Skip to main content

Oxidative Stress in Lead Toxicity in Plants and Its Amelioration

  • Chapter
  • First Online:
Lead Toxicity Mitigation: Sustainable Nexus Approaches

Abstract

Heavy metals, also known as trace elements, are hazardous even at low concentrations and are becoming a growing issue in many countries, including India. Human activities ranging from agriculture to mining to power generation in power plants are the major sources of heavy metals in environment. Lead (Pb) is the second most harmful environmental toxin after arsenic, and its deposition in the environment is steadily increasing due to anthropogenic activity. Pb significantly harms plants, affecting their morphophysiological and biochemical traits, such as irregular cell division during mitosis, subordinate growth of seedlings, and chlorosis. The latter changes the biochemistry of fruits and flowers, which negatively affects the rate of photosynthetic activity. Pb also damages nutrient interactions, photosynthesis, respiration, oxidative damage, and antioxidant defence mechanisms in various plant species. Soil remediation methods, such as biochar supplements and phytoremediation technology, can help address Pb-contaminated soils. Hyperaccumulating plants have developed molecular processes that enable their use in environmental bioremediation. However, efficacy of these methods still needs to be evaluated by rigorous research activities, and new ecologically acceptable remediation techniques need to be developed to reduce lead toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  PubMed  CAS  Google Scholar 

  • Arias JA, Peralta-Videa JR, Ellzey JT et al (2010) Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP–OES and TEM techniques. Environ Exp Bot 68(2):139–148

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71(11):2187–2192

    Article  PubMed  CAS  Google Scholar 

  • Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • Atici Ö, Ağarand G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49(2):215–222

    Article  CAS  Google Scholar 

  • Baker WG (1972) Toxicity levels of mercury lead, copper and zinc in tissue culture systems of cauliflowers, lettuce, potato and carrot. Can J Bot 50:973–976

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plant to heavy metals. J Plant Nutr 3:326–329

    Google Scholar 

  • Banuelos G, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P et al (1993) Boron and selenium removal in boron−laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792

    Google Scholar 

  • Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Iqbal N, Abbas F, Ahmad MSA (2013) Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J Bioremed Biodeg 4:4

    Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249(1–3):257–280

    Article  PubMed  CAS  Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77(8):1113–1120

    Google Scholar 

  • Cao X, Ma LQ, Singh SP, Zhou Q (2008) Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Pollut 152(1):184–192

    Article  PubMed  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473

    Google Scholar 

  • Chang HR, Chen SS, Chen TJ, Ho CK, Chiang HC, Yu HS (1996) Lymphocyte β2-adrenergic receptors and plasma catecholamine levels in lead-exposed workers. Toxicol Appl Pharmacol 139(1):1–5

    Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Choudhury S, Panda S (2004). Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167(1):73–90

    Google Scholar 

  • Cimrin KM, Turan M, Kapur B (2007) Effect of elemental sulphur on heavy metals solubility and remediation by plants in calcareous soils. Fresenius Environ Bull 16(9):1113–1120

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  PubMed  CAS  Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  PubMed  CAS  Google Scholar 

  • Davies BE (1995) Lead. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic, London, pp 206–223

    Chapter  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore, pp 227–241

    Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Elzbieta W, Minoslawa C (2005) Lead-induced histological and ultra–structural changes in the leaves of soyben (Glycine max (L.) Meee.). Soil Sci Plant Nutr 51(2):203–212

    Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-new tricks for an old dog, vol 10

    Google Scholar 

  • Eun SO, Yon HS, Lee Y (2000) Lead distrurbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  CAS  Google Scholar 

  • Fangmin C, Ningchun Z, Haiming X, Yi L, Wenfang Z, Zhiwei Z, Mingxue C (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    Article  PubMed  CAS  Google Scholar 

  • Ferrey ML, Coreen Hamilton M, Backe WJ, Anderson KE (2018) Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation. Sci Total Environ 612:1488–1497

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Li Q, Ou-Yang C, Chen L, Wang S, Chen F (2009) Lead toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. radicles. Fresenius Environ Bull 18

    Google Scholar 

  • Garcia JS, Gratão PL, Azevedo RA, Arruda MAZ (2006) Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J Agric Food Chem 54(22):8623–8630

    Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  PubMed  CAS  Google Scholar 

  • Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC (2023) Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J Hazard Mater 450. https://doi.org/10.1016/j.jhazmat.2023.131039

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res Genet Toxicol Environ Mutagen 652(2):186–190

    Article  CAS  Google Scholar 

  • Gidlow DA (2015) Lead toxicity. Occup Med 65(5):348–356

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  PubMed  CAS  Google Scholar 

  • Godbold DL, Kettner C (1991) Lead influences root growth and mineral nutrition of Picea abies seedlings. J Plant Physiol 139:95–99

    Article  CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • Gomes EJR (2011) Genotoxicity and cytotoxicity of Cr (VI) and Pb2+ in Pisum sativum. Doctoral dissertation, Universidade de Aveiro (Portugal)

    Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70(9):1539–1544

    Article  PubMed  CAS  Google Scholar 

  • Gothberg A, Greger M, Holm K et al (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33:1247–1255

    Article  PubMed  Google Scholar 

  • Grover P, Rekhadevi PV, Danadevi K, Vuyyuri SB, Mahboob M, Rahman MF (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213(2):99–106

    Article  PubMed  CAS  Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    Article  PubMed  CAS  Google Scholar 

  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    Google Scholar 

  • Haider S, Kanwal S, Uddin F et al (2006) Phytotoxicity of Pb II. Changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pak J Biol Sci 9(11):2062–2068

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Cutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1

    Article  PubMed  CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post translationally regulated. Plant Cell 19(3):1007–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hewilt EJ (1953) Metal inter-relationships in plant nutrition. J Exp Bot 4:59–64

    Article  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2 Suppl.):367–376

    PubMed  CAS  Google Scholar 

  • Hseu ZY, Su SW, Lai HY, Guo HY, Chen TC, Chen ZS (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56:31–52

    Article  CAS  Google Scholar 

  • Hu J, Shi G, Xu Q, Wang X, Yuan Q, Du K (2007) Effects of Pb2+ on the active oxygen scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physl 54(3):414–419

    Article  CAS  Google Scholar 

  • Huang CV, Bazzaz FA, Venderhoef LN (1974) The inhibition of soya bean metabolism by cadmium and lead. Plant Physiol 34:122–124

    Article  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  PubMed  CAS  Google Scholar 

  • Hussain J, Wei X, Xue-Gang L, Shah SRU, Aslam M, Ahmed I, Azam T (2021) Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants. Sci Rep 11(1):1–13

    Article  CAS  Google Scholar 

  • Ibrahim ATA, Banaee M, Sureda A (2019) Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comp Biochem Physiol C Toxicol Pharmacol 225:108583

    Article  PubMed  CAS  Google Scholar 

  • Ihedioha JN, Ujam OT, Nwuche CO, Ekere NR, Chime CC (2016) Assessment of heavy metal contamination of rice grains (Oryza sativa) and soil from Ada field, Enugu, Nigeria: estimating the human health risk. Hum Ecol Risk Assess Int J 22(8):1665–1677

    Article  CAS  Google Scholar 

  • Inam F, Deo S, Narkhede N (2013) Analysis of minerals and heavy metals in some spices collected from local market. J Pharm Biol Sci 8(2):40–43

    Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  PubMed  CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1–3):914–926

    Article  PubMed  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K et al (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70

    Article  PubMed  CAS  Google Scholar 

  • Jaja ET, Odoemena CSI (2004) Effect of Pb, Cu and Fe compounds on the germination and early seedling growth of tomato varieties. J Appl Sci Environ Manag 8(2):51–53

    CAS  Google Scholar 

  • Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Chapter 20—phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, London, pp 495–529

    Google Scholar 

  • Ji Y, Ren Y, Han C, Zhu W, Gu J, He J (2022) Application of exogenous glycinebetaine alleviates lead toxicity in pakchoi (Brassica chinensis L.) by promoting antioxidant enzymes and suppressing Pb accumulation. Environ Sci Pollut Res 1–13

    Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40

    Google Scholar 

  • Jiang N, Luo X, Zeng J, Yang ZR, Zheng LN, Wang ST (2010) Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings. Inter J Agric Biol 12:205–210

    CAS  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Ind J Environ Health 28:235–243

    Google Scholar 

  • Kabata-Pendia A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kastori R, Petrovic M, Petrovic N (2008) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  Google Scholar 

  • Kevresan S, Petrovic N, Popovic M et al (2001). Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Nutr 24(10):1633–644

    Google Scholar 

  • Khan S, Khan NN (1983) Influence of lead and cadmium on growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg plant (Solanum melongena). Plant Soil 74:387–394

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150(2):280–287

    Article  PubMed  CAS  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12:1–14

    Google Scholar 

  • Krzeslowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation—a response of moss protonemata cells to lead. Environ Exp Bot 65(1):119–131

    Article  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut 158(1):325–338

    Google Scholar 

  • Kumar K, Singh D (2023) Toxicity and bioremediation of lead: a critical review. Int J Environ Health Res. https://doi.org/10.1080/09603123.2023.2165047

    Article  PubMed  Google Scholar 

  • Kumar G, Singh RP, Sushila (1992) Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in lead enriched environment. Water Air Soil Pollut 215:124–215

    Google Scholar 

  • Kumar A, Pal L, Agrawal V (2017) Glutathione and citric acid modulates lead-and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L. Acta Physiol Plant 39(7):151

    Article  Google Scholar 

  • Kumar A, Mms CP, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17(7):2179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayahe F (2010) A comparison of lead toxicity using physiological and enzymatic parameters on spinach (Spinacia oleracea L.) and wheat (Triticum aestivum L.) growth. Moroccan J Biol 12/N:6–7

    Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biolog Sci 20(1):29–36

    Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, Netherlands

    Google Scholar 

  • Lin YF, Mark GMA (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non‐accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50(2):129–140

    Google Scholar 

  • Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67(2):377–386

    Article  CAS  Google Scholar 

  • Liu Y, Liu G, Yuan Z, Liu H, Lam PKS (2018) Heavy metals (As, Hg and V) and stable isotope ratios (d13C and d15N) in fish from Yellow River Estuary, China. Sci Total Environ 613–614:462–471

    PubMed  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  PubMed  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Safe 126:111–121

    Article  CAS  Google Scholar 

  • Mahmood MN, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, Ibrahim M, Ashraf S, Liew RK, Lam SS, Irshad MK (2023) An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.). Environ Pollut 319. https://doi.org/10.1016/j.envpol.2022.120979

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30(5):629–637

    Article  Google Scholar 

  • Małkowski E, Kita A, Galas W, Karczand W, Kuperberg JM (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37(1):69–76

    Google Scholar 

  • Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53(3):388–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel J-P, Gawronski SW, Schröder P et al (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soil Sediment 10:1039–1070

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold U et al (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracoviensia Ser Bot 46:75–85

    Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332

    Article  PubMed  CAS  Google Scholar 

  • Miller JE, Hassete JJ, Koppe DE (1975) Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant 28:166–171

    Article  Google Scholar 

  • Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Google Scholar 

  • Mishra KK, Rai UN, Prakash O (2007) Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environ Monit Assess 130:237–243

    Article  PubMed  CAS  Google Scholar 

  • Monni S, Salemma M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  PubMed  CAS  Google Scholar 

  • Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98(2):334–343

    Article  CAS  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43(2):203–213

    Article  PubMed  CAS  Google Scholar 

  • Nakos G (1979) Lead pollution: fate of lead in soil and its effects on Pinus haplenis. Plant Soil 50:159–161

    Google Scholar 

  • Navabpour S, Yamchi A, Bagherikia S, Kafi H (2020) Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 26:793–802

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Pollut Ser B 1:3–26

    Article  CAS  Google Scholar 

  • Odobasic A, Sestan I, Begic S (2019) Biosensors for determination of heavy metals in waters. In: Biosensors for environmental monitoring. IntechOpen

    Google Scholar 

  • Osman HE, Fadlallah RS (2023) Impact of lead on seed germination, seedling growth, chemical composition, and forage quality of different varieties of Sorghum. J Umm Al-Qura Univ Appll Sci 9:77–86

    Article  Google Scholar 

  • Paivoke H (1983) The short-term effect of zinc on growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyayand B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Google Scholar 

  • Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11:2–22

    PubMed  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2):153–162

    Article  PubMed  CAS  Google Scholar 

  • Pinho S, Ladeiro B (2012) Phytotoxicity by lead as heavy metal focus on oxidative stress. J Bot 2012:1–10

    Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513

    Article  CAS  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8(9–10):1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. ISSN 0179-5953

    Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodelapolyrrhiza. Biol Trace Elem Res 129(1–3):251

    Article  PubMed  Google Scholar 

  • Qureshi M, Abdin M, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plantarum 51(1):121–128

    Article  CAS  Google Scholar 

  • Rabinowitz D (2017) Resistance and the city. In: De-pathologizing resistance, pp 58–73

    Google Scholar 

  • Rahimzadeh MR, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Casp J Intern Med 8(3):135

    Google Scholar 

  • Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191:419

    Article  PubMed  Google Scholar 

  • Rao G, Ashraf U, Huang S, Cheng S, Abrar M, Mo Z, Pan S, Tang X (2018) Ultrasonic seed treatment improved physiological and yield traits of rice under lead toxicity. Environ Sci Pollut Res 25:33637–33644

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Google Scholar 

  • Rassaei F (2023) The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium polluted soils. Commun Soil Sci Pl Anal 54(10):1426–1446. https://doi.org/10.1080/00103624.2022.2146704

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum [Lam.] Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  PubMed  CAS  Google Scholar 

  • Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116(2):148–154

    Article  PubMed  CAS  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Siedlecka M (2006) High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44(5–6):387–394

    Article  PubMed  CAS  Google Scholar 

  • Romanowska E, Wróblewska B, Drozak A, Zienkiewicz M, Siedlecka M (2008) Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants grown in high and low irradiance. Biol Plantarum 52(1):80–86

    Article  CAS  Google Scholar 

  • Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabędaand I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109

    Article  Google Scholar 

  • Ruley AT (2004) Effects of accumulation of lead and synthetic chelators on the physiology and biochemistry of Sesbania drummondii. M.S thesis, Western Kentucky University, USA

    Google Scholar 

  • Saini S, Dhania G (2020) Cadmium as an environmental pollutant: ecotoxicological effects, health hazards, and bioremediation approaches for its detoxification from contaminated sites. In: Bioremediation of industrial waste for environmental safety. Springer, Berlin, pp 357–387

    Google Scholar 

  • Sajid M, Nazal MK, Ihsanullah, Baig N, Osman AM (2018) Removal of heavy metals and organic pollutants from water using dendritic polymers-based adsorbents: a critical review. Sep Purif Technol 191:400–423

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ ContamToxicol 196:1–21

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2023) Phytochelatins: sulfur-containing metal(loid)-chelating ligands in plants. Int J Mol Sci 24(3):2430. https://doi.org/10.3390/ijms24032430

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74(1):78–84

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Google Scholar 

  • Shua WS, Yeb ZH, Lana CY et al (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120(2):445–453

    Article  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Google Scholar 

  • Singh R, Kesavan AnupKumar, Landi M, Kaur S, Thakur S, Zheng B, Bhardwaj R, Sharma A (2020) 5-aminolevulinic acid regulates Krebs cycle, antioxidative system and gene expression in Brassica juncea L. to confer tolerance against lead toxicity. J Biotechnol 323:283–292

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Sarkar A, Singh S, Singh P, de Araujo AS, Singh RP (2017) Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front Environ Sci 5:64

    Article  Google Scholar 

  • Srivastava V, Gupta SK, Singh P, Sharma B, Singh RP (2018) Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. Int J Recycl Org Waste Agric 7(3):241–250

    Google Scholar 

  • Stiborova M, Pitrichova M, Brezinova A (1987) Effect of heavy metal ions in growth and biochemical characteristic of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467

    Article  CAS  Google Scholar 

  • Sudhakar C, Symalabai L, Veeranjaveyuler K (1992) Lead tolerance of certain legume species grown on lead or tailing. Agri Eco Environ 41:253–261

    Article  CAS  Google Scholar 

  • Sulaiman FR, Hamzah HA (2018) Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecol Process 7(1):1–11

    Article  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388

    Article  CAS  Google Scholar 

  • Tomulescu IM, Radoviciu EM, Merca VV, Tuduce AD (2004) Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J Agric Sci 15:39–42

    Google Scholar 

  • Usman K, Abu-Dieyeh MH, Zouari N, Al-Ghouti MA (2020) Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157(8–9):2558–2563

    Article  PubMed  CAS  Google Scholar 

  • Valdés J, Guinez M, Castillo A, Vega SE (2014) Cu, Pb, and Zn content in sediments and benthic organisms from San Jorge Bay (northern Chile): accumulation and biotransference in subtidal coastal systems. Cienc Marinas 40(1):45–58

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Google Scholar 

  • Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Qiu Y, Hu K, Huang C, Xiang J, Li H, Tang J, Wang J, Xiao T (2020) One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: effect of plant species and roles of xanthation. Chemosphere 129129

    Google Scholar 

  • WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wierzbicka M (1987) Lead translocation and localization in Allium cepa roots. Can J Bot 65:1851–1860

    Article  CAS  Google Scholar 

  • Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połeć-Pawlak K, Jarosz M, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231:99–111

    Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011:402647

    Google Scholar 

  • Xiong ZT (1997) Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environ Pollut 97(3):275–279

    Article  PubMed  CAS  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yan ZZ, Keand L, Tam NFY (2010) Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquat Bot 92(2):112–118

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yingli Y, Yang L, Yuanyuan Y, Zhang Xueling X, Wei J, You J, Wenrui W, Wang L, Ruxia R, Shi A (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Safety 74:4–8

    Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Wang Y, Lou Z, Dong J (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50

    Article  PubMed  CAS  Google Scholar 

  • Zheng LJ, Liu XM, Lütz-Meindl U, Peer T (2011) Effects of lead and EDTA-assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinensis and Lespedeza davidii. Water Air Soil Pollut 220:57–68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagota, N., Singh, S., Kaur, H., Kaur, R., Sharma, A. (2024). Oxidative Stress in Lead Toxicity in Plants and Its Amelioration. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity Mitigation: Sustainable Nexus Approaches. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-46146-0_14

Download citation

Publish with us

Policies and ethics