999) Methods for micropropagation; vegetative plant propagation using cell or tissue culture techniques. EP1186228A1 European Patent Office https://patents.google.com/patent/EP1186228A1

  • Bailey LH (1949) Manual of cultivated plants. Macmillan, New York

    Google Scholar 

  • Baldwin S, Pither-Joyce M, Wright K et al (2012a) Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L) populations. Mol Breed 30:1401–1411

    Article  CAS  Google Scholar 

  • Baldwin S, Revanna R, Thomson S et al (2012b) A Toolkit for bulk PCR-based marker design from next-generation sequence data: application for development of a framework linkage map in bulb onion (Allium cepa L). BMC Genom 13:637. http://www.biomedcentral.com/1471-2164/13/637

  • Baldwin S, Revanna R, Pither-Joyce M et al (2014) Genetic analyses of bolting in bulb onion (Allium cepa L.). Theor Appl Genet 127:535–547. https://doi.org/10.1007/s00122-013-2232-4

    Article  CAS  PubMed  Google Scholar 

  • Balloux F, Lehmann L, De Meeûs T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635–1644

    Article  PubMed  PubMed Central  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Bark OH, Havey MJ, Corgan JN (1994) Restriction fragment length polymorphism (RFLP) analysis of progeny from an Allium fistulosum × A. cepa hybrid. J Am Soc Hortic Sci 119:1046–1049

    Article  Google Scholar 

  • Basuki RS (2009) Analysis of technical and economical feasibility of shallot cultivation technology from botanical seed and traditional seed bulb. Jurnal Hortikultura 19:214–227

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear-DNA amounts in angiosperms. Philos Trans R Soc Bot 274:227–274

    CAS  Google Scholar 

  • Berninger E (1965) Contribution a l’etude de la sterilite male de l’oignon (Allium cepa L). Ann Amélior Plantes 15:183–199

    Google Scholar 

  • Berson B, Mariati M, Sipayung R (2015) Seed production of Samosir shallot accession. Simanindo on GA3 concentration and soaking period in Samosir Highland. J online Agroekoteknologi 3:1147–1151. https://jurnalusuacid/indexphp/agroekoteknologi/article/view/10974/4745

    Google Scholar 

  • Bhargava A, Srivastava S (2019) Plant breeding In: Participatory plant breeding: concept and applications. Springer Singapore, pp 29–68. https://doi.org/10.1007/978-981-13-7119-6_2

  • Bikis D (2018) Review on the application of biotechnology in garlic (Allium sativum) improvement. Int J Res Stud Agric Sci 4(11):23–33. https://doi.org/10.20431/2454-6224.0411004

    Article  Google Scholar 

  • Birky CW Jr (1996) Heterozygosity heteromorphy and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437

    Article  PubMed  Google Scholar 

  • Block E, Naganathan S, Putman D, Zhao SH (1992a) Allium chemistry: HPLC analysis of thiosulfinates from onion garlic wild garlic leek scallion shallot elephant (great-headed) garlic chive and Chinese chive; uniquely high allyl-to-methyl ratios in some garlic samples. J Agric Food Chem 40:2418–2430

    Article  CAS  Google Scholar 

  • Block E, Putman D, Zhao SH (1992b) Allium chemistry: GC-MS analysis of thiosulfinates and related compounds from onion leek scallion shallot chive and Chinese chive. J Agric Food Chem 40:2431–2438

    Article  CAS  Google Scholar 

  • Bohanec B (2002) Doubled-haploid onion. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CAB International, Wallingford, pp 145–157

    Chapter  Google Scholar 

  • Bohanec B, Jakse M, Javornik B (1995) Studies of gynogenesis in onion (Allium cepa L.): induction procedures and genetic analysis of regenerants. Plant Sci 104:215–224

    Article  CAS  Google Scholar 

  • Brat V (1965) Genetic systems in Allium III meiosis and breeding systems. Hered 20:325–339. https://doi.org/10.1038/hdy196547

    Article  Google Scholar 

  • Brewster JL (1982) Flowering and seed production in overwintered cultivars of bulb onions: I Effects of different raising environments temperatures and day lengths. J Hortic Sci 57:93–101. https://doi.org/10.1080/00221589198211515028

    Article  Google Scholar 

  • Brewster JL (1990) Cultural systems and agronomic practices in temperate climates. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops Vol II: Agronomy biotic interactions. CRC Press, Boca Raton, pp 1–30

    Google Scholar 

  • Brewster JL (2008) Onions and other vegetable Alliums. CABI Publishing CAB International, Wallingford

    Book  Google Scholar 

  • Brice J, Currah L, Malins A, Bancroft R (1997) Onion storage in the tropics: a practical guide to methods of storage and their selection. Natural Resources Institute. University of Greenwich, UK

    Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops, Vol 12 Developments in crop science. Elsevier, Amsterdam, pp 197–204

    Google Scholar 

  • Buda IM, Agung IGAMS, Ardhana IPG (2018) Nitrogen fertilizer increased bulb diameter and yields of true seed and bulb – propagated shallot varieties. Int J Innov Res Sci Eng Technol 7:80–86

    Google Scholar 

  • Butlin RK (2000) Virgin rotifers. Trends Ecol Evol 15:389–390

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Alloni C (1990) Induction of haploid plants in onion (Allium cepa L.) by in vitro culture of unpollinated ovules. Plant Cell Tissue Organ Cult 20:1–6

    Article  CAS  Google Scholar 

  • Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 22:15. https://doi.org/10.3389/fpls.2017.00241

    Article  Google Scholar 

  • Castellanos JS (2011) Inbreeding and yield of synthetic varieties derived from single and double cross hybrids. Maydica 56–1749

    Google Scholar 

  • Chai M, Ho YW, Liew KW, Asif JM (2004) Biotechnology and in vitro mutagenesis for banana improvement. In: Jain SM, Swennen R (eds) Banana improvement: cellular molecular biology and induced mutations. Science Publishers, Enfield, pp 59–77

    Google Scholar 

  • Chen C (1975) Studies on karyotype evolution of Allium cultivars. (In Chinese with English summary). Hortic Agric Assoc China 97:32–44

    Google Scholar 

  • Chinnappareddy LRD, Khandagale K, Chennareddy A, Ramappa VG (2013) Molecular markers in the improvement of Allium crops. Czech J Genet Plant Breed 49(4):131–139. https://doi.org/10.17221/111/2013-CJGPB

    Article  Google Scholar 

  • Chovelon V, Leroux JP, Doré C (1990) Sélection sanitaire de l’ail et de l’échalote: culture de méristèmes et régénération de variétés. In: Doré C (ed) Cinquantenaire de la culture in vitro. Colloques de l’INRA, INRA, Paris 51:142–150

    Google Scholar 

  • Chovelon V, Leroux JP, Delécolle B et al (1994) Production and breeding of virus-free garlic clones in France (abstract). 1st International Symposium on Edible Alliaceae, Mendoza, Argentina, 14 March 1994

    Google Scholar 

  • Chuda A, Adamus A (2009) Aspects of interspecific hybridization within edible Alliaceae. Acta Physiol Plant 31:223–227

    Article  Google Scholar 

  • Chuda A, Adamus A (2012) Hybridization and molecular characterization of F1 Allium cepa × Allium roylei plants. Acta Biol Cracov Ser Bot 54(2):25–31

    Google Scholar 

  • Cioloş D (2013) European Commissioner for Agriculture and Rural Development Taking stock with civil society on the future of the CAP Conference on the future of the PAC/Brussels 13 July 2012 https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_12_557

  • Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132:647–667. https://doi.org/10.1007/s00122-018-3266-4

    Article  CAS  PubMed  Google Scholar 

  • Cohat J (1982) Influence du calibre des bulbes de semence d'échalotes sur leur taux de multiplication et leur rendement. Pepinieristes, horticulteurs, maraichers. Rev Hortic 231:21–24

    Google Scholar 

  • Cohat J (1994) Obtention chez l'échalote Allium cepa L var aggregatum de plantes haploïdes gynogénétiques par culture in vitro de boutons floraux. Agronomie 14:299–304

    Article  Google Scholar 

  • Cohat J, Chauvin JE, Le Nard M (2001) Shallot (Allium cepa var aggregatum) production and breeding in France. Acta Hortic 555:221–225. https://doi.org/10.17660/ActaHortic200155532

    Article  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Colmsee C, Keller JER, Zanke C et al (2012) The garlic and shallot core collection image database of ipk presenting two vegetatively maintained crops in the federal ex situ genebank for agricultural and horticultural crops at Gatersleben, Germany. Genet Res Crop Evol 59:1407–1415. https://doi.org/10.1007/s10722-011-9768-4

    Article  Google Scholar 

  • Conci VC, Canavelli A, Lunello P et al (2003) Yield losses associated with virus-infected garlic plants during five successive years. Plant Dis 87:1411–1415

    Article  PubMed  Google Scholar 

  • Conci VC, Perotto MC, Cafrune EP, Lunello P (2005) Program for the intensive production and protocols optimization for the production of virus-free garlic plants. Acta Hortic 688:195–200. https://doi.org/10.17660/ActaHortic200568825

    Article  Google Scholar 

  • Conijn JG (2017) Shallots in Indonesia: searching for suitable cropland. https://wwwwurnl/en/newsarticle/Shallots-in-Indonesia-Searching-for-suitable-croplandhtm; https://wwwmappinglandsuitabilitynl/en/mls/Shallots-in-Indonesiahtm

    Google Scholar 

  • Conn KE, Lutton JS, Rosenberger SA (2012) Onion disease guide. Seminis Vegetable Seeds Inc. https://wwwseminiscom/SiteCollectionDocuments/Onion-Disease-GuidePDF

    Google Scholar 

  • Cramer CS (2003) Comparison of open-pollinated and hybrid onion varieties for New Mexico. HortTechnol 11:119–123. https://doi.org/10.21273/HORTTECH.11.1.119

    Article  Google Scholar 

  • Cramer CS, Havey MJ (1999) Morphological biochemical and molecular markers in onion. HortSci 34:589–593

    Article  CAS  Google Scholar 

  • Currah L (1985) Reviews on three onion improvement schemes in the tropics. Trop Agric (Trinidad) 62:131–136

    Google Scholar 

  • Currah L (1990) Pollination biology. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Vol I Botany physiology and genetics. CRC Press, Boca Raton, pp 135–149

    Google Scholar 

  • Currah L (2002) Onions in the tropics: cultivation and country reports In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CAB International, Wallingford, pp 379–407

    Google Scholar 

  • Currah L, Ockendon DJ (1978) Protandry and the sequence of flower opening in the onion (Allium cepa L). New Phytol 81:419–428

    Article  Google Scholar 

  • Currah L, Proctor FJ (1990) Onions in tropical regions. Natural Resources Institute Bulletin, Chatham Maritime Kent UK

    Google Scholar 

  • D’Antuono LF (1998) A new taxon among vegetable crops? Allium Improv Newslet 8:1–3

    Google Scholar 

  • D’Antuono LF, Lovato AFS, Dellacecca V (1995) Scalogno di Romagna Osservazioni su caratteri morfologici e produttivi. In: Corbetta F, Pacioni G, Tammaro F, Marra L (eds) Funghi tartufi ed erbe mangerecce. Proc Internat Congr Accademia Italiana di cucina L’Aquila September 28–October 1:87–98

    Google Scholar 

  • D’Antuono LF, Dellacecca V, Lovato AFS (1998) Storia utilizzazioni e sistematica dello scalogno di Romagna In: Agabbio M (ed) Atti 48 Convegno nazionale: biodiversita: germoplasma locale e sua valorizzazione. Alghero 8–11 Settembre Carlo Delfino Sassari, pp 837–840

    Google Scholar 

  • D’Antuono LF, Moretti A, Neri R (2002) Evaluation of ‘di Romagna’ and ‘French grey’ shallots for quality characters connected to bulb colour and volatile oil content and composition. Genet Res Crop Evol 49:175–182

    Article  Google Scholar 

  • Dadson RB (1979) Effects of irradiation on certain characteristics of shallot (Allium ascalonicum) In: Induced mutations for crop improvement in Africa. Proc Regional Seminar Ibadan Nigeria 1978 Tech Doc IAEA Vienna, pp 169–175

    Google Scholar 

  • David O, Fondio L, Moustier P (1998) The position of Cote d’Ivoire shallots on the Abidjan market in relation to imported onions. Fruits 53(2):127–140. (In French)

    Google Scholar 

  • Davidson RD, Xie K (2014) Seed potato production. In: Navarre R, Pavek MJ (eds) The potato botany production and uses. CABI, Wallingford, pp 115–132

    Chapter  Google Scholar 

  • Davis EW (1955) Nature of sterility in the amphidiploid Allium cepa-fistulosum. Am J Bot 42:41–48. https://doi.org/10.1002/j.1537-2197.1955.tb11092.x

    Article  Google Scholar 

  • De Courcel A, Veder F, Boussac J (1989) DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor Appl Genet 77:793–798

    Article  PubMed  Google Scholar 

  • Degewione A, Alamerew S, Tabor G (2011) Genetic variability and association of bulb yield and related traits in shallot (Allium cepa var Aggregatum DON) in Ethiopia. Internat Agric Res 6:517–536. https://doi.org/10.3923/ijar2011517536

    Article  Google Scholar 

  • Deniz IG, Genç I, Sari D (2015) Morphological and molecular data reveal a new species of Allium (Amaryllidaceae) from SW Anatolia Turkey. Phytotaxa 212:283–292. doi:1011646/phytotaxa21244

    Google Scholar 

  • D’Ennequin M, Panaud O, Robert T, Ricroch R (1997) Assessment of genetic relationships among sexual and asexual forms of Ailium cepa using morphological traits and RAPD markers. Heredity 78:403–409. https://doi.org/10.1038/hdy.1997.63

    Article  Google Scholar 

  • De Oliveira FG, Fernandes Santos CA, Oliveira VR et al (2017) Evaluation of onion accessions for resistance to thrips in Brazilian semi-arid regions. J Hortic Sci Biotech 92:550–558. https://doi.org/10.1080/1462031620171300513

    Article  Google Scholar 

  • De Putter H, Adiyoga W (2013) Improving the shallot and hot pepper cultivation system in the coastal plain of Northern Java veg. IMPACT Report 1 Wageningen, Netherlands. https://research.wur.nl/en/publications/improving-the-shallot-and-hot-pepper-cultivation-system-in-the-co

  • De Putter M, Van de Vooren JG (1988) Identification of Allium cepa L cultivars by means of statistical analysis of C-banded chromosomes. Euphytica 39:153–160

    Article  Google Scholar 

  • De Vries JN, Wietsma WA, de Vries T (1992a) Introgression of leaf blight resistance from Allium roylei Stearn into onion (A cepa L). Euphytica 62:127–133

    Article  Google Scholar 

  • De Vries JN, Wietsma WA, Jongerius MC (1992b) Linkage of downy mildew resistance genes Pd1 and Pd2 from Allium roylei Stearn in progeny of its interspecific hybrid with onion (A cepa L). Euphytica 64:131–137

    Article  Google Scholar 

  • Devi S, Gulati R, Tehri K, Poonia A (2015) The pollination biology of onion (Allium cepa L) – a review. Agric Rev 36:1–13. https://doi.org/10.5958/0976-0741201500001X

    Article  Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA, Shelton AM (2010) Evaluation of onion cultivars for resistance to onion thrips (Thysanoptera: Thripidae) and iris yellow spot virus. J Econ Entomol 103:925–937

    Article  PubMed  Google Scholar 

  • Díaz Pérez JC, Parvis AC, Paulk JT (2003) Bolting, yield, and bulb decay of sweet onion as affected by nitrogen fertilization. J Am Soc Hortic Sci 128:144–149

    Article  Google Scholar 

  • Doležel J, Novák FJ, Lužný J (1980) Embryo development and in vitro culture of Allium cepa and its interspecific hybrids. Z Pflanzenzticht 85:177–184

    Google Scholar 

  • Dowker BD (1990) Onion breeding. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops Vol I Botany physiology and genetics. CRC Press, Boca Raton, pp 215–232

    Google Scholar 

  • Dowker BD, Fennell JFM (1981) The relative performance of inbreds and open-pollinated populations of spring-sown onions. J Agric Sci 97:25–30

    Article  Google Scholar 

  • Dowker BD, Gordon GH (1983) Heterosis and hybrid cultivars in onions. In: Frankel R (ed) Heterosis, Monographs on theoretical and applied genetics, vol 6. Springer, Berlin, pp 220–233. https://doi.org/10.1007/978-3-642-81977-3_8

    Chapter  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP et al (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101. https://doi.org/10.1007/s00122-013-2121-x

    Article  CAS  PubMed  Google Scholar 

  • Duqueza LC, Eugenio TS (1973) The effect of fertilizer and different planting materials on the production of bulb and seed of Batanes, a native variety of onion. Philip J Plant Indus 38(3/4):25–41

    Google Scholar 

  • Ebrahimi R, Zamani Z, Kashi A, Jabbari A (2008) Comparison of fatty acids mineral elements of 17 Iranian shallot landraces (Allium hirtifolium Boiss). J Food Sci Technol 5:61–68

    Google Scholar 

  • Ebrahimi R, Zamani Z, Kashi A (2009) Genetic diversity evaluation of wild Persian shallot (Allium hirtifolium Boiss) using morphological and RAPD markers. Sci Hortic 119:345–351

    Article  CAS  Google Scholar 

  • Emsweller SL, Jones HA (1935a) An interspecific hybrid in Allium. Hilgardia 9:265–273. https://doi.org/10.3733/hilgv09n05p265

    Article  Google Scholar 

  • Emsweller SL, Jones HA (1935b) Meiosis in Allium fistulosum, Allium cepa, and their hybrid. Hilgardia 9(5):275–294. https://doi.org/10.3733/hilgv09n05p275

    Article  Google Scholar 

  • Endang S, Yamashita K, Tashiro Y (2002) Genetic characteristics of the Indonesia white shallot. J Jpn Soc Hortic Sci 71:504–508

    Article  Google Scholar 

  • Engelke T, Terefe D, Tatlioglu T (2003) A PCR-based marker system monitoring CMS-(S) CMS-(T) and (N)-cytoplasm in the onion (Allium cepa L.). Theor Appl Genet 107:162–167. https://doi.org/10.1007/s00122-003-1230-3

    Article  CAS  PubMed  Google Scholar 

  • Eshel D, Teper-Bamnolker P, Vinokur Y et al (2014) Fast curing: A method to improve postharvest quality of onions in hot climate harvest. Postharv Biol Tech 88:34–39

    Article  CAS  Google Scholar 

  • FAOSTAT (2009) http://www.fao.org/faostat/en/#data/QC

  • Fenwick GR, Hanley AB (1985) The genus Allium. Crit Rev Food Sci Nutr 22:199–271

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RR, Santos CAF, Oliveira VR (2017) Fertility restoration locus and cytoplasm types in onion Gen Mol Res: 16(3): gmr 16039766 12 pp. doi https://doi.org/10.4238/gmr16039766

  • Fita GT (2004) Manipulation of flowering for seed production of shallot (Allium cepa var ascalonicum Backer), PhD thesis Hannover University, Germany https://pdfssemanticscholarorg/4e40/f105e649c0faa088bad6e9a9139432bd771apdf

    Google Scholar 

  • Fletcher PJ, Fletcher JD, Lewthwaite SL (1998) In vitro elimination of onion yellow dwarf and shallot latent viruses in shallots (Allium cepa var. ascalonicum L.). NZ J Crop Hortic Sci 26:23–26

    Article  Google Scholar 

  • Folitse BY, Obeng-Koranteng G, Osei SK, Dzandu LP (2017) The present status of shallot (Allium ascalonicum L.) farming enterprise in Ghana: the case of Keta municipality. Agric Commun 5(2):8–16

    Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375. https://doi.org/10.1016/jtplants200706007

    Article  CAS  PubMed  Google Scholar 

  • Friesen N, Fritsch RM, Blattner FR (2005) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22:372–395

    Article  Google Scholar 

  • Friesen N, Klaas M (1998) Origin of some minor vegetatively propagated Allium crops studied with RAPD and GISH. Genet Res Crop Evol 45:511–523

    Article  Google Scholar 

  • Friis-Hansen E (1992) The failure of formal plant breeding to meet the needs of resource-poor peasants in African arid lands. Working Paper Series No 3/92 12 p (cited in http://wwwfaoorg/3/i1070e/i1070e04pdf)

    Google Scholar 

  • Fritsch RM (2008) The Iranian species of Allium subg Melanocrommyum sect Megaloprason (Alliaceae). Nordic J Bot 16:9–17

    Article  Google Scholar 

  • Fritsch RM, Abbasi M (2013) A taxonomic review of Allium subg Melanocrommyum in Iran. Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben

    Google Scholar 

  • Fritsch RM, Friesen N (2002) Evolution domestication and taxonomy. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CAB International, Wallingford, pp 5–30

    Chapter  Google Scholar 

  • Fry WE, Smart CD (1999) The return of Phytophthora infestans a potato pathogen that just won't quit. Potato Res 42:279–282. https://doi.org/10.1007/BF02357858

    Article  Google Scholar 

  • Galmarini CR (1997) Allium crop situation in Argentina. Acta Hortic 433:35–52

    Google Scholar 

  • Galmarini CR (2000) Onion cultivars released by La Consulta Experiment Station INTA Argentina. HortScience 35:1360–1362

    Article  Google Scholar 

  • Galmarini CR, Goldman IL, Havey MJ (2001) Genetic analyses of correlated solids flavor and health-enhancing traits in onion (Allium cepa L.). Mol Genet Genomics 265:543–551. https://doi.org/10.1007/s004380100445

    Article  CAS  PubMed  Google Scholar 

  • Getachew T, Asfaw Z (2004) Achievements in shallot and garlic research. Res Rep No 38. EARO Addis Ababa, Ethiopia

    Google Scholar 

  • Getahum D, Zelleke A (2009) Identification of appropriate planting period for shallot (Allium cepa L. var. ascalonicum Baker) seed production at Debre Zeit Ethiopia. [2006]. http://agrisfaoorg/agris-search/searchdo?recordID=ET2007000298

    Google Scholar 

  • Ghahremani-Majd H, Dashti F (2014) Genetic diversity of Persian shallot (Allium hirtifolium Boiss) populations based on morphological traits and RAPD markers. Plant Syst Evol 300:1021–1030

    Article  CAS  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A et al (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58

    Article  CAS  PubMed  Google Scholar 

  • Gimenez MD, Lampasona SG (2019) Before-after analysis of genetic and epigenetic markers in garlic: a 13-year experiment. ScientiHort 240:23–28

    Google Scholar 

  • Gimenez MD, Yañez-Santos AM, Paz RC, Quiroga MP, Marfl CF, Conci VC, García-Lampasona SC (2016) Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation. Plant Cell Rep 35:129–141. https://doi.org/10.1007/s00299-015-1874-x

  • Gonzalez LG, Ford-Lloyd BV (1987) Facilitation of wide-crossing through embryo rescue and pollen storage in interspecific hybridization of cultivated Allium species. Plant Breed 98:318–322. https://doi.org/10.1111/j1439-05231987tb01136x

    Article  Google Scholar 

  • Govaerts, R., Kington, S., Friesen, N., Fritsch, R.M., Snijman, D.A. et al. (2005–2020) World checklist of Amaryllidaceae. http://apps.kew.org/wcsp/

  • Griffiths G, Trueman L, Crowther T et al (2002) Onions—a global benefit to health. Phytother Res 16:603–615e

    Article  CAS  PubMed  Google Scholar 

  • Grubben GJH (1994) Constraints for shallot garlic and Welsh onion in Indonesia: a case study on the evolution of Allium crops in the equatorial tropics. Acta Hortic 358:333–339

    Article  Google Scholar 

  • Grubben GJH, Denton OA (2004) Alliums cepa L. In: PROTA Vegetables. PROTA Foundation Backhuys Publishers CTA Wageningen Netherlands, pp 45–52

    Google Scholar 

  • Gupta AJ, Singh (2016) Development of hybrids and hybrid seed production of onion. In: Pandey SB, Singh S, Manimurugan N et al (eds) Principles and production techniques of hybrid seeds in vegetables training manual on principles and production techniques of hybrid seeds in vegetables. ICAR-IIVR, Varanasi, pp 101–111. https://wwwresearchgatenet/publication/311594332_Development_of_hybrids_and_hybrid_seed_production_of_onion

    Google Scholar 

  • Gurushidze M, Mashayekhi S, Blattner FR et al (2007) Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst Evol 269:259–269

    Article  CAS  Google Scholar 

  • Hailekidan B, Andargie M, Assefa K (2013) In vitro plantlet regeneration from the bulbs of shallot (Allium cepa var group Aggregatum). Res Plant Sci 1:45–52. https://doi.org/10.12691/plant-1-2-7

    Article  Google Scholar 

  • Hailu G, Tibebu S, Melese T (2014) Participatory evaluation of improved shallot (Allium cepa var aggregatum) varieties and their bulb size effect on yield and yield traits in Wolaita zone Southern Ethiopia. J Biol Agric Healthcare 4:103–110

    Google Scholar 

  • Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194–201

    Article  PubMed  Google Scholar 

  • Hanci F, Cebeci E (2016) Applications of genetic engineering in Allium. Acta Hortic 1145:75–78. https://doi.org/10.17660/ActaHortic.2016.1145.11

    Article  Google Scholar 

  • Hanelt P (1990) Taxonomy, evolution and history. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Botany physiology and genetics, vol I. CRC Press, Boca Raton, pp 1–26

    Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Havey MJ (1991) Molecular characterization of the interspecific origin of viviparous onion. J Hered 82:501–503

    Article  CAS  Google Scholar 

  • Havey MJ (1993a) A putative donor of S cytoplasm and its distribution among open-pollinated populations of onion. Theor Appl Genet 86:128–134

    Article  CAS  PubMed  Google Scholar 

  • Havey MJ (1993b) Onion breeding. In: Kalloo G, Berg B (eds) Genetic improvement of vegetable crops. Pergamon, Oxford, pp 35–49

    Chapter  Google Scholar 

  • Havey MJ (1994) The cytoplasms of sterile lines used to produce commercial hybrid-onion seed. Allium Improvement Newsl 4:25–27

    Google Scholar 

  • Havey MJ (1995) Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations of onion. Theor Appl Genet 90:263–268. https://doi.org/10.1007/BF00222212

    Article  CAS  PubMed  Google Scholar 

  • Havey MJ (1997) On the origin and distribution of normal cytoplasm of onion. Genet Res Crop Evol 44:307–313

    Article  Google Scholar 

  • Havey MJ (1999) Seed yield floral morphology and lack of male-fertility restoration of male-sterile onion (Allium cepa) populations possessing the cytoplasm of Allium galanthum. J Am Soc Hortic Sci 124:626–629

    Article  Google Scholar 

  • Havey MJ (2000) Diversity among male-sterility-inducing and male-fertile cytoplasms of onion. Theor Appl Genet 101:778–782

    Article  CAS  Google Scholar 

  • Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 623–634

    Chapter  Google Scholar 

  • Havey MJ (2019) Onion breeding. Plant Breed Rev 42:39–86

    Google Scholar 

  • Havey MJ, Bark OH (1994) Molecular confirmation that sterile cytoplasm has been introduced into open-pollinated populations of Grano-type onion. J Am Soc Hortic Sci 119:90–93

    Article  CAS  Google Scholar 

  • Helm J (1956) Die zu Wiirz- und Speisezwecken kultivierten Arten der Gattung AlIium L. Kulturpflanze 4:130–180

    Article  Google Scholar 

  • Herlina L, Reflinur R, Nugroho K et al (2018) Genetic diversity analysis using resistance gene analog-based markers to support morphological characterization of shallots. J AgroBiogen 14(2):65–74. https://doi.org/10.21082/jbio.v14n2.2018

    Article  Google Scholar 

  • Herlina L, Reflinur R, Sobir R et al (2019a) The genetic diversity and population structure of shallots (Allium cepa var. aggregatum) in Indonesia based on R gene-derived markers. Biodiversitas 20:696–703

    Article  Google Scholar 

  • Herlina L, Sobir R, Maharijayab A et al (2019b) Genetic diversity of Indonesian shallots based on bulb-tunic patterns and morphological characters. Indonesian J Agric Sci 20:19–28. https://doi.org/10.21082/ijas

    Article  Google Scholar 

  • Hidayat IM (2005) In vitro plant regeneration and bulblet formation of shallots (Allium ascalonicum L) ‘Sumenep’. In: Guangshu L (ed) Proc IVth IS on edible Alliaceae Acta Hort 688:251–257

    Google Scholar 

  • Hizume M (1994) Alloploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Jpn J Genet 69:407–415

    Article  CAS  PubMed  Google Scholar 

  • Hoa VQ, Iwata M, Yamauchi N, Shigyo M (2011) Production of novel alloplasmic male sterile lines in Allium cepa harbouring the cytoplasm from Allium roylei. Plant Breed 130:469–475. https://doi.org/10.1111/j1439-0523201101855x

    Article  Google Scholar 

  • Holford P, Croft J, Newbury H (1991) Differences between and possible origins of the cytoplasms found in fertile and male-sterile onions (Allium cepa L). Theor Appl Genet 82:737–744

    Article  CAS  PubMed  Google Scholar 

  • Hu SY (2005) Food plants of China. The Chinese University Press, Hong Kong

    Google Scholar 

  • Huo YM, Liu BJ, Yang YY et al (2015) AcSKP1 a multiplex PCR-based co-dominant marker in complete linkage disequilibrium with the male-fertility restoration (Ms) locus and its application in open-pollinated populations of onion. Euphytica 204:711–722. https://doi.org/10.1007/s10681-015-1374-7

    Article  CAS  Google Scholar 

  • Hyde PT, Earle ED, Mutschler MA (2012) Doubled haploid onion (Allium cepa L) lines and their impact on hybrid performance. HortSci 47:1690–1695. https://doi.org/10.21273/HORTSCI47121690

    Article  Google Scholar 

  • Insani EM, Cavagnaro PF, Salomón VM et al (2016) Variation for health-enhancing compounds and traits in onion (Allium cepa L) germplasm. Fund Nutr Sci 7:577–591. https://doi.org/10.4236/fns.2016.77059

    Article  Google Scholar 

  • Irianto Y, Umar H, Susilawati S (2017) Growth and yield characteristics of three shallot varieties affected by phosphate fertilizer dosages on ultisol. Russ J Agric Socio-Econ Sci 5(65):245–254

    Google Scholar 

  • Jackson TH, Sissay A, Brunko W et al (1985) A practical guide to horticulture in Ethiopia Horticulture Development Department, Addis Ababa, Ethiopia, pp 58–64

    Google Scholar 

  • Jiang G-L (2013) Molecular markers and markers assisted breeding in plants. In: Anderson SB (ed) Plant breeding from laboratories to fields. Intech Croatia, pp 45–83. https://doi.org/10.5772/3362

  • Jo J, Purushotham PM, Han K et al (2017) Development of a genetic map for onion (Allium cepa L) using reference-free genotyping-by-sequencing and SNP assays. Front Plant Sci 14 September 2017. https://doi.org/10.3389/fpls201701606

  • Jones HA, Clarke AE (1942) A natural amphidiploid from an onion species hybrid Allium cepa Lx Allium fistulosum L. Heredity 33:25–32

    Article  Google Scholar 

  • Jones HA, Clarke AE (1943) Inheritance of male sterility in onion and the production of hybrid seed. Proc Am Soc Hortic Sci 43:189–194

    Google Scholar 

  • Jones HA, Davis GN (1944) Inbreeding and heterosis and their relation to the development of new varieties of onion. Tech Bull USDA 874:1–28

    Google Scholar 

  • Jones HA, Emsweller SL (1933) Methods of breeding onions. Hilgardia 7:625–642

    Article  Google Scholar 

  • Jones HA, Emsweller SL (1936a) Development of flower and gametophyte of Allium cepa. Hilgardia 10:415–428

    Article  Google Scholar 

  • Jones HA, Emsweller SL (1936b) A male sterile onion. Proc Am Soc Hortic Sci 34:582–585

    Google Scholar 

  • Jones HA, Mann LK (1963) Onions and their allies botany cultivation and utilization. Interscience Publishers, New York

    Google Scholar 

  • Jones RN (1990) Cytogenics. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Botany physiology and genetics, vol I. CRC Press, Boca Raton, pp 199–214

    Google Scholar 

  • Jones ST, Kehr AE (1957) The cytology and plant characteristics of an amphidiploids derived from Allium ascalonicum X A fistulosum. Am J Bot 44:523–529. https://doi.org/10.2307/2438921

    Article  Google Scholar 

  • Joshi N, Ravindran A, Mahajan V (2011) Investigations on chemical mutagen sensitivity in onion (Allium cepa L). Int J Bot 7:243–248. https://doi.org/10.3923/ijb2011243248

    Article  CAS  Google Scholar 

  • Joshi H, Tandon J (1976) Heterosis for yield and its genetic basis in the onion. Indian J Agric Sci 46:88–92

    Google Scholar 

  • Kalkman ER (1984a) Analysis of the C-banded karyotype of Allium cepa L standard system of nomenclature and polymorphism. Genetica 65:141–148

    Article  Google Scholar 

  • Kalkman ER (1984b) Cytotaxonomic studies in the genus Allium. Usefulness of C-banding for description and classification In: Proceedings of Eucarpia 3rd Allium Symposium. Institute for Horticultural Plant Breeding (IVT) Wageningen, The Netherlands, pp 74–77

    Google Scholar 

  • Kamenetsky R, Rabinowitch HD (2002) Florogenesis. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, Wallingford, pp 31–57

    Chapter  Google Scholar 

  • Kamenetsky R, Rabinowitch HD (2017) Physiology of domesticated alliums: onions garlic leek and minor crops. In: Thomas B, Murphy D, Murray B (eds) Encyclopedia of applied plant sciences. Elsevier Science, pp 255–261

    Google Scholar 

  • Katis NI, Maliogka VI, Dovas CI (2012) Viruses of the genus Allium in the Mediterranean region Adv Virus Res; 84:163–208. https://doi.org/10.1016/B978-0-12-394314-900005-1 PMID: 22682168

  • Kato M, Masamura N, Shono J et al (2016) Production and characterization of tearless and non-pungent onion. Sci Rep 6:23779. https://doi.org/10.1038/srep23779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller ERJ, Schubert I, Fuchs J, Meister A (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424

    Article  CAS  PubMed  Google Scholar 

  • Kenchanmane Raju SK, Niederhuth CE (2018) Epigenetic diversity and application to breeding. In: Mirouze M, Bucher E, Gallusci P (eds) Adv Bot Res 88:49–86

    Google Scholar 

  • Khan S-A, Amjad M, Khan A (2001) The extent of inbreeding depression in seven cultivars of onion (Allium cepa L). Int J Agric Biol 3:498–500

    Google Scholar 

  • Khokhar KM (2017) Environmental and genotypic effects on bulb development in onion – a review. J Hortic SciBiotech 92:448–454

    CAS  Google Scholar 

  • Khodadadi M, Hassanpanah D (2010) Iranian onion (Allium cepa L) cultivars responses to inbreeding depression. World Appl Sci J 11:426–428

    Google Scholar 

  • Khorasani M, Mehrvarz SS, Zarre S (2018) Scape anatomy and its systematic importance in the Allium stipitatum species complex (Amaryllidaceae). Nordic J Bot 36(11):e02008. https://onlinelibrarywileycom/doi/pdf/101111/njb02008

    Article  Google Scholar 

  • Khosa JS, Dhatt AS, Negi KS, Khar A (2014) Utility of simple sequence repeat (SSR) markers to realize worth of germplasm in genus Allium. Indian J Plant. Genet Res 27(3):238–245. https://doi.org/10.5958/0976-1926.2014.00020.5

    Article  Google Scholar 

  • Khosa JS, Lee R, Bräuning SJ et al (2016) Doubled haploid ‘CUDH2107’ as a reference for bulb onion (allium cepa l) research: development of a transcriptome catalogue and identification of transcripts associated with male fertility PLoS ONE 11(11): e0166568. https://doi.org/10.1371/journalpone0166568

  • Khosa JS, McCallum J, Dhatt AS, Macknight RC (2015) Enhancing onion breeding using molecular tools. Plant Breed 135:9–20. https://doi.org/10.1111/pbr12330

    Article  Google Scholar 

  • Khrustaleva L (2018) Cytological details of genome In: Shigyo M, Khar A, Abdelrahman M (eds) The Allium genomes compendium of plant genomes. Springer. Cham. pp 67–87i. https://doi.org/10.1007/978-3-319-95825-5_5

  • Khrustaleva LI, Kik C (1998) Cytogenetical studies in the bridge cross Allium cepa × (A. fistulosum × A. roylei). Theor Appl Genet 96:8–14. https://doi.org/10.1007/s001220050702

    Article  Google Scholar 

  • Khrustaleva LI, Kik C (2000) Introgression of Allium fistulosum into A cepa mediated by A roylei. Theor Appl Genet 100:17–26

    Article  Google Scholar 

  • Kik C, De Greef HJ, van Marrewijk NPA (2001) Uniformity in F1 hybrid and open pollinated long day onion cultivars. Allium Improv Newslet 11:18–22

    Google Scholar 

  • Kik C (2002) Exploitation of wild relatives for the breeding of cultivated Allium species. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CAB International, Wallingford, pp 81–100

    Chapter  Google Scholar 

  • Kim S (2013) Identification of hypervariable chloroplast intergenic sequences in onion (Allium cepa L) and their use to analyse the origins of male-sterile onion cytotypes. J Hortic Sci Biotech 88:187–194

    Article  CAS  Google Scholar 

  • Kim S (2014) A codominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in reevaluation of inheritance of fertility restoration in onions. Mol Breed 34:769–778

    Article  CAS  Google Scholar 

  • Kim S, Bang H, Patil BS (2013) Origin of three characteristic onion (Allium cepa L) mitochondrial genome rearrangements in Allium species. Sci Hortic 157:24–31

    Article  CAS  Google Scholar 

  • Kim S, Lee E, Cho DY et al (2009) Identification of a novel chimeric gene orf725 and its use in development of a molecular marker for distinguishing three cytoplasm types in onion (Allium cepa L.). Theor Appl Genet 118:433–441

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim C, Park M, Choi D (2015a) Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L) using a combination of bulked segregant analysis and RNA-seq. Theor Apple Genet 128:2289–2299

    Article  CAS  Google Scholar 

  • Kim S, Park J, Yang T (2015b) Comparative analysis of the complete chloroplast genome sequences of a normal male-fertile cytoplasm and two different cytoplasms conferring cytoplasmic male sterility in onion (Allium cepa L). J Hort Sci Biotech 90:459–468. https://doi.org/10.1080/14620316201511513210

    Article  CAS  Google Scholar 

  • Kim B, Kim K, Yang T, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmF N gene split. Curr Genet 62:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Yang TJ, Kim S (2019) Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms. Theor Appl Genet 132:313–322. https://doi.org/10.1007/s00122-018-3218-z

    Article  CAS  PubMed  Google Scholar 

  • King JJ, Bradeen JM, Bark O et al (1998) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Klass M, Friesen N (2002) Molecular markers in Allium. In: Rabinowitch HD, Currah L (eds) Allium crop science – recent advances. CABI Publishing, Oxon, pp 159–185

    Chapter  Google Scholar 

  • Kofoet A, Kik C, Wietsma WA, De Vries JN (1990) Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) from Allium roylei Stearn in the backcross Allium cepa L. X (A. roylei X A. cepa). Plant Breed 105:144–149

    Article  Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3. Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-7

    Article  Google Scholar 

  • Krontal Y, Kamenetsky R, Rabinowitch HD (1998) Lateral development and florogenesis of a tropical shallot – a comparison with bulb onion. Int J Plant Sci 159:57–64

    Article  Google Scholar 

  • Krontal Y, Kamenetsky R, Rabinowitch HD (2000) Flowering physiology and some vegetative traits of short-day shallot: a comparison with bulb onion. J Hortic Sci Biotech 75:35–41

    Article  Google Scholar 

  • Kumar J, Mishra RC, Gupta JK (1985) The effect of mode of pollination on Allium species with observations on insects as pollinators. J Apic Res 24:62–66

    Article  Google Scholar 

  • Kumazawa S (1965) Sosai-engeigaku-kakuron (Vegetable Crops in Japanese). Yokendo Tokyo, pp 24–46

    Google Scholar 

  • Kutka FJ, Smith ME (2007) How many parents give the highest yield in predicted synthetic and composite populations of maize? Crop Sci 47:1905–1913. https://doi.org/10.2135/cropsci2006120802sc

    Article  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo- para- and eco-dormancy: physiological dormancy and clarification of dormancy research. HortSci 22:371–377

    Article  Google Scholar 

  • Lapitan V, Patena L, Rosario T (1991) In vitro system of producing shallot (Allium ascalonicum L.) planting materials. Philos J Crop Sci 16(3):95–101

    Google Scholar 

  • Latutrie M, Gourcilleau D, Pujol B (2019) Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops. Am J Bot 106:1281–1284. https://doi.org/10.1002/ajb2.1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Leelarungrayub N, Rattanapanone V, Chanarat N, Gebicki JM (2006) Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 22:266–274

    Article  CAS  PubMed  Google Scholar 

  • Legin A, Rudnitskaya A, Seleznev B, Sparfel G (2004) Electronic tongue distinguishes onions and shallots. Acta Hortic 634:183–191

    Article  Google Scholar 

  • Le Guen-Le Saos F, Hourmant A, Esnault F, Chauvin JE (2002) In vitro bulb development in shallot (Allium cepa L Aggregatum group): effects of anti-gibberellins sucrose and light. Annal Bot 89:419–425

    Google Scholar 

  • Leino MW, Solberg SØ, Tunset HM et al (2018) Patterns of exchange of multiplying onion (Allium cepa L Aggregatum-Group) in Fennoscandian home gardens. Econ Bot 72:346–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemma D, Yayeh Z (1994) Varietal development on vegetable crops In: Herath E, Lemma D (eds) Horticultural research and development in Ethiopia. Proceeding of the 2nd Horticultural Workshop IAR Addis Ababa, pp 110–130

    Google Scholar 

  • Levan A (1936) Die Zytologie von Allium cepa x A. fistulosum. Hereditas 21:195–214

    Article  Google Scholar 

  • Levan A (1941) The cytology of the species hybrid Allium cepa × A. fistulosum and its polyploid derivatives. Hereditas 27:253–272. https://doi.org/10.1111/j.1601-5223.1941.tb03260.x

    Article  Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250:942–947

    Article  CAS  PubMed  Google Scholar 

  • Liu BY, Yang Y, Gao L et al (2019) Development of a genotyping method for onion (Allium cepa L) male-fertility based on multiplex PCR. J Hortic Sci Biotech. https://doi.org/10.1080/1462031620191656113

  • Lopez EL, Anit EA (1994) Allium production in the Philippines. Acta Hortic 358:61–70. https://doi.org/10.17660/ActaHortic1994.358.8

    Article  Google Scholar 

  • Maaß HI (1996) About the origin of the French grey shallot. Genet Res Crop Evol 43:291–292

    Article  Google Scholar 

  • Maeda T (1937) Chiasma studies in Allium fistulosum Allium cepa and their F1 F2 and backcross hybrids. Jpn J Genet 13:146–159

    Article  Google Scholar 

  • Mahajan V, Gupta AJ, Lawande KE, Singh M (2018) Onion improvement in India. J Allium Res 1:7–20

    Google Scholar 

  • Major N, Goreta Ban S, Urlić B et al (2018) Morphological and biochemical diversity of shallot landraces preserved along the Croatian coast. Front Plant Sci 9:1749. https://doi.org/10.3389/fpls201801749e

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik G, Dhatt A, Malik AA (2017) Isolation of male sterile and maintainer lines from north-Indian onion (Allium cepa L) populations with the aid of PCR-based molecular marker. Vegetos Int J Plant Res 30(2):94. https://doi.org/10.5958/2229-4473.2017.00142.2

    Article  Google Scholar 

  • Malik G, Dhatt AS, Malik AA (2020) A review of genetic understanding and amelioration of edible Allium species. Food Rev Int. https://doi.org/10.1080/87559129.2019.1709202

  • Mallor C, Arnedo-Andrés MS, Garcés-Claver A (2014) Assessing the genetic diversity of Spanish Allium cepa landraces for onion breeding using microsatellite markers. Sci Hortic 170:24–31

    Article  Google Scholar 

  • Mangum PD, Peffley EB (2005) Central cell nuclear-cytoplasmic incongruity: a mechanism for segregation distortion in advanced backcross and selfed generations of [(Allium cepa L × A fistulosum L) × A cepa] interspecific hybrid derivatives. Cytogen Genome Res 109:400–407

    Article  CAS  Google Scholar 

  • Marais A, Faure C, Theil S, Candresse T (2019) Characterization of the virome of shallots affected by the shallot mild yellow stripe disease in France. PLOS One. https://doi.org/10.1371/journalpone0219024

    Book  Google Scholar 

  • Marlin Maharijaya A, Purwitom A, Sobir (2018) Molecular diversity of the flowering related gene (LEAFY) on shallot (Allium cepa var Aggregatum) and Allium relatives. SABRAO J Breed Genet 50:313–328

    Google Scholar 

  • Márquez-Sánchez F (1992) Inbreeding and yield prediction in synthetic maize cultivars made with parental lines: I Basic methods. Crop Sci 32:271–274. https://doi.org/10.2135/cropsci19920011183X003200020013x

    Article  Google Scholar 

  • McCollum GD (1971) Sterility of some interspecific Allium hybrids. J Am Soc Hortic Sci 96:359–362

    Article  Google Scholar 

  • McCollum GD (1974) Chromosome behavior and sterility of hybrids between the common onion Allium cepa and the related wild A oschaninii. Euphytica 23:699–709

    Article  Google Scholar 

  • McCollum GD (1980) Development of the amphidiploid of Allium galanthum x A cepa. J Hered 71:445–447

    Article  Google Scholar 

  • McCallum J (2007) Onion. In: Kole C (ed) Genome mapping and molecular breeding in plants vegetables, vol 5. Springer, Berlin, pp 331–348

    Google Scholar 

  • McCallum J, Baldwin S, Shigyo M, Deng Y et al (2012) Allium map – a comparative genomics resource for cultivated Allium vegetables. BMC Genomics 13:168. http://wwwbiomedcentralcom/1471-2164/13/168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M et al (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967. https://doi.org/10.1007/s00122-005-0199-5

    Article  CAS  PubMed  Google Scholar 

  • McCallum J, Grant DG, Mccartney EP et al (2001) Genotypic and environmental variation in bulb composition of New Zealand adapted onion (Allium cepa) germplasm. NZ J Crop Hortic Sci 29:149–158

    Article  Google Scholar 

  • McCallum J, Pither-Joyce M, Shaw M et al (2007) Genetic mapping of sulphur assimilation genes reveals a QTL for onion bulb pungency. Theor Appl Genet 114:815–822

    Article  CAS  PubMed  Google Scholar 

  • McCallum J, Thomson S, Pitcher-Joyce M et al (2008) Genetic diversity analysis and single nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence Tag-simple sequence repeats markers. J Am Soc Hortic Sci 113:810–818

    Article  Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Mengistu H, Seid A (1990) Vegetable crops diseases in Ethiopia and their control. A Manual. Alemaya University of Agriculture, Ethiopia, pp. 25–27

    Google Scholar 

  • Merry DME (1967) Years of care and selection produced the noted Pukekohe onion. NZ J Agric 114:46–49

    Google Scholar 

  • Messiaen CM (1989) Le potager tropical. Presses Universtaires de France, Paris

    Google Scholar 

  • Messiaen CM, Cohat J, Leroux JP et al (1993) Les Allium Alimentaires reproduits pare voie vegetative. Institut National de la Recherche Agronomique, Paris

    Google Scholar 

  • Messiaen CM, Lot H, Delecolle B (1994) Thirty years of France experience in the reproduction of disease-free garlic and shallot mother bulbs. Acta Hortic 358:275–279. https://doi.org/10.17660/ActaHortic199435814

  • Miller RD, Koeppe DE (1971) Southern corn leaf blight: Susceptible and resistant mitochondria. Science 173:67–69

    Article  CAS  PubMed  Google Scholar 

  • Moradi Y, Moradi-Sardareh H, Ghasemi H et al (2013) Medicinal properties of Persian shallot. Eur J Expl Bio 3:371–379. www.pelagiaresearchlibrarycom

  • More MA (2005) Mutation breeding for disease resistance in onion (Allium cepa L). Thesis Department of Horticulture Post Graduate Institute Mahatma Phule Krishi Vidyapeeth Rahuri-413 722 Dist Ahmednagar Maharashtra State India http://krishikoshegranthacin/displaybitstream?handle=1/5810002635

    Google Scholar 

  • Moshin G, Farruk A, Rahman S, Islam S (2017) Use of male sterility and synthesis of maintainer line for hybrid seed production in onion (Allium cepa L.) in Bangladesh. Bangladesh J Plant Breed Genet 29:31–38. https://doi.org/10.3329/bjpbg.v29i1.33705

    Article  Google Scholar 

  • Mushtaq S, Amjad M, Ziaf K, Afzal I (2018) Gibberellins application timing modulates growth, physiology, and quality characteristics of two onion (Allium cepa L.) cultivars. Environ Sci Pollut Res Int. 25:25155–25161. https://doi.org/10.1007/s11356-018-2542-9

  • Naamni F, Rabinowitch HD, Kedar N (1980) The effect of GA3 application on flowering and seed production in onion (Allium cepa L). J Am Soc Hortic Sci 105:164–167

    Article  CAS  Google Scholar 

  • National Academy of Science (1972) Genetic vulnerability of major crops. Nat Acad Sci Wash DC

    Google Scholar 

  • Neal CA, Ellerbrock LA (1986) Optimizing time of harvest for seed of Allium cepa L. J Seed Technol 10:37–45

    Google Scholar 

  • Nguyen NH, Driscoll HE, Specht CD (2008) A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity. Mol Phylogenet Evol 47:1157–1172. https://doi.org/10.1016/j.ympev.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  • Nikhil BSK, Jadhav AS (2017) Characterization of onion (Allium cepa L) genotypes using molecular markers. Int J Trop Agric 35:25–31

    Google Scholar 

  • Nikus O, Mulugeta F (2010) Onion seed production techniques. A manual for extension agents and seed producers. FAO-Crop diversification and marketing development project Asella, Ethiopia https://coin.fao.org/coin-static/cms/media/7/13029380384160/onion_seed.pdf

  • Odeny DA, Narina SS (2011) Alliums. In: Kole C (ed) Wild crops relatives: Genomics and breeding resources vegetables Springer, pp 1–10. https://doi.org/10.1007/978-3-642-20450-0

  • Ohara T, Song Y-S, Tsukazaki H et al (2005) Genetic mapping of AFLP markers in Japanese bunching onion (Allium fistulosum). Euphytica 144:255–263. https://doi.org/10.1007/s10681-005-6768-5

    Article  CAS  Google Scholar 

  • Okunmadewa FY (1999) Performance appraisal of alternative marketing arrangements for food crops in Oyo State. Nigeria J Rural Econ Dev 13:73–83

    Google Scholar 

  • Oladosua Y, Rafii MY, Abdullaha N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • Olayide SO, Olatunbosun D, Idusogie EO, Abiagom JD (1972) A quantitative analysis of food requirements supplies and demand in Nigeria (1968–1985). Nigeria Study Group on Food Crops Federal Dept of Agriculture

    Google Scholar 

  • Osman AM, Almekinders CJM, Struik PC et al (2008) Can conventional breeding programmes provide onion varieties that are suitable for organic farming in the Netherlands? Euphytica 163:511–522. doi https://doi.org/10.1007/s10681-008-9700-y

  • Özer N, Köycüm ND (2004) Seed-borne fungal diseases of onion and their control. In: Mukerji KG (ed) Fruit and vegetable diseases disease, Management of fruits and vegetables, vol 1. Springer, Dordrecht, pp 281–306. https://doi.org/10.1007/0-306-48575-3_8

    Chapter  Google Scholar 

  • Palupi ER, Manik F, Suhartanto MR (2017) Can we produce true seed of shallot (TSS) from small size shallot sets? J Trop Crop Sci 4:26–31

    Article  Google Scholar 

  • Pandey A, Pandey R, Negi KS, Radhamani J (2008) Realizing value of genetic resources of Allium. India Genet Resour Crop Evol 55:985–994

    Article  Google Scholar 

  • Pathak CS (1986) Hybrid seed production in onion. J New Seeds 1:89–108. https://doi.org/10.1300/J153v01n03_04

    Article  Google Scholar 

  • Pathak CS (2000) Hybrid seed production in onion. J New Seeds 1:3–4 89–108. https://doi.org/10.1300/J153v01n03_04

  • Pathak CS, Gowda RV (1993) Breeding for the development of onion hybrids in India: problems and prospects. Acta Hortic 358:239–242

    Google Scholar 

  • Peffley EB, Hou A (2000) Bulb-type onion introgressants possessing Allium fistulosum L genes recovered from interspecific hybrid backcrosses between A. cepa L and A. fistulosum L. Theor Appl Genet 100:528–534. https://doi.org/10.1007/s001220050069

  • Perez-de-Castro AM, Vilanova S, Canizares J et al (2012) Application of genomic tools in plant breeding. Current genomics 13:179–195. doi. https://doi.org/10.2174/138920212800543084

  • Pérez-Moreno L, Navarro-León JN, Ramírez-Malagón R, Mendoza-Celedón B (2010) Impacto e identificación de virus fitopatógenos sobre rendimiento y calidad de ajo en el estado de Guanajuato México. Rev Mex Fitopat 28:75–85

    Google Scholar 

  • Permadi AH (1993) Growing shallot from true seed-research results and problems. Onion Newsl Trop 5:35–38

    Google Scholar 

  • Permadi AH, Van der Meer QP (1993) Allium cepa L cv group Aggregatum in: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia No 8 Vegetables Pudoc Scientific Publishers Wageningen the Netherlands, pp 64–68. https://agris.fao.org/agris-search/search.do?recordID=GB19960001922

  • Peška V, Mandáková T, Ihradská V, Fajkus J (2019) Comparative dissection of three giant genomes: Allium cepa, Allium sativum and Allium ursinum. Int J Mol Sci 20(3):733.; 25 pp. https://doi.org/10.3390/ijms20030733

    Article  CAS  PubMed Central  Google Scholar 

  • Peterka H, Budahn H, Schrader O, Havey MJ (2002) Transfer of a male-sterility-inducing cytoplasm from onion to leek (Allium ampeloprasum). Theor Appl Genet 105:173–181

    Article  PubMed  Google Scholar 

  • Peters R (1990) Seed production in onions and some other Allium species In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops Vol I Botany physiology and genetics. CRC Press, Boca Raton, pp 161–176

    Google Scholar 

  • Peterson PA, Flavell RB, Barratt DHP (1975) Altered mitochondrial membrane activities associated with cytoplasmically-inherited disease sensitivity in maize. Theor Appl Genet 45:309–314

    Article  CAS  PubMed  Google Scholar 

  • Pathak CS (1994) Allium improvement for the tropics: problems and AVRDC strategy. Acta Hortic 358:23–32

    Article  Google Scholar 

  • Pathak CS (1997) A possible new source of male sterility in onion. Acta Hort 433:313–316 https://doi.org/10.17660/ActaHortic.1997.433.32

  • Phillips N (2010) Seed and bulb dormancy characteristics in New World Allium L (Amaryllidaceae): a review. Int J Bot 6:228–234

    Article  Google Scholar 

  • Pike LM (1986) Onion breeding. In: Breeding vegetable crops. Iowa State University, pp 357–394. http://faculty.agron.iastate.edu/fehr/BVC/10BVC.PDF

  • Pike LM, Horn RS, Anderson CR et al (1998) Texas Grano 1015Y: a mild progeny sweet short-day onion. HortSci 23:634–635

    Article  Google Scholar 

  • Pitrat M (2012) Vegetable crops in the Mediterranean basin with an overview of virus resistance Adv Virus Res 84:1–29. https://doi.org/101016/B978-0-12-394314-900001-4

  • Proctor FJ (1987) Report on visit to Ethiopia to discuss post-harvest storage and handling of Allium species 20 March–1 April 1987. Tropical Development and Research Institute Overseas Development Administration, London

    Google Scholar 

  • Production Yearbook (2000) http://www.fao.org/faostat/en/#data/QC

  • Puizina J, Papfš D (1996) Cytogenetical evidence for hybrid structure and origin of diploid and triploid shallots (Allium cepa var viviparum Liliaceae) from Dalmatia (Croatia). Plant Syst Evol 199:203–215

    Google Scholar 

  • Pusat Data dan Informasi Pertanian (2015) Kinerja Perdagangan Komoditas Pertanian Pusat Data dan Informasi Pertanian Kementerian Pertanian (cited from: Herlina L Reflinur R Sobir S et al (2019b) Genetic diversity of Indonesian shallots based on bulb-tunic patterns and morphological characters. Indon J Agric Sci 20:19–28. https://doi.org/10.21082/ijas.v20n1.2019.p19-28)

  • Putrasamedja S (1995) Effect of sowing spaces on production of true shallot seed cultivation. Jurnal Hortikultura 5:76–80

    Google Scholar 

  • Quansah ST (1957) The shallot industry incorporating a recent survey of the Anloga growing area. New Gold Coast Farmer 1(2):45–49

    Google Scholar 

  • Rabinowitch HD (1985) Flowering of onion and other edible Alliums In: Halevy AH (ed) CRC handbook of flowering. CRC Press, Boca Raton , Vol I, pp 398–409

    Google Scholar 

  • Rabinowitch HD (1990a) Physiology of flowering In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops Vol I Botany physiology and genetics CRC Press, Boca Raton, pp 113–134

    Google Scholar 

  • Rabinowitch HD (1990b) Seed development In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops. Vol I Botany physiology and genetics. CRC Press Inc Boca Raton, pp 151–159

    Google Scholar 

  • Rabinowitch HD (1997) Breeding alliaceous crops for pest resistance In: Burba JL, Galmarini CR (eds) Proc 1st Internat Symp Edible Alliaceae. Acta Hortic 433:223–245

    Article  Google Scholar 

  • Rabinowitch HD, Kamenetsky R (2002) Shallot (Allium cepa Aggregatum group) In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, Wallingford, pp 409–430

    Google Scholar 

  • Rao GM, Suryanarayan MC (1989) Effect of honeybee pollination on seed yield in onion (Allium cepa L). Indian Bee J 51:9–11

    Google Scholar 

  • Rao S, Mahajan E, Phatak CS (2015) Genetics and breeding of open pollinating varieties. In: Krishna Kumar NK, Gopal J, Parathasarathy VA (eds) The onion. Vedams eBooks, New Delhi, pp 56–91

    Google Scholar 

  • Rasekh M, Sadeghi H, Hosseini M (2013) Effects of insect pollinators on onion seed production quality and quantity. J Crop Prot 2:395–402

    Google Scholar 

  • Ravindran PN (2017) Grey shallot Allium oschaninii. In: The encyclopedia of herbs and spices. CABI, Wallingford, pp 889–890

    Chapter  Google Scholar 

  • Razzaq A, Saleem F, Kanwal M et al (2019) Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20(16):4045. https://doi.org/10.3390/ijms20164045

  • Reflinur HL, Nugroho K, Terryana RT et al (2018) Genetic diversity analysis using resistance gene analog-based markers to support morphological characterization of shallots. Jurnal AgroBiogen 14(2):65–74

    Article  Google Scholar 

  • Rendina González APVP, Verhoeven KJF, Latzel V (2018) Transgenerational effects and epigenetic memory in the clonal plant Trifolium repens. Front Plant Sci 9:1667

    Article  Google Scholar 

  • Rouamba A (1992) Analyse conjointe par les marqueurs agro-morphologiques et les allozymes de la diversité génétique de populations d'oignon (Allium cepa L) d'Afrique de l'Ouest. University of Paris VI, M. Sc. thesis

    Google Scholar 

  • Rosario TL (1994) Allium genetic resources in the Philippines. Acta Hortic 358:169–172

    Article  Google Scholar 

  • Rosliani R, Hidayat IM, Sulastrini I, Hilman Y (2016) Dissemination of technology for shallot (Allium ascalonicum L) seed production using true shallot seed (TSS) in Indonesia. In: Gokce AF (ed). Proc VII Int Sym on Edible Alliaceae. Acta Hort 1143:345–351. https://doi.org/10.17660/ActaHortic2016114349

  • Sabran M (2016) Plant genetic resources management in Indonesia: conservation, uses, and policy.http://biogen.litbang.pertanian.go.id/codevelopment/wp-content/uploads/PDF/Sabran_2016.pdf

  • Said A, Julian R-A, Tine T et al (2017) Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front Plant Sci 8:1057. https://doi.org/10.3389/fpls.2017.01057

    Article  Google Scholar 

  • Saini N, Hedau NK, Khar A et al (2015) Successful deployment of marker assisted selection (MAS) for inbred and hybrid development in long day onion (Allium cepa L). Indian J Genet Plant Breed 75:93–98. doi:https://doi.org/10.5958/0975-69062015000127

  • Saini SS, Davis GN (1967) Compatibility in some Allium species. Proc Am Soc Hortic Sci 91:401–409

    Google Scholar 

  • Saini SS, Davis GN (1969) Male sterility in Allium cepa and some species hybrids. Econ Bot 23:37–49

    Article  Google Scholar 

  • Sangakkara UR (1994) Production of Alliums in Sri Lanka: prospects and constraints Acta Hort 358:101–106. https://doi.org/10.17660/ActaHortic199435814

  • Santos CAF, Leite DL, Costa ND et al (2008) Identification of "S" "T" and "N" cytoplasm via PCR in onion populations in the São Francisco River Valley Brazil. Hort Bras 26:308–311. https://doi.org/10.1590/S0102-05362008000300003

  • Santos CAF, Leite DL, Oliveira VR, Rodrigues MA (2010) Marker-assisted selection of maintainer lines within an onion tropical population. Sci Agric 67:223–227. https://doi.org/10.1590/S0103-90162010000200015

    Article  CAS  Google Scholar 

  • Santos CAF, Leite DL, Oliveira VR, Costa ND (2012) Identification of maintainer lines and evaluation of experimental hybrids derived from a Brazilian tropical onion population. Acta Hortic 935:137–141 https://doi.org/10.17660/ActaHortic201293519

  • Saraswathi T, Sathiyamurthy VA, Tamilaselvi NA, Harish S (2017) Review on aggregatum onion (Allium cepa L var aggregatum Don). Indian J Curr Microbiol Appl Sci 6:1649–1667. https://doi.org/10.20546/ijcmas2017604201

  • Sato Y (1998) PCR amplification of CMS-specific mitochondrial nucleotide sequences to identify cytoplasmic genotypes of onion (Allium cepa L). Theor Appl Genet 96:367–370. 10.1007/s001220050750

    Google Scholar 

  • Scholten OE, Heusden AW, Khrustaleva LI et al (2007) The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 156:345–353

    Article  Google Scholar 

  • Scholten OE, Van Kaauwen MP, Shahin A et al (2016) SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol 16:187. https://doi.org/10.1186/s12870-016-0879-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Tikunov Y, Verkerke W et al (2019) Breeding has increased the diversity of cultivated tomato in The Netherlands. Front Plant Sci 10:1606. https://doi.org/10.3389/fpls201901606

  • Schwartz HF, Mohan SK (2008) Compendium of onion and garlic diseases and pests 2nd Edition. American Phytopathological Society, St Paul MN USA 19 pp. https://issuu.com/scisoc/docs/43573

  • Schweisguth B (1973) Etude d’un nouveau type de sterilite male chez l’oignon Allium cepa. L Ann Amélior Plantes 23:221–233

    Google Scholar 

  • Sebsebe KW, Workneh TS (2010) Effects of nitrogen levels harvesting time and curing on quality of shallot bulb Afr J Agric Res5:3342–3353

    Google Scholar 

  • Seidemann J (2005) World spice plants: economic usage, botany and taxonomy. Springer, Berlin

    Book  Google Scholar 

  • Seller GJ (1992) Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res 30:195–230

    Article  Google Scholar 

  • Serra ADB, Currah L (2002) Agronomy of onions. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, Wallingford, pp 187–232

    Book  Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control, 2nd edn. Wiley, New York

    Google Scholar 

  • Shigyo M, Kik C (2007) Onions In: Prohens J, Nuez F (eds) Vegetables II: Fabaceae Liliaceae Solanaceae and Umbelliferae. Springer, pp 121–159. https://doi.org/10.1007/978-0-387-74110-9

  • Shigyo M, Tashiro Y, Iino M et al (1997) Chromosomal locations of genes related to flavonoid and anthocyanin production in leaf sheath of shallot (Allium cepa L Aggregatum group). Genes Genet Syst 72(3):149–152. https://doi.org/10.1266/ggs72149

  • Shimeles A (2014) The performance of true seed shallot lines under different environments of Ethiopia. J Agric Sci 59:129–139

    Google Scholar 

  • Shimeles A, Lemma D (2015) The performance of true seed shallot lines under two methods of planting at different environments of Ethiopia. Res J Agric Environ Manag 4:174–179

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant Mutation Breeding and Biotechnology. Plant Breeding and Genetics Section Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, Austria. CABI Publishing CAB International, Wallingford UK and FAO

    Google Scholar 

  • Sidhu AS, Bal SS, Rani M (2005) Current trends in onion breeding. J New Seeds 6(2–3):223–245. 10.1300/J153v06n02_12

    Google Scholar 

  • Singh D, Singh Dhillon T, Singh R, Kumar R (2018) Present status and future opportunities in onion research: a review. Int J Chem Stud 6:656–665

    CAS  Google Scholar 

  • Sinnadurai S (1973) Shallot farming in Ghana. Econ Bot 27:438–441

    Article  Google Scholar 

  • Sinnadurai S (1977) Onion farming in Ghana. Econ Bot 31:312–314

    Article  Google Scholar 

  • Soegianto A, Sugiharto AN, Windiastika G (2011) Molecular identification of shallot progenitors generated from true seeds by PCR based techniques. J Agric Food Technol 1(8):145–148

    Google Scholar 

  • Sopha GA, Widodo WD, Poerwanto R, Palupi ER (2014) Photoperiod and gibberellins effect on true shallot seed formation. Adv Agric Bot Int J Bioflux Soc 6:70–76

    Google Scholar 

  • Stearn WT (1992) How many species of Allium are known? Kew Mag 9:180–182

    Google Scholar 

  • Stokstad E (2019) Banana fungus puts Latin America on alert. Science 365:207–208. https://doi.org/10.1126/science3656450207

  • Sukasih E, Setyadjit, Musadad D (2018) Physico-chemical characteristics of shallot new-superior varieties (NSV) from Indonesia. International Symposium on Food and Agro-biodiversity (ISFA). IOP Conf. Series: Earth and Environmental Science 102 012037. https://doi.org/10.1088/1755-1315/102/1/012037

  • Sulistyaningsih E, Tashiro Y (1999) Morphological and cytological characters of triploid shallot (Allium cepa L. Aggregatum group). Penelitian Pertanian Tanaman Pangan 18:85–88

    Google Scholar 

  • Sumami IN, Soetiarso TA (1998) Effect of planting time and seed bulb size on the growth yield and cost of true shallot seed production. J Hortic 8:1085–1094

    Google Scholar 

  • Suzuki G, Shiomi M, Morihana S et al (2010) DNA methylation and histone modification in onion chromosomes. Genes Genet Syst 85:377–382

    Article  PubMed  Google Scholar 

  • Swamy KRM, Veere Gowda R (2006) Leek and shallot handbook of herbs and spices. Woodhead Publishing Series in Food Science Technology and Nutrition 3:365–389

    CAS  Google Scholar 

  • Szklarczyk M, Simlat M, Jagosz B, Grażyna BA (2002) The use of cytoplasmic markers in onion hybrid breeding. Cell Mol Bio Lett 7:625–634

    CAS  Google Scholar 

  • Tabur G, Stüetzel H, Zelleke A (2006) Influence of planting material and duration of bulb vernalisation on 48 boltings of shallot (Allium cepa L var ascalonicum Backer). Hortic Sci Biotech 81:797–802

    Article  Google Scholar 

  • Tashiro Y (1980) Cytogenetic studies on the origin of Allium wakegi Araki I Meiosis in A wakegi and the interspecific hybrid between A. fistulosum and A. ascalonicum L. Agr Bull Saga Univ 49:47–57

    Google Scholar 

  • Tashiro Y (1981) Cytogenetic studies on the origin of Allium wakegi Araki II Fertility and meiotic behavior of the tetraploid A wakegi and the amphidiploids hybrid between A ascalonicum and A fistulosum L. Agric Bull Saga Univ 50:383–392

    Google Scholar 

  • Tashiro Y, Miyazaki S, Kanazawa K (1982) On the shallot cultivated in the countries of southeastern Asia. Bull Fac Agric Saga Univ 53:65–73

    Google Scholar 

  • Tașkın H, Baktemur G, Kurul M, Büyükalaca S (2013) Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real-time pcr. Scient World J Vol 2013 Article ID 781282

    Google Scholar 

  • Taylor A, Teakle GR, Walley PG et al (2019) Assembly and characterisation of a unique onion diversity set identify resistance to Fusarium basal rot and improved seedling vigour. Theor Appl Genet 132:3245–3264. https://doi.org/10.1007/s00122-019-03422-0

  • Tendaj M (2005) Shallot production and research in Poland. Veget Crops Res Bull Res Inst Veget Crops – Skierniewice Poland 62:55–60

    Google Scholar 

  • Tendaj M, Mysiak B (2013) The effect of summer seedling planting dates on the development of seed stalks in shallot (Allium cepa L. var. ascalonicum Backer). Hortum Cultusm Acta Scientiarum Polonorum 12(6):57–66

    Google Scholar 

  • Tendaj M, Mysiak B, Krawiec M (2013) The effect of storage temperature of steckling bulbs on seed stalk development and seed yield of shallot (Allium cepa L var ascalonicum Backer). Acta Agrobot 66(3):41–48

    Article  Google Scholar 

  • Tendaj M, Krawiec M, Palonka S, Mysiak B (2014) The effect of cultivation method on selected traits related to the sowing value of shallot (Allium cepa L var ascalonicum Backer) seed. Acta Sci Pol Hortorum Cultus 13:107–115

    Google Scholar 

  • Towill LE, Bajaj YPS (2013) Cryopreservation of plant germplasm II. Springer Science & Business Media

    Google Scholar 

  • Trade Yearbook (1999) https://www.amazon.com/Yearbook-YEARBOOK-ANNUAIRE-COMMERCE-COMERCIE/dp/925004710X

  • Tiru T, Kebede W, Wondimu B (2015) Shallot yield quality and shelf-life as affected by nitrogen fertilizer. Int J Veg Sci 21:454–466

    Article  Google Scholar 

  • Triharyanto E, Nyoto S, Yusrifani I (2018) Application of gibberellins on flowering and yield of two varieties of shallot in lowland. IOP Conf Ser: Earth Environ Sci 142 012066 10 pp. https://doi.org/10.1088/1755-1315/142/1/012066

  • Tripathi L, Mwangi M, Abele S et al (2009) Xanthomonas wild a threat to banana production in East and Central Africa. Plant Dis 93:440–451. 10.1094/PDIS-93-5-0440

    Google Scholar 

  • Ulloa GM, Corgan JN, Dunford M (1994) Chromosome characteristics and behavior differences in Allium fistulosum L A cepa L their F1 hybrid and selected backcross progeny. Theor Appl Genet 89:567–571

    Article  Google Scholar 

  • Ulloa GM, Corgan JN, Dunford M (1995) Evidence for nuclear-cytoplasmic incompatibility between Allium fistulosum Theor Appl Genet 90:746–754

    Google Scholar 

  • Umehara M, Sueyoshi T, Shimomura K et al (2006) Interspecific hybrids between Allium fistulosum and Allium schoenoprasum reveal carotene-rich phenotype. Euphytica 148:295–301. https://doi.org/10.1007/s10681-005-9029-8

  • Vallejo-Marín M, Dorken ME, Barrett SCH (2010) The ecological and evolutionary consequences of clonality for plant mating. Ann Rev Ecol Evol Syst 41:193–213

    Article  Google Scholar 

  • Van de Wiel C, Schaart J, Niks R, Visser R (2010) Traditional plant breeding methods. Wageningen UR Plant Breeding, Wageningen, Netherlands Report 338. https://edepotwurnl/141713

    Google Scholar 

  • Van den Brink L, Basuki RS (2012) Production of true seed shallots in Indonesia In: De Neve S, Boehme M, Everaarts A (eds) Proc 1st IS on Sustainable Vegetable Production in South East Asia: Acta Hort 958:115–120

    Google Scholar 

  • Van der Meer QP (1994a) Old and new crops within the edible Allium. Internat Symp Edible Alliaceae Acta Hort 433:17–31. doi: https://doi.org/10.17660/ActaHortic.1997.433.1

  • Van der Meer QP (1994b) Onion hybrids: evaluation prospects limitations and methods. Acta Hort 358:243–250. https://doi.org/10.17660/ActaHortic199435840

  • Van der Meer QP, Agustina L (1994) Allium chinense G. Don. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia, No, vol 8. Vegetables. Prosea Foundation, Bogor, pp 71–73

    Google Scholar 

  • Van der Meer QP, De Vries JN (1990) An interspecific cross between Allium roylei Stearn and Allium cepa L and its backcross to A cepa. Euphytica 47:29–31. https://doi.org/10.1007/BF00040359

    Article  Google Scholar 

  • Van der Meer QP, Van Bennekom JL (1968) Research in pollen distribution in onion seed fields. Euphytica 7:216–219

    Article  Google Scholar 

  • Van der Meer QP, Van Benekom JL (1978) Improving the onion crop (Allium cepa L) by transfer of characters from Allium fistulosum L. Bull Warzywhiczy 22 Instytut Warzywhictwa Skierniewice

    Google Scholar 

  • Van der Valk P, De Vries SE, Everink JT et al (1991a) Pre- and post-fertilization barriers to backcrossing the interspecific hybrid between Allium fistulosum LA cepa L with A cepa. Euphytica 53:201–209

    Article  Google Scholar 

  • Van der Valk P, Kik C, Verstappen F et al (1991b) Independent segregation of two isozyme markers and inter-plant differences in nuclear DNA content in the interspecific backcross (Allium fistulosum L. × A. cepa L.) × A. cepa L. Euphytica 55:151–156

    Article  Google Scholar 

  • Van Dijk P (1993) Survey and characterization of Potyvirus and their strain of Allium species. Neth J Plant Pathol 99:1–48

    Article  Google Scholar 

  • Van Kampen J (1970) Shortening the breeding cycle in onions. PhD thesis Wageningen Agricultural University, Netherlands

    Google Scholar 

  • Van Raamsdonk LWD, Wietsma WA, de Vries JN (1992) Crossing experiments in Allium L section Cepa. Bot J Linn Soc 109:293–303. https://doi.org/10.1111/j1095-83391992tb00273x

    Article  Google Scholar 

  • Van Raamsdonk LWD, Ensink W, van Heusden AW et al (2003) Biodiversity assessment based on cpDNA and crossability analysis in selected species of Allium subgenus Rhizirideum. Theor Appl Genet 107:1048–1058

    Google Scholar 

  • Villanueva VC, del Castillo FG, Molina GJD (1994) Aprovechamiento de cruzamientos dialélicos entre híbridos comerciales de maíz: análisis de progenitores y cruzas. Rev Fitotec Mex 17:175–185

    Google Scholar 

  • Von Kohn C, Kielkowska A, Havey MJ (2013) Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome 56:737–742. https://doi.org/10.1139/gen-2013-0182

  • Vu HQ, Iwata M, Yamauchi N, Higyo MS (2011) Production of novel alloplasmic male sterile lines in Allium cepa harbouring the cytoplasm from Allium roylei. Plant Breed 130:469–475

    Article  Google Scholar 

  • Vu HQ, El-Sayed MA, Ito S et al (2012a) Discovery of a new source of resistance to Fusarium oxysporum cause of Fusarium wilt in Allium fistulosum located on chromosome 2 of Allium cepa Aggregatum group. Genome 55:797–807. doi:101139/g2012-065. PMID:23199574

    Google Scholar 

  • Vu HQ, Yoshimatsu Y, Khrustaleva LI et al (2012b) Alien genes introgression and development of alien monosomic addition lines from a threatened species Allium roylei Stearn to Allium cepa L. Theor Appl Genet 124:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Wako T, Yamashita K-I, Tsukazaki H et al (2015) Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition. Genome 58(4):135–142. https://doi.org/10.1139/gen-2015-0026

    Article  CAS  PubMed  Google Scholar 

  • Walker JC, Larson RH (1961) Onion diseases and their control Agricultural Handbook No 208. Agricultural Research Service USDA, Washington DC

    Google Scholar 

  • Walkey DGA (1990) Virus diseases. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, Agronomy biotic interactions pathology and crop protection, vol II. CRC Press, Boca Raton, pp 191–212

    Google Scholar 

  • Walkey DGA, Webb MJW, Bolland CJ (1987) Production of virus-free garlic (Allium sativum L) and shallot (A ascalonicum L) by meristem-tip culture. J Hortic Sci Biotech 62:211–220

    Article  Google Scholar 

  • Wang M-R, Cui Z-H, Li J-W et al (2018) In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 14:87 18 p. https://doi.org/10.1186/s13007-018-0355-y

  • Wassu M, Woldetsadik K, Kebede B (2018) Registration of a new “Improved Huruta” shallot variety with true seed production potential. East Af J Sci 12:77–82

    Google Scholar 

  • Widiarti W, Wijaya I, Umarie I (2017) Optimization of production technology true shallot seed (biological seeds) onion (Allium ascalonicum L) Agritrop 15:203–216

    Google Scholar 

  • Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504

    Article  CAS  PubMed  Google Scholar 

  • Williams IH, Free JB (1974) The pollination of onion (Allium cepa L) to produce hybrid seed. J Appl Ecol 11:409–417

    Article  Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD, Sthapit BR (1996) Farmer participatory crop improvement I Varietal selection and breeding methods and their impact on biodiversity. Exp Agric 32:445–460

    Article  Google Scholar 

  • Woldetsadik K (2003) Shallot (Allium cepa var ascalonicum) responses to plant nutrients and soil moisture in a sub-humid tropical climate. Doctoral thesis Swedish University of Agricultural Sciences Alnarp, 28 p. https://pub.epsilon.slu.se/203/1/A367_Kebede_Woldetsadik.pdf

  • Woldetsadik SK, Workneh T (2010) Effects of nitrogen levels harvesting time and curing on quality of shallot bulb. Afr J Agric Res 5:3342–3353

    Google Scholar 

  • Wu JL, Chou CC, Chen MH, Wu CM (1982) Volatile flavor compounds from shallots. J Food Sci 47:606–608

    Article  CAS  Google Scholar 

  • Yamashita K-I, Tashiro Y (1999) Possibility of developing a male sterile line of shallot (Allium cepa L Aggregatum Group) with cytoplasm from A galanthum Kar et Kir. J Jpn Soc Hortic Sci 68:256–262. https://www.jstage.jst.go.jp/article/jjshs1925/68/2/68_2_256/_article

  • Yamashita K, Takatori Y, Tashiro Y (2005) Chromosomal location of a pollen fertility-restoring gene Rf for CMS in Japanese bunching onion (Allium fistulosum L) possessing the cytoplasm of A galanthum Kar et Kir revealed by genomic in situ hybridization. Theor Appl Genet 111:15–22

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K-I, Tsukazaki H, Kojima A et al (2010) Inheritance mode of male sterility in bunching onion (Allium fistulosum L.) accessions. Euphytica 173:357–367. https://doi.org/10.1007/s10681-009-0101-7

    Article  Google Scholar 

  • Yao FB, Grace O-K, Kwane OS (2017) Payne DL (2017) The present status of shallot (Allium ascalonicum L) farming enterprise in Ghana: the case of Keta Municipality. Agric Commun 5(2):8–16

    Google Scholar 

  • Yasin HJ, Bufler G (2007) Dormancy and sprouting in onion (Allium cepa L) bulbs I Changes in carbohydrate metabolism. J Hortic Sci Biotech 82:89–96

    Article  CAS  Google Scholar 

  • Yen DE (1959) Pollen sterility in Pukekohe Longkkeper onions. NZ J Agric Res 2:605–612

    Article  Google Scholar 

  • Yuan Q, Song C, Gao L et al (2018) Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in onion. Plant Physiol Biochem 125:35–44

    Article  CAS  PubMed  Google Scholar 

  • Zheng S-J (2000) Towards onions and shallots (Allium cepa L.) resistant to beet armyworm (Spodoptera exigua Hübner) by transgenesis and conventional breeding. Thesis Wageningen University and Research Centre Wageningen, The Netherlands. 146 p. https://edepot.wur.nl/199612

  • Zheng S-J, Henken B, De Maagd RA et al (2005) Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.). Transgenic Res 14:261–272. https://doi.org/10.1007/s11248-005-0109-2

    Article  CAS  PubMed  Google Scholar 

  • Zheng S-J, Henken B, Krens FA, Kik C (2004) Genetic Transformation of Allium Cepa Mediated by Agrobacterium Tumefaciens. In: Curtis IS (ed) Transgenic crops of the world – essential protocols. Kluwer Academic Publishers, Dordrecht, pp 281–290. https://doi.org/10.1007/978-1-4020-2333-0_21

    Chapter  Google Scholar 

  • Zheng Si-Jun, Khrustaleva L, Henken et al (2001) Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mole Breed 7:101–115

    Google Scholar 

  • Zsögön A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotech 36:1211–1216. https://doi.org/10.1038/nbt4272

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim D. Rabinowitch .

Editor information

Editors and Affiliations

Appendix I: Research Institutes and Genetic Resources Relevant to Shallot

Appendix I: Research Institutes and Genetic Resources Relevant to Shallot

Institution name

Specialization

Website

Genetic Resources Networks ECP/GR

The European Cooperative Programme for Plant Genetic Resources (ECPGR) is a collaborative programming most European countries aimed at ensuring the long-term conservation and facilitating the increased utilization of plant genetic resources in Europe.

European Allium germplasm maintenance, supervision and coordination

https://books.google.co.il/books?id = xlN7YKcDR7oC&pg = PA23&lpg = PA23&dq = ecpgr+shallot&source = bl&ots = P0cF84FNhB&sig = ACfU3U1LTdFEf8bUe5lQTrqQckhbNmz2Fw&hl = en&sa = X&ved = 2ahUKEwix_Y22vNXnAhXLKewKHcMuBNkQ6AEwAHoECAYQAQ#v = onepage&q = ecpgr%20shallot&f = false

https://www.ecpgr.cgiar.org/fileadmin/templates/ecpgr.org/upload/SC_reports/SC_11_meeting/Crop_docs/AlliumWG_report2006_08.pdf

http://map.aginfra.eu/content/ecpgr-allium-database

https://www.ecpgr.cgiar.org.

The World Vegetable Center Genebank

Germplasm collections

https://avrdc.org/seed/improved-lines/

http://seed.worldveg.org/

Indonesian Agency for Agricultural Research and Development

Shallot collections

http://biogen.litbang.pertanian.go.id/codevelopment/wp-content/uploads/PDF/Sabran_2016.pdf http://www.fao.org/3/i1500e/Indonesia.pdf

IPK

Maintains garlic and shallot core collections https://www.ipk-gatersleben.de/en

Colmsee et al. 2012; https://www.ipk-gatersleben.de/en/genebank/cryo-and-stress-biology/allium-core-collection/

Croatia, Czech Republic, Estonia, Latvia, Lithuania, Finland, Norway, and Sweden

Safeguarding of potato onion/shallot and garlic crop diversity in North Europe, Baltic

https://www.ecpgr.cgiar.org/working-groups/allium/safeallidiv

Nordic gene bank (NordGen)

Preserves Fennoscandian shallot for future generations as a source of variation to be used in breeding varieties to come up against new challenges

https://www.nordgen.org/en/

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabinowitch, H.D. (2021). Shallot (Allium cepa L. Aggregatum Group) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_3

Download citation

Publish with us

Policies and ethics