Skip to main content

Understanding and Monitoring Chemical and Biological Soil Degradation

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Abstract

Soil degradation is an exceedance of the capacity and resiliency of soil for providing functions and ecosystem services. It is a complex ongoing phenomenon threatening humans’ livelihoods and our future on earth. Knowledge gain can help to find solutions for monitoring, preventing and combating soil degradation. In this chapter we address the essence, causes, extent, features and implications of various types of chemical and biological soil degradation. The aspects of chemical degradation, such as pollution, acidification, salinization, nutrient depletion and eutrophication are characterized shortly; for biological degradation, harm to soil microbiota and biodiversity, and soil organic matter depletion are considered. Progress in monitoring and modelling or forecasting these types of degradation is also shown. Soils of drylands, the Arctic and all man-made soils are hotspots of chemical and biological degradation. As chemical and biological degradation processes in the microscale are lingering and interacting, they need better awareness and monitoring approaches. Highly developed laboratory methods of soil chemical and biological analyses are existing, but screening methods that work under field conditions are comparatively rare. Biological soil degradation needs further evidence-based research and high-precision data for understanding and combating processes. Crucial questions such as calculation of carbon sequestration potential of agricultural soils and assessment of desertification processes should be better explored to bridge science-policy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaltonen H, Köster K, Köster E, Berninger F, Zhou X, Karhu K, Biasi C, Bruckman V, Palviainen M, Pumpanen J (2019) Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143:257–274. https://doi.org/10.1007/s10533-019-00560-x

  • Abbas Q, Yousaf B, Amina Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M (2020) Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ Int 138:105646. https://doi.org/10.1016/j.envint.2020.105646

    Article  CAS  Google Scholar 

  • Abd El-Hamid HT, Hong G (2020) Hyperspectral remote sensing for extraction of soil salinization in the northern region of Ningxia. Model Earth Syst Environ 6:2487–2493 (2020). https://doi.org/10.1007/s40808-020-00829-3

  • Abdollahpour M, Rahnemaie R, Lutzenkirchen J (2020) The vulnerability of calcareous soils exposed to Mg-rich irrigation water. Land Degrad Develop 31(16):2295–2306. https://doi.org/10.1002/ldr.3605

  • Adamiec E, Jarosz-Krzemińska E, Wieszała R (2016) Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monitor Assessment 188:369. https://doi.org/10.1007/s10661-016-5377-1.

  • Agapit C, Gigon A, Puga-Freitas R, Zeller B, Blouin M (2018) Plant-earthworm interactions: influence of age and proportion of casts in the soil on plant growth, morphology and nitrogen uptake. Plant Soil 424:49–61. https://doi.org/10.1007/s11104-017-3544-y

  • Albanese S, De Vivo B, Lima A, Cicchella D (2007) Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J Geochem Explor 93:21–34. https://doi.org/10.1016/j.gexplo.2006.07.006

    Article  CAS  Google Scholar 

  • Alcamo J, Shaw R, Hordijk L (eds) (1990) The RAINS model of acidification. Science and strategies in Europe. Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  • Aleksandrova ON (2018) Chapter I/34: method of epr spectroscopy with use of spin labels applied to investigation of interaction of organic xenobiotics with soil (in Russian). In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Vol. I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © FSBI “VNII Agrochemistry”, pp 190–194. https://doi.org/10.25680/9569.2018.64.90.034. https://vniia-pr.ru/monografii/pdf/tom1-34.pdf

  • Alekseenko V, Alekseenko A (2014) The abundances of chemical elements in urban soils. J Geochem Explor 147:245–249. https://doi.org/10.1016/j.gexplo.2014.08.003

    Article  CAS  Google Scholar 

  • Allbed A, Kumar L (2013) Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv Remote Sensing 2:373–385

    Google Scholar 

  • Allison SD (2014) Modeling adaptation of carbon use efficiency in microbial communities. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00571

    Article  Google Scholar 

  • Anderson T (2003) Microbial eco-physiological indicators to asses soil quality. Agr Ecosyst Environ 98:285–293

    Google Scholar 

  • Anderson T-H, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255. https://doi.org/10.1016/0038-0717(90)90094-G

    Article  Google Scholar 

  • Anderson DW, Joug E, de Verity GE, Gregorich EG (1986) The effect of cultivation on the organic matter of soils of the Canada prairies. Trans Cong Int Soc Soil Sci Hamburg 4(9):1344–1345

    Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. SSSAJ 68(6):1945–1962

    CAS  Google Scholar 

  • Andriuzzi WS, Franco ALC, Ankrom KE, Cui S, de Tomasel CM, Guan P, Gherardi LA, Sala OE, Wall DH (2020) Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biol Biochem 140:107638. https://doi.org/10.1016/j.soilbio.2019.107638

  • Antoniadis V, Shaheen SM, Levizou E, Shahid M, Niazi NK, Vithanage M, Ok YS, Bolan N, Rinklebe J (2019) A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment? A review. Environ Int 127:819–847. https://doi.org/10.1016/j.envint.2019.03.039

    Article  CAS  Google Scholar 

  • Bach EM, Ramirez KS, Fraser TD, Wall DH (2020) Soil biodiversity integrates solutions for a sustainable future. Sustainability 12:2662. https://doi.org/10.3390/su12072662

  • Bai X, Gao J, Wang S, Cai H, Chen Z, Zhou J (2020) Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agric Ecosyst Environ 288:106717. https://doi.org/10.1016/j.agee.2019.106717

  • Bardina TV, Kulibaba VV, Bardina VI (2018) Chapter II/30: ecotoxicity assessment of soils in industrial areas by phyto-tests (in Russian). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry” 2018, pp 145–149. https://doi.org/10.25680/4700.2018.64.90.127. https://vniia-pr.ru/monografii/pdf/tom2-30.pdf

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38(2006):3463–3473

    CAS  Google Scholar 

  • Bastida FZA, Hernández H, García C (2008) Past, present and future of soil quality índices: a biological perspective. Geoderma 147:159–171

    CAS  Google Scholar 

  • Bateman AM, Muñoz-Rojas M (2019) Chapter one - to whom the burden of soil degradation and management concerns. Environ Manage Protect 4(2019):1–22. https://doi.org/10.1016/bs.apmp.2019.07.001

    Article  CAS  Google Scholar 

  • Baude M, Meyer BC, Schindewolf M (2019) Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci Total Environ 659:1526–1536. https://doi.org/10.1016/j.scitotenv.2018.12.455

  • Baveye PC, Schnee LS, Boivin P, Laba M, Radulovich R (2020) Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Front Environ Sci. https://doi.org/10.3389/fenvs.2020.579904

  • Bazilevich NI, Pankova EI (1972) The experience of soil classification according to the content of toxic salts and ions. Bull Dokuchaev Soil Res Inst 6:63–740 (in Russian; Oпыт клaccификaции пoчв пo coдepжaнию тoкcичныx coлeй и иoнoв. Бюл. Пoчв. ин-тa им. B.B. Дoкyчaeвa.)

    Google Scholar 

  • Bazilevich NI, Rodin LE, Rozov NN (1970) Geographical aspects of the study of biological productivity. In: Proceedings of the V congress of the geographical society of the USSR. Leningrad 1970, 27 pp. (In Russian: H. И. Бaзилeвич, Л. E. Poдин, H. H. Poзoв. - Лeнингpaд : [б. и.], Гeoгpaфичecкиe acпeкты изyчeния биoлoгичecкoй пpoдyктивнocти. Maтepиaлы V cъeздa гeoгpaфичecкoгo oбщecтвa CCCP. Лeнингpaд 1970. - 27 c.)

    Google Scholar 

  • Bazrafshan A, Shorafa M, Mohammadi MH, Zolfaghari AA, van de Craats D, van der Zee Seatm (2020) Comparison of the individual salinity and water deficit stress using water use, yield, and plant parameters in maize. Environ Monit Assess 192:448. https://doi.org/10.1007/s10661-020-08423-x

  • Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterisation of the N2O producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 66(6):2354–2361

    Google Scholar 

  • Beškoski VP, Gojgić-Cvijović G, Jovančićević B, Vrvić MM (2012) Gas chromatography in environmental sciences and evaluation of bioremediation. In: Salih B (Ed.) gas chromatography—biochemicals, narcotics and essential oils. InTech open, ISBN: 978–953–51–0295–3. Available from: https://www.intechopen.com/books/gas-chromatography-biochemicals-narcotics-and-essential-oils/gas-chromatography-in-environmental-sciences-and-evaluation-of-bioremediation. Accessed on 12 Sept 2020

  • Blagodatskaya EV, Bogomolova IN, Blagodatsky SA (2001) Changing the environmental strategy of the soil microbial community initiated by glucose. Pochvovedenie 5:700–708 (in Russian: Измeнeниe экoлoгичecкoй cтpaтeгии микpoбнoгo cooбщecтвa пoчвы, иницииpoвaннoй внeceниeм глюкoзы. Пoчвoвeдeниe 5:700–708).

    Google Scholar 

  • Blake L, Goulding K (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240:235–251. https://doi.org/10.1023/A:1015731530498

    Article  CAS  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165(3):553–565. https://doi.org/10.1007/s00442-011-1909-0

    Article  Google Scholar 

  • Bloem E, van der Zee Seatm, Tóth T, Hagyó A (2012) Soil salinisation. In: van Beek C, Tóth G (eds) Risk assessment methodologies of soil threats in Europe. pp 28–39. Status and options for harmonization for risks by erosion, compaction, salinization,organic matter decline and landslides—JRC Report EUR 24097 EN 2012, 84 pp. https://doi.org/10.2788/47096. https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR24097.pdf. Accessed on 28 Nov 2020

  • Blum WEH (2013) Soil and land resources for agricultural production: general trends and future scenarios-a worldwide perspective. Int Soil Water Conserv Res 1(3):1–14. https://doi.org/10.1016/S2095-6339(15)30026-5

  • AG Boden (2005) Bodenkundliche Kartieranleitung (KA5), 5th edn. Hannover, 432 pp

    Google Scholar 

  • Bolan NS, Duraisamy VP (2003) Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies. Aust J Soil Res 41:533–535

    CAS  Google Scholar 

  • Bolan NS, Adriano DC, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–272

    CAS  Google Scholar 

  • Bolt GH, Bruggenwert MGM (1976) Soil chemistry. Part A: basic elements. Elsevier Amsterdam, New York, p 271

    Google Scholar 

  • Bonfante A, Basile A, Acutis M, De Mascellis R, Manna P, Perego A, Terribile F (2010) SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in northern Italy. Agric Water Manage 97:1051–1062. https://doi.org/10.1016/j.agwat.2010.02.010

    Article  Google Scholar 

  • Bonten LTC, Reinds GJ, Posch M (2016) A model to calculate effects of atmospheric deposition on soil acidification, eutrophication and carbon sequestration. Environ Model Softw 79(2016):75–84. https://doi.org/10.1016/j.envsoft.2016.01.009

    Article  Google Scholar 

  • Borisov AV, Alekseev AO (2020) Timing and causes of the origin of the solonetz process in the desert–steppe soils of the southeastern russian plain. Arid Ecosyst 10:27–35. https://doi.org/10.1134/S2079096120010023

  • Bowman WD, Cleveland CC, Halada L, Hresko J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity . Nat Geosci 1:767–770

    CAS  Google Scholar 

  • Bradford MA, Fierer N (2012) Chapter 3.5 The biogeography of microbial communities and ecosystem processes: Implications for soil and ecosystem models. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford Univ. Press, Oxford, U.K, pp 189–200, 424 pp. ISBN: 9780199575923

    Google Scholar 

  • Briones MJ (2018) The serendipitous value of soil fauna in ecosystem functioning: the unexplained explained. Front Environ Sci. https://doi.org/10.3389/fenvs.2018.00149 Corpus ID: 54447820

  • Brock C, Franko U, Oberholzer H-R, Kuka K, Leithold G, Kolbe H, Reinhold J (2013) Humus balancing in Central Europe—concepts, state of the art, and further challenges. J Plant Nutr Soil Sci 176(1):3–11. https://doi.org/10.1002/jpln.201200137

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. https://doi.org/10.1016/0038-0717(82)90001-3

    Article  CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms: a review. Aust J Soil Res 44(4):379–406. https://doi.org/10.1071/SR05125

    Article  Google Scholar 

  • Bünemann EK, Bongiornoa G, Bai Zh, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality: a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

  • Cajaiba RL, Perico E, da Silva WB, Caron E, Buss BC, Dalzochio M, Santos M (2019) Are primary forest irreplaceable for sustaining Neotropical landscapes’ biodiversity and functioning? Contributions for restoration using ecological indicators. Land Degrad Develop 31(4):508–517. https://doi.org/10.1002/ldr.3467

    Article  Google Scholar 

  • Čakmak D, Perovic V, Kresovic M, Jaramaz D, Mrvic V, Belanovic Simic S, Saljnikov E, Trivan G (2018) Spatial distribution of soil pollutants in urban green areas (a case study in Belgrade). J Geochem Explor 188:308–317

    Google Scholar 

  • Čakmak D, Perović V, Kresović M, Pavlović DS, Pavlović MD, Mitrović M, Pavlović PV (2020) Sources and a health risk assessment of potentially toxic elements in dust at children’s playgrounds with artificial surfaces: a case study in Belgrade. Arch Environ Contam Toxicol 1–16

    Google Scholar 

  • Canedoli C, Ferrè C, El Khair DA, Padoa-Schioppa E, Comolli R (2020) Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosyst 23:159–171. https://doi.org/10.1007/s11252-019-00901-6

  • Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, dos Santos CA, Alves PRL, de Paula AM, Nakatani AS, Pereira JdM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola 70(4):274–289. https://doi.org/10.1590/S0103-90162013000400009

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. PNAS 102(29):10002–10005. https://doi.org/10.1073/pnas.0503959102

  • Carvalheiro LG, Biesmeijer JC, Franzén M, Aguirre‐Gutiérrez J, Garibaldi LA, Helm A, Michez D, Pöyry J, Reemer M, Schweiger O, van den Michiel BL, DeVries FW, Kunin WE (2020) Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43(2):209–221. https://doi.org/10.1111/ecog.04656

  • Castro I (2000) Exotoxicological effects of heavy metals in the biolological fixing of nitrogen in industrially contaminated soils. Silva-Lusitanaq 8(2):165–194

    Google Scholar 

  • Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb Ecol 58(2):414–424

    Google Scholar 

  • Chappel A, NP, Leys JF, Waters CM, Orgill S, Eyres MJ (2019) Minimizing soil organic carbon erosion by wind is critical for land degradation neutrality. Environ Sci Policy 93:43–52. https://doi.org/10.1016/j.envsci.2018.12.020

  • Chaudhary N, Westermann S, Lamba S, Shurpali N, Britta A, Sannel K, Schurgers G, Miller PA, Smith B (2020) Modelling past and future peatland carbon dynamics across the pan‐Arctic. Global Change Biol 26(7):4119–4133. https://doi.org/10.1111/gcb.15099

  • Chen D, Xue M, Duan X, Feng D, Huang Y, Rong L (2019) Changes in topsoil organic carbon from 1986 to 2010 in a mountainous plateau region in southwest China. Land Degrad Develop 31(6):734–747. https://doi.org/10.1002/ldr.3487

    Article  Google Scholar 

  • Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Xue S (2020a) Direct and indirect influences of long-term fertilization on microbial carbon and nitrogen cycles in an alpine grassland. Soil Biol Biochem 149:107922. https://doi.org/10.1016/j.soilbio.2020.107922

  • Chen XD, Dunfield KE, Fraser TD, Wakelin SA, Richardson AE, Condron LM (2020b) Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res 58:1–20. https://doi.org/10.1071/SR19067

    Article  Google Scholar 

  • Chen Q-L, Ding J, Zhu D, Hu H-W, Delgado-Baquerizo M, Ma Y-B, He J-Z, Zhu Y-G (2020c) Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem 141:107686. https://doi.org/10.1016/j.soilbio.2019.107686

  • Chernenok V, Barkusky D (2014) Diagnosis and optimization of phosphorus nutrition conditions of grain crops in Northern Kazakhstan. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_43

  • Chigira M, Oyama T (2000) Mechanism and effect of chemical weathering of sedimentary rocks. In: Kanaori Y, Tanaka K, Masahiro C (eds) Engineering geological advances in Japan for the new millennium, developments in geotechnical engineering, vol 84. Elsevier, pp 267–278

    Google Scholar 

  • Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. World Health Organization. ISBN 0–419–23930–8 https://www.who.int/water_sanitation_health/resourcesquality/toxcyanbegin.pdf. Accessed on 12 Sept 2020

  • Churkina GN, Rukavitsina IV, Kunanbayev KK, Yerpasheva D (2018) Chapter IV/45: Influence of long-term application of mineral fertilizers on the fungistasis of Southern Chernozems in the system of landscape adapted agriculture. In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol IV optimising agricultural landscapes. © FSBI “VNII Agrochemistry”, pp. 220–224. https://doi.org/10.25680/5398.2018.72.20.310. https://vniia-pr.ru/monografii/pdf/tom4-45.pdf

  • Coleman DC (2011) Understanding soil processes: one of the last frontiers in biological and ecological research. Australas Plant Pathol 40:207–214

    Google Scholar 

  • Cortet J, Gillon D, Joffre R, Ourcival J-M, Poinsot-Balanguer N (2002) Effects of pesticides on organic matter recycling and microarthropods in a maize field: use and discussion of the litterbag methodology. Eur J Soil Biol 38:261–265

    Google Scholar 

  • Crawley MJ, Johnston AE, Silvertown J, Dodd M, de Mazancourt C, Heard MS, Henman DF, Edwards GR (2005) Determinants of species richness in the Park Grass Experiment. Am Nat 165:179–192

    CAS  Google Scholar 

  • Cuevas J, Daliakopoulos IN, del Moral F, Hueso JJ, Tsanis IK (2019) A review of soil-improving cropping systems for soil salinization. Agronomy 9(6):295

    Google Scholar 

  • Van Dam JC, Huygen J, Wesseling JG, Feddes RA, Kabat P, van Walsum PEV, Groenendijk P, van Diepen CA (1997) Theory of SWAP Version 2.0 DLO Winand Staring Centre, Wageningen, Netherlands. https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-333036363431. Accessed on 12 Sept 2020

  • Daniel TC, Sharpley AN, Lemunyon J L (1998) Agricultural phosphorus and eutrophication: a symposium overview. J Environ Qual 27(2):251–257. https://doi.org/10.2134/jeq1998.00472425002700020002x

  • Danilova N, Galitskaya P, Selivanovskaya S (2020) Veterinary antibiotic oxytetracycline’s effect on the soil microbial community. J Ecol Environ 44:10. https://doi.org/10.1186/s41610-020-00154-x

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    Article  CAS  Google Scholar 

  • Davidson CM (2013) Methods for the determination of heavy metals and metalloids in soils. In: Alloway B (eds) Heavy metals in soils. Environ Pollut 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_4

  • De Vries W, Breeuwsma A (1987) The relation between soil acidification and element cycling. Water Air Soil Pollut 35(1987):293–310

    Google Scholar 

  • De Vries W, McLaughlin MJ (2013) Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality. Sci Total Environ 461:240–257

    Google Scholar 

  • Dedova EB, Goldvarg BA, Tsagan-Mandzhiev NL (2020) Land degradation of the republic of kalmykia: problems and reclamation methods. Arid Ecosyst 10:140–147. https://doi.org/10.1134/S2079096120020043

    Article  Google Scholar 

  • Delgado-Baquerizo M, Doulcier G, Eldridge DJ et al. (2019) Increases in aridity lead to drastic shifts in the assembly of dryland complex microbial networks. Land Degrad Develop 31(3):346–355

    Google Scholar 

  • Derbentseva AM, Stepanova AI, Krupskaya LT (2005) Chemical degradation of soils as affected by technogenic geochemical flows. In: Zorin AA, Kirillova AA, Krupskaya LT, Saksin BG, Derbentseva AM (eds) (In Russian: Xимичecкaя дeгpaдaция пoчв пoд вoздeйcтвиeм тexнoгeнныx гeoxимичecкиx пoтoкoв)

    Google Scholar 

  • Derevyagin SS (2018) Chapter II/43: results of long-term monitoring of heavy metals in landscapes of the saratov region (In Russian). In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia,vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry”, pp 202–206. https://doi.org/10.25680/5811.2018.84.19.140. https://vniia-pr.ru/monografii/pdf/tom2-43.pdf

  • Diekmann M, Dupré C (1997) Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis. 8(6):855–864. https://doi.org/10.2307/3237030

  • Diestel H, Zenker T, Schwartengraeber R, Schmidt M (2007) The lysimeter station at Berlin-Dahlem. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Dordrecht (Springer), pp 259–266

    Google Scholar 

  • Ding Y, Xia G, Ji H, Xiong X (2019) Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS). Anal Methods 11:3657–3664. https://doi.org/10.1039/C9AY01030K

  • Dobrovolskiy GV, Kust GS, Sanaev VG (eds) (2012) Soils in biosphere and life of human. Monograph, Moscow, Publishing house of the Moscow State Forest University, 584 pp (In Russian: Г.B. Дoбpoвoльcкий, Г.C. Кycт, Caнaeв B.Г. Пoчвы в биocфepe и жизни чeлoвeкa. Moнoгpaфия Mocквa. Издaтeльcтвo Mocкoвcкoгo гocyдapcтвeннoгo yнивepcитeтa лeca. 2012, 584 c)

    Google Scholar 

  • Donkova R, Kaloyanova N (2008) The impact of soil pollutants on soil microbial activity. In: Simeonov L, Sargsyan V (eds) Soil chemical pollution, risk assessment, remediation and security. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8257-3_6

  • Dregne HE (1977) Desertification of arid lands. J Econ Geogr 53(4):322–331. The Human Face of Desertification

    Google Scholar 

  • Dregne HE (1986) Desertification of arid lands. In: El-Baz F, Hassan MHA (eds) Physics of desertification. Springer, Dordrecht

    Google Scholar 

  • Dubey R, Gupta DK, Sharma GK (2020) Chemical stress on plants. In: Rakshit A, Singh H, Singh A, Singh U, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_7

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18:1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • East JL, Wilcut C, Pease AA (2017) Aquatic food-web structure along a salinized dryland river. Freshw Biol 62(4):681–694

    Google Scholar 

  • Egorov VV, Ivanova EN, Fridland VM (1977) Classification and Diagnosis of the soils of USSR. Moscow, Kolos pp 224 (In Russian: Клaccификaция и диaгнocтикa пoчв CCCP. M.: Кoлoc, 1977. 224 c.)

    Google Scholar 

  • Elbana T, Gaber HM, Kishk FM (2019) Soil chemical pollution and sustainable agriculture. In: El-Ramady H, Alshaal T, Bakr N, Elbana T, Mohamed E, Belal AA (eds) The soils of Egypt. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95516-2_11

  • Ellenberg H, Weber HE, Duell R, Wirth V, Werner W, Paulissen D (2001) Zeigerwerte von Pflanzen in Mitteleuropa: indicator values of plants in Central Europe. Scripta Geobotanica 18, Goettingen: Goltze, 3. edt, 262 p

    Google Scholar 

  • Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. J Environ Radioact 111:18–27. https://doi.org/10.1016/j.jenvrad.2011.11.006

    Article  CAS  Google Scholar 

  • Enne G, Zucca C (2000) Desertification indicators for the European Mediterranean region: state of the art and possible methodologicalapproaches [= Indicatori di desertificazione per il Mediterraneo europeo: stato dell'arte e proposte di metodo]. http://eprints.uniss.it/3166/1/Enne_G_Libro_2000_Desertification.pdf

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of the 2nd international conference on land degradation and desertification, Khon Kaen, thailand. Oxford Press, New Delhi, India

    Google Scholar 

  • Eugenio NR, Naidu R, Colombo CM (2020) Global approaches to assessing, monitoring, mapping, and remedying soil pollution. Environ Monit Assess 192:601. https://doi.org/10.1007/s10661-020-08537-2

  • Eulenstein F, Saparov A, Lukin S, Sheudshen AK, Mayer WH, Dannowski R, Tauschke M, Rukhovich OV, Lana M, Schindler R, Pachikin K, Drechsler H, Cremer N (2016) Assessing and controlling land use impacts on groundwater quality. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham, pp 635–666. https://doi.org/10.1007/978-3-319-24409-9_29

  • Fang Y, Yabusaki SB, Ahkami AH, ChenX, Scheibe TD (2019) An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport. Plant Soil 441:33–48. https://doi.org/10.1007/s11104-019-04068-z

  • Fang Z, Gao Y, Wu X, Xu X, Sarmah AK, Bolan N, Gao B, Shaheen SM, Rinklebe J, Ok YS, Xu S, Wang H (2020) A critical review on remediation of bisphenol S (BPS) contaminated water: efficacy and mechanisms. Crit Rev Environ Sci Technol 50(5):476–522. https://doi.org/10.1080/10643389.2019.1629802

    Article  CAS  Google Scholar 

  • FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR)—main report. Rome, Italy, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 607 pp. http://www.fao.org/3/a-i5199e.pdf. Accessed on 12 Sept 2020

  • FAO (2019) The state of the world’s biodiversity for food and agriculture. In: Belanger J, Pilling D (eds) FAO commission on genetic resources for food and agriculture assessment. Rome 572 pp. http://www.fao.org/3/CA3129EN/CA3129EN.pdf

  • Fei J, Ma J, Yang J, Liang Y, Ke Y, Yao L, Li Y, Liu D, Min X (2020) Effect of simulated acid rain on stability of arsenic calcium residue in residue field. Environ Geochem Health 42:769–780. https://doi.org/10.1007/s10653-019-00273-y

  • Feng Q, An C, Chen Z, Wang Z (2020) Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renew Sustain Energy Rev 133: 110293. https://doi.org/10.1016/j.rser.2020.110293

  • Fernandez JM, Plaza C, Garcia-Gil JC (2009) Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge. Appl Soil Ecol 42(1):8–24

    Google Scholar 

  • Ferreira CSS, Walsh RPD, Ferreira AJD (2018) Degradation in urban areas. Curr Opin Environ Sci Health 5:19–25

    Google Scholar 

  • Fesenko SV, Alexakhin RM, Balonov MI, Bogdevitch IM, Howard BJ, Kashparov VA, Sanzharova NI, Panov AV, Voigt G, Zhuchenka YM (2007) An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident. Sci Total Environ 383(1):1–24. https://doi.org/10.1016/j.scitotenv.2007.05.011

    Article  CAS  Google Scholar 

  • Filipović L, Romić M, Sikora S, Huić Babić K, Filipović V, Gerke HH, Romić D (2020) Response of soil dehydrogenase activity to salinity and cadmium species. J Soil Sci Plant Nutr 20(2):530–536. https://doi.org/10.1007/s42729-019-00140-w

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

  • Forbes VE, Agatz A, Ashauer R, Butt RK, Capowiez Y, Duquesne S, Ernst G, Focks A, Gergs AE, Hodson M et al. (2020) Mechanistic effect modeling of earthworms in the context of pesticide risk assessment. Synthesis of the FORESEE Workshop. https://doi.org/10.1002/ieam.4338.

  • Franko U (1997) Modellierung des Umsatzes der organischen Bodensubstanz. Arch Acker- Pfl Bodenk 41:527–547

    CAS  Google Scholar 

  • Franko U, Witing F (2020) Dynamics of Soil Organic Matter in Agricultural Landscapes. In: Mirschel W, Terleev V, Wenkel KO (eds) Landscape modelling and decision support. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-37421-1_14

  • Frühauf M, Schmidt G, Illiger P, Meinel T (2020) Types, occurrence and tendencies of soil degradation in the Altai Krai and the KULUNDA research region. In: Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) KULUNDA: climate smart agriculture. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6_14

  • Fry EL, De Long JR, Álvarez Garrido L, Alvarez N, Carrillo Y, Castañeda‐Gómez L, Chomel M, Dondini M, Drake JE, Hasegawa S, Hortal S, Jackson BG, Jiang M, Lavallee JM, Medlyn BE, Rhymes J, Singh BK, Smith P, Anderson IC, Bardgett RD, Baggs EM, Johnson D. (2019) Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods Ecol Evol 10(1):146–157. https://doi.org/10.1111/2041-210X.13092

  • Fujii K (2014) Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol Res 29:371–381. https://esj-journals.onlinelibrary.wiley.com. https://doi.org/10.1007/s11284-014-1144-3

  • Funakawa S, Suzuki R, Karbozova E, Kosaki T, Ishida N (2000) Salt-affected soils under rice-based irrigation agriculture in southern Kazakhstan. Geoderma 97:61–85

    Google Scholar 

  • Gad A (2020) Qualitative and quantitative assessment of land degradation and desertification in Egypt based on satellite remote sensing: urbanization, salinization and wind erosion. In: Elbeih S, Negm A, Kostianoy A (eds) Environmental remote sensing in Egypt. Springer geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-39593-3_15

  • Galitskova YM, Murzayeva AI (2016) Urban soil contamination. Procedia Eng 153:162–166. https://doi.org/10.1016/j.proeng.2016.08.097

    Article  CAS  Google Scholar 

  • Gaudig G, Tanneberger F (2019) Peatland science and conservation: contributions of the greifswald Mire Centre, Germany. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-30069-2_28

  • Gelius-Dietrich G, Amer Desouki A, Fritzemeier CJ, Lercher MJ (2013) sybil—efficient constraint-based modelling in R. BMC Syst Biol 7(1):125. https://doi.org/10.1186/1752-0509-7-125

  • Geng N, Wu Y, Zhang M, Tsang DCW, Rinklebe J, Xia Y, Lu D, Zhu L, Palansooriya KN, Kim K-H, Ok YS (2019) Bioaccumulation of potentially toxic elements by submerged plants and biofilms: a critical review. Environ Int 131:105015. https://doi.org/10.1016/j.envint.2019.105015

    Article  CAS  Google Scholar 

  • Gerasimova MI, Bezuglova O (2019) Functional-environmental and properties-oriented approaches in classifying urban soils (In Memoriam Marina Stroganova). In: Vasenev II et al. (eds) Urbanization: challenge and opportunity for soil functions and ecosystem services. Proceedings of the 9th SUITMA Congress, January 2019. Springer series Geography, pp 4–10. https://doi.org/10.1007/978-3-319-89602-1_2

  • Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM (2011) SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks. Bioinformatics 27(3): 433–434. https://doi.org/10.1093/bioinformatics/btq679

  • Godbersen L., Utermann J., Duijnisveld W.H.M. (2014) Methods in the exploratory risk assessment of trace elements in the soil-groundwater pathway. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_17

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74(4):367–385. https://doi.org/10.4141/cjss94-051

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90(2):279–294

    Google Scholar 

  • Griffiths BS, Römbke J, Schmelz R, Jänsch S, Faber J, Bloem J, Peres G, Cluzeau D, Stone D (2016) Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function (EcoFINDERS). Ecol Ind 69:213–223

    Google Scholar 

  • Griffiths BS, de Groot GA, Laros I, Stone D, Geisen S (2018) The need for standardisation: exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecol Ind 87:43–46. https://doi.org/10.1016/j.ecolind.2017.12.002

    Article  Google Scholar 

  • Groh J, Diamantopoulos E, Duan X, Ewert F, Herbst M, Holbak M, Kamali B, Kersebaum K-C, Kuhnert M, Lischeid G, Nendel C, Priesack E, Steidl J, Sommer M, Pütz T, Vereecken H, Wallor E, Weber TKD, Wegehenkel M, Weihermüller L, Gerke HH (2020) Crop growth and soil water fluxes at erosion-affected arable sites: using weighing lysimeter data for model intercomparison. Vadose Zone J 19(12020):e20058. https://doi.org/10.1002/vzj2.20058

    Article  CAS  Google Scholar 

  • Gros P, Meissner R, Wirth MA, Kanwischer M, Rupp H, Schulz-Bull DR, Leinweber P (2020) Leaching and degradation of 13C2-15N-glyphosate in field lysimeters. Environ Monit Assess 192:127. https://doi.org/10.1007/s10661-019-8045-4

  • Grunwald LC, Belyaev VI, Meinel T (2020) Improving efficiency of crop protection measures. A technical contribution for better weed control, less pesticide use and decreasing soil tillage intensity in dry farming regions exposed to wind erosion. In: Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) KULUNDA: climate smart agriculture. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6_28

  • Gruszecka-Kosowska A, Baran A, Wdowin M, Mazur-Kajta K, Czech T (2020) The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study. Environ Geochem Health 42:419–442. https://doi.org/10.1007/s10653-019-00372-w

  • Gubler A, Wächter D, Schwab P, Müller M, Keller A (2019). Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ Monitor Assess 191(5):277. https://doi.org/10.1007/s10661-019-7435-y

  • Guerra CA, Rosa IMD, Valentini E et al (2020) Global vulnerability of soil ecosystems to erosion. Landscape Ecol. https://doi.org/10.1007/s10980-020-00984-z

    Article  Google Scholar 

  • Guggenberger G. Bischoff N, Shibistova O, Müller C, Rolinski S, Puzanov A, PrishchepovAV, Schierhorn F, Mikutta R (2020) Interactive effects of land use and climate on soil organic carbon storage in Western Siberian steppe soils. In: Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) KULUNDA: climate smart agriculture. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6_13

  • Guo JH, Liu XJ, Zhang YU, Shen JL et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    CAS  Google Scholar 

  • Guo M, Yang B, Wang W et al (2019) Distribution, morphology and influencing factors of rills under extreme rainfall conditions in main land on the Loess Plateau of China. Geomorphology 345:106847. https://doi.org/10.1016/j.geomorph.2019.106847Notintext

    Article  Google Scholar 

  • Guo Z, Zhang L, Yang W, Hua L , Cai C (2019b) Aggregate Stability under long-term fertilization practices: the case of eroded ultisols of South-Central China. Sustainability 11(4):1169. https://doi.org/10.3390/su11041169

  • Gupta DK, Sandallo LM (eds) (2011) Metal toxicity in plants: perception, signalling and remediation. Springer, London

    Google Scholar 

  • Gutiérrez Y, Ott D, Scherber C (2020) Direct and indirect effects of plant diversity and phenoxy herbicide application on the development and reproduction of a polyphagous herbivore. Sci Rep 10:7300. https://doi.org/10.1038/s41598-020-64252-5

  • Gutorova O, Sheudzhen A, Eulenstein F, Mueller L, Schindler U (2018a) Chapter I/33: Ion Chromatographic Method in Agrochemistry (In Russian: Иoнxpoмaтoгpaфичecкий Meтoд в Aгpoxимии). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I Landscapes in the 21th century: status analyses, basic processes and research concepts. © FSBI “VNII Agrochemistry”, pp 185–189. https://doi.org/10.25680/9569.2018.64.90.033. https://vniia-pr.ru/monografii/pdf/tom1-33.pdf

  • Gutorova OA, Sheuzhen AK, Shkhapatsev AK, Mueller L, Eulenstein F, Schindler U (2018b) Chapter I/37: enzymatic activity of soils in rice agrolandscapes of the Kuban Глaвa I/37: Фepмeнтaтивнaя Aктивнocть Пoчв Pиcoвыx Aгpoлaндшaфтoв Кyбaни. In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I landscapes in the 21th century: status analyses, basic processes and research concepts. © FSBI “VNII Agrochemistry”, pp 204–208. https://doi.org/10.25680/4199.2018.74.32.037. https://vniia-pr.ru/monografii/pdf/tom1-37.pdf

  • Guzev VS, Levin SV (1991) Perspectives of ecological-microbiological examination of soil conditions under anthropogenic impacts. Soil Sci 9:50–62. (In Russian: Пepcпeктивы экoлoгo-микpoбиoлoгичecкoй экcпepтизы cocтoяния пoчв пpи aнтpoпoгeнныx вoздeйcтвияx. Пoчвoвeдeниe 9:50 – 62.)

    Google Scholar 

  • Hallam J, Hodson ME (2020) Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biol Fert Soils 56:607–617

    Google Scholar 

  • Halm D, Grathwohl P (2003) (eds) Proceedings of the 2nd international workshop on groundwater risk assessment at contaminated sites (GRACOS) and integrated soil and water protection (SOWA), held in Tübingen, Germany, from 20 to 21 March 2003. https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/48470/pdf/TGA_C69_Halm.pdf?sequence=1#page=139. Accessed on 12 Sept 2020

  • Hansen S, Jensen HJ, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomas production in winter wheat using the Danish simulation model DAISY. Fert Res 27(2–3):245–259

    CAS  Google Scholar 

  • Hansen B, Alroe HF, Kristensen ES (2001) Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agric Ecosys Environ 83:11–26

    Google Scholar 

  • Hararuk O, Xia J, Luo Y (2014) Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. J Geophys Res Biogeosci 119:403–417. https://doi.org/10.1002/2013JG002535

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Narasimha M, Prasad V, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int 1–12

    Google Scholar 

  • Haselow L, Rupp H, Bondarovich AA, Meissner R (2019) Measurement and estimation of evapotranspiration in semi-arid grassland during the summer season in southwest Siberia. Eur J Soil Sci 8(3):257–266. https://doi.org/10.18393/ejss.567359

  • Hatfield JL, Sauer TJ, Cruse RM (2017) Soil: the forgotten piece of the water, food, energy nexus. Adv Agron 143:1–46. https://doi.org/10.1016/bs.agron.2017.02.001

    Article  Google Scholar 

  • Herrmann DL, Shuster WD, Garmestani AS (2017) Vacant urban lot soils and their potential to support ecosystem services. Plant Soil 413(1–2):45–57. https://doi.org/10.1007/s11104-016-2874-5

    Article  CAS  Google Scholar 

  • Hillel D (2000). Salinity management for sustainable irrigation: integrating science, environment, and economics. The World Bank. ISBN: 978–0–8213–4773–7, https://doi.org/10.1596/0-8213-4773-X

  • Höke S (2003) Identifizierung, Herkunft, Mengen und Zusammensetzung von Exstäuben in Böden und Substraten des Ruhrgebiets (Identification, origin, quality and composition of ex-dust in soils and substrates of the Ruhr area). Essener Ökologische Schriften, vol 20. Westarp Wissenschaften Verlags GmbH, Hohenwarsleben, p 141

    Google Scholar 

  • Holtkamp R, Van der Wal A, Kardol P, Van der Putten WH, De Ruiter PC, Dekker SC (2011) Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land. Soil Biol Biochem 43:251–260. https://doi.org/10.1016/j.soilbio.2010.10.004

    Article  CAS  Google Scholar 

  • Holz M, Zarebanadkouki M, Kuzyakov Ya, Pausch J, Carminati A (2017) Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot 121(1): 61–69. https://doi.org/10.1093/aob/mcx127

  • Hong S, Gan P, Chen A (2019) Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ Res 172:159–165. https://doi.org/10.1016/j.envres.2019.02.020

    Article  CAS  Google Scholar 

  • Horion S, Ivits E, De Keersmaecker W, Tagesson T, Vogt J, Fensholt R (2019) Mapping European ecosystem change types in response to land-use change, extreme climate events, and land degradation. Land Degrad Develop 30(8):951–963. https://doi.org/10.1002/ldr.3282

    Article  Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews. Earth & Environment. 1:366–381

    Google Scholar 

  • Hu Y, Zheng Q, Noll L, Zhang S, Wanek W (2020) Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biol Biochem 141:107660. https://doi.org/10.1016/j.soilbio.2019.107660

  • Huang J, Peng S, Mao X, Li F, Guo S, Shi L, Shi Y, Yu H, Zeng G-M (2019) Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county. Process Saf Environ Prot 126:339–347. https://doi.org/10.1016/j.psep.2019.04.023

  • Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C, Yu Z (2020) Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. PNAS 117(34):20438–20446. https://doi.org/10.1073/pnas.1916387117

  • Huhta V (2007) The role of soil fauna in ecosystems: a historical review. Pedobiologia 50:489–495

    Google Scholar 

  • Husniev I, Romanenkov V, Minakova O, Krasilnikov P (2020) Modelling and prediction of organic carbon dynamics in arable soils based on a 62-year field experiment in the Voronezh Region, European Russia. https://doi.org/10.20944/preprints202009.0176.v1

  • IIASA (2020) The RAINS 7.2 model of air pollution. https://user.iiasa.ac.at/~schoepp/doc/manual/intro.htm#Amann%20Bertok%20Cofala%2096

  • Inisheva LI, Porokhina EV, Sergeeva MA (2018) Chapter I/24: long-term stationary research in peat landscapes (in Russian). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I landscapes in the 21th century: status analyses, basic processes and research concepts. © FSBI “VNII Agrochemistry”, pp 141–146. https://doi.org/10.25680/2326.2018.41.15.024. https://vniia-pr.ru/monografii/pdf/tom1-24.pdf

  • ISO 15799:2019–11 (2019) Soil quality—Guidance on the ecotoxicological characterization of soils and soil materials. https://www.iso.org/standard/70770.html. Accessed on 15 Feb 2021

  • ISO 17616:201911 (2019) Soil quality—Guidance on the choice and evaluation of bioassays for ecotoxicological characterization of soils and soil materials. https://www.iso.org/standard/73592.html. Accessed on 15 Feb 2021

  • Issanova G, Abuduwaili J (2017) Aeolian processes as dust storms in the deserts of Central Asia and Kazakhstan. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-3190-8

    Article  Google Scholar 

  • IUSS Working Group WRB (2014) World reference base for soil resources 2014. In: Schad P, van Huyssteen C, Micheli E (eds) World soil resources reports No. 106. FAO, Rome, 189 p. ISBN 978–92–5–108369–7

    Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, De Sousa L (2019) Global mapping of soil salinity change. Remote Sens Environ 231:111260. https://doi.org/10.1016/j.rse.2019.111260

    Article  Google Scholar 

  • Janssen BH, Guiking FCT, van der Eijk D, Smaling EMA, Wolf J, van Reuler H (1990) A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 46:299–318

    Google Scholar 

  • Janssens J, Deng Z, Sonwa D, Torrico JC, Mulindabigwi V, Pohlan J (2006) Relating agro-climax of orchards to eco-climax of natural vegetation. Acta Horticulturae 707:181–186

    Google Scholar 

  • Jaramaz D (2018) The impact of anthropogenic pollution on soil degradation at wide area of Bor City. Doctoral thesis, Faculty of Forestry, University of Belgrade, Serbia

    Google Scholar 

  • Jeffery S, van der Putten WH (2011) Soil-Borne human diseases 1–56. https://doi.org/10.2788/37199

  • Jeffery S, Gardi C (2010) Soil biodiversity under threat—a review. Acta Soc Zool Bohem 74:7–12

    Google Scholar 

  • Jensen JL, Schjønning P, Watts CW, Christensen BT, Obour PB, Munkholm LJ (2020) Soil degradation and recovery—changes in organic matter fractions and structural stability. Geoderma 364:114181. https://doi.org/10.1016/j.geoderma.2020.114181

    Article  CAS  Google Scholar 

  • Jha P, Banerjee S, Bhuyan P, Sudarshan M, Dewanji A (2020) Elemental distribution in urban sediments of small waterbodies and its implications: a case study from Kolkata, India. Environ Geochem Health 42:461–482. https://doi.org/10.1007/s10653-019-00377-5

    Article  CAS  Google Scholar 

  • Jia Y, Kuzyakov Y, Wang G, Tan W, Zhu B, Feng X (2019) Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degrad Develop 31(5):632–645. https://doi.org/10.1002/ldr.3477

    Article  Google Scholar 

  • Jobbágy EG, Tóth T, Nosetto MD, Earman S (2017) On the fundamental causes of high environmental alkalinity (pH ≥ 9): an assessment of its drivers and global distribution. Land Degrad Dev 28(7):1973–1981

    Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Allen EB (2008) Plant winners and losers during grassland n‐eutrophication differ in biomass allocation and mycorrhizas. Ecol 89(10):2868–2878. https://doi.org/10.1890/07-1394.1

  • Jones C, Engel R, Olson-Rutz K (2020) Soil acidification in the semiarid regions of North America’s Great Plains. Crops Soils 52(2):28–56. https://doi.org/10.2134/cs2019.52.0211

  • Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng Z, Muth TR (2019) Green infrastructure design influences communities of urban soil bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00982

  • Jung M, Schwalm C, Migliavacca M, Walther S, Camps-Valls G, Koirala S, Anthoni P, Besnard S, Bodesheim P, Carvalhais N, Chevallier F, Gans F, Goll DS, Haverd V, Köhler P, Ichii K, Jain AK, Liu J, Lombardozzi D, Nabel JEMS, Nelson JA, O’Sullivan M, Pallandt M, Papale D, Peters W, Pongratz J, Rödenbeck C, Sitch S, Tramontana G, Walker A, Weber U, Reichstein M (2020) Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17:1343–1365. https://doi.org/10.5194/bg-17-1343-2020

  • Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37(2):140–151. https://doi.org/10.1016/j.tibtech.2018.11.011

  • Kanash EV, Litvinovich AV, Kovleva AO, Osipov YuA, Saljnikov E (2018) Grain production and optical characteristics in three wheat (Triticum aestivum L.) Varieties under liming and nitrogen fertilization. Agricultural Biology 53(1):61–71. doi: https://doi.org/10.15389/agrobiology.2018.1.61eng

  • Karlen DL, Andrews SS, Wienhold BJ, Zobeck TM (2008) Soil Quality Assessment: Past, Present and Future. Publications from USDA-ARS / UNL Faculty. 1203. https://digitalcommons.unl.edu/usdaarsfacpub/1203

  • Kauppi P, Kamari J, Posch M, Kauppi L, Matzner E (1987) Acidification of forest soils: model development and application for analyzing impacts of acidification in Europe. Laxenburg, Novographic, Vienna, Austria, http://pure.iiasa.ac.at/id/eprint/2766/1/RR-87-05.pdf, accessed on Sept 12, 2020

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128. https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds.) (2007) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Dordrecht (Springer), 271pp

    Google Scholar 

  • Kersebaum KC (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Dordrecht (Springer), pp 147–160

    Google Scholar 

  • Khan NI, Owens G, Bruce D, Naidu R (2009) Human arsenic exposure and risk assessment at the landscape level: a review. Environ Geochem Health 31:143–166. https://doi.org/10.1007/s10653-008-9240-3 PMID: 19172401

    Article  CAS  Google Scholar 

  • Khan MN, Mohammad F (2014a) Eutrophication: Challenges and Solutions. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-007-7814-6-1

  • Khan MN, Mohammad F (2014b) Eutrophication of Lakes. In: Ansari AA, Gill SS (eds) Eutrophication: challenges and solutions, vol II of eutrophication: causes, consequences and control. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-007-7814-6-5

  • Khan MN, Mobin M, Abbas ZK, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. In: DellaSala DA, Goldstein MI (eds) The encyclopedia of the anthropocene, vol 5. Elsevier, Oxford, pp 225–240

    Google Scholar 

  • Kholodov VA, Yaroslavtseva NV, Farkhodov YR, Yashin MA, Lazarev VI, Iliyn BS, Philippova OI, Volikov AB, Ivanov AL (2020) Optical properties of the extractable organic matter fractions in typical chernozems of long-term field experiments. Eurasian Soil Sci. 53:739–748. https://doi.org/10.1134/S1064229320060058

  • Kiryushin VI (2019) The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci 52:1137. https://doi.org/10.1134/S1064229319070068

  • König S, Vogel H-J, Harms H, Worrich A (2020) Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00053

  • Kooch Y, Ehsani S, Akbarini M (2020) Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil Tillage Res 200:10462. https://doi.org/10.1016/j.still.2020.104621

  • Körschens M, Albert E, Baumecker M, Ellmer F, Grunert M, Hoffmann S, Kismanyoky T, Kubat J, Kunzova E, Marx M, Rogasik J, Rinklebe J, Rühlmann J, Schilli C, Schröter H, Schoetter S, Schweizer K, Toth Z, Zimmer J, Zorn W (2014) Humus and climate change—results of 15 long-term experiments (Humus und Klimaänderung - Ergebnisse aus 15 langjährigen Dauerfeldversuchen). Arch Agron Soil Sci 60(11):1485–1517. https://doi.org/10.1080/03650340.2014.892204

    Article  CAS  Google Scholar 

  • Körschens M (2021) Chapter 8. Long-term field experiments (LTEs)—importance, overview, soil organic matter. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Innovations in landscape research. Springer, Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Kotenko ME, Sorokin AE, Savich VI, Podvolovskaya GB, Shima M (2020) Change in soil salination in time and in space. Plodorodie 1(112). http://plodorodie-j.ru/journal/2020/1-2020/2020-1-43-48.html (In Russian: M.E. Кoтeнкo, A.E. Copoкин, B.И. Caвич, Г.Б. Пoдвoлoцкaя, Moxaммaди Шимa (2020) Измeнeниe зacoлeния пoчв вo вpeмeни и в пpocтpaнcтвe)

  • Koul B, Taak P (2018) Soil pollution: causes and consequences. In: Biotechnological strategies for effective remediation of polluted soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_1

  • Kroes J, Roelsma J (2007) Simulation of water and nitrogen flows on field scale: application of the SWAP-ANIMO model for the Müncheberg data set. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Dordrecht (Springer), pp 111–128

    Google Scholar 

  • Kros J, Mol-Dijkstra JP, de Vries W, Fujita Y, Witte JPM (2017) Comparison of model concepts for nutrient availability and soil acidity in terrestrial ecosystems. KWR2017.053 Wageningen University and Research. https://edepot.wur.nl/428560

  • Kuhry P, Bárta J, Blok D, Elberling B, Faucherre S, Hugelius G, Jørgensen CJ, Richter A, Šantrůčková H, Weiss N (2020) Lability classification of soil organic matter in the northern permafrost region. Biogeosciences 17:361-379. https://doi.org/10.5194/bg-17-361-2020

  • Kuhwald M, Thomas C, Becker J, Berger A, Duttmann R (2018) Chapter I/32: a new approach for soil respiration measurements in laboratory. In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I landscapes in the 21th century: status analyses, basic processes and research concepts. © FSBI “VNII Agrochemistry”, pp 180–184. https://doi.org/10.25680/5884.2018.95.45.032 https://vniia-pr.ru/monografii/pdf/tom1-32.pdf

  • Kundler P (1989) Erhöhung der Bodenfruchtbarkeit, VEB Deutscher Landwirtschaftsverlag Berlin, 1st edn, 452 pp

    Google Scholar 

  • Kurganova I, Merino A, Lopes de Gerenyu V, Barros N, Kalinina O, Giani L, Kuzyakov Y (2019) Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: a chronosequence study on Phaeozems and Chernozems. Geoderma 354:113882

    Google Scholar 

  • La Cecilia D, Maggi F (2020) Influential sources of uncertainty in glyphosate biochemical degradation in soil. Math Comput Simulat 175:121–139. https://doi.org/10.1016/j.matcom.2020.01.003

    Article  Google Scholar 

  • LABO (2003) Bund/Länder Arbeitsgemeinschaft Bodenschutz: Arbeitshilfe Sickerwasserprognose bei Orientierenden Untersuchungen. http://www.labo-deutschland.de/documents/SiWaPrognose-120903_91f.pdf. Accessed on Oct 10, 2020

  • Lakshmanan M, Koh G, Chung BK, Lee DY (2014) Software applications for flux balance analysis. Brief Bioinform 15(1):108–122. https://doi.org/10.1093/bib/bbs069

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  Google Scholar 

  • Lal R (2020a) Soil erosion and gaseous emissions. Appl Sci 10(8):2784. https://doi.org/10.3390/app10082784

    Article  CAS  Google Scholar 

  • Lal R, Hall GF, Miller FP (1989) Soil degradation: I. Basic processes. Land Degrad Develop 1:51–69. https://doi.org/10.1002/ldr.3400010106

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464

    Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539. https://doi.org/10.1002/ldr.472. http://tinread.usarb.md:8888/tinread/fulltext/lal/soil_degradation.pdf Not in text

  • Lal R (2020b) Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec (2020). https://doi.org/10.1007/s12571-020-01058-3

  • Latendresse M, Krummenacker M, Trupp M, Karp PD (2012) Construction and completion of flux balance models from pathway databases. Bioinformatics 28:388–396. https://doi.org/10.1093/bioinformatics/btr681

  • Lavrishchev A, Litvinovich A, Pavlova O, Vladimir B (2020) Effect of liming of sod-podzolic soils with by-products of steel production on soil acidity and composition of wash water (column experiments). Zemljiste i Biljka 69(2):68–81. http://www.sdpz.rs/images/casopis/2020/zib_69_2_75.pdf

  • Le HT, Rochelle‐Newall E, Ribolzi O Janeau JL, Huon S, Latsachack K, Pommier T (2019) Land use strongly influences soil organic carbon and bacterial community export in runoff in tropical uplands. Land Degrad Develop 31(1):118-132. https://doi.org/10.1002/ldr.3433

  • Lee CS, Jung S, Lim BS, Kim AR, Lim CH, Lee H (2019) Forest decline under progress in the urban forest of Seoul. Central Korea Intech Open. https://doi.org/10.5772/intechopen.86248

    Article  Google Scholar 

  • Van Leeuwen JP, Creamer RE, Cluzeau D, Debejak M, Gatti F, Henriksen C, Kuzmanovski V, Menta C, Peres G, Picaud C, Saby N, Trajanov A, Trinsoutrot-Gattin I, Visioli G, Rutgers M (2019) Modeling of soil functions for assessing soil quality: soil biodiversity and habitat provisioning. Front Environ Sci 7:113. https://doi.org/10.3389/fenvs.2019.00113

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer RJ, Lundgren JG, Ducey TF, Jin VL, Karlen DL (2015) Understanding and enhancing soil biological health: the solution for rreversing soil degradation. Sustainability 7(1):988–1027. https://doi.org/10.3390/su7010988

  • Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC (2020) The concept and future prospects of soil health. Nat Rev Earth Environ 1:544–553. https://doi.org/10.1038/s43017-020-0080-8

  • Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS, Wieder WR, Kögel-Knabner I (2020) Persistence of soil organic carbon caused by functional complexity. Nat Geosci 13:529–534. https://doi.org/10.1038/s41561-020-0612-3

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(2015):60–68. https://doi.org/10.1038/nature16069

    Article  CAS  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol 5(11):3578–3590. https://doi.org/10.1111/gcb.14781

  • Litalien A, Zeeb B (2020) Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ 698:134235. https://doi.org/10.1016/j.scitotenv.2019.134235

    Article  CAS  Google Scholar 

  • Litvinovich A, Salaev I, Pavlova O, Lavrishchev A, Bure V, Saljnikov E (2019) Utilization of large-sized dolomite by-product particles and losses of cations from acidic soil. Commun Soil Sci Plant Anal. https://doi.org/10.1080/00103624.2019.1589490

    Article  Google Scholar 

  • Liu M, Song Yu, Xu T, Xu Zh, Wang T, Yin L, Jia X, Tang J (2020a) Trends of precipitation acidification and determining factors in China during 2006–2015. J Geophys Res Atmosp 125(6):e2019JD031301. https://doi.org/10.1029/2019JD031301

  • Liu X, Shi H, Bai Z, Liu X, Yang B, Yan D (2020b) Assessing soil acidification of croplands in the poyang lake basin of China from 2012 to 2018. Sustainability 12:3072. https://doi.org/10.3390/su12083072

  • Liu D et al. (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Develop Springer Verlag, EDP Sciences, INRA, 32(2):309–327. https://doi.org/10.1007/s13593-011-0062-9

  • Löffler D, Hatz A, Albrecht D, Fligg M, Hogeback J, Ternes TA (2020) Determination of non-extractable residues in soils: Towards a standardised approach. Environ Poll 259:113826.

    Google Scholar 

  • Logan TJ (1990) Chemical degradation of soil. In: Lal R, Stewart BA (eds) Advances in soil science, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3322-0

  • Loke PF, Kotze E, du Preez CC, Twigge L (2019) Dynamics of soil carbon concentrations and quality induced by agricultural land use in Central South Africa. SSSAJ Soil Chem 83(2):366–379. https://doi.org/10.2136/sssaj2018.11.0423

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Ehlers K (2019) Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ sustainable development goals. Land Degrad Develop 30(7):824–838

    Google Scholar 

  • Luebbers F (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res 66(2):95–106

    Google Scholar 

  • Luo Y, Li Q, Wang Ch, Li B, Stomph T-J, Yang J, Tao Q, Yuan S, Tang X, Ge J, Yu X, Peng Y, Xu Q, Zheng G (2019) Negative effects of urbanization on agricultural soil easily oxidizable organic carbon down the profile of the Chengdu Plain, China. Land Degrad Develop 31(3):401–416. https://doi.org/10.1002/ldr.3458

    Article  Google Scholar 

  • MacKenzie MD, Dietrich ST (2020) Atmospheric sulfur and nitrogen deposition in the Athabasca oil sands region is correlated with foliar nutrient levels and soil chemical properties. Sci Total Environ 711(1):134737. https://doi.org/10.1016/j.scitotenv.2019.134737

    Article  CAS  Google Scholar 

  • Mandakh N, Tsogtbaatar J, Dash D, Khodolmor S (2016) System of indicators and evaluation of desertification in Mongolia. Arid Ecosystems 22-1(66):93-105. (In Russian: Cиcтeмa индикaтopoв и oцeнкa oпycтынивaния в Moнгoлии. Apидныe экocиcтeмы)

    Google Scholar 

  • Mandal AK, Sharma RC, Singh G (2009) Assessment of salt affected soils in India using GIS. Geocarto Int 24:437–456

    Google Scholar 

  • Martinez MA, Woodcroft BJ, Espinoza JCI, Zayed AA, Singleton CM, Boyd JA, Li Y-F, Purvin S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI (2019) Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 42(1):54–66. https://doi.org/10.1016/j.syapm.2018.12.003

  • Martinez-Salgado MM, Gutiérrez-Romero V, Jannsens M, Ortega-Blu R (2019) Biological soil quality indicators: a review. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, pp 319–328.

    Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meißner R, Prasad MNV, Du Laing G, Rinklebe J (2010) Lysimeters application for measuring the water and solute fluxes with high precision. Curr Sci 99(5):601–607

    Google Scholar 

  • Mensah AK, Marschner B, Shaheen SM, Wang S-L, Rinklebe J (2020) Arsenic contamination in abandoned and active gold mine spoils in Ghana: geochemical fractionation, speciation, and assessment of the potential human health risk. Environ Pollut 261. https://doi.org/10.1016/j.envpol.2020.114116

  • Menta C (2012) Soil fauna diversity—function. Soil degradation, biological indices, soil restoration, biodiversity conservation and utilization in a diverse world. Gbolagade Akeem Lameed, IntechOpen. https://doi.org/10.5772/51091

  • Meuser H (2010) Assessment of urban soils. In: Contaminated urban soils. Environmental pollution, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9328-8_7

  • Meyer BC, Schreiner V, Smolentseva EN, Smolentsev BA (2008) Indicators of desertification in the Kulunda Steppe in the south of Western Siberia. Arch Agron Soil Sci 54(6):585–603. https://doi.org/10.1080/03650340802342268

    Article  Google Scholar 

  • Meyer ST, Koch C, Weisser WW (2015) Towards a standardized rapid ecosystem function assessment (REFA). Trends Ecol Evol 30:390–397

    Google Scholar 

  • Michael I, Rizzo L, McArdell CS, Manai CM, Merline C, Schwartz T, Dagot C, Fatta-Kassinosa D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995. https://doi.org/10.1016/j.watres.2012.11.027

  • Mirschel W, Wenkel K-O (2007) Modelling soil-crop interactions with AGROSIM model family. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany. Dordrecht (Springer), pp 59–73

    Google Scholar 

  • Mirschel W, Berg-Mohnicke M, Wieland R, Wenkel K-O, Terleev VV, Topaj AG, Müller L (2020) Modelling and simulation of agricultural landscapes. In: Mirschel W, Terleev VV, Wenkel K-O (eds) Landscape modelling and decision support, innovations in landscape research. Springer Nature Switzerland, Cham. https://doi.org/10.1007/978-3-030-37421-1_1

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. In: Rodriguez-Barrueco C (eds) Fertilizers and environment. Developments in plant and soil sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1586-2_2

  • Mrvić V, Lj K-K, Sikirić B, Delić D, Jaramaz D (2014) Methods for the assessment of background limits of Cd and Cr in the soil of Moravički district. Bull Faculty Forestry 109:137–148. https://doi.org/10.2298/GSF1409137M

    Article  Google Scholar 

  • Mueller L, Wirth S, Schulz E, Behrendt A, Höhn A, Schindler U (2007a) Implications of soil substrate and land use for properties of fen soils in North-East Germany Part I: Basic soil conditions, chemical and biological properties of topsoils. Arch Agron Soil Sci 53(2):113–126. https://doi.org/10.1080/03650340701224823

  • Mueller L, Schindler U, Ball BC, Smolentseva E, Sychev VG, Shepherd TG, Qadir M, Helming K, Behrendt A, Eulenstein F (2014a) Productivity potentials of the global land resource for cropping and grazing. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, Cham. Environmental Science and Engineering, pp 115–142. https://doi.org/10.1007/978-3-319-01017-5_6

  • Mueller L, Schindler U, Behrendt A, Eulenstein F, Dannowski R (2007b) The Muencheberg soil quality rating (SQR). Field manual for detecting and assessing properties and limitations of soils for cropping and grazing. http://www.zalf.de/de/forschung_lehre/publikationen/Documents/Publikation_Mueller_L/field_mueller.pdf. Accessed on 12 Sept 2020

  • Mueller L, Behrendt A, Shepherd TG, Schindler U, Ball BC, Khudyaev S, Kaiser T, Dannowski R, Eulenstein F (2014b) Simple field methods for measurement and evaluation of grassland quality. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, Cham, pp 199–222. https://doi.org/10.1007/978-3-319-01017-5_11

  • Mueller L, Suleimenov M, Karimov A, Qadir M, Saparov A, BalgabayevN, Helming K, Lischeid G (2014c) Land and water resources of Central Asia, their utilisation and ecological status. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environ Sci Eng. https://doi.org/10.1007/978-3-319-01017-5_1

  • Mueller L, Eulenstein F, Mirschel W, Schindler U, Sychev VG, Rukhovich OV, Sheudzhen AK, Romanenkov V, Lukin SM, McKenzie BM, Jones M, Dannowski R, Blum WEH, Saljnikov E, Saparov A, Pachikin K, Hennings V, Scherber C, Hoffmann J, Antrop M, Garibaldi L, Gómez Carella DS, Augstburger H, Schwilch G, Angelstam P, Manton M, Dronin NM (2021) Chapter 3: ooptimizing agricultural landscapes: measures towards prosperity and sustainability. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Innovations in landscape research. Springer, Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Müller J (2016) Methods for measuring water and solute balances in forest ecosystems. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_15

  • Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225(3):1091–1096. https://doi.org/10.1111/nph.15862

    Article  CAS  Google Scholar 

  • Muñoz-Arenas LC, Fusaro C, Hernández-Guzmán M, Dendooven L, Estrada-Torres A, Navarro-Noya Y-E (2020) Soil microbial diversity drops with land-use change in a high mountain temperate forest: a metagenomics survey. Environ Microbiol Rep 12(2):185–194. https://doi.org/10.1111/1758-2229.12822

  • Muratchaeva PM, Khabibov S (2013) Regulatory of the manifestation of digressions in the ephemeral-wormwood communities of the Tersko-Kuma lowland. Arid Ecosyst 19(1):67–77. (In Russian: Mypaтчaeвa П.M.-C., Xaбибoв. 2013. O зaкoнoмepнocтяx пpoявлeния дигpeccий в эфeмepoвo-пoлынныx cooбщecтвax Tepcкo-Кyмcкoй низмeннocти. Apидныe экocиcтeмы.) Nicht im Text.

    Google Scholar 

  • Nagaijyoti PC, Lee KD, Sreekanth VM (2010) Heavy metals, occurrence andf toxicity for plants: a review. Environ Chem Lett 8:199–216

    Google Scholar 

  • Nagarajan H, Embree M, Rotaru A-E, Shrestha PM, Feist AM, Palsson BØ, Lovley DR, Zengler K (2013) Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nat Commun 4:ncomms 3809

    Google Scholar 

  • Narozhnyaya AG, Chendev YuG (2020) The study of the modern ecological state of shelterbelts using GIS and remote sensing data InterCarto. InterGIS. GI support of sustainable development of territories: proceedings of the international conference, vol 26. Part 2. . Moscow University Press, Moscow, pp 54–65. https://doi.org/10.35595/2414-9179-2020-2-26-54-65 (In Russian Изyчeниe Coвpeмeннoгo Экoлoгичecкoгo Cocтoяния Лecныx Пoлoc c Иcпoльзoвaниeм ГИC и ДДЗ) http://intercarto.msu.ru/jour/articles/article780.pdf

  • Nebol'sin AN, Nebol'sina ZP (2005) Theoretical bases of soil liming. St. Petersburg, 252 pp. (in Russ. Heбoльcин A.H., Heбoльcин З.П. (2005) Teopeтичecкиe ocнoвы извecткoвaния пoчв. CПб.: ЛHИИCX, 2005. - 252 c)

    Google Scholar 

  • Nendel C (2014) MONICA: a simulation model for nitrogen and carbon dynamics in agro-ecosystems. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_23

  • Nguyen KA, Liou YA, Tran HP, Hoang PP, Nguyen TH (2020) Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog Earth Planet Sci 7:1. https://doi.org/10.1186/s40645-019-0311-0

    Article  CAS  Google Scholar 

  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal content in livestock feeds and animal manures in England and Wales. Sci Total Environ 311:205–219

    Google Scholar 

  • Nisbet TR, Evans CD (2014) Forestry and surface water acidification. Forestry Commission. ISBN 9780855389000. OCLC 879011334. https://www.forestresearch.gov.uk/documents/352/FCRN016_46PkzE8.pdf. Accessed on 12 Sept 2020

  • Norra S, Cheng Z (2017) Urban soils contamination. In: Levin MJ, Kim KHJ, Morel JL, Burghardt W, Charzynski P, Shaw RK (eds) In behalf of IUSS working group SUITMA: soils within cities. Catena-Schweizerbart, Stuttgart, pp 35–42

    Google Scholar 

  • Novikova NM, Volkova NA, Ulanova SS, Chemidov MM (2020) Change in vegetation on meliorated solonetcic soils of the Peri-Yergenian plain over 10 years (Republic of Kalmykia). Arid Ecosyst 10:194–202. https://doi.org/10.1134/S2079096120030051

  • Obalum SE, Chibuike GU, Peth S, Ouyang Y (2017) Soil organic matter as sole indicator of soil degradation. Environ Monitor Assess 189(4). https://doi.org/10.1007/s10661-017-5881-y

  • Oldeman LR, Van Lynden GWJ (1998) Revisiting the GLASOD methodology. In: Lal R, Blum WH, Valentine C, Steward BR (eds) Methods for assessment of soil degradation CRC press, pp 423–440, 555

    Google Scholar 

  • Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K, Flores-Renteria D, Hermans K, Jobbagy E, Kurz W, Li D, Sonwa DJ, Stringer L, (2019) Chapter 4 land degradation. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, pp 345–436, https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf. Accessed on 12 Sept 2020

  • Omuto CT, Vargas RR, El Mobarak AM, Mohamed N, Viatkin K, Yigini Y (2020) Mapping of salt-affected soils. Technical Manual; FAO: Rome, Italy

    Google Scholar 

  • Opekunova M, Opekunov A, Elsukova E, Kukushkin S, Janson S (2020) Comparative analysis of methods for air pollution assessing in the Arctic mining area. Atmosp Poll Res. https://doi.org/10.1016/j.apr.2020.08.017

    Article  Google Scholar 

  • Orgiazzi A, Panagos P (2018) Soil biodiversity and soil erosion:iIt is time to get married. Glob Ecol Biogeogr 27(10). https://doi.org/10.1111/geb.12782

  • Orlova T, Melnichuk A, Klimenko K, Vitvitskaya V, Popovych V, Dunajeva I, Terleev V, Nikonorov A, Togo I, Volkova Y, Mirschel W, Garmanov V (2017) Reclamation of landfills and dumps of municipal solid waste in a waste management system: methodology and practice. In: IOP conference series: earth and environmental science 90, 1, Aricle No.: 012110, 13 p. https://doi.org/10.1088/1755-1315/90/1/012110

  • Otarov A (2014) Concentration of heavy metals in irrigated soils in Southern Kazakhstan. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_41

  • Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int 134. https://doi.org/10.1016/j.envint.2019.105046

  • Pan M, Chu LM (2017) Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ 599–600:500–512

    Google Scholar 

  • Pan X-L, Dong F-S, Wu X-H, Xu J, Liu X-G, Zheng Y-Q (2019) Progress of the discovery, application, and control technologies of chemical pesticides in China. J Integr Agric 18(4):840–853. https://doi.org/10.1016/S2095-3119(18)61929-X

    Article  CAS  Google Scholar 

  • Pankratova KG, Shchelokov VI, Stupakova GA, Sychev VG (2016) Study of the suitability of NIR spectroscopy for monitoring the contamination of soils with oil products. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_13

  • Pasley HR, Cairns JE, Camberato JJ, Vyn TV (2019) Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutr Cycl Agroecosyst 115:373–389. https://doi.org/10.1007/s10705-019-10016-1

    Article  CAS  Google Scholar 

  • Pavlović M, Pavlović D, Kostić O, Jarić S, Čakmak D, Pavlović P, Mitrović M (2017) Evaluation of urban contamination with trace elements in city parks in Serbia using pine (Pinus nigra Arnold) needles, bark and urban topsoil. Int J Environ Res 11:625–639. https://doi.org/10.1007/s41742-017-0055-x

  • Pejović M, Bajat B, Gospavić Z, Saljnikov E, Kilibarda M, Čakmak D (2017) Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure. J Geochem Explor 179:25–35. http://grafar.grf.bg.ac.rs/handle/123456789/821

  • Peng H, Chen Y, Weng L, Ma J, Ma Y, Li Y, Islam MdS (2019) Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review. Sci Total Environ 660:776–786. https://doi.org/10.1016/j.scitotenv.2019.01.066

  • Perez-Hernandez H, Fernandez-Luqueno F, Huerta-Lwanga E, Huerta-Lwanga E, Mendoza‐Vega J, José DÁS (2020) Effect of engineered nanoparticles on soil biota: do they improve the soil quality and crop production or jeopardize them? Land Degrad Develop. https://doi.org/10.1002/ldr.3595

  • Perez-Mon C, Frey B, Frossard A (2020) Functional and structural responses of arctic and alpine soil prokaryotic and fungal communities under freeze-thaw cycles of dfferent frequencies. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00982

  • Pham T, Nguyen H, Kappas M (2018) Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. Int Soil Water Conserv Res 6(4):280–288. https://doi.org/10.1016/j.iswcr.2018.08.001

    Article  Google Scholar 

  • Pla Sentís I (2021) Overview of salt-affected areas in Latin America: physical, social and economic perspectives. In: Taleisnik E, Lavado RS (eds) Saline and Alkaline soils in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-52592-7_1

  • Poeplau C, Sigurðsson P, Sigurdsson BD (2020) Depletion of soil carbon and aggregation after strong warming of a subarctic Andosol under forest and grassland cover. SOIL 6:115–129. https://doi.org/10.5194/soil-6-115-2020,2020

    Article  CAS  Google Scholar 

  • Poeplau C, Don A, Six J, Kaiser M, Benbi D, Chenu C, Cotrufo F, Derrien D, Gioacchini P, Grand S, Gregorich E, Griepentrog M, Gunina A, Haddix M, Kuzyakov Y, Kühnel A, Macdonald LM, Soong J, Trigalet S, Vermeire M-L, Rovira P, Wesemael B, Wiesmeier M, Yeasmin S, Yevdokimov I, Nieder R (2018) Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils: a comprehensive method comparison. Soil Biol Biochem 125:10–26. https://doi.org/10.1016/j.soilbio.2018.06.025

  • Poláková Š, Sáňka M, Vácha R (2018) Chapter II/39: assessment of contaminants in agricultural soils in the Czech Republic. In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry”, pp. 185–189. https://doi.org/10.25680/7849.2018.50.65.136. https://vniia-pr.ru/monografii/pdf/tom2-39.pdf

  • Popov A, Kholostov G, Sazanova E, Simonova J, Tsivka K (2020) Characteristics of the qualitative composition of soil organic matter: problems and solutions. Zemljiste i Biljka 69(2):26–37. http://www.sdpz.rs/images/casopis/2020/zib_69_2_72.pdf

  • Posch M, Kauppi L (1991) Potential for acidification of forest soils in Europe. In: Brouwer FM, Thomas AJ, Chadwick MJ (eds) Land use changes in Europe. The GeoJournal Library, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3290-9_15

  • Posch M, Reinds GJ (2009) A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environ Model Softw 24(2009):329–340

    Google Scholar 

  • Potapov AM, Klarner B, Sandmann D, Widyastuti R, Scheu S ( 2019) Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land‐use systems. J Anim Ecol. https://doi.org/10.1111/1365-2656.13027

  • Prater I, Zubrzycki S, Buegger F, Zoor-Füllgraff LC, Angst G, Dannenmann M, Mueller CW (2020) From fibrous plant residues to mineral-associated organic carbon the fate of organic matter in Arctic permafrost soils. Biogeosciences 17:3367–3383. https://doi.org/10.5194/bg-17-3367-2020

    Article  CAS  Google Scholar 

  • Prathumratana L, Kim R, Kim K (2020) Lead contamination of the mining and smelting district in Mitrovica, Kosovo. Environ Geochem Health 42:1033–1044. https://doi.org/10.1007/s10653-018-0186-9

    Article  CAS  Google Scholar 

  • Preetha PP, Al-Hamdan AZ (2020) Developing nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositions. J Environ Sci Health, Part A 55(5):615–628. https://doi.org/10.1080/10934529.2020.1724503

    Article  CAS  Google Scholar 

  • Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Science 362(6417):eaav0294. https://doi.org/10.1126/science.aav0294

  • Prince SD, Podwojewski P (2020) Desertification: inappropriate images lead to inappropriate actions. Land Degrad Develop 31(6):677–682. https://doi.org/10.1002/ldr.3436

    Article  Google Scholar 

  • Pullin AS (2002) Conservation biology. Cambridge University Press. ISBN 978–0–521–64482–2

    Google Scholar 

  • Qi Y, Ossowicki A, Yang X, Lwanga EH, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. https://doi.org/10.1016/j.jhazmat.2019.121711

  • Qin P, Wang H, Yang X, He L, Müller K, Shaheen SM, Xu S, Rinklebe J, Tsang DCW, Ok YS, Bolan N, Zhaoliang S, Che L, Xu X (2018) Bamboo- and pig derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere 198:450–459. https://doi.org/10.1016/j.chemosphere.2018.01.162

    Article  CAS  Google Scholar 

  • Ragab R (2015) Integrated management tool for water, crop, soil and N-fertilizers: the SALTMED model. Irrig Drain 64:1–12

    Google Scholar 

  • Raheem A, Sikarwar VS, He J, Dastyar W, Dionysiou DD, Wang W, Zhao M (2018) Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a Review. Chem Eng J 337:616–641. https://doi.org/10.1016/j.cej.2017.12.149

    Article  CAS  Google Scholar 

  • Rajkovic S, Bornhöft NA, van der Weijden R, Nowack B, Adam V (2020) Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. https://doi.org/10.1016/j.wasman.2020.05.032

  • Ramesh T, Bolan NS, Kirkham MB, Wijesekara H, Kanchikerimath M, Rao CS, Sandeep S, Rinklebe J, Ok YS, Choudhury BU, Wang H, Tang C, Wang X, Song Z, Freeman OW (2019) Soil organic carbon dynamics: impact of land use changes and management practices: a review. Adv Agron 159(156):1–107

    Google Scholar 

  • Rao PSC, Jessup RE (1982) Development and verification of simulation models for describing pesticide dynamics in soils. Ecol Modell 16(1):67-75. https://doi.org/10.1016/0304-3800(82)90073-4

  • Rashmi I, Roy T, Kartika KS, Pal R, Coumar V, Kala S, Shinoji KC (2020) Organic and inorganic fertilizer contaminants in agriculture: impact on soil and water resources. In: Naeem M, Ansari A, Gill S (eds) Contaminants in agriculture. Springer, Cham, pp 3–41. https://doi.org/10.1007/978-3-030-41552-5_1

  • Reicosky DC, Lindstrom MJ, Schumacher TE (2005) Tillage induced CO2 loss across an eroded landscape. Soil Tillage Res 81:183–194

    Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023

    Article  CAS  Google Scholar 

  • Richards LA (ed) (1954) Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160 p

    Google Scholar 

  • Ricketts MP, Matamala R, Jastrow JD, Antonopoulos DA, Koval J, Ping C-L, Liang C, Gonzalez-Meler MA (2020) The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biol Biochem 148:107882. https://doi.org/10.1016/j.soilbio.2020.107882

    Article  CAS  Google Scholar 

  • Rinklebe J, Shaheen SM, Frohne T (2016a) Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142:41–47

    CAS  Google Scholar 

  • Rinklebe J, Shaheen SM, Schroeter F, Rennert T (2016b) Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere 150:390–397

    CAS  Google Scholar 

  • Rinklebe J, Antoniadis V, Shaheena SM, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88. https://doi.org/10.1016/j.envint.2019.02.011

  • Ritz K, van der Putten WH (2012) The living soil and ecosystem services. In: Wall DH (ed) Soil ecology and ecosystem services. Oxford University Press, UK, pp 5–7

    Google Scholar 

  • Robson AD (1989) Soil acidity and plant growth. Academic Press, Sydney, pp 139–165

    Google Scholar 

  • Rodríguez L, Macías F (2006) Eutrophication trends in forest soils in Galicia (NW Spain) caused by the atmospheric deposition of nitrogen compounds. Chemosphere 63(9):1598–1609. https://doi.org/10.1016/j.chemosphere.2005.08.072

    Article  CAS  Google Scholar 

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil Pollution: a hidden reality. FAO, Rome, p 142

    Google Scholar 

  • Romanenkov VA, Rukhovich OV, Belichenko MV (2021) Chapter 21: ggeographical network of long-term experiments with fertilizers in the agroecological monitoring system of Russia. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (2021) (eds) Exploring and optimizing agricultural landscapes. Innovations in landscape research. Springer, Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Römbke J, Jänsch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Safety 62(2):249-265

    Google Scholar 

  • Römbke J (2018) Chapter I/71: monitoring the biological quality of soil based on the structure and functions of soil organism communities. In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I landscapes in the 21th Century: status analyses, basic processes and research concepts. © FSBI “VNII Agrochemistry”, pp 367–372. https://doi.org/10.25680/1244.2018.27.50.071. https://vniia-pr.ru/monografii/pdf/tom1-71.pdf

  • Roy J, Ojha PK, Carnesecchi E, Lombardo A, Roy K, Benfenati E (2020) First report on a classification-based QSAR model for chemical toxicity to earthworm. J Hazardous Mater 386:121660. https://doi.org/10.1016/j.jhazmat.2019.121660

  • Rozanova OL, Tsurikov SM, Tiunov AV, Semenina EE (2019) Arthropod rain in a temperate forest: intensity and composition. Pedobiologia 75:52–56. Analysis. Sustainability 12:2071. https://doi.org/10.3390/su12052071

  • Rubio F, Nieves-Cordones M, Horie T, Shabala S (2020) Doing ‘business as usual’ comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytologist 225(3):1097-1104 https://doi.org/10.1111/nph.15852

  • Rupp H, Rinklebe J, Bolze S, Meissner R (2010) A scale-depended approach to study pollution control processes in wetland soils using three different techniques. Ecol Eng 36:1439–1447

    Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil pollution-an emerging threat to agriculture. Springer Singapore. Print ISBN: 978–981–10–4273–7, Electronic ISBN: 978–981–10–4274–4

    Google Scholar 

  • Saiko TA, Zonn IS (1997) Europe’s First Desert. In: Glantz MH, Zonn IS (eds) Scientific, environmental, and political issues in the circum-caspian Region. NATO ASI Series (Series 2: Environment), vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5502-1_13

  • Saljnikov E, Čakmak D, Akshalov K, Mrvic V (2009) Effect of different cropping technologies on SOM in chernozem of semi-arid zone. Zemljiste I Biljka 58(1):25–34

    Google Scholar 

  • Saljnikov E, Čakmak D, Muhanbet A, Kresovic M (2014) Biological indices of soil organic matter in long-term fertilization experiment. Zemljiste i Biljka 63(2):11–20

    Google Scholar 

  • Saljnikov E, Mrvic V, Čakmak D, Jaramaz D, Perovic V, Antic-Mladenovic S, Pavlović P (2019) Pollution indices and sources apportionment of heavy metal pollution of agricultural soils near the thermal power plant. Environ Geochem Health 5–15. https://doi.org/10.1007/s10653-019-00281-yOnlineISSN1573-2983

    Article  Google Scholar 

  • Saljnikov E, Čakmak D, Rahimgalieva S (2013) Soil organic matter stability as affected by land management in steppe ecosystem. Chapter10. In: Hernandez Soriano MC (ed) Soil processes and current trends in quality assessment. Belgium, INTECH Open Access Publisher, pp 269–310. ISBN 980–953–307–671–8. p. 434

    Google Scholar 

  • Saljnikov E, Rakhimgaliyeva S, Raymbek A, Tosic S, Mrvic V, Sikiric B, Pachikin K (2015) Effect of fallowing on soil organic matter characteristics on wheat monoculture in arid steppes of northern Kazakhstan. Zemljiste i Biljka 64(2):17–26 http://www.sdpz.rs/images/casopis/2015/ZIB_vol64_no2_2015_pp17-26.pdf

  • Saljnikov-Karbozova E, Funakawa S, Akhmetov K, Kosaki T (2004) Soil organic matter status of Mollisols soil in North Kazakhstan: effects of summer fallow. Soil Biol Biochem 36:1373–1381

    Google Scholar 

  • Sánchez-Otero MG, Quintana-Castro R, Domínguez-Chávez JG, Peña-Montes C, Oliart-Ros RM (2019) Unique microorganisms inhabit extreme soils. In: Kumar , Sharma S (eds) Microbes and enzymes in soil health and bioremediation, microorganisms for sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_3

  • Sanders D (2020) The salinity challenge. New Phytol 225(3):1047–1048. https://doi.org/10.1111/nph.16357

    Article  Google Scholar 

  • Santini M, Caccamo G, Laurenti A (2010) A multi-component GIS framework for desertification risk assessment by an integrated index. Appl Geogr 30(3):394–415

    Google Scholar 

  • Saparov A, Dzalankuzov T, Umbetayev I, Suleimenov B (2008) Effect of irrigation on salinization of light grey soils. Soil Science and Agrochemistry 3:72–76 (In Russian: Bлияниe opoшeния нa зacoлeниe cвeтлыx cepoзeмoв. Пoчвoвeдeниe и aгpoxимия 2008, 3:72–76)

    Google Scholar 

  • Saparov A (2014) Soil rresources of the Republic of Kazakhstan: current status, problems and solutions. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_2

  • Sartori M, Philippidis G, Ferrari E, Borrelli P, Lugatod E, Montanarella L, Panagos P (2019) A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy 86:299–312. https://doi.org/10.1016/j.landusepol.2019.05.014

  • Satapute P, Kamble MV, Adhikari SS, Jogaiah S (2019) Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci Total Environ 651:2334–2344. https://doi.org/10.1016/j.scitotenv.2018.10.099

  • Sauve G, Van Acker K (2020) The environmental impacts of municipal solid waste landfills in Europe: a life cycle assessment of proper reference cases to support decision making. J Environ Managem 261:110216. https://doi.org/10.1016/j.jenvman.2020.110216

  • Schauss K, Focks A, Heuer H, Kotzerke A, Schmitt H, Thiele-Bruhn S, Smalla K, Wilke BM, Matthies M, Amelung W, Klasmeier J, Schloter M (2009) Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC Trends Anal Chem 28(5):612–618. https://doi.org/10.1016/j.trac.2009.02.009

  • Scheffczyk A, Floate K, Blanckenhorn W, Dühring R-A, Klockner A, Lahr J, Lumaret J-B, Salamon J-A, Tixier T, Wohde M, Römbke J (2016) Non-target effects of ivermectin residues on earthworms and springtails dwelling beneath dung of treated cattle: examination in a ringtest in four countries. Environ Toxicol Chem 35:1959–1969

    CAS  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    CAS  Google Scholar 

  • Scherber C, Beduschi T, Tscharntke T (2021a) Chapter 19: aa grid-based sampling approach to insect biodiversity monitoring in agricultural landscapes. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Innovations in landscape research. Springer, Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Scherber C, Brandmeier J, Everwand G, Karley AJ, Kiær LP, Meyer M, Ott D, Reininghaus H, Tscharntke T (2021b) Chapter 20: using field experiments to inform biodiversity monitoring in wgricultural landscapes. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Innovations in landscape research. Springer, Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Schmidt M, Torn M, Abiven S, Dittmar Z, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. https://doi.org/10.1038/nature10386

    Article  CAS  Google Scholar 

  • Schmitz OJ, Leroux SJ (2020) Food webs and ecosystems: linking species interactions to the carbon cycle. Ann Rev Ecol Evol Syst 51. https://doi.org/10.1146/annurev-ecolsys-011720-104730

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fert Soils 53:485–489

    Google Scholar 

  • Scholten LC, Timmermans CWM (1995) Natural radioactivity in phosphate fertilizers. Fert Res 43:103–107. https://doi.org/10.1007/BF00747688

  • Schoups G, Hopmans JW, Tanji KK (2006) Evaluation of model complexity and space–time resolution on the prediction of long-term soil salinity dynamics, western San Joaquin Valley, California. Hydrol Process 20(13):2647–2668. https://doi.org/10.1002/hyp.6082

  • Schreiner V, Meyer BC (2014) Indicators of land degradation in steppe regions: soil and morphodynamics in the Northern Kulunda. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_33

  • Schubert R (edt)(1985) Bioindikation in terrestrischen Ökosystemen. Gustav Fischer Verlag Jena, 327 pp

    Google Scholar 

  • Schuhmann A, Klammler G, Weiss S, Gans O, Fank J, Haberhauer G, Gerzabek MH (2019) Degradation and leaching of bentazone, terbuthylazine and S-metolachlor and some of their metabolites: A long-term lysimeter experiment. Plant Soil Environ 65: 273–281. https://doi.org/10.17221/803/2018-PSE

  • Selivanovskaya SY, Galitskaya PY, Hung YT (2014) Chapter 12: the use of biological methods for toxicity evaluation of wastes and waste-amended soils. In: Handbook of environment and waste management: land and groundwater pollution control, pp 737–779

    Google Scholar 

  • Semenchuk PR, Krab EJ, Hedenström M, Phillips CA, Ancin-Murguzur FJ, Cooper EJ (2019) Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Sci Total Environ 646:158–167. https://doi.org/10.1016/j.scitotenv.2018.07.150

  • Shaddad SM, Buttafuoco G, Castrignano A (2020) Assessment and mapping of soil salinization risk in an Egyptian field using a probilistic approach. Agronomy 10(1):85. https://doi.org/10.3390/agronomy10010085

    Article  Google Scholar 

  • Shaheen SM, Rinklebe J, Rupp H, Meissner R (2014) Lysimeter trials to assess the impact of different flood-dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil. Geoderma 228–229:5–13

    Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Singh Sidhu GP, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. Springer Nat Appl Sci 1:1446. https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  • Sherrard ME, Elgersma K, Koos JMA, Kokemuller CM, Dietz HE, Glidden AJ, Carr CM, Cambardella CA (2019) Species composition influences soil nutrient depletion and plant physiology in prairie agroenergy feedstocks. Ecosphere 10(7):e02805. https://doi.org/10.1002/ecs2.2805

    Article  Google Scholar 

  • Sheudzhen AK, Gutorova OA, Onishchenko LM, Isipov MA, Esipenko SV (2018) Chapter I/70: microflora and biological activity of leached Chernozem in a plain agrolandscape after long-term application of mineral fertilizers (Mикpoфлopa и биoлoгичecкaя aктивнocть чepнoзeмa выщeлoчeннoгo paвниннoгo aгpoлaндшaфтa пpи длитeльнoм пpимeнeнии минepaльныx yдoбpeний) In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol I landscapes in the 21th century: status analyses, basic processes and Research Concepts. © FSBI “VNII Agrochemistry” 2018, pp 362–367. https://doi.org/10.25680/1533.2018.90.54.070. https://vniia-pr.ru/monografii/pdf/tom1-70.pdf

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  Google Scholar 

  • Shuang X, Zhang W, Hamza J (2019) A new model approach for reactive solute transport in dual-permeability media with depth-dependent reaction coefficients. J Hydrol 577:123946. https://doi.org/10.1016/j.jhydrol.2019.123946

  • Silantyeva MM, Terekhina TA, Elesova NV, Ovcharova NV, Kornievskaya TV (2020) Possibility of natural steppe cover restoration and its biodiversity expansion. In: Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) KULUNDA: climate smart agriculture. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6_30

  • Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils: a hidden reality unfolded. Sci Total Environ 653:1532–1545. https://www.sciencedirect.com/science/article/pii/S0048969718343420.

  • Singh RP, Agrawal M (2007) Effect of sewage sludge amendmen on heavy metal accumulation and consequent responses of Beta Vulgaris plant. Chemosphere 67:2229–2240

    CAS  Google Scholar 

  • Singh BR (1998) Soil pollution and contamination. In: Lal R, Blu m WH, Valentine C, Steward BA (eds) Advances in soil science. Methods for assessment of soil degradation. CRC Press Boca Raton, pp 279-299

    Google Scholar 

  • Six J, Bossuyt H, De Gryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil till Res 79:7–31

    Google Scholar 

  • Sjerps RMA, Kooij PJF, van Loon A, Van Wezel AP (2019) Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–518

    CAS  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637. https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x

    Article  Google Scholar 

  • Smith JL, Doran JW (1997) Chapter 10. Measurement and use of pH and electrical conductivity for soil quality analysis. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, vol 49, pp 169–185. https://doi.org/10.2136/sssaspecpub49.c10

  • Snakin VV, Krechetov PP, Kuzovnikova TA, Alyabina IO, Gurov AF, Stepichev AV (1996) The system of assessment of soil degradation. Soil Technol 8(4):331–343. https://doi.org/10.1016/0933-3630(95)00028-3

    Article  Google Scholar 

  • Snakin VV, Krechetov PP, Kuzovnikova TA, Minashina NG, Karpachevsky LO, Alyabina IO, Gurov AF, Melchenko V, Stepichev AV, Kazantseva OF, Ananyeva ND (1992) Soil degradation assessment system. Pushchino Scientific Centre of the Russian Academy of Sciences. Research Institute of Nature. p 20 (In Russian: Cнaкин B.B., Кpeчeтoв П.П., Кyзoвникoвa T.A., Mинaшинa H.Г., Кapпaчeвcкий Л.O., Aлябинa И.O., Гypoв A.Ф., Meльчeнкo B., Cтeпичeв A.B., Кaзaнцeвa O.Ф., Aнaньeвa H.Д.Cиcтeмa oцeнки cтeпeни дeгpaдaции пoчв. Пyщинo, Пyщинcкий нayчный цeнтp PAH. BHИИ Пpиpoды.)

    Google Scholar 

  • Steffan JJ, Brevik EC, Burgess LC, Cerdà A (2018) The effect of soil on human health: an overview. Eur J Soil Sci 69(1):159–171. https://doi.org/10.1111/ejss.12451. Epub 2017 Jul 17. PMID: 29430209; PMCID: PMC5800787.

  • Steinfeld S, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) “Livestock's long shadow: environmental issues and options”. Food and agriculture organization of the United Nations. http://www.fao.org/3/a0701e/a0701e00.htm. Accessed on 12 Sept 2020

  • Sterk G, Stoorvogel JJ (2020) Desertification-scientific versus political realities. Land 2020(9):156. https://doi.org/10.3390/land9050156

  • Stevnbak K, Scherber C, Gladbach DJ, Beier C, Mikkelsen TN, Christensen S (2012) Interactions between above- and belowground organisms modified in climate change experiments. Nat Climate Change 2:805–808

    CAS  Google Scholar 

  • Stott DE, Andrews SS, Liebig MA, Wienhold BJ, Karlen DL (2010) Evaluation ofb-glucosidase activity as asoil quality indicator for the soil management assessment framework(SMAF). Soil Sci Soc Am J 74:107–119

    CAS  Google Scholar 

  • Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW (2014) Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Change 4:1099–1102

    CAS  Google Scholar 

  • Szabolcs I (1974) Salt affected soils in Europe. MartinusNijhoff, The Hague, p 63

    Google Scholar 

  • Szatmári G, Bakacsi Z, Laborczi A, Petrik O, Pataki R, Tóth T, Pásztor L (2020) Elaborating Hungarian segment of the global map of salt-affected soils (GSSmap): national contribution to an international initiative. Remote Sensing 12:4073. https://doi.org/10.3390/rs12244073

  • Tan Z, Lal R, Wiebe K (2005) Global soil nutrient depletion and yield reduction. J Sustain Agric 26(1). https://doi.org/10.1300/J064v26n01_10

  • Tang J, Zhang J, Ren L, Zhou Y, Gao J, Luo L, Yang Y, Peng Q, Huang H, Chen A (2019) Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J Environ Manage 242:121–130. https://doi.org/10.1016/j.jenvman.2019.04.061

  • Tang J, Riley WJ (2015) Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Change 5:56–60

    CAS  Google Scholar 

  • Tanirbergenov S, Saljnikov E, Suleimenov B, Saparov A, Cakmak D (2020) Salt affected soils under cotton-based irrigation agriculture in southern Kazakhstan. Zemljiste i Biljka 69(2):1–14. http://www.sdpz.rs/images/casopis/2020/zib_69_2_70.pdf

  • Tavakkoli E, Rengasamy P, Smith E, McDonald GK (2015) The effect of cation–anion interactions on soil pH and solubility of organic carbon. Eur J Soil Sci 66(6):1054-1062. https://doi.org/10.1111/ejss.12294

  • Tetteh RN (2015) Chemical soil degradation as a result of contamination: a review. J Soil Sci Environ Manage 6(11):301–308. https://doi.org/10.5897/JSSEM15.0499. ISSN 2141–2391 https://academicjournals.org/journal/JSSEM/article-full-text-pdf/A3847D356736. Accessed on 12 Sept 2020

  • Thiele-Bruhn S, Schloter M, Wilke B-M, Beaudette LA, Martin-Laurent F, Cheviron N, Mougin C, Römbke J (2020) Identification of new microbial functional standards for soil quality assessment. SOIL 6:17–34. https://doi.org/10.5194/soil-6-17-2020

  • Thum T, Nabel J, Tsuruta A, Aalto T, Dlugokencky EJ, Liski J, Luijkx IT, Markkanen T, Pongratz J, Yoshida Y, Zaehle S (2020) Evaluating two soil carbon models within a global land surface model using surface and spaceborne observations of atmospheric CO2 mole fractions. Biogeosciences. EGU Discussions. https://www.biogeosciences-discuss.net/bg-2020-7/bg-2020-7.pdf

  • Tischer A, Sehl L, Meyer U-N, Kleinebecker T, Klaus V, Hamer U (2019) Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species. Plant Soil 437:215–239

    CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates. J Soil Sci 33:141–163

    CAS  Google Scholar 

  • Tolimir M, Kresović B, Životić L et al (2020) The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Sci Rep 10:13668. https://doi.org/10.1038/s41598-020-70464-6

    Article  Google Scholar 

  • Tomco PL, Seefeldt SS, Rodriguez-Baisi K, Hatton JJ, Duddleston KN (2020) Sub-arctic field degradation of metsulfuron-methyl in two Alaskan soils and microbial community composition effects. Water Air Soil Pollut 231:157. https://doi.org/10.1007/s11270-020-04528-8

  • Tóth T, Kertész M, Guerra LC, Labrada JL, Machado BP, Fonseca PC, Martínez MN (1997) Plant composition of a pasture as a predictor of soil salinity. Revista de biología 45(4). https://revistas.ucr.ac.cr/index.php/rbt/article/download/21443/21659, accessed on Sept 12, 2020

  • Tóth T, Schaap Mg, Molnár Z (2008) Utilization of soil-plant interrelations through the use of multiple regression and artificial neural network in order to predict soil properties in Hungarian solonetzic grasslands. Cereal research communications, vol 36, Supplement: Proceedings of the VII. Alps-Adria Scientific Workshop, 28 April-2 May 2008, Stara Lesna, Slovakia, pp. 1447–1450

    Google Scholar 

  • Tóth T (2018) Chapter II/67: methods for quantifying and monitoring soil salinity, sodicity and alkalinity. In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry”, pp. 145–149. https://doi.org/10.25680/4650.2018.47.53.164, https://vniia-pr.ru/monografii/pdf/tom2-67.pdf

  • Trasar-Capeda C, Leiros C, Gil-sotres F, Seoane S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Google Scholar 

  • Tresch S, Moretti M, Le Bayon R-C, Mäder P, Zanetta A, Frey D, Stehle B, Kuhn A, Munyangabe A, Fliessbach A (2018) Urban soil quality assessment—a comprehensive case study dataset of Urban garden soils. Front Environ Sci. https://doi.org/10.3389/fenvs.2018.00136

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x

    Article  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990. https://doi.org/10.3389/fpls.2016.00990

  • Trofimov IA, Trofimova LS, Yakovleva EP (2015) Remote indicators of land desertification. Arid Ecosyst 21(1)(62):36–40. (In Russian: Dиcтaнциoнныe индикaтopы oпycтынивaния зeмeль. Apидныe Экocиcтeмы, 2015 тoм 21, № 1 (62), c. 36–40)

    Google Scholar 

  • Tupek B, Launiainen S, Peltoniemi M Sievänen R, Perttunen J, Kulmala L, Penttilä T, Lindroos A-J, Hashimoto S, Lehtonen A (2019) Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference. Eur J Soil Sci 70(4):847-858. https://doi.org/10.1111/ejss.12805

  • Ulrich B, Sumner ME (eds)(1991) An ecosystem approach to soil acidification. Soil Acidity, Springer, Berlin, Heidelberg (1991), pp 28-79

    Google Scholar 

  • UN (2014) United nations, Department of economic and social affairs, population division. World Urbanization Prospects. The 2014 Revision, Highlights. https://population.un.org/wup/Publications/Files/WUP2014-highlights.pdf. Accessed on 12 Sept 2020

  • Van de Craats D, van der Zee S, Sui CH, van Asten PJA, Cornelissen P, Leijnse A (2020) Soil sodicity originating from marginal groundwater. Vadose Zone J 19(1):e20010. https://doi.org/10.1002/vzj2.20010

    Article  CAS  Google Scholar 

  • Van der Pol F, Traore B (1993) Soil nutrient depletion by agricultural production in Southern Mali. Fert Res 36:79–90. https://doi.org/10.1007/BF00749951

    Article  Google Scholar 

  • Van der Zee S, Shah S, Vervoort R (2014) Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity. Water Resour Res 50:9432–9446. https://doi.org/10.1002/2013WR015208

    Article  CAS  Google Scholar 

  • Van Gestel CAM, Mommer J, Montanarella L, Pieper S, Coulson M, Totschki A, Rutgers M, Focks A, Römbke J (2020) Soil biodiversity: state-of-the art and possible application in chemical risk assessment. Integr Environ Assess Manag (IEAM) https://doi.org/10.1002/ieam.4371

    Article  Google Scholar 

  • Venkatramanan V, Shah S (2019) Climate smart agriculture technologies for environmental management: the intersection of sustainability, resilience, wellbeing and development. In: Shah S, Venkatramanan V, Prasad R (eds) Sustainable green technologies for environmental management. Springer, Singapore

    Google Scholar 

  • Vodyanitskii YN, Savichev AT (2017) Magnetite contamination of urban soils in European Russia. Ann Agrarian Sci 15(2):155-162. https://doi.org/10.1016/j.aasci.2017.05.020

  • Vojnov B, Šeremešić S, Ćupina B, Đorđe Krstić Đ, Vujić S, Živanov M, Pavlović S (2020) Sadržaj labilne organske materije černozema u sistemu zaoravanja međuuseva i naknadne setve jarih useva. Zemljiste I Biljka 69(2):82–94. http://www.sdpz.rs/images/casopis/2020/zib_69_2_76.pdf

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature. https://doi.org/10.1038/nature15744

    Article  Google Scholar 

  • Wang F, Tiedje JM (2020) Antibiotic resistance in soil. In: Manaia C, Donner E, Vaz-Moreira I, Hong P (eds) Antibiotic resistance in the environment. The handbook of environmental chemistry, vol 91. Springer, Cham. https://doi.org/10.1007/698_2020_562

  • Wang Ch, Wang J, Zhou Sh Tang J, Jia Z, Ge L, Li Y, Wu S (2019) Polycyclic aromatic hydrocarbons and heavy metals in urban environments: Concentrations and joint risks in surface soils with diverse land uses. Land Degrad Develop 31(3):383-391 https://doi.org/10.1002/ldr.3456

  • Wegehenkel M, Mirschel W (2007) Application and validation of the models THESEUS and OPUS with two experimental data sets. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany, pp. 37–49. Dordrecht (Springer)

    Google Scholar 

  • White HJ, León-Sánchez L, Burton VJ, Cameron EK, Caruso T, Cunha L, Dirilgen T, Jurburg SD, Kelly R et al (2020) Methods and approaches to advance soil macroecology. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.13156

    Article  Google Scholar 

  • Wieder WR, Allison SD, Davidson EA Georgiou K, Hararuk O, He Y, Hopkins F, Luo Y, Smith MJ, Sulman B, Todd‐Brown K, Wang Y-P, Xia J, Xu X (2015) Explicitly representing soil microbial processes in Earth system models. Glob Biochem Cycles 29(10):1782-1800. https://doi.org/10.1002/2015GB005188

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H-J, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales. Geoderma 333:149-162. https://doi.org/10.1016/j.geoderma.2018.07.026

  • Woolf D, Lehmann J (2019) Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. Sci Rep 9:6522 (2019). https://doi.org/10.1038/s41598-019-43026-8

  • Wu Q, Wang M (2007) A framework for risk assessment on soil erosion by water using an integrated and systematic approach. J Hydrol 337:11–21. Not in text.

    Google Scholar 

  • Wu M, Wei S, Liu J, Liu M, Jiang C, Li Z (2019) Long-term mineral fertilization in paddy soil alters the chemical structures and decreases the fungistatic activities of humic acids. Eur J Soil Sci 70(4):776–785. https://doi.org/10.1111/ejss.12778

  • Xia Y, Zhang M, Tsang DCW, Geng H, Lu D, Zhu L, Igalavithana AD, Dissanayake PD, Rinklebe J, Yang X, Ok YS (2020) Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Appl Biol Chem 63(1):8. https://doi.org/10.1186/s13765-020-0493-6

    Article  CAS  Google Scholar 

  • Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang J, Freilich S (2019) Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J 13:494–508. https://doi.org/10.1038/s41396-018-0288-5

    Article  CAS  Google Scholar 

  • Xu H, Demetriades A, Reimann C, Jiménez JJ, Filser J, Zhang C (2019) Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data. Sci Total Environ 678:94–104

    CAS  Google Scholar 

  • Xu D, Carswell A, Zhu Q, Zhang F, de Vries W (2020) Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Sci Total Environ 713:136249. https://doi.org/10.1016/j.scitotenv.2019.136249

    Article  CAS  Google Scholar 

  • Xu X, Pei J, Xu Y, Wang J (2020) Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review. J Soils Sediments 20:1173–1181. https://doi.org/10.1007/s11368-019-02557-3

    Article  CAS  Google Scholar 

  • Yang C, Wu Y, Zhang F, Liu L, Pan R (2016) Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments from a source water reservoir. Chem Speciat Bioavailab 28(1–4):133–141. https://doi.org/10.1080/09542299.2016.1206838

    Article  CAS  Google Scholar 

  • Yang X, Guo X, Huang S, Xue S, Meng F, Qi Y, Cheng W, Fan T, Lwanga EH, Geissen V (2020) Microplastics in soil ecosystem: insight on its fate and impacts on soil. Quality. https://doi.org/10.1007/698_2020_458

    Article  Google Scholar 

  • Zeiner M, Pirkl R, Juranović Cindrić I (2019) Field-Tests versus laboratory methods for determining metal pollutants in soil extracts. Soil Sediment Contam Int J 29(1):53–68. https://doi.org/10.1080/15320383.2019.1670136

  • Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W (2020) Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochem Cycles 34: e2018GB006060. https://doi.org/10.1029/2018GB006060

  • Zhao Q, Bai J, Gao Y, Zhao H, Zhang G, Cui B (2020a) Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degrad Develop. https://doi.org/10.1002/ldr.3594

    Article  Google Scholar 

  • Zhao L, Shangguan Y, Yao N, Sun Z, Ma J, Hou H (2020b) Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies. Sci Total Environ 728(1):138874. https://doi.org/10.1016/j.scitotenv.2020.138874

    Article  CAS  Google Scholar 

  • Zhou M, Liu C, Wang J, Meng Q, Yuan Y, Ma X, Liu X, Zhu Y, Ding G, Zhang J, Zeng X, Du W (2020a) Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci Rep 10:265. https://doi.org/10.1038/s41598-019-57193-1

    Article  CAS  Google Scholar 

  • Zhou X, Zhu H, Wen Y, Goodale UM, Zhu Y, Yu S, Li C, Li X (2020b) Intensive management and declines in soil nutrients lead to serious exotic plant invasion in Eucalyptus plantations under successive short-rotation regimes. Land Degrad Develop 31(3):297–310. https://doi.org/10.1002/ldr.3449

    Article  Google Scholar 

  • Zhu Q, Liu X, Hao T, Zeng M, Shen J, Zhang F, De Vries W (2018) Modeling soil acidification in typical Chinese cropping systems. Sci Total Environ 613–614:1339–1348

    Google Scholar 

  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    Google Scholar 

  • Zolnikov ID, Glushkova NV, Smolentseva EN, Chupina DA, Pchelnikov DV, Lyamina VA (2016) GIS and remote sensing data-based methods for monitoring water and soil objects in the steppe biome of Western Siberia. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_9

  • Zornoza R, Acosta JA, Bastida F, Domínguez SG, Toledo DM, Faz A (2015) Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 1:173–185. https://doi.org/10.5194/soil-1-173-2015

    Article  Google Scholar 

Download references

Acknowledgements

Preparation of this chapter was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract no. 451-03-09/2021-14/200011)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saljnikov, E. et al. (2022). Understanding and Monitoring Chemical and Biological Soil Degradation. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_3

Download citation

Publish with us

Policies and ethics